
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

The Dynamics of Wait-Free Distributed

Computations

Eric GOUBAULT

LIENS - 96 - 26

The Dynamics of Wait-Free Distributed

Computations

Eric GOUBAULT

LIENS - 96 - 26

December 1996

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : ... @dmi.ens.fr

Math. Struct. in Comp. Science (1993), vol. 11, pp. 1{000 Copyright

c

 Cambridge University Press

The Dynamics of Wait-Free Distributed

Computations

Eric Goubault

C.N.R.S & Ecole Normale Sup�erieure

45 rue d'Ulm

75230 PARIS Cedex 05, FRANCE

Received 15 December 1996

1. Introduction

The work reported here is concerned with the robust or fault-tolerant implementation

of distributed programs. More precisely, we are interested in wait-free implementations

on a distributed machine composed of several units communicating through a shared

memory via atomic read/write registers (described in Section 2). This means, in the case

of two such units, that the processes executed on the two processors (say P and P

0

)

must be as loosely coupled as possible so that even if one fails to terminate, the other

will carry on computation and �nd a correct partial result. This excludes all mutual

exclusion constructs such as semaphores, monitors etc. Wait-freeness is also intended to

help solve an e�ciency problem: if one of the processors is much slower than the other,

can we still implement a given function in such a way that the fast process will not have

to wait too much for the slow one?

This �eld of distributed computing has received up to now considerable attention.

Typically, one is interested in implementing a distributed database in which remote

transactions do not have to wait for each others. The kind of functions we have to

consider then is more like coherence relations between the possible local inputs on each

processor and the �nal global output of the machine. For instance, when two transactions

wish to change the same shared item in the database in an asynchronous manner, one

has to choose which transaction will get the leading rôle, to keep the database coherent.

This is the well known consensus problem. Formally, if we represent the values of the

shared items by integers then the consensus problem is the input/output relation � �

(ZZ � ZZ) � (ZZ � ZZ) de�ned as follows, given that a pair of integers represents a pair of

local values on P , P

0

.

For all integers i, (i; i)�(i; i) (a). This means that if P and P

0

start with the same local

input value i, then they must end with the same output value i as well. This corresponds

to the fact that they can only agree on the value i in that case.

For all i, j, (i; j)�(i; i) (b) : if P and P

0

start with di�erent local input values, say i,

j, then P and P

0

can agree on value i.

For all i, j, (i; j)�(j; j) (c) : P and P

0

can also agree on value j.

What if now one of the two processors fails to terminate? If we represent failure by

E. Goubault 2

the symbol ?, then the coherence relation � has to be extended so that it expresses the

behaviour of the system in nasty cases.

For all i, (i;?)�(i;?) (d): if P

0

fails then P must terminate and stick to its local value

i.

We should also assume for all j, (?; j)�(?; j) (e) : if P fails then P

0

must terminate

and stick to its local value j.

In fact, it is well known that this relation cannot be implemented in a wait-free man-

ner on a shared memory machine with atomic read/write registers (FLP85), whereas

the following approximate consensus, called binary pseudo-consensus in (Her94), has a

solution:

(a')For all i, j booleans, (i; j)�(i; i), (i; j)�(j; j). This is the same as (a), (b) and (c) (for

boolean values 0 and 1).

(b')(0; 1)�(1; 0).

(c')Same as (d) and (e).

We have just slightly relaxed the agreement problem by adding rule (b

0

) specifying

that we could agree except for input (0; 1) where a minor error is tolerated (and we have

also restricted to the subdomain f0; 1g � ZZ). We can implement this one in a wait-free

manner, as will be shown in Section 11.1.1.

We followhere the geometric view on distributed computation used in recent litterature

in distributed protocols (BG93; Cha90; Her94; HR94; HR95; HS93; HS94; SZ93) and in

some ways in recent litterature in semantics of concurrency (Gou95; Gou96; Goult; Pra91;

vG91; Gun94). The idea is that wait-free relations exhibit some geometrical properties

(Section 9). We give another way of proving this (with respect to the way of M. Herlihy,

N. Shavit and S. Rajsbaum), starting with a semantics of a shared memory language,

bringing these considerations close to the semantics and language people. We actually

are �rst interested in the case where we have two communicating units. This case is the

simplest possible and we will be able to discuss in a precise manner all the behaviour of

these machines.

We begin by de�ning a precise language accessing shared memory though atomic reads

and writes. After giving a precise de�nition of wait-freeness, we prove that all programs

written in that language are wait-free. In the course of proving this, we will need to

separate out the part of the semantics which deals with control
ow and the one which

deals with the information
ow (the values of the variables). Wait-freeness is a property

on the control
ow basically asserting that it should be invariant under all possible

permutations of processors, at each stage of the execution, hence if one action fails, there

is always a way to escape from failure by rescheduling actions yet to be executed, to

be the ones of the non-faulty processors. This will be explained geometrically as being

semantics which are essentially contractible spaces.

But the topology of the whole semantics can be studied explaining the link between the

possible schedules and the �nal states of the memory. Traversing the set of schedules we

have to go through critical points (determining the interactions between the processes).

The fact that these interactions made of reads and writes can only change a small amount

of the memory at each time, implies that there is a topological invariant throughout the

Wait-free Dynamics 3

Shared Memory

Processes

WRITEWRITE

READ

P u,v,r... u’,v’,r’... P’

x x’

Fig. 1. Sketch of a shared memory machine with atomic read/write registers.

dynamics, namely, some form of connectedness is preserved along the executions of a

program.

This has actually a reciprocal. Once again we can treat this exhaustively in the case of

two processors. Basically, an input/output relation that preserves this kind of topologi-

cal invariant we determined beforehand, is the \denotation" of a program in our small

read/write language. This should be seen as some kind of full-abstraction result, and

also a precise statement of the expressive power of wait-free atomic read/write shared

memory distributed architectures.

We derive a di�erent algorithm than the one of (Her94; HS94) based on the participat-

ing set algorithm of (Bor95) directly from the semantics of our language (Section 11.3).

Its short proof stems directly from its construction. Then, after giving a few examples,

we compare both algorithms (Section 11.4) and show that ours gives the programs with

the minimum number of comparisons and accesses to the shared memory for all possible

executions, hence produces the most e�cient code for computing any wait-free binary

relation.

We then give a general methodology for dealing with these kinds of results from the

operational semantics to the geometric invariants of computations we might expect.

We sketch a possible generalisation of this to the n-processor case. The geometric and

semantic phenomena are not di�erent from the 2-processor case but the combinatorics is

much more intricate.

Finally, we treat a general computability result concerning atomic read/write shared

memory plus a test&set primitive. It can be shown now that any \�nite" binary relation

can be computed, and a general algorithm for doing so is sketched in Section 14.

2. A Simple Asynchronous Distributed System

We consider a shared memory machine with two processors such as the one pictured in

Figure 1. The shared memory is formalized by a collection of registers V = fx; yg. Proces-

sor P (resp. P

0

) has a local memory composed of locations u; v; r � � � (resp. u

0

; v

0

; r

0

� � �).

All reads and writes are done in an asynchronous manner on the shared memory. There

is no con
ict in reads, nor in writes since we ensure that the writes of distinct processors

are made on distinct parts of the shared memory (P is only allowed to write on x, P

0

is

only allowed to write on x

0

).

E. Goubault 4

3. Syntax

We use the following syntax for the shared memory language handling this machine. We

�rst have a grammar for instructions I, and then another one for processes P ,

I := update

j scan

j r = f(r

1

; � � � ; r

n

)

where c is a local register or a value (in ZZ), r; r

1

; � � � ; r

n

are local registers and f is any

partial recursive function.

P := I

j case (u

1

; u

2

; : : : ; u

k

) of

(a

1

1

; a

1

2

; : : : ; a

1

k

) : P

� � �

(a

n

1

; a

n

2

; : : : ; a

n

k

) : P

default : P

j P ;P

where r is any local register. We also suppose that

(a

i

1

; � � � ; a

i

k

) = (a

j

1

; � � � ; a

j

k

)) i = j

Programs are Prog := (P j P) (we are considering programs on two processors only).

update is the instruction that writes the local value u (resp. v

0

) of processor P (resp.

P

0

) in the shared variable x (resp. x

0

).

scan reads the shared array in one round and stores it into a local register of the

process in which it is executed. scan executed in P (resp. P

0

) stores x

0

(resp. x) in v

(resp. u

0

).

r = f(r

1

; � � � ; r

n

) computes the partial recursive function f

case is the ordinary case statement on any tuple of local registers, with any �nite

number of branches allowed.

; is the sequential composition of processes.

j is the parallel composition of processes.

4. A �rst Concrete Semantics

We denote both the shared and local stores by � which is a function from V [([

i

V

i

) to

ZZ, the domain of values. The semantics is given in terms of a transition system generated

by the rules below. The states of the transition system are pairs (fP; P

0

g; �) where P

(respectively P

0

) is the text of the program yet to be executed on the �rst processor

(respectively second processor) and � is the value of the global and local memories at

this point of the computation.

(update)

(fupdate;R;P

0

g; �)

update

P

-

(fR;P

0

g; �[x u])

Wait-free Dynamics 5

(scan)

(fscan;R;P

0

g; �)

scan

P

-

(fR;P

0

g; �[v x

0

])

(calc)

(f(r = f(r

1

� � � r

n

));R;P

0

g; �)

calc

P

-

(fR;P

0

g; �[r f(r

1

: : : r

n

)])

(case)

If 9k, 8i, �(u

i

) = a

k

i

,

0

B

B

B

B

@

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

case (u

1

: : : u

k

) of

(a

1

1

: : :a

1

k

) : P

1

� � �

(a

n

1

: : :a

n

k

) : P

n

default : P

1

C

C

C

C

A

;R;P

0

9

>

>

>

>

=

>

>

>

>

;

; �

1

C

C

C

C

A

case

P

-

(fP

k

;R;P

0

g; �)

Otherwise,

0

B

B

B

B

@

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

case (u

1

: : :u

k

) of

(a

1

1

: : : a

1

k

) : P

1

� � �

(a

n

1

: : : a

n

k

) : P

n

default : P

1

C

C

C

C

A

;R;P

0

9

>

>

>

>

=

>

>

>

>

;

; �

1

C

C

C

C

A

case

P

-

(fP ;R;P

0

g; �)

We also add the obvious symmetric rules where we interchange the rôles of P and

P

0

. The respective actions are denoted with a P

0

subscript, when needed. We call solo

execution of P (respectively P

0

) all paths composed of actions of the form a

P

, a =

scan; update; calc; case (respectively a

P

0

). A maximal path is a path for which there is

no path containing it strictly.

5. A �rst Abstraction

The basic idea here is to look only at the input/output relations that a given program

induces. This is the ordinary denotational view on the semantics of the program (CC92).

Formally we de�ne an abstract domain of denotations of programs as

D = (fPg � ZZ

?

)

2

[(fP

0

g � ZZ

?

