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Abstract. We present in this report a method mixing top-down and

bottom-up computation features for characterizing the reachability sets

of Petri nets within Presburger arithmetic. An application of our method

is the automatic veri�cation of safety properties of Petri nets with in�nite

reachability sets. Our method is basically top-down in the sense that it

uses structural features of the net for selecting (by \decomposition")

canonical paths that go from a generic marking to another one. However

we show here how to enhance the procedure by propagating the speci�c

values of the initial marking in a bottom-up manner and proceeding

to some invariance test. The approach is illustrated on three signi�cant

examples.

1 Introduction

We are interested in this report in proving safety properties of in�nite state

systems. We will focus on Petri nets although our approach is applicable to

other discrete models of concurrent systems such as automata with counters

(see, e.g., [8]). There will be two sources of in�nity for the state space of Petri

nets that we will consider: the �rst one is the unboundedness of some places of

the net; the second one comes from the fact that the initial marking of the net

may contain parameters, thus representing an in�nite family of markings. The

safety property that we will consider, we will be of the form;

8x (x 2 lfp ) I(x))

where x represents a marking, lfp represents the set of reachable markings of the

Petri net, and I(x) an arithmetic relation characteristic of the safety property

to be proved. Our method consists in characterizing the reachability relation

x 2 lfp as a Presburger arithmetic formula (i.e. an arithmetic formula with-

out �). The objective of our work is therefore similar to the one of Hiraishi

?
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[9]. However Hiraishi constructs this arithmetic characterization in a bottom-up

manner by re�ning Karp-Miller's method for constructing coverability trees [12].

In contrast, we construct the arithmetic characterization of the set of reachable

markings using a basic top-down method of decomposition [15, 7]. Neverthe-

less, as explained in the rest of this report, we will also integrate in the basic

top-down procedure some forward (bottom-up) computation routines that will

speed up the arithmetic construction by propagating the initial marking values

and testing the intermediate formulas for invariance.

2 Preliminaries

We will reason in this report with a certain class of logic programs with con-

straints over domain Z [10], which are of the form:

p(x)  B(x):

r

1

: p(x+ t

r

1

)  x > a

r

1

; p(x):

.

.

.

r

m

: p(x+ t

r

m

) x > a

r

m

; p(x):

where x is a vector of variables ranging over Z

n

, for some n, B(x) a linear inte-

ger relation (relation de�ned by a Presburger formula), t

r

i

2 Z

n

is a vector of

constants, and a

r

i

is a vector of constants belonging to (Z [f�1g)

n

. As usual,

z > �1, z 6= �1 and �1 � z = z � (�1) = �1 for any integer z 2 Z,

and �1 � �1. For any vectors x

1

and x

2

, we de�ne x

1

> x

2

(resp. x

1

� x

2

)

to hold, if and only if the inequalities hold componentwise. max(x

1

; x

2

) is the

vector obtained by taking the maximum of x

1

and x

2

componentwise. (thus,

max(x

1

; x

2

) is the least upper bound in the h(Z [ f�1g)

n

;�i-lattice. The vec-

tor with all components �1 is the bottom element.). Since z > �1 holds for

any z 2 Z, any constraint of the form x > �1, is simply considered as true.

One can see these programs as classical programs with counters expressed under

a logic programming or Datalog form. These programs have thus the power of ex-

pressivity of Turing machines. Henceforth we will refer to this class of programs

as programs with Z-counters. In the next section, we will see how these programs

naturally encode the reachability problem for Petri nets (with inhibitors).

We now introduce a convenient description of the forward (or bottom-up) exe-

cution of programs with Z-counters.

A clause, r, is characterized by a pair ht

r

; a

r

i, where t

r

2 Z

n

and a

r

2 (Z [

f�1g)

n

. We say that r is applicable at a point x 2 Z

n

i� x > a

r

holds. The

result of applying the clause r at a point x is xr = x + t

r

. More generally, let

� = fr

1

; : : : ; r

m

g. A sequence w 2 �

�

is called a path, and is interpreted as a

sequence of forward applications of the clauses (in a bottom-up manner). Given



some point x, the point reached by applying the path w is denoted xw. Formally:

xw = x+ t

w

, where t

w

is de�ned by:

t

"

= 0

t

rw

= t

r

+ t

w

Note that the expression xw does not take the constraints in the bodies of the

clauses into account. We say that a path w is applicable at a point x, if all

constraints along the path are satis�ed, and we write x > a

w

, where:

a

"

= �1

a

rw

= max(a

r

; a

w

� t

r

)

The expression x > a

w

is said to be the constraint associated to path w at point

x. The de�nition of a

w

is based on the observation that x > max(a

r

; a

w

� t

r

)

i� x > a

r

^ x+ t

r

> a

w

, which means that x > a

rw

holds i� x

i

> a

r

i

holds for

every point x

i

along the path rw. That is, the constraints associated with the

clauses are satis�ed at every point along the path.

It is immediately seen that, for programs with Z-counters, the constraint associ-

ated with a path, is of the same form as that of a clause of the original program.

