
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

Carnap's remarks on Impredicative

De�nitions and the Genericity Theorem

Thomas FRUCHART

Giuseppe LONGO

LIENS - 96 - 22

Carnap's remarks on Impredicative

De�nitions and the Genericity Theorem

Thomas FRUCHART

Giuseppe LONGO

LIENS - 96 - 22

D�ecembre 1996

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : ...@dmi.ens.fr

Carnap's remarks on Impredicative De�nitions

and the Genericity Theorem.

�

Thomas Fruchart

DMI

Ecole Normale Sup�erieure

45 rue d'Ulm

75005 Paris, France

fruchart@dmi.ens.fr

Giuseppe Longo

LIENS(CNRS) and DMI

Ecole Normale Sup�erieure

45 rue d'Ulm

75005 Paris, France

longo@dmi.ens.fr

December 5, 1996

Abstract

In a short, but relevant paper [Car31], Rudolf Carnap summarizes

the logicist foundation of mathematics, largely following Frege and Rus-

sell's view. Carnap moves away though from Russell's approach on a

crucial aspect: a detailed justi�cation of impredicative de�nitions (a for-

mal version of Russell's \vicious circle"), that he accepts. In this note

we revisit Carnap's justi�cation of impredicativity, within the frame of

impredicative Type Theory. More precisely, we recall the treatment of

impredicativity given in Girard's System F and justify it by reference to

a recent result, the Genericity Theorem in [LMS93], which may help to

set on mathematical grounds Carnap's informal remark. We then discuss

the logical complexity of (the proof of) that theorem. Finally, the role of

the Genericity Theorem in understanding the surprising \uniformities" of

the consistency proof of Arithmetic, via System F, is hinted.

The problem

A de�nition is said to be impredicative, if it de�nes a concept in terms of a

totality to which the concept belongs. Impredicative de�nitions, in general, use

universal or existensial quanti�ers over a variable that could be instanciated by

the object being de�ned. For example, a set S is impredicatively de�ned, if, for

some predicate P, possibly depending onX and y, one has S = fy=8X:P(X; y)g,

where the universally quanti�ed variableX ranges over all sets, including the one

which is being de�ned. Similarly, a predicate or a proposition is impredicatively

given, if it contains a (quanti�ed) variable which ranges on the collection of

predicates or propositions.

�

to appear in Logic in Florence, 1995 (A. Cantini et al. eds), Kluwer, 1997

1

The \vicious circle" should be clear, as well as the problem it poses, in view

also of its frequent use in mathematics (in Analysis in particular). We will

discuss it in the frame of todays' Type Theory, where \Types are Propositions"

(that is, where Type Theory is seen as a constructive system of Logic, whose

\formulae" are given by the types.)

Some History

In Russell's view, a sound foundation of mathematics should not permit vicious

circles nor other forms of reexivity or self-reference, as these could lead to

paradoxes. In particular, he claimed that \no whole may contain parts that are

de�nable only in terms of the whole".

The notion of impredicative de�nition, as considered here, was set on precise

grounds also by Poincar�e and Weyl ([Poi13], [Wey18]). The �rst observed as

well that, thought doubtful, these de�nitions did not need to generate para-

doxes. Both authors referred to this form of \circularity" in the framework of

Set Theory. Weyl, in particular, was essentially interested in Analysis, in his

1918 book, and his contribution turns out today to be a anticipation of a long

lasting and informative debate on whether predicative tools in Analysis (and

other area of mathematics) su�ce for the expressiveness of these topics (see the

work of Kreisel, Wang, Feferman, Shutte, Simpson...; see, for example, [Kreis60],

[Fefe64], [Fefe75], [Fefe88], [Lon87], [Lon93] for results, discussions and more ref-

erences; Per Martin-L�of developped a predicative system of Intuitionistic Type

Theory, [ML84]).

Carnap's discussion on this matter begins by a criticism of Ramsey's solution

to the \vicious circle". Ramsey's solution to the problem of circularity is based

on the usual platonist approach to mathematics: the totality of sets or properties

already exists in itself, thus the possibility of de�ning one of them by reference to

this totality is an empirical fact that nothing has to do with logic (see [Car31]).