)

2

Note the slight di�erence with a standard (relational) denotational semantics. Instead

of computing relations between pairs of values computed by P and Q, we look at solo

executions of P and solo executions of Q, i.e. we compute relations between values of P

or relations between values of Q. Let us be more formal now.

Let

p

I

(fR;Sg; �) = (P; �(u))

p

O

(fR;Sg; �) = (P; �(x))

q

I

(fR;Sg; �) = (P

0

; �(v))

q

O

(fR;Sg; �) = (P

0

; �(y))

Then the abstraction � from the transition systems de�ning the semantics of our

E. Goubault 6

language (forming a lattice T with the inclusion of transition systems as order) to the

domain D (which is a lattice with the inclusion of relations as order) is such that

� : T

-

�(T) =

[

f(p

I

(s); p

O

(s

0

))=s!

�

s

0

is a maximal solo execution of P in Tg

[

[

f(q

I

(s); q

O

(s

0

))=s!

�

s

0

is a maximal solo execution of Q in Tg

In fact, we will need two other abstractions of the concrete semantics. The �rst one

is the abstraction of the semantics to the control
ow (�

c

) and the second one to the

information
ow (�

i

). The interplay between these two will enable us to fully characterize

the denotational abstraction �.

�

c

of a transition system generated by the SOS rules of the concrete semantics only

retains the control part of the states, i.e. is a folding of the transition system on states,

such that �

c

(fP; P

0

g; �) = fP; P

0

g.

The abstract semantics of a term fP; P

0

g executed from environment � is denoted

[[P; P

0

]]

�

c

. We have the following rules for the abstract semantics,

(update)

[[update;R;P

0

]]

�

c

=fupdate;R;P

0

g

update

P

-

fR;P

0

g [[[R;P

0

]]

�[x u]

c

(scan)

[[scan;R;P

0

]]

�

c

=fscan;R;P

0

g

scan

P

-

fR;P

0

g [[[R;P

0

]]

�[v x

0

]

c

(calc)

[[(r = f(r

1

� � � r

n

));R;P

0

]]

�

c

=f(r = f(r

1

� � � r

n

));R;P

0

g

calc

P

-

fR;P

0

g [[[R;P

0

]]

�[r f(r

1

:::r

n

)]

c

(case)

If 9k, 8i, �(u

i

) = a

k

i

,

[[

0

B

B

B

B

@

case (u

1

: : : u

k

) of

(a

1

1

: : :a

1

k

) : P

1

� � �

(a

n

1

: : :a

n

k

) : P

n

default : P

1

C

C

C

C

A

;R;P

0

]]

�

c

case

P

-

fP

k

;R;P

0

g [[[P

k

;R;P

0

]]

�

c

Otherwise,

[[

0

B

B

B

B

@

case (u

1

: : :u

k

) of

(a

1

1

: : :a

1

k

) : P

1

� � �

(a

n

1

: : :a

n

k

) : P

n

default : P

1

C

C

C

C

A

;R;P

0

]]

�

c

case

P

-

fP ;R;P

0

g [[[P ;R;P

0

]]

�

c

�

i

of a transition system generated by the SOS rules of the concrete semantics only

retains the information part of the states, i.e. �

i

(fP; P

0

g; �) = �.

This abstract semantics is given by the following abstract rules.

(update)

Wait-free Dynamics 7

(�)

update

P

-

(�[x u])

(scan)

(�)

scan

P

-

(�[v x

0

])

(calc)

(�)

calc

P

-

(�[r f(r

1

: : : r

n

)])for all computable f

(case)

(�)

case

P

-

(�)

These are sound abstractions of the concrete semantics.

6. A second Concrete Semantics: HDA

In fact, we do need to know more about how asynchronous the execution can be. Intu-

itively, our machine is designed to be entirely asynchronous: there is no locks on any of

the locations in the shared memory that would make one processor wait for the other.

All programs written on this machine are wait-free in that sense (Lyn96) since we can-

not emulate active polling because there is no loop construct. This statement should be

somehow re
ected in the semantics of the language, an aspect which is missing in the in-

terleaving semantics of Section 4, if we want to reason formally about this asynchronous

machine.

In order to do this, we use HDA (Pra91; vG91; GJ92; Gou93; Goult) to model the

language. Basically we add up 2-transitions (transitions of dimension 2) to the transitions

of dimension 1 already speci�ed by the operational semantics of Section 4 that indicate

that the 1-transitions at its boundaries are executed in a concurrent manner. Formally, 2-

transitions have two starting 1-transitions (respectively two ending 1-transitions) whereas

1-transitions have one starting 0-transition, or state (respectively one ending 0-transition,

or state). Hence we specify a 2-transitionA from the 1-transitions a, b to the 1-transitions

a

0

, b

0

by the notation:

a; b

A

-

a

0

; b

0

In fact this notation is a direct abstraction of the general de�nition of HDA as found

in e.g. (Goult), that we recall and explain below.

De�nition 1. An unlabeled semi-regular HDA is a collection of setsM

n

(n 2 IN) together

with functions

M

p;q

d

0

i

-

M

p�1;q

M

p;q�1

d

1

i

?

for all n 2 IN and 0 � i; j � n� 1, such that

d

k

i

� d

l

j

= d

l

j�1

� d

k

i

E. Goubault 8

A

d A

d A

d d A

d d A

d d A

d d A

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

1

0

1

1

d d A

d d A

1

1

0

0

0

0

1

0

d A

d A

1

1

1

1

1

Fig. 2. The 2-transition A and its boundaries

(i < j and k; l = 0; 1) and 8n;m n 6= m; M

n

\M

m

= ;.

Elements x ofM

p;q

(dimx = p+ q = n) are called n-transitions (or states if n = 0). d

0

i

(respectively d

1

i

) are called the start boundary operators (respectively the end boundary

operators). For a transition such as the 2-transition A 2M

1;1

(for instance) denoted as,

a; b

A

-

a

0

; b

0

the start 1-transitions are a 2M

0;1

and b 2M

0;1

, for instance,

d

0

0

(A) = a

d

0

1

(A) = b

and the end 1-transitions are a

0

2M

1;0

and b

0

2M

1;0

with,

d

1

0

(A) = a

0

d

1

1

(A) = b

0

The 1-transitions a, b, a

0

and b

0

have also start and end 0-transitions or states, that

we can write using the format of last de�nition as,

d

0

0

(a) = � 2M

�1;1

d

0

0

(b) = �

d

0

0

(a

0

) =
 2M

0;0

d

0

0

(b

0

) = � 2M

0;0

d

1

0

(a) = �

d

1

0

(b) =

d

1

0

(a

0

) = � 2M

1;�1

d

1

0

(b

0

) = �

One can check on this example that the commutation rule de�ning semi-regular HDA

Wait-free Dynamics 9

is indeed veri�ed (as shown on Figure 2) on that particular example, for instance,

d

1

0

(d

0

1

(A)) = d

1

0

(b)

=

= d

0

0

(a

0

)

= d

0

0

(d

1

0

(A))

Let us review the rules for 2-transitions now. First, we need a little lemma on the

interleaving semantics.

Lemma 1. Let

a = (ft;P

0

; s;Q

0

g; �)

t

! (fP

0

; s;Q

0

g; �

1

)

b = (ft;P

0

; s;Q

0

g; �)

s

! (ft;P

0

; Q

0

g; �

2

)

a

0

= (ft;P

0

; Q

0

g; �

2

)

t

! (fP

0

; Q

0

g; �

3

)

b

0

= (fP

0

; s;Q

0

g; �

1

)

s

! (ft;P

0

; Q

0

g; �

4

)

with (t; s) 6= (update

P

; scan

P

0

) and (t; s) 6= (scan

P

; update

P

0

). Then �

3

= �

4

.

Proof. By simple case analysis, using the semantics of Section 4.

Basically, this lemma states that all actions but update and scan commute with each

other, making them possible candidates for being run in a truly concurrent manner

(hence delimiting 2-transitions). For an update and a scan run in di�erent orders, we

might get di�erent environments at the end. Nevertheless, the rule (interference) will

state that these two actions are run in a truly concurrent manner (no synchronisation

between them is required by the machine), whereas some other systems (like those which

use semaphores to handle read/write con
icts) would be speci�ed as sequential histories

only (no 2-transition indicating asynchrony).

(no interference)

For 1-transitions a, b, a

0

and b

0

as in Lemma 1, or more generally, such that �

3

= �

4

,

a; b

t
 s

-

a

0

; b

0

(interference)

For 1-transitions a, b, a

0

, b

0

of the form,

a = (ft;P

0

; s;Q

0

g; �)

t

! (fP

0

; s;Q

0

g; �

1

)

b = (ft;P

0

; s;Q

0

g; �)

s

! (ft;P

0

; Q

0

g; �

2

)

a

0

= (ft;P

0

; Q

0

g; �

2

)

t

! (fP

0

; Q

0

g; �

3

)

b

0

= (fP

0

; s;Q

0

g; �

1

)

s

! (fP

0

; Q

0

g; �

4

)

with t = update

P

and s = scan

P

0

and such that �

3

6= �

4

introduce new 1-transitions,

�

1

= (ft;P

0

; Q

0

g; �

2

)

�

! (fP

0

; Q

0

g; �

4

)

�

2

= (fP

0

; s;Q

0

g; �

1

)

�

! (fP

0

; Q

0

g; �

3

)

then,

(1)

a; b

t
 s

-

�

1

; b

0

E. Goubault 10

(2)

a; b

s
 t

-

a

0

; �

2

The 2-transition created in (1) is abstracting the asynchronous behaviours of t and s in

which s terminates after t. The one created in (2) represents the asynchronous executions

in which t terminates after s.

7. A second Abstract Semantics: \Cut" semantics

First, we are able to generalise �

c

and �

i

to deal with 2-transitions.

Basically, in the case where t and s are non-con
icting, taking the notations of Lemma

1,

[[t;P

0

; s;Q

0

]]

�

c

= a; b

t
 s

-

a

0

; b

0

[[[P

0

; s;Q

0

]]

�

1

c

[[[t;P

0

; Q

0

]]

�

2

c

In the case where t and s are con
icting, we are generating a unique 2-transition t
 s,

but disconnect the executions \above" and \below", since the two histories are di�erent

in an essential manner,

[[t;P

0

; s;Q

0

]]

�

c

= a; b

t
 s

-

a

0

; b

0

[[[P

0

; s;Q

0

]]

�

1

c

[([[t;P

0

; Q

0

]]

�

2

c

)

0

where the only intersection between [[P

0

; s;Q

0

]]

�

1

c

and ([[t;P

0

; Q

0

]]

�

2

c

)

0

is the point fP

0

; Q

0

g

y

.

This is still a sound abstraction of the concrete semantics.

As for �

i

we have to complete the abstract semantics as follows,

If t and s are two non-con
icting 1-transitions, we have the following 2-transition,

a

i

; b

i

t
 s

-

a

0i

; b

0i

where a

i

; b

i

; a

0i

; b

0i

are the respective transitions of the information
ow semantics.