In general, with every path w, there is associated a clause hwi = ht

w

; a

w

i.

A point x

0

is reachable from a point x by a path w if xw = x

0

and w is applicable

at x:

x

w

!x

0

, xw = x

0

^ x > a

w

A point x

0

is reachable from a point x by a language L � �

�

if there exists a

path w 2 L such that x

0

is reachable from x by w:

x

L

!x

0

, 9w 2 L : x

w

!x

0

We usually write x

L

1

!
x

00
L

2

!
x

0

, instead of x

L

1

!
x

00

^ x

00
L

2

!
x

0

. From the

de�nitions above, we immediately get:

Proposition1. For any path w 2 �

�

and any languages L

1

; L

2

� �

�

. We have:

1. x

L

1

L

2

!
x

0

, 9 x

00

: x

L

1

!
x

00 L

2

!
x

0

2. x

w

�

!
x

0

, 9 k � 0 : x

0

= x+ k � t

w

^ 8 0 � k

0

< k : x+ k

0

� t

w

> a

w

Note, in the last equivalence, that if k = 0, then x = x

0

and 8 0 � k

0

� k :

x+k

0

� t

w

> a

w

is vacuously true. It is easy to see that, for k > 0, the universally

quanti�ed subexpression is equivalent to x+ (k � 1) � t

�

w

> a

w

where t

�

w

is the

vector obtained from t

w

by letting all nonnegative components be set to zero.

Therefore, the whole equivalence becomes:

2.

0

x

w

�

!
x

0

, x

0

= x _ 9 k > 0 : x

0

= x+ k � t

w

^ x+ k � t

�

w

> a

w

+ t

�

w



As a consequence, given a path w, the relation x

w

�

!
x

0

is actually an existentially

quanti�ed formula of Presburger arithmetic having x and x

0

as free variables.

More generally, de�ne a at language as: any language of the formw

�

1

::::w

�

c

where

each w

i

(1 � i � c) is an element of �

�

. By proposition 1 1, it follows that

the relation x

L

!x

0

for a at language L, can be expressed as an existentially

quanti�ed formula of Presburger arithmetic, having x and x

0

as free variables.

More precisely, the reachability relation x

L

!x

0

is expressed as a disjunction of

a number of matrix expressions of the form:

9 k

i

: x

0

= x+ C

i

k

i

^ x+D

i

k

i

> e

i

where C

i

and D

i

are matrices, and e

i

some vector of constants. Such a formula

can be simpli�ed as a formula, say �

L

(x; x

0

), by elimination of the existentially

quanti�ed variables k

i

through a Presburger decision procedure (see [13]).

Given a program with B(x) as a base case and recursive clauses �, the least

�xed-point of its immediate consequence operator (see [10][11]), which is also

the least Z-model, may be expressed as:

lfp = f x

0

j 9x : B(x) ^ x

�

�

!
x

0

g

Our aim is to characterize the membership relation y 2 lfp as a closed formula

having y as a free variable. In order to achieve this, our approach here is to �nd

a at language L � �

�

, such that the following equivalence holds: x

�

�

!
x

0

,

x

L

!x

0

. An arithmetic characterization of y 2 lfp is then: 9x B(x) ^ �

L

(x; y).

Such a formula can be in turn simpli�ed as, say �

B;L

(y) by elimination of x

through a decision procedure for Presburger arithmetic.

Given a formula �(x) and a path w, we call w-closure of �(x), a formula �

0

(x)

that characterizes arithmetically the set fx

0

j �(x) ^ x

w

�

!
x

0

g.

We say that a path w lets invariant a formula � if �(x)^ x

w

!x

0

implies �(x

0

),

for all x; x

0

.

In the following, given a formula � and a language L, we will often abbreviate an

expression of the form �(x)^x

L

!x

0

as �(x)

L

!x

0

. The w-closure of a formula

� will be accordingly denoted as �

w

�

!
.

3 Encoding of the reachability problem of Petri Nets

Consider a Petri net with n places and m transitions. In this section, we show

how to encode the reachability problem for Petri nets, via an n-ary predicate

p de�ned by a program with Z-counters. Each place of the Petri net will be

encoded as an arithmetic variable x

j

(1 � j � n). A marking corresponds to

a tuple (v

1

; :::; v

n

) of n positive or null integers. (The value v

j

represents the

number of tokens contained in place x

j

.) Each transition will be encoded as a

recursive clause r

i

(1 � i � m). An atom of the form p(v

1

; :::; v

n

) means that

a marking (v

1

; :::; v

n

) is reachable from the initial marking. The predicate p is

de�ned as follows:



- The base clause r

0

is of the form:

p(x

1

; :::; x

n

) x

1

= v

0

1

; :::; x

n

= v

0

n

:

where v

0

= hv

0

1

; :::; v

0

n

i denotes the initial marking.