Carnap departs from the metaphysics (the absolutism, as he says) of platonic

realms and proposes a constructive understanding of predicative de�nitions,

inspired by the practice of mathematics.

Prototype Proofs

Consider �rst a universally quanti�ed proposition of everyday mathematics, such

as 8xP(x), where x ranges on some intended collection of individuals (the reals,

the complex numbers ...). This is a �rst order quanti�cation. How do mathe-

maticians prove a universal proposition of this kind? Assume, for instance, that

in P(x), x is a real number variable. We seek to prove 8xP(x), i.e. that for

any real x, P(x) holds for this speci�c real. Any working mathematician would

prove 8xP(x) by saying: � let x be an arbitrary or \generic" real number,

then observe ...� and would write one single proof, valid for any particular

real, as there is no way to inspect all reals, one by one. In other words, his/her

2

core remark would be that the proof does not depend on the speci�c (and ar-

bitrary) real chosen, but only on the assumption that x is a real number. In

type-theoretic terms, a sound proof would only depend on the type of x, not on

its value. Thus, if we want to prove P for a speci�c real, � say, we only need

to replace everywhere in our proof, the \generic real" by the speci�c value, �.

This is sound, as we used in the proof only properties that are veri�ed by any

real.

Herbrand called that kind of \uniform" proofs prototype:

�... when we say that a theorem is true for all x, we mean that

for each x individually it is possible to iterate its proof, which may

just be considered a prototype of each individual proof.� (pp. 288-9,

note 5 in [Gold87]).

Impredicatively given Sets and Propositions

Impredicativity explicitly shows up, though, when quanti�cation is given over

sets or predicates, not just individuals, as in the �rst order case: in this case

the de�niens may use the de�niendum, which is a set or a predicate. That is,

in order to deal formally with a \totality" of concepts or predicates or sets,

one needs a second order language, namely a formalized language that may

represent, internally, quanti�cations over collections of predicates or sets. Note

that Analysis may be viewed as second order Arithmetic, since real numbers

may be de�ned as sets of integers.

As already mentioned, the set S above is impredicatively de�ned, since,

for some predicate P, one has S = fy=8X:P(X; y)g, where y is an individual-

variable and X is an set-variable (that is, X is intended to range over sets of

individuals). Thus, S is a particular set and, if one wants to check wether a given

a is in S, one needs to consider the property 8XP(X; a), with X ranging over

all sets. In particular, one has to handle the \circular" case P(S; a). One may

then wonder if a proof of 8XP(X; a) is still possible by the use of a \prototype

proof" in the sense given above for �rst order sentences. In particular, one may

wonder what it may mean exactly for an instance of variable X to be \generic",

in the second order case.

Carnap's answer to the �rst question is a positive one. He gives a conceptual

justi�cation of this possibility:

� If we had to examine every single property, an unbreakable circle

would indeed result. [...] But the veri�cation of a universal logical or

mathematical sentence does not consist in running through a series

of individual cases. [...] The belief that we must run through all

individual cases rests on a confusion of \numerical" generality. [...]

We do not establish speci�c generalities by running through indi-

vidual cases but by logically deriving certain properties from certain

others. � [Car31]

3

In our example, assume that S is a set of integers. In order to check whether

n is in S, one should logically derive P(X;n) from the only assumption that

X has the property of \being a set of integers" (i.e. from an assumption on

its type and nothing else); thus, we do not run throughout all sets of integers,

including the one we are de�ning, but we just make a logical derivation based

on the properties of the \type of the sets of integers".