And if t and s are con
icting 1-transitions, we have two new 1-transitions,

�

i

1

= (�

2

)

�

! (�

4

)

�

i

2

= (�

1

)

�

! (�

3

)

then, we have the two following 2-transitions,

a

i

; b

i

t
 s

-

�

i

1

; b

0i

a

i

; b

i

s
 t

-

a

0i

; �

i

2

Finally the � abstraction can be completed as well. Now we can relate not only inputs

with outputs of solo executions but also pairs of inputs to pairs of outputs for executions

of both P and P

0

. Formally, still using the p

I

, p

O

, q

I

and q

O

projection maps of Section

5, we de�ne �

0

to be the following abstraction of the HDA semantics, de�ned to be in

value in the domain D

0

= (ZZ

?

�ZZ

?

)

2

. Let us call p

1

(s; s

0

) any 1-path such that the �rst

y

This \trick" will be explained in Section 12.

Wait-free Dynamics 11

inital cut:

final cut:

P

PP’

P’

P’

P

P’

P

α ’

Fig. 3. Initial and �nal cuts of the dynamics

action of p

1

is an action by P from global state s, and that its last action is by P

0

with

end global state s

0

. Similarly p

2

starts at s by an action by P

0

and ends in s

0

with an

action by P in the following sum,

�

0

(T) =

[

f(p

I

(s); q

I

(s); p

O

(s

0

); q

O

(s

0

))=there is a 2-path between p

1

and p

2

g

This actually generalises the denotational abstraction � of Section 5.

If you think that P or P

0

may fail and give ? as a result then what we wrote as

((P; u); (P

0

; v); (P; x); (P

0

; y)) 2 �

0

(T) (or (u; v)! (x; y) as a shortcut) is now ((P; u); (P; x)) 2

�(T) (or (u;?)! (x;?) as a shortcut).

Both of these control
ow abstractions can be represented as follows. If we look at the

semantics as real geometric shapes, we are looking at relations between the source and

target of the semantics. We call source the initial \cut" of the dynamics, and target the

�nal \cut" of the dynamics, as shown in Figure 3.

As shown also in Figure 3, the relation induced by the dynamics is clearly a relation

between two graphs, one is called the input graph, the other, the output graph.

Formally, the input and output values are nodes of a graph that we will call the com-

patibility graph S

ZZ

= (V;E) de�ned as follows (see Figure 8 for a picture of S

[1;M]\ZZ

).

| its set of vertices is V = fPg � ZZ [fQg � ZZ,

| its set of edges is E = f(v

1

; v

2

)=v

1

= (P; r); v

2

= (Q; s)g with the obvious boundaries.

And then, it is easy to check that all possible input and output graphs are subgraphs

of S

ZZ

. The input graph, the output graph and the relation between these is called the

speci�cation graph.

8. Some General Properties of HDA

To speak about \geometric" properties of paths we will be needing in the sequel, we need

to change our point of view on the objects (HDA) we are manipulating.

E. Goubault 12

De�nition 2. A (unlabeled) higher dimensional automaton (HDA) is a R-module M

with two gradings associated to two boundary operators @

0

and @

1

, that is, consists in:

| a decomposition: M=

P

p;q2ZZ

M

p;q

, such that

8n;

X

p+q=n

M

p;q

!

\

0

@

X

r+s6=n

M

r;s

1

A

= 0

| two di�erentials @

0

and @

1

, compatible with the decomposition, giving M a structure

of bicomplex:

@

0

:M

p;q

�!M

p�1;q

@

1

:M

p;q

�!M

p;q�1

@

0

� @

0

= 0; @

1

� @

1

= 0; @

0

� @

1

+ @

1

� @

0

= 0

The connection between this de�nition and the one we had before is stated in the

following lemma,

Lemma 2. Let M be a semi-regular HDA. Then M de�ned as,

| M

p;q

is the free R-module generated by M

p;q

,

| @

0

=

P

i=p+q�1

i=0

(�1)

i

d

0

i

,

| @

1

=

P

i=p+q�1

i=0

(�1)

i

d

1

i

.

is a general HDA.

Proof. We just check here that @

0

� @

0

= 0. The other two equations can be veri�ed

in a similar manner. Let x 2M

p;q

,

@

0

� @

0

(x) =

P

i=p+q�2

i=0

P

j=p+q�1

j=0

(�1)

i+j

d

0

i

� d

0

j

(x)

=

P

0�i<j�p+q�1

(�1)

i+j

d

0

i

� d

0

j

(x) +

P

p+q�2�i�j�0

(�1)

i+j

d

0

i

� d

0

j

(x)

=

P

0�i<j�p+q�1

(�1)

i+j

d

0

j�1

d

0

i

(x) +

P

p+q�2�i�j�0

(�1)

i+j

d

0

i

� d

0

j

(x)

=

P

0�J�I�p+q�2

�(�1)

I+J

d

0

I

d

0

J

(x) +

P

p+q�2�i�j�0

(�1)

i+j

d

0

i

� d

0

j

(x)

= 0

Paths of M can be easily de�ned in M . For instance, a (sequential) path from state

� 2 M

p;�p

to state � 2 M

p+k;�p�k

is nothing but a sequence of 1-transitions that we

can picture as follows,

p

1

2M

p+1;�p

d

0

0

-

�

p

1

2M

p+2;�p�1

d

0

0

-

=

d

1

0

?

.

.

.

p

k

2M

p+k;�p�k+1

d

0

0

-

=

�

d

1

0

?

Wait-free Dynamics 13

thus verifying that the end of p

i

is the beginning of p

i+1

and that the beginning of p

1

is � and the end of p

k

is �. Let us call P

�;�

1

the set of such paths (called 1-paths of paths

of dimension 1 since it only involves sequential executions) from state � to state �.

Before looking at these objects, and to their higher-dimensional analogues, we have to

restrict to a convenient case,

Lemma 3. A HDA M is such that M =

L

p;q

M

p;q

(meaning that (p; q) 6= (p

0

; q

0

))

M

p;q

\M

p

0

;q

0

= 0) if and only if for all p 6= q, M

p;�p

\M

q;�q

= 0. Such HDA will be

called acyclic.

Proof. Suppose that there are two distinct pairs of indexes (p; q) and (p

0

; q

0

) such that

M

p;q

\M

p

0

;q

0

6= ;. Let A 2 M

p;q

\M

p

0

;q

0

. Then let x = d

0

p+q�1

� � � � � d

0

1

� d

0

0

(A). As

p+ q = p

0

+ q

0

(one of the axioms of HDA) x 2M

q;�q

and x 2M

q

0

;�q

0

. As p+ q = p

0

+ q

0

and (p; q) 6= (p

0

; q

0

), we have q < q

0

or q

0

< q but not q = q

0

.

Acyclic HDA M have the property that any state is in a unique submodule M

p;�p

of

M and that any path from a point � 2M

p;�p

and � 2M

k+1+p;�p�k�1

has length k.

There is now a correspondance between these paths and a computable object in M ,

for M acyclic,

Lemma 4. The R-module generated by elements x = (x

1

; � � � ; x

k

) such that there is a

� 2 R with,

| x

i

2M

p+i;�p�i+1

,

| @

0

(x) = @

1

(x) + �(� � �),

is isomorphic to the R-module generated by P

�;�

1

.

Proof. Let N be the �rst module de�ned in the lemma and de�ne the linear function,

f : R�Mod(P

�;�

1

) ! N

(x

1

; � � � ; x

k

) ! (x

1

; � � � ; x

k

)

First we prove that the image of f is indeed in N . Let y =

P

m

i=1

�

i

(x

i

1

; � � � ; x

i

k

) with

(x

i

1

; � � � ; x

i

k

) 2 P

�;�

1

be an element of R � Mod(P

�;�

1

). Notice �rst that for any path

(x

1

; � � � ; x

k

) 2 P

�;�

1

we have, if x = f(x

1

; � � � ; x

k

),

@

0

(x) � @

1

(x) = �+ @

0

(x

2

)� @

1

(x

1

) + � � �+ @

0

(x

k

)� @

1

(x

k�1

)� �

= �� �

Therefore,

@

0

(y) � @

1

(y) =

P

m

i=1

�

i

(@

0

� @

1

)(f(x

i

1

; � � � ; x

i

k

))

= (

P

m

i=1

�

i

)(�� �)

f is an isomorphism since it is de�ned as the identity map.

Nevertheless, we do not have R�Mod(P

�;�

1

) isomorphic to the R-module P

�;�

1

de�ned

as being the sub-R-module ofM

p+1;�p

�� � �M

p+k;�p�k+1

of x such that @

0

(x) = @

1

(x)+

�(���) since these are generated by all paths, even the undirected ones, between � and

�.

All this can be generalised in higher dimensions in a easier way. Intuitively, a n-path

is a path where n processors are acting together asynchronously. Basically, these will be

E. Goubault 14

X

p

p

1

2

α

β

(i) (ii)

X

Y

X=three faces above and behind

Y=three faces in front and below

a

b

c

Fig. 4. A surface within two paths p

1

and p

2

, and a hypersurface (the cube) between two

surfaces X and Y

some kind of sequences of n-transitions. These can be de�ned formally by considering M

directly, because from dimension 2 on, there is no need to direct surfaces.

De�nition 3. Let n � 1 and M be a acyclic HDA. Let p

1

and p

2

be two (n � 1)-paths

between two (n � 2)-paths � and � (or if n = 1, p

1

and p

2

are just two states).

Then the R-module of n-paths between p

1

and p

2

is the R-module composed of elements

x such that there exists � 2 R with,

@

0

(x) = @

1

(x) + �(p

1

� p

2

)

This R-module is named P

p

1

;p

2

n

(M).

This means that, supposing p

i

= (p

1

i

; : : : ; p

k

i

) and p

1

i

2 M

n�1+s;�s

, its elements x 2

P

p

1

;p

2

n

(M) are x = (x

1

; : : : ; x

k�1

) such that

| x

s

2M

n+s;�s

,

| @

0

(x

i+1

) � @

1

(x

i

) = p

i+1

1

� p

i+1

2

2M

n+i;�i�1

,

| @

0

(x

1

) = p

1

1

� p

1

2

,

| �@

1

(x

k

) = p

k

1

� p

k

2

.

The basic idea is that a n-path (or hypersurface of dimension n) is enclosed at each

time i within the ith stage of p

1

and the ith stage of p

2

, as shown in Figure 4.

Now we can de�ne what it is for a HDA to be wait-free. Intuitively, a program composed

of n processes in parallel is wait-free if and only if the program terminates with a partial

result even if t (t � n � 1) processes fail. In the case of two processors, it is easy to see

that this can be characterized in a geometric manner (see Figure 5). Basically, mutual

exclusions are not wait-free whereas asynchronous executions are.

This can be characterized in terms of n-paths,

De�nition 4. A HDA M is wait-free if and only if for all 2 � t � n, for all (t� 1)-paths

p and q (p 6= q) between � and �, P

p;q

t

6= 0.