- The clause r

i

(1 � i � m), coding for the i-th transition, is of the form:

p(x

1

+ t

i;1

; :::; x

n

+ t

i;n

) �

i

(x

1

; :::; x

n

); p(x

1

; :::; x

n

):

where t

i;j

is the sum of the weights of the output arrows from transition i to

place j, minus the sum of the weights of the input arrows from place j to tran-

sition i. �

i

(x

1

; :::; x

n

) is: x

j

1

> a

j

1

^:::^x

j

c

i

> a

j

c

i

^x

k

1

= 0^: : :^x

k

d

i

= 0,

when x

j

1

; :::; x

j

c

i

are the input places, and x

k

1

; :::; x

k

d

i

the inhibitors places.

(The condition �

i

expresses that the i-th transition is enabled.)

Note that such a program does not belong to the class we consider due to the

constraints of the form x

k

�

= 0 (1 � � � d

i

). However by adding extra argu-

ments, say x

0

k

�

(1 � � � d

i

), which are initialized with 1 minus the initial value

of x

k

�

, and are incremented (resp. decremented) when x

k

�

is decremented (resp.

incremented), one can replace the constraint x

k

�

= 0 with x

0

k

�

> 0. (Note that

x

0

k

�

is, by construction, always equal to 1 � x

k

�

, and may thus take negative

values.)

The least �xed-point lfp associated with the program corresponds to the reacha-

bility set associated with the Petri net, i.e. the set of all the markings reachable

from the initial marking. Sometimes it is interesting to reason generically with

some parametric initial markings, i.e., initial markings where certain places are

assigned parameters instead of constant values. This de�nes a family of Petri

nets, which are obtained by replacing successively the parameters with all the

possible nonnegative values. One can easily encode the reachability relation for

a Petri net with a parametric initial marking via a program with Z-counter by

adding the initial marking parameters as extra arguments of the encoding pred-

icate. In the case of a Petri net with an initial marking containing a tuple of

parameters, say q, our aim is to characterize the relation y 2 lfp as an arith-

metical formula �(q; y) having q and y as free variables. This will allow us to

determine all the values of the parameters q for which a given safety property

holds (see subsection "Swimming Pool").

Example 1. Consider the Petri net in �gure 1. (This example is the \swimming-

pool" net from M. Latteux, see [3, 6].) With the initial marking x

1

= x

2

= x

3

=

x

4

= x

5

= 0, x

6

= q

1

and x

7

= q

2

for some nonnegative parameters q

1

and q

2

,

the task is to show that there exists a deadlock regardless of what q

1

and q

2

are.

The program P encoding the reachability problem for this Petri Net is the fol-

lowing:

r

0

: p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) 

x

1

= 0; x

2

= 0; x

3

= 0; x

4

= 0; x

5

= 0; x

6

= q

1

; x

7

= q

2

:
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x
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x
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r
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r
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r
4

r
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r
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arrives

guest
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undressing dressingbathing

free cabines

putting

clothes

taking

clothes
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in baskets from baskets

x

x

7

6

Figure 1

r

1

: p(q

1

; q

2

; x

1

+ 1; x

2

; x

3

; x

4

; x

5

; x

6

� 1; x

7

) x

6

> 0;

p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

):

r

2

: p(q

1

; q

2

; x

1

� 1; x

2

+ 1; x

3

; x

4

; x

5

; x

6

; x

7

� 1) x

1

> 0; x

7

> 0;

p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

):

r

3

: p(x

1

; x

2

� 1; x

3

+ 1; x

4

; x

5

; x

6

+ 1; x

7

; q

1

; q

2

) x

2

> 0;

p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

):

r

4

: p(q

1

; q

2

; x

1

; x

2

; x

3

� 1; x

4

+ 1; x

5

; x

6

� 1; x

7

) x

3

> 0; x

6

> 0;

p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

):

r

5

: p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

� 1; x

5

+ 1; x

6

; x

7

+ 1) x

4

> 0;

p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

):

r

6

: p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

� 1; x

6

+ 1; x

7

) x

5

> 0;

p(q

1

; q

2

; x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

):

4 Construction of Reachability Sets

Let us consider a program de�ned by a set of transitions �

original

: fr

1

; :::; r

m

g.

In order to characterize the relation x

fr

1

;:::;r

m

g

�

!

x

0

, we will construct a sequence

fL

i

g

i

of subsets of fr

1

; :::; r

m

g

�

which are \reachably-equivalent" to fr

1

; :::; r

m

g

�

in the sense that, for any x and x

0

:

x

fr

1

;:::;r

m

g

�

!

x

0

, x

L

i

!
x

0

and such that the last language in the sequence is at.

Such a at language L � fr

1

; :::; r

m

g

�

will be generated by applying repeatedly a

set of decomposition rules. Schematically, each decomposition rule, when applied

to a set �, transforms it into a list � of the form [�

1

; �

2

; : : : ; �

c

], where �

i

(1 � i � c) denotes a program of \lower dimension" than �, and such that �

�

is reachably-equivalent to the language �

�

1

�

�

2

: : :

�

�

�

c

. The process of decompo-

sition is iterated on list �: one element of � is selected, and the list resulting

from its decomposition is inserted in place of it within �, thus generating a new

sequence �

0

. The process is iterated until either:



- all the elements of the current list � are singletons of the form fw

1

g; fw

2

g; � � � ;

fw

c

g, which means that the associated language w

�

1

w

�

2

:::w

�

c

is at (termi-

nation with success), or

- no decomposition rule applies onto the current list � (termination with

failure).