Carnap continues:

� That proofs that the de�ned property obtains (or does not obtain)

in individual cases can be given shows that the de�nition is mean-

ingful. If we reject the belief that it is necessary to run through

individual cases and rather make it clear to ourselves that the com-

plete veri�cation of a statement means nothing more than its logical

validity for an arbitrary property, we will come to the conclusion

that impredicative de�nitions are logically admissible. � [Car31]

Carnap claims that the fact that a proof may be (correctly and logically) given

�shows that the de�nition is meaningful�. In modern terms, this seems very

close to the \realizability interpretation" in Intuitionistic Logic: according to

the intuitionistic approach, that we follow in this paper, the meaning of a state-

ment is given by the \set of its realizers" (that is, its possible or candidate

proofs - if any, as this set may be empty), [Troe73]. This constructive under-

standing of logical systems is also related the so called BHK explanation of

the intuistionistic meaning of the logical connectives (BHK stands for Brouwer-

Heyting-Kolmogorov, [Troe73]). In both semantics, one constructively gives

meaning to a statement, to a de�ned mathematical concept, by discussing its

provability, as truth is provability. Carnap seems to claim that the possibility of

an analysis of provability justi�es \logical admissibility". We share this opinion.

However, some technical questions need to be clari�ed. How can we be sure

that the proof given is actually independent from the speci�c X used throughout

the proof? How can we prove that from the given proof of a speci�c case, we can

actually reconstruct uniformly a proof of the general case, that is of 8X:P(X; a)?

Or that X is truely generic and that the proof is a prototype, in the sense of

Herbrand?

Mathematicians solve these questions, in the practice, by handwaving, ex-

perience and a common insight into proofs. This is perfectly sound in the �rst

order case, where the strati�cation of individuals and predicates (or sets) poses

no problem. It is a more delicate point in second order systems, when the issue

of impredicativity actually raises.

Constructive logical systems, Type Theory in particular, by looking at proofs

explicitly, as terms or computations, gives a precise answer to these questions,

as a simple corollary of a (di�cult) result. In our views, this may contribute to

set on more solid grounds impredicatively given properties.

4

System Fc and Impredicativity

System F is known as Impredicative Type Theory, or Polymorphic Lambda

Calculus; it was introduced by Girard, [Gir71] (see [GLT89] for a recent pre-

sentation). It consists of types and terms (well typed terms). One has to stress

that the type system of F allows explicit quanti�cation on type variables (sec-

ond order quanti�cation); its proof-theoretic strenght is such as to prove, by the

normalization theorem, the consistency of (II order) Arithmetic. Let us �rst

recall the syntax and rules for this calculus.

A type is either a type variable, an arrow type or a polymorphic type (one

may add atomic types, when dealing with speci�c extension of the \pure theory"

presented here; however, most key predicates for Logic and Computer Science

are codable in the pure system, see [GLT89]). Types then are constructed using

the following schemes:

� variables: X;Y ... are types.

� arrow types: � ! � is a type, if � and � are types.

� universal types: 8X:� is a type, if � is a type.

A term is either a variable, an abstraction, an application, a type abstrac-

tion, or a type application. Thus, terms are constructed using the following

schemes:

� variables: x

�

of type � , if � is a type.

� abstraction: �x

�

:M of type � ! �, if � is the type of M (� binds term-

variables in terms, or x

�

is not free in �x

�

:M).

� application: MN of type �, if M is of type � ! � and N of type � .

� type abstraction: �X:M of type 8X:� , if M is of type � and X is not

free in the type of any free term-variable of M (� binds type-variables in

terms).

� type application: M� of type � [�=X], if M is of type 8X:� (where � [�=X]

is the result of the replacement of all free occurrences of X by � in � .)

Reduction rules

(�x

�

:M)N

�

1

�!M [N=x] �x

�

:(Mx)

�

1

�!M if x is not free in M

(�X:M)�

�

2

�!M [�=X] �X:(MX)

�

2

�!M if X is not free in M

We will write

F

�! for the reexive and transitive closure of the union of these

reductions, and =

F

for the symetric closure of

F

�!.

5

Second order quanti�cation is explicitly given by the rule of type abstrac-

tion, which binds second order variables, both in types and terms. Thus, 8X:�

is de�ned, as a type, by a quanti�cation over the collection of all types, which

includes 8X:� , the \de�niendum". Moreover, by virtue of the Curry-Howard

isomorphism, polymorphic types can be viewed as second order logical proposi-

tions. Hence, a type of the form 8X:� \means" that the property � is possessed

by all types (in particular, by 8X:� itself). Finally, the terms of system F com-

pute functions, either on terms (see the �

1

axiom) or on types (see the �

2

axiom).