This means that all executions are in fact part of asynchronous executions of t (t � n)

processes (2 � t � n). Another way of seeing that is to take p to be any execution

and q an execution in which the program of some process P

j

is entirely executed before

Wait-free Dynamics 15

P1 P2 fails P2 failsP1

Fig. 5. Geometry of non-wait-free with respect to wait-free programs

Fig. 6. Elementary reschedulings of actions

the programs of P

i

, i 6= j. Then M wait-free means that the execution can always be

reordered (by the permutations of actions speci�ed by an element of P

p;q

t

, see Figure

6) so that P

j

is executed �rst. Therefore, if P

j

is the only non-faulty process, it will

terminate even if the others fail at some point.

Then the following characterization is useful,

Proposition 1. Let M be a connected acyclic HDA of dimension n. Then M is wait-

free if M is (n � 1)-connected, or if M is such that all its homology groups H

k

(M) =

Ker(@

0

� @

1

)=Im(@

0

� @

1

) (k � n� 1) are 0.

Proof. The implication between the last two statements is Hurewicz theorem (May67;

GZ67).

We prove now that M is wait-free if all its homology groups up to dimension n � 1 are

trivial.

Suppose M is not wait-free. Then there exist two (t� 1)-paths p and q (p 6= q) between

some � and some � such that P

p;q

t

= 0 (2 � t � n), by De�nition 4. We show now that

p� q 2 H

t

(M) hence (as p � q 6= 0) H

t

(M) 6= 0.

E. Goubault 16

First, p � q 2 Ker(@

0

� @

1

). To prove this write p = (p

1

; � � � ; p

k

) and q = (q

1

; � � � ; q

k

)

(acyclicity implies that p and q have the same length). Then,

(@

0

� @

1

)(p� q) = (@

0

� @

1

)(p) � (@

0

� @

1

)(q)

= �� � � (�� �)

= 0

Then we prove that p� q 62 Im(@

0

� @

1

).

Suppose the contrary, i.e. p� q = (@

0

� @

1

)(A) for some A. This proves A 2 P

p;q

t

hence

a contradiction since P

p;q

t

= 0.

Basically this says that M is wait-free if for any two t-paths p and q between � and

�, we have p and q homotopic. This also implies that homotopic t-paths (or t-schedules

(Gou95)) start at the same global state and end at the same global state, therefore,

t-schedules characterize the possible outcomes of a distributed computation.

We need some general statements about k-connectedness, which will be useful in the

sequel.

Lemma 5. Let A and B be two connected and k-connected shapes such that A \B is

connected and k-connected (k � 1). Then A [B is connected and k-connected.

Proof. By Hurewicz theorem, being connected and k-connected is equivalent to being

connected and simply-connected and having all its homology groups up to k being trivial.

By Seifert/Van Kampen's theorem (GZ67), A [B is connected and simply-connected.

We can now prove k-connectedness of A[B by looking only at its homology groups. We

use the Mayer-Vietoris exact sequence (ML63),

� � �

-

H

k

(A \B)

-

H

k

(A)�H

k

(B)

-

H

k

(A [B)

-

H

k�1

(A \B)

-

� � �

All terms appearing in this exact sequence (at the right of the �rst � � �) are equal to 0

except for H

k

(A [B), H

k�1

(A [B) etc. that we do no know yet. The exactness of the

sequence above force them to be also equal to 0.

9. Some General Properties of the Second Semantics

To be able to understand what the language we are considering can compute, we need an

accurate picture of the semantics of every term (at least modulo some kind of \directed

homotopy" (Gun94)).

First, we need a general remark on the SOS-style de�nition of programming languages.

Basically, when de�ning a language by SOS rules we only consider those states which are

reachable from the initial state i = (fP;Qg; �) by an increasing path. Therefore, if the

initial state is in M

0;0

and if x is another state of M then there is at least one 1-path

p = (p

1

; � � � ; p

k

) from i to x therefore M

k;�k

contains x (others might as well contain x

though). This also implies that the semantics of any term is a connected space.

Lemma 6. Both the concrete HDA semantics of Section 6 and the abstract control
ow

semantics of any term from any environment are acyclic.

Proof. De�ne the size � of a state (fP;Qg; �) as the pair of the numbers of ; plus the

Wait-free Dynamics 17

numbers of case in the strings P and P

0

. Obviously s = s

0

) �(s) = �(s

0

). Then it is

easy to show on the semantics that for all actions a

(fP;Qg; �)

a

-

(fP

0

; Q

0

g; �

0

)

we have �(fP;Qg; �) = �(fP

0

; Q

0

g; �

0

) + (1; 0) or �(fP;Qg; �) = �(fP

0

; Q

0

g; �

0

) + (0; 1)

with the pointwise addition on IN

2

. Therefore the execution of a program looks like an

unfolding (because of the actual value of �) of a sub-grid of IN

2

. This means that all

paths from the initial state to any state x has the same length and that a state cannot

belong to M

p;�p

and M

q;�q

with p 6= q. Hence M is acyclic by Lemma 3.

Then,

Lemma 7. There is always a unique solo execution of P (respectively of P

0

) from any

global state (fP;Qg; �). It is denoted p

(fP;Qg;�)

(respectively q

(fP;Qg;�)

).

Proof. This amounts to proving that each process written in our language is purely de-

terministic. We prove that given a state s = (fP;Qg; �) there cannot be two 1-transitions

a and b of P such that,

s

0

�

�

b

�

s

@

@

a

R

s

00

with s

0

= (fP

0

; Qg; �

0

) di�erent from s

00

= (fP

00

; Qg; �

00

). Looking at the standard se-

mantics, we have two cases,

| a 6= case and b 6= case. Then a = b and P

0

= P

00

. Each of the rules (update), (scan)

and (calc) imply �

0

= �

00

thus s

0

= s

00

.

| a = b = case. Then,

P =

0

B

B

B

B

@

case (u

1

: : :u

k

) of

(a

1

1

: : : a

1

k

) : P

1

� � �

(a

n

1

: : : a

n

k

) : P

n

default : P

1

C

C

C

C

A

;R

and P

0

= P

00

= P

k

;R (for some k) or P

0

= P

00

= P ;R. Furthermore the rule (case)

implies that �

0

= �

00

hence s

0

= s

00

.

The HDA semantics still allows us to speak of solo executions, but also allows us to

reason about 2-processor executions (or here, global executions).

Theorem 1. The abstract control
ow semantics of Section 7 of any term, for any initial

environment, is wait-free.

To prove this, we �rst need a lemma describing the intersection of the semantics of

two programs.

E. Goubault 18

Lemma 8. Let P

1

and P

2

be two programs, �

1

and �

2

two contexts. Then,

[[P

1

]]�

1

\ [[P

2

]]�

2

= [

(x;�)2[[P

1

]]�

1

\[[P

2

]]�

2

[[x]]�

Proof. By Lemma 7, given any state s = (fa;P

0

; b;Q

0

g; �) there are unique solo

executions by P or by Q from it, hence, looking at the rules (no interference) and

(interference) we have two cases,

| (a; b) 6= (scan; update) and (a; b) 6= (update; scan) then there is a unique 2-transition

t that can be �red between the solo executions p

s

and q

s

. We note

s

t

-

s

0

| (a; b) = (scan; update) or (a; b) = (update; scan) then two 2-transitions t

1

and t

2

can

be �red between p

s

and q

s

. We also note (for i = 1; 2),

s

t

i

-

s

0

Using this new notation (generalizing the notation on 1-transitions) the proof goes as

follows.

Let (x; �)

t

-

(x

0

; �

0

) be a transition (of any dimension) in [[P

1

]]�

1

\ [[P

2

]]�

2

, then (x; �) 2

[[P

1

]]�

1

\ [[P

2

]]�

2

and t 2 [[x]]�.

Reciprocally, let (x; �) 2 [[P

1

]]�

1

\ [[P

2

]]�

2

and t 2 [[x]]� and (y; �

0

)

t

-

(z; �

00

). There is

also a path from (x; �) to (y; �

0

). As (x; �) 2 [[P

1

]]�

1

(respectively (x; �) 2 [[P

2

]]�

2

) then

there is a path from (P

1

; �

1

) (respectively (P

2

; �

2

)) to (x; �) hence to (y; �

0

). Therefore

t 2 [[P

1

]]�

1

and t 2 [[P

2

]]�

2

.

Then the proof of Theorem 1 is as follows,

Proof. We prove that for all �, [[x]]

�

c

is (n�1)-connected and even more, is contractible,

by induction on the size �(x). By and Proposition 5 this will entail that for all programs

x, its semantics is wait-free

z

.

The ground case is �(x) = 0 then [[x]]

�

c

= ; which is contractible.

Now take x such that �(x) > 0 and suppose the result hold for all x

0

started in any

environment �

0

, with �(x

0

) < �(x).

�(x) > 0 hence we have the following three case,

(1) x = fa;P

0

; �g.

(2) x = f�; b;Q

0

g.

(3) x = fa;P

0

; b;Q

0

g.

In cases (1) and (2), [[x]]

�

c

is the union of the segment x

a

-

x

0

and of [[x

0

]]

�

0

c

. �(x

0

) < �(x)

hence [[x

0

]]

�

0

c

is contractible. The segment t is also contractible. The intersection of both

spaces is the point x

0

. As [[x]]

�

c

is connected we can choose any base point for homotopy

groups as they are all isomorphic. Choose as base point x

0

. Any (even higher-dimensional)

z

To relate to the ordinary notion of wait-freeness, we only need to prove that �

c

(x) is (n�1)-connected,

since the only important thing to know is if we can reschedule actions, no matter the actual values in

the memory are.

Wait-free Dynamics 19

(x ,)
(x ,)

(x ,)

ρ

ρ

ρ
1

1

3 3

2 2

Fig. 7. the relative con�guration between [[x

1

]]�

1

, [[x

2

]]�

2

and [[x

3

]]�

3

loop is a composition of loops in t or in [[x

0

]]

�

0

c

, each of which is contractible to the base

point. Hence, every loop is homotopic to x

0

in [[x]]

�

c

, and [[x]]

�

c

is contractible.

Case (3) is more complex. We have a priori two subcases,

(i) (a; b) 6= (scan; update) and (a; b) 6= (update; scan).

(ii) (a; b) = (scan; update) or (a; b) = (update; scan).

In case (i), the beginning of the dynamics at (x; �) looks like,

(x

1

; �

1

)

�

�

a

� @

@

b

R

(x; �) t (x

3

; �

3

)

@

@

b

R �

�

a

�

(x

2

; �

2

)

Now [[x]]

�

c

is the union of t (a square, hence contractible), of [[x

1

]]

�

1

c

and of [[x

2

]]

�

2

c

. Both

[[x

1

]]

�

1

c

and [[x

2

]]

�

2

c

are contractible by the induction hypothesis since �(x

1

) < �(x) and

�(x

2

) < �(x). Now, by Lemma 8, the intersection of [[x

1

]]�

1

and [[x

2

]]�

2

is a union of some

[[x

0

]]�

0

. [[x

3

]]�

3

is one of these since it is obviously in both [[x

1

]]�

1

and [[x

2

]]�

2

. But we know

that the execution is all tied up within sub-grids of IN

2

(when you do not look at the

environments). So [[x

3

]]�

3

has to be the maximal element of the set of all these [[x

0

]]�

0

,

hence should contain them all (look at Figure 7).