Note that the process cannot loop forever because each decomposition rule trans-

forms a program into a sequence of programs of \lower dimension" [7].

The number of rules of decomposition is 5. They are: strati�cation, monotonic

transition, monotonic guard, cyclic postfusion and cyclic prefusion. They are

tried in this order, and the �rst that succeeds is applied. (The rules of monotonic

transition and cyclic postfusion are given in appendix 1; for details, see [7].)

When a at language L : w

�

1

: : :w

�

c

has been generated, a decision procedure

for Presburger arithmetic is invoked in order to construct formula �

B;L

(see

section 2). Starting from the base case relation, the arithmetic decision procedure

computes �

B;L

by extending the base case relation B with the successive w

i

-

closures (1 � i � c). Formally, �

B;L

(x

0

) is de�ned to be �

c

(x

0

) where:

�

0

(x

0

) � B(x

0

)

�

i+1

(x

0

) � 9x : �

i

(x) ^ x

w

�

i+1

!

x

0

Actually a more e�cient system is implemented by invoking earlier the arith-

metic decision procedure, and starting to construct �

B;L

during the decomposi-

tion process, without waiting for the at language L to be fully generated. This

is explained in the next section.

It is sometimes interesting, besides, to keep track of the number of times k

i

each

w

i

is repeated inside sequences of the form w

�

1

: : :w

�

c

. We are therefore led to

construct formulas of the form:

�

0

(x

0

) � B(x

0

)

�

i+1

(x

0

; k

i

; k

i+1

) � 9x : �

i

(x; k

i

) ^ x

w

k

i+1

i+1

!

x

0

Such a construction is useful when one wishes to exhibit some \counter-example"

path w

k

1

1

� � �w

k

c

c

which ends at a marking that violates the safety property under

study (see 7.1).

5 General Description of the System

As illustrated in �gure 2 the system consists of a decomposition procedure and

a decision procedure for Presburger arithmetic.

We will represent the sequence � of decomposed languages as a list. Initially,�

contains a single element: �

original

. At each step, the leftmost element (head)

of � is selected for further decomposition. The process can be schematized as



closure

compute
fixpoint

reached

invariant/

not invariant
invariant?Σ

w*ξ

Arithmetic

Decomposition

Figure 2

follows:

x

�

�

original

!

x

0

+

x

�

�

[1]

�

�

[2]

�

�

[3]

!

x

0

+

x

�

�

[1;1]

�

�

[1;2]

�

�

[2]

�

�

[3]

!

x

0

+

x

�

�

[1;1;1]

�

�

[1;1;2]

�

�

[1;1;3]

�

�

[1;2]

�

�

[2]

�

�

[3]

!

x
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The system builds up a formula �, which will eventually characterize the least

�xed-point. This formula is initialized with the base case relation B, and is ex-

tended by �-closure whenever the head � of � is a singleton. Before attempting

any decomposition onto �, one checks whether it lets invariant by � (because

there is no point in decomposing a set of transitions that will not yield anything

new). The top loop of our procedure is thus as follows:

� := B;

� := [�

original

];

while not empty(�) do

� := head(�);

� := tail(�);

if not invariant(�;�) then

if singleton(�) then

� := �

�

�

!

else

� := decompose(�) 
�

�



�

od

where � is a list of sets of transitions, � is a Presburger formula, and 
 is ap-

pend.

The arithmetic form �

B;L

of the least �xed-point is given by the exit value of

� when executing the program . Henceforth, we will denote this exit formula

by �

final

. The corresponding at language L is the sequence of closures of the

singleton sets � popped up all along the execution of the program.

The invariance check before attempting decomposition is important since sur-

prisingly often it happens that transition sets are discarded for which the de-

composition would have failed at some point.

5.1 Invariance check

As mentioned, before attempting to decompose a set of transitions, we �rst check

whether all the transitions in the top language � let the current arithmetic for-

mula �, computed so far, invariant. If this is the case, the set is simply dropped

and attention is moved to the next set. That is, before decomposing �, we check

whether �(x)

�

!x

0

) �(x

0

) holds (see section 2). This is a priori a compu-

tationally expensive test. However, by storing in a set = those transitions that

have been discovered to keep �(x) invariant, a lot of redundant computations are

avoided. Consider for example �(x)

fw

1

;w

2

;w

3

g

�

!

x

0

. Before trying to decompose

fw

1

; w

2

; w

3

g

�

we test invariance for each of the transitions. Assume that at least

one of the three fails to let �(x) invariant and that the decomposition rule of

\monotonic transition" (see appendix 1) applies to w

2

, say. At the next step we

have to consider �(x)

fw

1

;w

3

g

�

w

�

2

fw

1

;w

3

g

�

!

x

0

and once again before decomposi-

tion of fw

1

; w

3

g

�

we test for invariance. But both w

1

and w

3

have already been

tested, so the invariance check consists at this point in a table look up. Thus

before testing invariance of a path w \the hard way", we �rst check whether it

is among those in =.