By the induction hypothesis, [[x

3

]]

�

3

c

is contractible, so U = [[x

1

]]

�

1

c

[[[x

2

]]

�

2

c

is contractible

(Lemma 5). Now, U and t have only in common two connected segments, so once again,

as t is contractible, [[x]]

�

c

= t [U is contractible.

Case (ii) is just about the same. The only di�erence is that the beginning of the control

ow semantics is the union of a square, of [[x

1

]]

�

1

c

and of [[x

2

]]

�

2

c

such that,

| by the induction hypothesis, [[x

1

]]

�

1

c

is contractible,

| by the induction hypothesis, [[x

2

]]

�

2

c

is contractible,

| the square t is contractible,

E. Goubault 20

(P,1) (P,2) (P,3) ... (P,M)

(P’,1) (P’,2) (P’,M)

Fig. 8. The input graph for values in [1;M] \ ZZ.

| the intersection of [[x

1

]]�

1

and [[x

2

]]�

2

is a point.

Hence [[x]]

�

c

is contractible as the amalgamated sum of two contractible shapes (t[[[x

1

]]

�

1

c

and [[x

2

]]

�

2

c

) above a contractible subshape.

10. Geometric properties and impossibility results

Speci�cation graphs represent the relation computed by programs written in our wait-

free language. Conversely, given a binary relation, can we determine whether it can be

implemented in our language (that is, whether it is a wait-free binary relation or whether

it is the \denotational" semantics of some program in our language)? The answer is yes,

and could be proved as a particular case of a general theorem by M. Herlihy and N.

Shavit (HS93). The criterion in our case is as follows. Suppose that P and P

0

ran alone

(i.e. with the other process not being �red in parallel) are the identity functions on their

inputs, and that the allowed initial states are such that �(x) = �(y) = ?, then,

Theorem 2. Let fe

1

; : : : ; e

k

g be the image of a segment e = ((P; u); (P

0

; v

0

)) of the input

graph under the relation �, i.e. the set of segments e

0

such that e�e

0

. Then e

1

; : : : ; e

k

is

a path from (P; u) to (P

0

; v

0

) in the output graph.

Proof. We do know pretty much of the shape of the dynamics in our little language

(thanks to the detailed proof of wait-freeness, Theorem 1). The only states at which we

have a choice between two behaviours are states like,

(1) (fscan

P

;P

0

; update

P

0

;Q

0

g; �),

(2) (fupdate

P

;P

0

; scan

P

0

;Q

0

g; �).

At each of these, we may unfold the \�lled-in subgrid of IN

2

" which would normally be

the shape of the remaining of the dynamics into two of these (as you choose between the

upper face t

1

or the lower face t

2

in the semantics). Therefore, at each of these \critical

points" we have a kind of a \paper clip" shape in the control
ow semantics (see Figure

9). These shapes may appear anywhere on the underlying grid. This might give \multiple

paper clip" as in Figure 10.

A multiple paper clip separates out layers which we can index as in Figure 10 from level

1 to level n going from the P edge to the P

0

edge (the index is based on the size of the P

0

process). Looking at the �nal cuts of the dynamics we see that each cut is a segment, since

the dynamics is wait-free and 2-dimensional and that each of the segments correspond

biunivoquely (the layers are all distinct) to the di�erent possible �nal environments, and

to the homotopy classes of 1-paths (see Figure 10).

Wait-free Dynamics 21

(scan,update)

Fig. 9. The \paper clip" shape

(scan,update)

(P,u)

(Q,v)(P,u’)

(Q,v’)

(P,u’’)

(Q,v’’)

1

2

3

P

P’

Fig. 10. Multiple paper clip

E. Goubault 22

Now we have characterized the control
ow by exhibiting the essential schedulers (the

homotopy classes of 1-paths(Gou95)), we have to see how the contents of the environment

is changed when looking at di�erent schedules (i.e. when looking at di�erent histories of

interactions between P and P

0

).

Let us carry on with our assumption that we have n di�erent layers labelled from 1 to

n. Layer i + 1 is separated from layer i by a critical point c

i

(with environment �

i

) of

type n

i

being 1 or 2. The semantic rule dealing with scan and update operations shows

us that the action on the environment is as follows,

(1) n

i

= 1. Then the new environment �

0

,

(a) at the start of layer i + 1 (execution of scan

P

before update

P

0

) is such that

�

0

(x) = �

i

(x), �

0

(y) = �

i

(v

0

), �

0

(u) = �

i

(u), �

0

(v) = �

i

(y), �

0

(u

0

) = �

i

(u

0

) and

�

0

(v

0

) = �

i

(v

0

),

(b) at the start of layer i (execution of scan

P

before update

P

0

) is such that �

0

(x) =

�

i

(x), �

0

(y) = �

i

(v

0

), �

0

(u) = �

i

(u), �

0

(v) = �

i

(v), �

0

(u

0

) = �

i

(u

0

) and �

0

(v

0

) =

�

i

(v

0

).

(2) n

i

= 2. Just exchange the local variables of P and P

0

in subcases (a) and (b).

Therefore, if we call (�

i

; �

i

) the segment which is the �nal cut semantics for layer i, we

have the following equations,

(1) if n

i

= 1 then the di�erence between the environments of layer i and layer i + 1

can only reside in the variables local to P and as there is no other (scan; update)

con
ict after c

i

, there are only local computations to P and P

0

remaining, therefore

�

i+1

= �

i

: only the variables of P may change in layer i + 1 with respect to layer i

(by induction on the information
ow semantics),

(2) if n

i

= 2 then the di�erence between the environments of layer i and layer i + 1 can

only reside in the variable local to P

0

(by looking at the information
ow semantics),

therefore �

i+1

= �

i

.

Therefore, the n segments in the �nal cut semantics form a connected graph. As P

0

cannot

modify P 's variables nor P can modify P

0

's variables (reasoning on the information
ow

semantics), two of the points in this connected graph are the solo executions of P and

P

0

respectively (corresponding to the schedules P ;P

0

and P

0

;P respectively).

This geometric condition is satis�ed for the pseudo-consensus relation as one can see

by looking at the speci�cation graph of Figure 11.

The situation is not quite the same with binary consensus (Figure 12). An easy in-

spection shows that the image of the segment ((P; 0); (P

0

; 1)) is a set of two disconnected

segments, thus violating the result of Theorem 2. Therefore, binary consensus cannot

be implemented in a wait-free manner. The intuition behind this result is quite simple.

Consensus requires that a process can tell whether it is the �rst or last to choose, because

otherwise there is no way to be sure that the two processes will agree on any value. This

means it needs a synchronization, a break of the connexity of the cuts of the dynamics

(Gou96). This is of course impossible in a wait-free language.

Similarly, if the input values are given locally to the processes as we supposed in The-

orem 2, parallel or (or ordered binary consensus, see the speci�cation graph, Figure 13)

Wait-free Dynamics 23

∆

∆

∆

∆

(P’,0)(P,0)

(P,1) (P’,1) (P,1)

(P,0) (P’,0)

(P’,1)

Fig. 11. The speci�cation of the binary pseudo-consensus.

(P,0)

(P,1) (P,1)

(P,0)

∆

∆

∆

∆

(P’,0)

(P’,1)

(P’,0)

(P’,1)

Fig. 12. The speci�cation of the binary consensus.

cannot be implemented in a wait-free manner. There is though a wait-free solution for

parallel or if the input is stored in the shared memory right from the beginning:

Prog = P j Q

P = update; Q = update;

scan; scan;

case v of case u of

1 : u = 1;update 1 : v = 1;update

default : update default : update

The connectivity condition is indeed preserved throughout the execution of parallel or.

But starting with a non-empty environment implies that there might just be no relation

between solo executions and 2-schedules.

11. Geometric properties: the reciprocal

To complete our \full abstraction" theorem, we start o� with a relation � between

input/output values and pairs of inputs/pairs of outputs.

E. Goubault 24

(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(Q,0)(P,0)

∆

∆

∆

∆

Fig. 13. The speci�cation of parallel or.

(P,x)

(P,x’)

(P,x)

(P’,y’)

(P’,y)

(P’,y’)

Fig. 14. Subdivision of a segment into three segments.

11.1. Usual Case

We suppose here that all paths image by � of any segment of the input graph are made

of distinct segments (one should say, oriented segments, as we will see later on). We can

also suppose here that � restricted to vertices is the identity relation.

11.1.1. Subdivision of a segment into three segments The program Prog = P [�] j P

0

[�]

with P and P

0

de�ned below (being programs with one hole [] in which we can plug any

other program) implements the speci�cation graph of Figure 14 (the segments not being

pictured are mapped onto themselves).

P = update; P

0

= update;

scan; scan;

case (u; v) of case (u; v) of

(x; y

0

) : u = x

0

;update; [] (x; y

0

) : v = y;update; []

default : update default : update

Proof. Using the semantics, we have the following three possible 1-schedules (up

to homotopy), since the only possible interactions are between the scan and update

statements,

Wait-free Dynamics 25

(P,x) (P,x)

(P,x)

(P,x)

(P,x)

1

2

n-1

n

n

3

2

(P’,y’)

(P’,y)

(P’,y)

(P’,y)

(P’,y)

Fig. 15. Subdivision of a segment into a path.

(i) Suppose the scan operation of P is completed before the update operation of P

0

is

started: P does not know y so it chooses to write x. Prog ends up with ((P; x); (P

0

; y)).

(ii) Symmetric case: Prog ends up with ((P; x

0

); (P

0

; y

0

)).

(iii)The scan operation of P is after the update of P

0

and the scan of P

0

is after the

update of P . Prog ends up with ((P; x

0

); (P

0

; y)).

The semantics of this program from the segment (x; y

0

) has the \multiple paper clip"

shape of Figure 10.

Example 1. The binary pseudo-consensus whose speci�cation graph is given in Figure

11 is implemented by this program with x = 0, x

0

= 1, y = 0, y

0

= 1.

11.1.2. Subdivision of a segment into a path The program

Prog = P (x

1

; y

1

; � � � ; x

n

; y

n

) j P

0

(x

1

; y

1

; � � � ; x

n

; y

n

)

with P and P

0

de�ned below, implements the speci�cation graph of Figure 15.

P (x

1

; y

1

; � � � ; x

n

; y

n

) = P (x

1

; y

1

; x

n

; y

n

)

[P (x

n

; y

n�1

; � � � ; x

2

; y

1

)]

P

0

(x

1

; y

1

; � � � ; x

n

; y

n

) = P

0

(x

1

; y

1

; x

n

; y

n

)

[P

0

(x

n

; y

n�1

; � � � ; x

2

; y

1

)]

where P (x

1

; y

1

; x

n

; y

n

) j P

0

(x

1

; y

1

; x

n

; y

n

) is the program of last section with x = x

1

,

y = y

1

, x

0

= x

n

and y

0

= y

n

.