On the other hand, when computing a w-closure of �(x), the information in

= is a priori lost, and the new formula �

0

(x) has a new set =

0

of invariant tran-

sitions, which should be constructed. Here again, a lot of costly invariance tests

can be saved by observing that a transition, say v, of =, which commute with w

is guaranteed to be still in =

0

. Formally:

Proposition2. Suppose:



1. �(x)

v

!x

0

) �(x

0

) invariance of w

2. �

0

(x

0

) � 9x : �(x)

w

�

!
x

0

w-closure

3. x

wv

!x

0

) x

vw

!x

0

commutation

Then invariance of v is preserved:

�

0

(x)

v

!x

0

) �

0

(x

0

)

Proof

�

0

(x)

v

!x

0

+ precondition 2: de�nition of �

0

(x)

9x

00

�(x

00

)

w

�

v

!
x

0

+ precondition 3: commutation (by induction)

9x

00

�(x

00

)

vw

�

!
x

0

+ precondition 1: invariance (and proposition 1.1)

9x

000

�(x

000

)

w

�

!
x

0

+ precondition 2: de�nition of �

0

(x)

�

0

(x

0

)

�

As discussed in [7], .6, for programs with Z-counters, the commutation check 2

of proposition 2 is computationally cheap.

The paths that fail the commutation check usually turn out to have lost their

invariance.

Our experience from the examples we have considered is that at any point during

a �xpoint computation about two thirds of the transitions of the original set

�

original

are invariant. (At the end of the computation, naturally this ratio

increases until becoming 100% when the �xed-point is reached.)

5.2 Failure of decomposition

So far in this section, we have assumed that the procedure of decomposition

always succeeds. This may not be the case. In case of failure (i.e., when no rule

of decomposition applies to the current set �), our strategy consists to remove

some transitions from� according to some heuristics (essentially, random choice)

until some decomposition rule applies or � becomes a singleton. This removal

endangers the completeness of the �nally generated formula �

final

in the sense

that it may not correspond any longer to a �xed-point. In such a case (i.e., when

a transition of the original language �

original

does not let invariant �

final

) the

system detects it, and the whole procedure of �xed-point computation restarts

except that �

final

is taken as a new base case formula in place of B. This process

is iterated until a �xed-point is actually reached. (There is no guarantee that

such a �xed-point will be reached as the process may loop forever.) An example

of such a process with transition removal and restarting, is given in section 7.3.



5.3 State Explosion

Our underlying decomposition strategy allows to alleviate (also for �nite state

systems) the problem of state explosion that immediately occurs with naive

methods based on exhaustive state space exploration. This is because, among

all the paths that go from the initial marking to a given reachable marking,

the decomposition strategy leads to the selection of a reduced number of path

\representatives" (see [15]). This selectivity in the choice of paths is reinforced

by the interaction with the arithmetic module which, itself, discards quantities

of invariant subsets of transitions. Naturally, even if our method allows us to

treat automatically some examples that are usually done by hand (see section

7), we also have to face quickly with a state explosion problem. This is partic-

ularly sensitive in our case when one deals with Petri nets having more than

one parameter in their initial markings. A solution for overcoming the problem

is sometimes to reduce the original Petri net into a simpler net through trans-

formation rules, as those of Berthelot [1], which preserve basic safety properties

(e.g., deadlock-freeness, boundedness). An example of such a preliminary net

transformation is given in section 7.1.

6 Arithmetic Module

The decision procedure for Presburger arithmetic that we have implemented is

Boudet-Comon's algorithm [2]. It has turned out to be very well suited for our

needs.

Given a system of equations and inequations, the Boudet-Comon algorithm gen-

erates a �nite state automaton recognising the language of all solutions written

as strings of binary digits.

This algorithm has nearly optimal worst case complexity and behaves accord-

ing to our experience very well in practice. One of the advantages is its sim-

plicity. Variable elimination, conjunction, disjunction, negation and inclusion

are all achieved by standard automata theoretic methods such as projection,

intersection, union, complement and emptiness testing. A great advantage of

Boudet-Comon method is that, due to its simplicity and generality, it is easy to

construct specialized programs for computing speci�c relations on its top, or to

store information during its execution. We have exploited this feature for making

easier the proof of general safety properties such as boundedness and detection

of deadlock, as explained hereafter. A drawback of the method is that, from the

automaton, there is no simple way to retrieve a closed form expression of the

arithmetic relation.

Detecting unboundedness is achieved by investigating wether the reachability

set is �nite or in�nite which is done e�ciently done investigating the loops in

the automaton representing the arithmetic relation.

A deadlock in a Petri net may de�ned by:

deadlock(q; x) � �

final

(q; x) ^ no transition enabled(x)



where no transition enabled is speci�ed as:

no transition enabled(x) � 8r

i

2 �

original

: :�

i

(x)

Explicitly de�ning no transition enabled(x) as above and then computing the

automaton and intersecting with the �xed-point �

final

, is not so e�cient. We

have therefore implemented a simple deadlock detector that directly computes

(\on the y") the automaton de�ning the relation deadlock(q; x) according to

the de�nition above throughout the construction of �

final

.