Proof. The idea is to subdivide the segment (x

1

; y

n

) in a recursive manner (see Fig-

ure 15). First subdivide (x

1

; y

n

) into f(x

1

; y

1

); (x

n

; y

1

); (x

n

; y

n

)g by using the program

P (x

1

; y

1

; x

n

; y

n

) j P

0

(x

1

; y

1

; x

n

; y

n

). Then subdivide recursively (x

n

; y

1

) into the path of

length n�1 (x

n

; y

n�1

; : : : ; x

2

; y

1

) using P (x

n

; y

n�1

; : : : ; x

2

; y

1

) j P

0

(x

n

; y

n�1

; : : : ; x

2

; y

1

).

Prog works since (as all the segments (x

i

; y

i

) are distinct) there is no interference be-

tween P (x

1

; y

1

; x

n

; y

n

) and P

0

(x

n

; y

n�1

; : : : ; x

2

; y

1

) nor between P

0

(x

1

; y

1

; x

n

; y

n

) and

P (x

n

; y

n�1

; : : : ; x

2

; y

1

).

E. Goubault 26

a

b

a

b

c

Fig. 16. Example of a speci�cation graph.

11.2. Reduction to the Usual Case

11.2.1. Rotation of the speci�cation graph We wish here to construct part of the code

in charge of ensuring that we are left with solving a speci�cation problem � such that

(u;?)�(u;?) and (?; v)�(?; v).

Suppose (u;?)�(f(u);?) and (?; v)�(?; g(v)). By Church's thesis, f and g are par-

tial recursive functions. Then the program Prog = P (f) j P

0

(g) with P (f) and P

0

(g)

de�ned below solves the speci�cation � if and only if P j P

0

solves the speci�cation �

0

with (f(u);?)�

0

(f(u);?), (?; g(v))�

0

(?; g(v)) and (f(u); g(v))�

0

(f(u

0

); g(v

0

)) whenever

(u; v)�(u

0

; v

0

).

P (f) = (u = f(u)); P

0

(g) = (v = f(v));

P P

0

Proof. Using the standard semantics, we can show that the line of code before the

calls to P and P

0

only acts on the local memory of each processor, hence there is no

other action than the one deduced from the purely sequential behaviour of P (f) and

P

0

(g) respectively.

11.2.2. Minimal unfolding of the output graph We now suppose that we have to solve a

speci�cation problem with a relation which is such that it is the identity relation when

restricted to the vertices of the graph. We ful�ll now the hypotheses of Theorem 2.

Let e = ((P; u); (P

0

; v)) be any segment of the input graph, and G

e

be the subgraph

of the output graph (connected by Theorem 2), image of e by the speci�cation relation

�. Let G

e

be the directed graph generated by G

e

where each segment has an inverse.

To exemplify the whole process described in this section, look at Figure 16 for the spec-

i�cation graph corresponding to a segment e = (a; b) (the graph G

e

is at the right-hand

side of the picture), and to the left of Figure 17 for a picture of G

e

. An unfolding of G

e

is any path p from (u;?) to (?; v) in G

e

such that p traverses all segments of G

e

. The

minimal unfolding is the shortest of such paths. Its interest lies in the fact that from

there we will be able to generate a code for P and P

0

that will implement this subpart of

the speci�cation graph. We will see in next section and in Section 11.4.2 that the length

of this code is linearly related to the length of this unfolding, hence the usefulness of

�nding the shortest path to get the most e�cient code.

An algorithm for determining such a minimal unfolding is based on a breadth-�rst

traversing strategy (Sed88) of the graph, the traversing being complete when the crite-

rion \having gone through all non-oriented segments and ending at (?; v)" is met. For

Wait-free Dynamics 27

c a

b

a

a

b

c 1

2

3

Fig. 17. Minimal unfolding (right) of the graph (left).

(P,0) (P,0)

(P’,1) (P’,1) (P,1)

(P’,0)

Fig. 18. A speci�cation graph.

instance, this algorithm constructs the minimal unfolding of G

e

which is pictured at the

right of Figure 17.

Example 2.

| We can carry on the example speci�ed in Figure 16, setting for instance a = (P; x),

b = (P

0

; y

0

) and c = (P

0

; y) the program implementing the speci�cation (i.e. the

subdivision of the segment (a; b) into the minimal unfolding ((a; c); (c; a); (a; b))) is

Prog = P j P

0

with,

P = update; P

0

= update;

scan; scan;

case (u; v) of case (u; v) of

(x; y

0

) : u = x;update (x; y

0

) : v = y;update

default : update default : update

| Consider the speci�cation graph pictured in Figure 18. The minimal unfolding is

shown in two di�erent ways in Figure 19. Using the result above, the code for im-

plementing it is Prog = P j P

0

with P = P (0; 0; 0; 0)[P (0; 0; 1;0)[P (1; 1; 1; 0)]] and

P

0

= P

0

(0; 0; 0; 0)[P

0

(0; 0; 1; 0)[P

0

(1; 1; 1; 0)]].

11.3. An algorithm

The speci�cation graph is given. The algorithm terminates with an error (if the relation

speci�ed is not wait-free) or with the text of the two processes that implements the

relation. The algorithm is as follows,

| Determine the rotation code (Section 11.2.1),

| For all segments e = ((P; u); (P

0

; v)) of the input graph, do,

E. Goubault 28

1

6

7

3

4

5
2 =

(P,0)

(P,1)

(P,1)

(P,0)

(P’,0)

(P’,0)

(P’,0)

(P’,1)

Fig. 19. The corresponding minimal unfolding and minimal path.

{ determine the connected subgraph G

e

of the output graph, image of e under the

speci�cation relation �,

{ determine the minimalunfolding ((P; x

1

) : : : (P; x

n

); (P

0

; y

n

)) ofG

e

(Section 11.2.2),

{ The program up to that point is

Prog

e

= P (x

1

; : : : ; y

n

) j P

0

(x

1

; : : : ; y

n

)

of Section 11.1.2,

| Mix the code for all segments.

We saw all the material needed in the previous sections except the \mixing" of the

code for all segments. As a matter of fact, we have shown how to derive a code for the

speci�cation of just one input (a segment). Now we have to mix the codes for all inputs.

The idea here is quite simple:Mix(Prog

1

; P rog

2

) (Prog

1

= P

1

j P

0

1

, Prog

2

= P

2

j P

0

2

)

is essentially a program whose processes are Mix(P

1

; P

2

) and Mix(P

0

1

; P

0

2

) such that all

their case entries are the union of the case entries of P

1

and P

2

(respectively of P

0

1

and

P

0

2

). Formally, Mix is an operation on processes that can be de�ned inductively when

applied to the processes that subdivide segments

if (x; y

0

) 6= (X;Y

0

),

Mix(P (x; y; x

0

; y

0

)[P

1

]; P (X;Y;X

0

; Y

0

)[P

2

]) =

update;

scan;

case (u; v) of

(x; y

0

) : u = x

0

;update;P

1

(X;Y

0

) : u = X

0

;update;P

2

default : update

11.4. Comparison with related work

11.4.1. The participating set and Herlihy's algorithm The participating set algorithm

aims at solving the simplex agreement task of (Her94), that is, a generalization to any

number of processors of the speci�cation graph of Figure 14.

The intuition behind this algorithm is to subdivide all segments of the input graph, in

Wait-free Dynamics 29

etc.

i=1

i=2

Fig. 20. Herlihy's iterated subdivision on the binary sphere.

a uniform manner, and enough so that all the subdivisions of the segments we need to

implement the relation can be deduced from it. As a matter of fact, if we have subdivided a

segment into N segments, then all subdivisions intoM segments,M � N can be deduced

from it by just identifying the points in the �ner subdivision which are not needed. The

e�ect of the iterated participating set algorithm is (as shown in Figure 20) to create at

iteration i a subdivision of all segments into 3

i

segments.

11.4.2. Complexity matters As one might have already noticed, we have a strong rela-

tionship between the length of the minimal unfoldings, the number of times the program

has to test the values of its variables, and the number of reads in the main memory. Let

t(e) be the maximum number of tests that Prog has to make for all executions starting

at segment e. Let s(e) be the maximumnumber of scan that Prog has to execute for all

executions starting at segment e. Then, calling p(e) the minimal unfolding of G

e

,

Lemma 9.

s(e) = t(e) =

length(p(e)) � 1

2

Proof. Looking at the algorithm of Section 11.3, we see that all paths are recursively

decomposed using the programs of type P (x; y; x

0

; y

0

)[] j P

0

(x; y; x

0

; y

0

)[] such that at

iteration z, we have subdivided e into a path of length 1 + 2z. The cost in terms of tests

and accesses to the main memory of each iteration is one. This entails the result.

Whereas in case of Herlihy's algorithm we have up to 3 �max

e

(s(e)) accesses to the

shared memory. In the case when all segments are mapped onto a segment except for one

(like the one of Figure 21), the cost of computation is the same for all inputs and can be

quite enormous.

E. Goubault 30

etc.

(Q,y’)

(Q,y’)

(P,x)(P,x)

Fig. 21. The worst complexity case for a speci�cation graph.

The algorithm proposed in this article is optimal in the sense that it minimizes s(e)

and t(e) for all e whereas Herlihy's one subdivides all segments a power of three times

uniformly.

Notice that the maximal complexity of the computation of wait-free relations on

[0;M] \ ZZ is not very high and is attained by our implementation for the speci�ca-

tion graph shown in Figure 21 (for all input segments). It is such that for all inputs e,

s(e) = t(e) is asymptotically �M

2

with

1

2

� � � 1.

Proof. In all G

e

there are M

2

segments. Hence an unfolding of G

e

has at least M

2

segments and at most 2M

2

segments. We use Lemma 9 to conclude.

12. A General Methodology

What we have done in dimension two is a good example of what we could try to do on

more general architectures.

First of all, we have to explain the unfolding in the control
ow semantics. To do this, let

us represent the control
ow in a slightly di�erent manner, reminiscent of what has been

done on process graphs (CRJ87; Dij68; Gun94). Let us represent commutation of two 1-

transitions by �lling their interleaving by a 2-transition, and represent non-commutation

by not �lling the interleaving with 2-transitions. This amounts to identifying the con-

trol
ow of our asynchronous language with a semaphore program, for which the pair

(scan; update) of actions is identi�ed with an exchange of information, by P=V synchro-

nisation. This is a good analogue up to the extent we are only interested by the e�ect of

the history of the communications on the environment, look at Figure 22.

We then have mainly two con�gurations of \holes" on a square, when we look at the

homotopy classes of directed paths (1-schedules), as shown in Figure 23

x

.

In the �rst con�guration, there are three 1-schedules (when the holes are \incompa-

rable"), whereas in the second con�guration, there are four 1-schedules (when the holes

are \comparable"). Therefore, if you look at some more complex con�guration between

x

There can be no overlapping of holes as in the case of P=V programs

Wait-free Dynamics 31

Forbidden

Pa Va

Pa

Va

x

x

1

2

Fig. 22. A P/V analogue to scan=update

P

P’

P

P’

Fig. 23. The two possible relative con�gurations of holes

many holes, as in Figure 24, its set of 1-schedules is described by a complex tree-like

picture (also in Figure 24).

As a matter of fact, we could easily describe a superset of the 1-schedules. To do this,

look at Figure 25.

This was basically what we have been doing in the control
ow semantics, by unfolding

or tearing the shape of Figure 25.

Formally, two holes are comparable if there is a directed path from the end of one of

the holes to the start of the other hole. Comparability is a partial order, and we can

show that any linearisation of this partial order (one of which is pictured in Figure 25,

by deforming the shape to have the holes in a linear con�guration) gives a superset of the

possible 1-schedules. But a chain (under this order, compatible with the comparability

E. Goubault 32

1

2

3

4

5

H1

H2

H3

H1

H2 H2

H31 2 3

4 5

Fig. 24. A more complex situation

H1

H2

H3

H1

H3

H2

Fig. 25. A method to compute a superset of 1-schedules

partial order) of holes has exactly the \directed" homotopy type of a binary tree (Figure

26).

To any leaf of the tree is associated a 1-simplex in the output graph. In the semantics

of the scan=update language, going from a leaf of the binary tree from the next one, we

always share one vertex (a P vertex or a P

0

vertex), so the complex that is reached by

the possible 1-schedules is connected. We have made this sketch of proof for a superset of

H1

H2

H3

1

2

3

4

6

7

8

1 2 3 4 5 6 7 8

H3 H3

H1

H2 H2 H2 H25

Fig. 26. The homotopy type of a chain of holes

Wait-free Dynamics 33

possible 1-schedules. This does not change the connectivity argument, which completes

the proof of Theorem 2.

This gives us a precise idea of how to study the expressiveness of distributed languages

or architectures.

First, de�ne the semantics of your system in such a way that you can formalise n-

schedules (for instance using HDA, or using full information complexes as in (Her94)).

To be more precise, you should specify the control
ow part and the information
ow part

of the semantics. There is a great deal of
exibility when it comes to de�ning the \control

ow" semantics. In this section we choosed to use some kind of P=V analogue, whereas

in the previous sections, we abstracted the control
ow directly from the semantics.

Basically, we need only to be able to de�ne the n-schedules so any weakly homotopy-

equivalent (in the \directed" sense) spaces would do.

Then you might be able to prove, as a side e�ect, that your system is t-resilient (i.e. the

dynamics is t-connected). All k-schedules (or homotopy classes of directed k-paths) in the

control
ow semantics may give a (k � 1)-simplex in the output complex, that represent

a possible �nal global state of your system. The best is to characterise a superset of

these k-schedules, since it is in general very di�cult to fully characterise the precise set

of k-schedules itself.

Then you might be able to �nd a natural order on these k-schedules, because in general

the control
ow semantics will have the \directed" homotopy type of some kind of tree

structure. Going from one schedule to the next one (under that order) means modifying

in the most elementary manner the histories, hence the knowledge that one processor has

from the other at some time of computation. This part is given to you by the semantics of

the medium through which interaction or communication occurs. Using the information

ow semantics, you might show that some boundaries of these (k�1)-simplexes associated

with these k-schedules are common, since the change in the information is not so radical

when going from one schedule to the next one. This methodology will be applied brie
y in

the two next sections. The �rst one deals with higher-dimensional schedules. The second

one shows the di�erence of result we might expect if we do not change the control
ow

dynamics, but just change the information
ow semantics.

13. Some Hints in Higher-Dimensions

The machine we are considering now has n processors P

1

; � � � ; P

n

communicating through

a shared memory, in a similar manner as in Section 4. Processor P

i

can only write on the

location x

i

, by an update of its local value u

i

i

. It can also scan the whole memory and

stores all x

j

in its local registers u

j

i

.

The semantics will basically follow the same rules that we had taken for the 2-

dimensional case. The skeleton of dimension one of [[P]]� (P = (P

1

j � � � j P

n

)) is the

one de�ned by the standard concrete semantics of Section 4 where the states are now of

the form (fP

1

; � � � ; P

n

g; �). Now we have the following lemma, generalizing Lemma 1.

Lemma 10. (look at Figure 27) Let

a

i

=(ft

1

;P

1

; � � � ; t

n

;P

n

g; �

�

)

t

i

-

(ft

1

;P

1

; � � � ; P

i

; � � � ; t

n

;P

n

g; �

i

)

E. Goubault 34

a a

a

a

a

1
2

3

1

2

3

1

12

3
a

Fig. 27. n non-interfering transitions

be a 1-transition for all 1 � i � n. We have the following 1-transitions that can be

�red from the end states of these 1-transitions, for all S 2 (f1; � � � ; ng)

�

(a string on the

alphabet f1; � � � ; ng), if i 62 S (meaning i does not appear in the stringS),

a

S

i

=(f� � � ; P

j

; � � � ; t

k

;P

k

; � � �g; �

S

)

t

i

-

(f� � � ; P

j

; � � � ; P

i

; � � � ; t

k

;P

k

; � � �g; �

S:i

)

where the index j ranges over the indices that do appear in S and the index k ranges

over the indices that do not appear in S, except index i. Then if no (t

i

; t

j

) is equal to

(scan; update) then

�

1���k

= �

�(1)����(k)

for all k and for all permutations � on f1; � � � ; kg.

Proof. By induction on n and case analysis on the t

i

, using the SOS semantics of

Section 4. This only states the fact that all actions but scan and update commute in the

standard concrete semantics.

In the HDA framework, we decide to make all these actions (the ones of Lemma

10) completely asynchronous, therefore we should have a n-transition within these 1-

transitions. This is denoted as follows.

The n-transition generated by the n 1-transitions a

1

; � � � ; a

n

is denoted by a

1

� � �
a

n

.

A n-transition has n (n�1)-dimensional start boundaries and n (n�1)-dimensional end

boundaries. These will be speci�ed as in the 2-dimensional case: a n-transition will go

from a list of n (n� 1)-transitions to a list of n (n� 1)-transitions.

In the case of Lemma 10, we have the following rules,

(non� interference)

i 6=1

a

i

; � � � ;

i 6=n

a

i

a

1

 � � �
 a

n

-

i 6=1

a

1

i

; � � � ;

i 6=n

a

n

i

Now the possible interferences in the n-dimensional case are combinatorially more

complex than in dimension 2. The principle, though, is very similar.

Suppose that we have two subsets S; U � f1; � � � ; ng with S\U = ;, S[U = f1; � � � ; ng

Wait-free Dynamics 35

such that S is the set of indices i for which t

i

= scan and U is the set of indices i for

which t

i

= update. Let us call (U; S)-shu�e any sequence of sets T = (T

i

)

1�i�2k

such

that,

| each T

i

is a (possibly non-proper) subset of S or of U ,

| T

0

= fT

2i

=1 � i � kg forms a partition of S,

| T

1

= fT

2i�1

=1 � i � kg forms a partition of U ,

| for all i < k, T

2i

6= ;,

| for all i > 1, T

2i�1

6= ;.

We have a weaker lemma than Lemma 10, but we can still recognize that some of the

states might just be the same. If s is a string on the alphabet f1; � � � ; ng, we call l(s) the

set of letters that s is made of.

Lemma 11. Let s be a string (with no repetition) on the alphabet f1; � � � ; ng. Given S

and U two disjoint subsets of f1; � � � ; ng and T a (U; S)-shu�e, we say that s 2 T is and

only if s can be decomposed as s = s

1

s

2

� � �s

2k

with,

l(s

i

) = T

i

Then whenever s and s

0

are two strings in the same shu�e T , �

s

= �

s

0

.

Proof. Tedious case analysis proof on the semantics. Basically, any path that has gone

through updates of some �xed set of processes and then through scans of some other �xed

set of processes etc. should end up in a state depending only on these sets of processes.

Now we generate one n-transition for each (U; S)-shu�e, and unfold this to separate

out all future executions of all di�erent (U; S)-shu�es, as we have be doing in the 2-

dimensional case

{

.

Basically, all these n-transitions will have as start (n � 1)-transitions the transitions

i 6=1

a

i

; � � � ;

i 6=n

a

i

as in the non-interfering case. All these n-transitions will lead to the

environment characterized by a given (U; S)-shu�e, and include all of the 1-skeleton

(de�ned by the standard SOS semantics). This leads to n-dimensional shapes like the

one pictured in Figure 28, the higher-dimensional counterpart of the paper clips we saw

in dimension 2.

Let us call C

T

the n-transition generated by the (U; S)-shu�e T . Then, as there are

less that n! of these shu�es, we can give a ordering on these such that the levels are dealt

with using the following rules, if 0 � lv(T) � n! and

A

1

; � � � ; A

n

C

T

-

A

0

1

; � � �A

0

n

then all states of A

0

1

; � � � ; A

0

n

(which are not in A

1

; � � � ; A

n

, whose states were of level l)

are of level n!l + lv(T) (this is an unfolding of the n-schedules).

The 1-skeleton of the semantics remains basically the same as we had in the 2-processor

case, so the proofs of the following facts remain essentially the same,

{

There was only two possible shu�es in dimension 2, namely one corresponding to doing scan before

update, and the other corresponding to doing update before scan.

E. Goubault 36

(scan,update,update)

Fig. 28. A 3 dimensional paper clip

| The HDA semantics of any term of the language is connected and acyclic,

| There is always a unique solo execution (of a given process) from a given global state,

| The control
ow semantics of any term is wait-free.

Each cut in the �nal cut semantics is a n-simplex. The speci�cation graph is now

a speci�cation complex, which is a relation between an input complex and an output

complex, generalising the input, output graphs of Section 9.

There again, a critical point c is any state for which the rule (interference) can apply.

If k is the cardinal of the set S of indices of scan operations in c and l is the cardinal

of the set U of update operations, there are, say s(c; l) shu�es and the critical point

(\of index s") creates s di�erent n-dimensional layers. Again each of these layers is in

bijection both with the set of �nal environments and the �nal cuts. These cuts are (n�1)-

simplices. If the layers are numbered from 1 to m, the corresponding (n � 1)-simplices

are (�

1

1

; � � � ; �

1

n

); � � � ; (�

m

1

; � � � ; �

m

n

). We prove that going from layer i to layer i + 1 we

have at most an index j such that 8r 6= j; �

i+1

r

= �

i

r

. First of all we notice that this

condition is actually a very geometric one,

Lemma 12. Let (�

1

1

; � � � ; �

1

n

); � � � ; (�

m

1

; � � � ; �

m

n

) be a set of m (n � 1)-simplices such

that 8i; 9j; 8r 6= j; �

i+1

r

= �

i

r

. Then the union of these (n� 1)-simplices is a connected,

(n� 2)-connected shape.