7 Experimental Results

In this section we present some experimental data from three Petri nets: the two

�rst ones have parametrized initial markings while the third one is unbounded.

We generate for each of them the reachability sets under the form of a Boudet-

Comon automaton, and are then able to prove for them various properties. The

implementation has been written in SICSTUS-Prolog by the second author. It

is around 4000 lines long, and runs on SPARC-10.

With each example, we give some statistics: number of variables (places) of

the net, number of parameters of the initial marking, number of transitions of

the net, �niteness of the reachability set, number of closures the at computed

language is composed, run time as well as two tables. The columns of the �rst

table are to be interpreted as:

4. S Strati�cation.

5. MT Monotonic Transition.

6. MG Monotonic Guard.

7. PoF Cyclic Post Fusion.

8. PrF Cyclic Pre Fusion.

9. ND No Decomposition rule applies.

and the number in the column is the number of times the corresponding de-

composition rule was applied.

The table IT (Invariant Transition set) two rows are presented: The top row

is the number of transitions in the set, and the bottom row is the number of

times a set of this size was discarded.

7.1 Swimming Pool

This example comes from M. Latteux (see, e.g.,[6]). Consider the Petri net in

�gure 1. With the initial marking x

1

= x

2

= x

3

= x

4

= x

5

= 0, x

6

= q

1

and

x

7

= q

2

for some parameters q

1

and q

2

, the task is to show that there exists a

deadlock whatever the values of q

1

and q

2

are. (The proof is done by hand in

[6].)



Our implementation does not succeed in computing the �xpoint since the au-

tomaton representing the reachability set grows too large (SICSTUS aborts af-

ter having generated 2500 states when determinizing an automaton having 386

states with 252 transition from each). So we apply our method not on the orig-

inal net, but on a reduced version obtained by applying manually Berthelot's

postfusion rule (fusing r

2

and r

3

, and eliminating x

2

) [1]. The reduced net is

represented at �gure 3. For any values of q

1

and q

2

, the reduced net is guaran-

teed to be deadlock-free i� the original one is.

x
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6

Figure 3

Computing the parametric reachability set we have the following statistics:

Net places: 6

Net parameters: 2

Net transitions: 5

Reachability set: in�nite

Computed language: 10 closures

Runtime: 10422 seconds (3:9 hours)

S MT MG PoF PrF tot ND

3 0 2 4 1 10 0

IT:

no. transitions 1 2 3 tot

no. disposals 8 1 3 12

The at computed language L is:

r

�

1

(r

2

r

3

r

1

)

�

(r

2

r

3

)

�

r

�

4

r

�

5

(r

2

r

3

)

�

(r

4

r

5

r

2

r

3

)

�

(r

4

r

5

)

�

r

�

1

r

�

4

For the reduced swimming pool net of �gure 3 the relation deadlock(q

1

; q

2

; x) is

computed in 12:27 seconds, and:

8q

1

; q

2

; : 9x : deadlock(q

1

; q

2

; x)



(that is, for any q

1

and q

2

there is a deadlock) is veri�ed in 0:02 seconds.

For every couple of values q

1

and q

2

, the system can compute path vectors

in order to characterize paths leading to a deadlock. This gives (among others)

paths of the form r

q

1

1

(r

2

r

3

r

1

)

q

2

. (The paths leading to a deadlock found by hand

in [6] are: (r

1

r

2

r

3

)

q

2

r

q

1

1

.)

7.2 Manufacturing System

This example is taken from [5] (cf. [16]). Consider the Petri of �gure 4. It models
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Figure 4

an automated manufacturing system with four machines, two robots, two bu�ers

(x

10

and x

15

) and an assembly cell. The initial marking is: x

1

= q for some non-

negative parameter q, x

2

= x

4

= x

7

= x

12

= x

13

= x

16

= x

19

= x

24

= 1,

x

10

= x

15

= 3 (thus, the bu�ers have capacity 3). All other places are empty

(that is, all other variables are 0). The task is to discover for which values of q

the system may end up in deadlock. (In [16], deadlock-freeness is shown only for

1 � q � 4. In [5], deadlock-freeness is proved using some mixed integer program-

ming techniques for 1 � q � 8; A path leading to a deadlock is also generated

for q = 9.)

Computing the reachability set, we get the following statistics:



Net places: 25

Net parameters: 1

Net transitions: 14

Reachability set: in�nite

Computed language: 60 closures

Runtime: 23396 seconds (6:5 hours)

S MT MG PoF PrF tot ND

0 2 61 37 14 114 0

IT:

no. transitions 1 2 3 4 5 6 7 8 9 10 11 12 tot

no. disposals 42 24 18 24 19 13 8 17 2 1 2 1 171

The explicit form of the at computed language L is given in appendix 2.