Proof. We prove this by induction on m. When m = 1 this is obvious since we have

only one (n � 1)-simplex which is connected, (n � 1)-connected hence also connected,

(n� 2)-connected.

When m > 1, we have to glue together the �rst m�1 (n�1)-simplices (space A) with the

last (n�1)-simplex (space B). A is a connected, (n�2)-connected shape by the induction

hypothesis. We have also seen that B is connected and (n� 2)-connected. The condition

8i; 9j; 8r 6= j; �

m

r

= �

m�1

r

means that A\B is a (n� 2)-simplex or a (n� 1)-simplex (if

�

m

j

= �

m�1

j

holds as well, for instance), thus is at least a connected, (n � 2)-connected

Wait-free Dynamics 37

shape. Applying Lemma 5 proves that A [B is connected, (n � 2)-connected, i.e. the

result for m.

To prove that the hypothesis of this lemma holds, we need to enumerate the di�erent

levels (or layers).

Let U and S be �xed subsets of f1; � � � ; ng. Let T be a (U; S)-shu�e. For all s 2 S

there is a unique i in f1; � � � ; kg such that s 2 T

2i

. Consider now [

1�j�i

T

2j�1

. It is a

set of indices in f1; � � � ; ng. We can represent it as a suborder of f1; � � � ; ng, or a string

up

T

(s).

Let now T and T

0

be two (U; S)-shu�es. S being the set s

1

< � � � < s

k

, we say

that T �

(U;S)

T

0

if and only if the string up

T

(s

1

) � � �up

T

(s

k

) is less or equal than

up

T

0

(s

1

) � � �up

T

0

(s

k

) in the lexicographic ordering. Then,

For all U and S disjoint subsets of f1; � � � ; ng, �

(U;S)

is a total ordering on the set of

(U; S)-shu�es.

Now at a critical point of index s (depending on sets U and S) the di�erent values

environment can take when going from a layer to one of the next ones are as follows,

| change the value of P

s

1

,

| or change the value of P

s

2

,

| � � �,

| or change the value of P

s

k

.

So the hypothesis of Lemma 12 is satis�ed and the image of any k-simplex under the

denotational relation is a (k � 1)-connected complex.

14. Some Hints about Wait-free test&set Protocols

In this section we add to the language a test&set operation (t&s) on a
ag f shared

by the processes P

1

; � � � ; P

n

, as a case example of the methodology outlined in Section

12 . This is done by extending the case statement to include a test on t&s(f). This

simple extension to the language changes quite dramatically what kind of relation it can

compute.

The semantic rule for (case) should be changed as follows,

(case)

If 9k, 8i, u

i

= a

k

i

and f = �

k

,

0

B

B

B

B

@

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

case (u

1

: : :u

k

; f) of

(a

1

1

: : : a

1

k

; �

1

) : P

1

� � �

(a

n

1

: : : a

n

k

; �

n

) : P

n

default : P

1

C

C

C

C

A

;R;P

0

9

>

>

>

>

=

>

>

>

>

;

; �

1

C

C

C

C

A

case

P

-

(fP

k

;R;P

0

g; �)

Otherwise,

0

B

B

B

B

@

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

case (u

1

: : :u

k

; f) of

(a

1

1

: : :a

1

k

; �

1

) : P

1

� � �

(a

n

1

: : :a

n

k

; �

n

) : P

n

default : P

1

C

C

C

C

A

;R;P

0

9

>

>

>

>

=

>

>

>

>

;

; �

1

C

C

C

C

A

case

P

-

(fP ;R;P

0

g; �)

E. Goubault 38

(P,x)

(P,x’)

(P,x)

∆

(P’,y) (P’,y)

(P’,y’)

Fig. 29. The splitting of two segments in a speci�cation graph

Let us �rst look at the case n = 2.

Lemma 13. The speci�cation graph of Figure 29 can be implemented in our new lan-

guage.

Proof. The following program implements the \splitting" of one segment into two

others,

Prog = P j P

0

P = update; P' = update;

scan; scan;

case (u; v; t&s(f)) of case (u

0

; v

0

; t&s(f)) of

(x;?; 0) : u = x;update (?; x

0

; 0) : v

0

= y;update

(x; z; 1) : u = y;update (x; z; 1) : v

0

= t;update

The value of t&s(f) is found equal to 0 by the �rst process which tests it, and is found

equal to 1 by the second process which tests it.

In particular, the binary consensus can be solved using test&set. The dynamics of the

language with test&set is just the same as the dynamics of the language without. The

only di�erence is that the
ag enables any process to know if one or more processes have

gone through a case statement (and thus executed a test&set operation), so that any

process can have a (very) partial view of the past history of the interactions (through

the scans and updates).

In dimension 2, when going from layer i to layer i+1 there is no reason why we should

have �

i+1

= �

i

or �

i+1

= �

i

.

A reciprocal holds in a quite straightforward way,

Theorem 3. Any speci�cation graph such that the image if a segment (u; v) under the

speci�cation relation is a union of a �nite number of connected components, containing

moreover points (u;?) and (?; v) can be implemented in a wait-free manner in our

test&set language.

Proof. The algorithm is quite straightforward. First split segments as much a you need

to by using the program in the proof of Lemma 13. Then use the subdivision algorithm

of Section 11.3.

In dimension n in general, we conjecture that we have the following phenomenon. There

might only exist two indices j and j

0

such that 8r 6= j; j

0

�

i+1

r

= �

i

r

. This condition comes

from the fact that there might be a partial knowledge of the history of communications

Wait-free Dynamics 39

(by using test&set) only by no more than two processors at a time, therefore, only two

processors could change their decision values when going from a layer to the next one.

We notice that this condition, as in the case of the language without t&s, is actually

a very geometric one,

Lemma 14. Let (�

1

1

; � � � ; �

1

n

); � � � ; (�

m

1

; � � � ; �

m

n

) be a set of m (n�1)-simplices such that

8i; 9j; j

0

; 8r 6= j; j

0

; �

i+1

r

= �

i

r

. Then the union of these (n� 1)-simplices is a connected,

(n� 3)-connected shape.

Proof. We prove this by induction on m. When m = 1 this is obvious since we have

only one (n � 1)-simplex which is connected, (n � 1)-connected hence also connected,

(n� 3)-connected.

When m > 1, we have to glue together the �rst m�1 (n�1)-simplices (space A) with the

last (n�1)-simplex (space B). A is a connected, (n�3)-connected shape by the induction

hypothesis. We have also seen that B is connected and (n� 3)-connected. The condition

8i; 9j; j

0

8r 6= j; j

0

�

m

r

= �

m�1

r

means that A\B is a (n� 3)-simplex or a (n� 2)-simplex

or a (n � 1)-simplex (if �

m

j

= �

m�1

j

or �

m

j

0

= �

m�1

j

0

holds as well, for instance), thus is

at least a connected, (n� 3)-connected shape. Applying Lemma 5 proves that A [B is

connected, (n� 3)-connected, i.e. the result for m.

Therefore, we conjecture that our new machine has the following characterisation. The

image of any k-simplex of the input graph under the speci�cation relation is (k � 1)-

connected (k � 1).

15. Conclusion

We have presented in this article some examples of semantic formalisations of the expres-

sive power of some distributed machines and architectures. This is obviously the �rst step

only, towards purely mathematical characterisations of distributed computing. For this

purpose, we would need a complete formalisation of a theory of \directed" homotopy, as

advocated in (Gun94). We unfortunately have only very few results in general, and we

cannot always resort to homological characterisations as we have done here, or as done

in (Goult) (where some kind of \directed" homology was studied).

One of the open problems in that respect would be to fully characterize t-resilient

computations (using a language with some semaphores initialized to n � t � 1, or some

synchronisation barriers involving no more than n � t� 1 processors) and see if we can

even �nd a nice normal form to programs, as for shared memory wait-free computations.

References

E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous

computations. In Proc. of the 25th STOC. ACM Press, 1993.

E. Borowsky. Capturing the power of resiliency and set consensus in distributed systems. Tech-

nical report, University of California in Los Angeles, 1995.

P. Cousot and R. Cousot. Inductive de�nitions, semantics and abstract interpretation. In

Conference Record of the 19

th

ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Programming Languages, pages 83{94. ACM Press, 1992.

E. Goubault 40

S. Chaudhuri. Agreement is harder than consensus: set consensus problems in totally asyn-

chronous systems. In Proc. of the 9th Annual ACM Symposium on Principles of Distributed

Computing, pages 311{334. ACM Press, August 1990.

S. D. Carson and P. F. Reynolds Jr. The geometry of semaphore programs. ACM Transactions

on Programming Languages and Systems, 9(1):25{53, January 1987.

E.W. Dijkstra. Cooperating Sequential Processes. Academic Press, 1968.

M. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of distributed commit with one faulty

process. Journal of the ACM, 32(2):374{382, April 1985.

E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc. of CON-

CUR'92, Stonybrook, New York, August 1992. Springer-Verlag.

E. Goubault. Domains of higher-dimensional automata. In Proc. of CONCUR'93, Hildesheim,

August 1993. Springer-Verlag.

E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. of PEPM'95, La Jolla,

June 1995. ACM Press, also available at http://www.ens.fr/~goubault.

E. Goubault. A semantic view on distributed computability and complexity. In Proceedings of

the 3rd Theory and Formal Methods Section Workshop. Imperial College Press, also available

at http://www.ens.fr/~goubault, 1996.

E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale Sup�erieure, to be

published, 1995, also available at http://www.ens.fr/~goubault.

J. Gunawardena. Homotopy and concurrency. In Bulletin of the EATCS, number 54, pages

184{193, October 1994.

P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. In Ergebnisse der

Mathematik und ihrer Grenzgebiete, volume 35. Springer Verlag, 1967.

M. Herlihy. A tutorial on algebraic topology and distributed computation. Technical report,

presented at UCLA, 1994.

M. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Proc. of the 13th Annual

ACM Symposium on Principles of Distributed Computing. ACM Press, August 1994.

M. Herlihy and S. Rajsbaum. Algebraic topology and distributed computing, a primer. Technical

report, Brown University, 1995.

M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In

Proc. of the 25th STOC. ACM Press, 1993.

M. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free computa-

tion. In Proceedings of STOC'94. ACM Press, 1994.

N. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

J. P. May. Simplicial objects in algebraic topology. D. van Nostrand Company, inc, 1967.

S. Mac Lane. Homology. In Die Grundlehren der Mathematischen Wissenschaften in Einzel-

darstellungen, volume 114. Springer Verlag, 1963.

V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACM Symposium on

Principles of Programming Languages. ACM Press, 1991.

B. Sedgewick. Algorithms. Addison-Wesley, 1988.

M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public

knowledge. In Proc. of the 25th STOC. ACM Press, 1993.

R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report,

Stanford University, Manuscript available on the web as http://theory.stanford.edu/~rvg/hda,

1991.