The relation deadlock(q; x) is computed in 11:9 seconds. De�ne the relation:

live(q) � :9x : deadlock(q; x)

Thus live(q) is the set of parameters for which there is no deadlock in the system,

and it is computed in 0:09 seconds. In 0:01 seconds, the cardinality of live(q) is

found to be 8. Since there is no known way of retrieving from the automata

a closed form expression of the relation, we simply enumerate them and get:

f1; 2; 3; 4;5;6; 7; 8g.

Thus, we have a fully automated proof that the system is deadlock free for

all initial markings (as given above) for which 1 � q � 8, and that for all other

values a deadlock exists (note that from deadlock(q; x), any deadlock for any q

may be retrieved, as well as a path to any of them).

To prove that system is bounded for any q amounts to verifying:

8q 9b 8x : �

final

(q; x) ) x � b

Our system is too naively implemented to prove this formula as stated, so instead

we verify something stronger:

subsystem

1

(x

2

; x

3

; : : : ; x

25

) � 9q; x

1

: �

final

(q; x

1

; x

2

; : : : ; x

25

)

The projection subsystem

1

(x

2

; x

3

; : : : ; x

25

) is computed in 38:74 seconds and is

shown to be �nite (it has 2144 elements) in 1:22 seconds. This shows that all the

places but x

1

are bounded. Secondly we compute

subsystem

2

(q; x

1

) � 9x

2

; x

3

; : : : ; x

25

: �

final

(q; x

1

; x

2

; : : : ; x

25

)

in 7:89 seconds and prove:

subsystem

2

(x

1

; q) ) x

1

� q

in 0:03 seconds. Therefore the system is bounded for all values of q.



7.3 Alternating Bit Protocol

This example is taken from [4] where all the correctness proofs are done by hand.

Consider the alternating bit protocol of �gure 5. Note that the system has 8
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Figure 5

inhibitor places, which are simulated with 8 extra variables. Since there are 16

places in the net, we get a decomposition problem with 24 variables.

In this example, when computing the reachability set, the decomposition pro-

cess fails several times. So the system drops some transition chosen according to

some simple heuristic (basically random choice) The �xpoint is then computed

with the following statistics:

Net places: 24

Net parameters: 0

Nettransitions: 24

Reachability set: in�nite

Computed language: 32 closures

Runtime: 127:60 seconds

S MT MG PoF PrF tot ND

12 24 48 26 0 110 6

IT:

no. transitions 1 2 4 5 6 7 8 9 10 11 12 13

no. disposals 23 7 3 4 6 4 9 7 6 3 6 3

We give here a typical mode of computation of the least �xed-point, made of

three rounds of decomposition. During the �rst round, the decomposition process



fails several times, which yields the removal (by random choice) of r

5

, r

18

and

r

11

. When the decomposition ends, r

5

and r

11

are noninvariants. The language

is L

1

= r

�

2

r

�

8

r

�

12

r

�

22

r

�

23

r

�

20

r

�

17

r

�

19

r

�

22

r

�

13

r

�

3

r

�

4

r

�

6

r

�

14

r

�

10

r

�

24

r

�

21

r

�

19

r

�

15

and was computed

in 33:32 seconds. We restart the process with the reachability set computed so

far as base relation. The decomposition procedure fails again. This time, one re-

moves randomly transitions among those distinct from r

5

and r

11

(because these

transitions were noninvariant at the end of the �rst round): this yield the removal

of r

7

, r

16

and r

12

. Once again the decomposition ends without reaching the �x-

point. This time r

12

is noninvariant. The language: L

2

= r

�

11

r

�

23

r

�

20

r

�

17

r

�

1

r

�

2

r

�

5

r

�

3

r

�

8

was computed in 47:27 seconds. Next round r

17

, r

8

, r

15

, r

23

, r

19

, r

3

and r

13

were

dropped. The language: L

3

= r

�

12

r

�

4

r

�

6

r

�

10

was computed in 47:01 seconds, and

this time the �xpoint has been reached. The at language corresponding to the

�xpoint is therefore L

1

L

2

L

3

. Such an experience with random removal of transi-

tions and restarting has been conducted many times, and has always yielded the

�xpoint (with various associated at languages, and various number of `rounds').

The correctness of the protocol is based on the following properties of the model:

i. �

final

(x) ^ x

1

= 1 ) x

13

= 1 ^ x

6

= x

10

= x

11

= x

7

= 0

ii. �

final

(x) ^ x

3

= 1 ) x

15

= 1 ^ x

8

= x

12

= x

9

= x

5

= 0

iii. �

final

(x) ^ x

14

= 1 ) x

2

= 1 ^ x

11

= x

7

= x

8

= x

12

= 0

iv. �

final

(x) ^ x

16

= 1 ) x

4

= 1 ^ x

9

= x

5

= x

6

= x

10

= 0

The four correctness properties were proved in 1:52 seconds each. In 8 seconds,

the unbounded places x

5

, x

6

, x

7

, x

8

, x

9

, x

10

, x

11

and x

12

were found. Note that

they coincide exactly with the inhibitor places.

8 Final Remarks

We have illustrated on three signi�cant (although relatively small) examples how

our top-down method of decomposition enhanced by invariance tests and forward

propagation of the initial values, allows to characterize arithmetically the in�-

nite reachability sets of some Petri nets. We have also experienced successfully

our procedure on classical examples with �nite reachability sets such as dining-

philosophers or Peterson's mutual exclusion algorithm. As observed by Hiraishi

[9], such a kind of method is not universal because it is known that some Petri

nets have reachability sets that are not characterizable in Presburger arithmetic.

In practice the main problem that we have to deal with is the state explosion

problem, which prevents the construction of Boudet-Comon's automaton. We

have indicated a way to alleviate this problem by reducing the original net to

a simpler one that retains its main safety properties, using Berthelot's trans-

formations. Another promising approach is the compositional approach which

splits the original net into several components and reduces the veri�cation of

the original safety property to the veri�cation of local safety properties of the

components (see, e.g., [14]).
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9 Appendix 1: Two Rules of Decomposition

The program will be represented under the form of an \incrementation matrix",

T as follows: Each clause is associated with a row, and each argument place in the

head of the clause is associated with a column of the matrix. The element in the

j:th row and k:th column is the coe�cient t

j

k

. The j:th row of the matrix will be

denoted T

j

.



monotonic transition This decomposition rule applies to a matrix T which

contains one row T

k

whose coe�cients are all nonnegative (or all nonpositive).

Let us suppose that all the coe�cients are nonnegative (the nonpositive case is

analogous). The fact that coe�cients t

k;i

are positive (for all i) means that an

application of clause r

k

, will not decrease the value of any variable, so any clause

whose guard is satis�ed before r

k

, will remain applicable after. This is in particular

true for r

k

itself, so once r

k

becomes applicable for the �rst time, it can be applied

any number of times. >From this it follows that any sequence of clauses w of �

can be reordered so that all the applications of r

k

be gathered together. Formally,

we have the property:

8x; x

0

: x

�

�

!

x

0

, x

(��fr

k

g)

�

r

�

k

(��fr

k

g)

�

!

x =

0

cyclic postfusion This decomposition rule applies to a matrix T whose last l

rows (possibly after reordering of rules), T

l+1

to T

n

(for some 0 � l � n) satis�es:

{ the k-th coe�cient t

j;k

of T

j

is equal to �1 for l+ 1 � j � n.

{ the line T

l+j

is made of coe�cients all positive or null, besides the k-th one.

{ the constraints of the clauses corresponding to lines l + 1 to n are all of the

form x

k

> 0.

{ the k-th column of T is made of positive or null coe�cients, for the rows 1 to

l.

{ x

k

does not occur in any constraint of the clauses corresponding to lines 1 to

l.

The matrix T is thus of the following form:

� : : : � + � : : : � � � � : r

1

.

.

.

� : : : � + � : : : � � � � : r

l

+ : : : + �1 + : : : + x

k

> 0 : r

l+1

.

.

.

+ : : : + �1 + : : : + x

k

> 0 : r

n

x

k

We will abbreviate as b

i

(where 1 � i � n) the values of the coe�cients t

i;k

of

column k. (b

1

; : : : ; b

l

are positive or null, and b

l+1

; : : : ; b

n

is �1.) Here again, the

fact that t

j;i

, l+1 � j � n, are positive (for all i except k) means that an application

of a clause r

j

, will not decrease the value of any variable other than x

k

, so any

clause, r

j

0
, 1 � j

0

� l, whose guard is satis�ed before r

j

, will remain applicable

after. Thus, r

j

may be applied as soon as its guard becomes satis�ed. But now,

a clause r

j

does not inde�nitely apply immediately after its �rst application: the

application of a clause r

j

ceases when the k-th coordinate of the current tuple x

becomes null. Then another clause r

i

(for some 1 � i � l) must be applied. The

k-th coordinate of the newly generated tuple is then equal to b

i

. If b

i

is strictly

positive, then one of the clauses r

j

, (l+1 � j � n) can be applied again a number

of times equal to b

i

until x

k

becomes null again. This shows that any sequence w

of � can be reordered into a sequence whose core is made of repeated \patterns"

of the form (r

i

(r

l+1

+ :::+ r

n

)

b

i

), Note also that these \patterns" let x

k

invariant,



and are applied when x

k

= 0. Such patterns are also called \cyclic sequences" in

the �eld of Petri nets. Formally, we have the following property:

8x; x

0

: x

�

�

!

x

0

, x

(r

l+1

+:::+r

n

)

�

exp(r

1

+:::+r

l

)

�

!

x

0

where exp is: (�

1

+ :::+ �

l

)

�

�

0

.

Here �

i

(1 � i � l) stands for a set of clauses equal to:

{ r

i

if b

i

= 0, or

{ r

i

(r

l+1

+ :::+ r

n

)

b

i

, if b

i

> 0.

The expression �

0

denotes a set of \subpatterns". That is, an expression of the

form:

{ f"g [

S

1�i�l

S

0<c<b

i

r

i

(r
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+ :::+ r

n

)

c

10 Appendix 2: Flat Language for the Manufacturing

System

The at language computed by the system for the example of subsection 7.2 is:

L = r
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This article was processed using the L

a

T

E

X macro package with LLNCS style