In particular, a polymorphic term takes types as inputs (including, possibly, its

own type) and gives terms as outputs, by �

2

. Here is then a the typical form of

impredicativity, namely a type-theoretic formalization of the \vicious circle". It

even shows up at two levels, for types and for terms. However, exactly because

of this constructive frame, where proofs are seen as computations (are coded by

terms), it will be possible to look closely at the nature of \prototype proofs".

Indeed, we want to argue that these impredicative constructions are safe along

the lines of Carnap's argument, by showing that system F contains a precise

notion of prototype proof, in the sense of Herbrand, and of generic types, with

strong \coherence" properties.

Axiom C and its meaning

The key point of our analysis relies on the observation that all types in system

F are \generic", in the sense to be speci�ed, and that, from a computational

point of view, they act like variables. In short, in the constructive frame of

second order Type Theory, outputs do not depend on inputs, when the input

is a type: in this case, only the type of the output may depend on the input,

not its \value" (see below). This is blatantly false for �rst order terms, in Type

Theory or everywhere in mathematics: functions and computations do depend

on inputs as �rst order individuals, as soon as a su�ciently expressive system

is given.

This observation will be established in two steps. First, in this section, by

a simple remark on the compatibility of an axiomatic extension of system F ;

later on, by the Genericity Theorem.

The �rst remark is inspired by a result in [Gir71]: in system F , there is

no de�nable term that discriminates between types. That is, there is no term

J

�

such that J

�

applied to type � is 1 if � = �, and is 0 if � 6= �. In other

words, there is no term whose output values are all in the same type (the type

of integers, or any other type with at least two elements) and depend on the

input type. This idea was taken up in [LMS93] by extending system F with the

following axiom, some sort of a \generalized dual" of Girard's result

1

:

1

Independently of Girard's remark, in [CMMS91] a similar extension was proposed, for the

purposes of subtyping, a notion motivated by programming.

6

Axiom C: If M : 8X:� and X 62 FV (�) then for all � , �

0

,

M� = M�

0

: �.

Axiom C intuitively means that an input type (�), which is not used to

establish the type (as � does not depend on X) of the corresponding output

value (M�), bears no information as input. So if M has the type 8X:� and

X is not free in the type � (i.e. � is not a function of X), then it does not

matter whether one applies M to � or �

0

and one may consider both results

to be equal. Equivalently, since there are no type discriminators by Girard's

remark, Axiom C forces terms of universally quanti�ed type, whose outputs

live in the same type, to be constant. Informally, this is sound, because we

are in a constructive frame and types have the intended meaning of a possibly

in�nite domain of interpretation. Thus a term, as e�ective computation, cannot

compare nor discriminate on the grounds of possibly in�nite information.

We write Fc for the extension of F by Axiom C. Axiom C is not derivable

in system F . Indeed, let x : 8X:� and X 62 FV (�) then for any � and �

0

, x�

is a normal form, di�erent from x�

0

. However, Axiom C is formally compatible

with F , as there are models of Fc. As a matter of fact, all known and non-

trivial models (e.g. not term-models nor models of Type:Type) realize Axiom

C. In short, all \parametric" models of F , in the sense of Reynolds, [MR92],

the coherent domains, [Gir86], and the PER models are all models of Fc

2

. It

is also possible to extend system F by a reduction relation which is strongly

normalizing, Church-Rosser and induces exactly the Fc-equality (which is thus

decidable, [Bel97]).

The soundness of Fc gives the �rst hint towards the \generic" nature of

types as inputs, in system F . That is, we may consistently consider each type

exactly as a variable, at least under the special circumstances that it is an input

for a term M of type 8X:�, where X 62 FV (�)

The Genericity Theorem, Prototype Proofs, Generic Types.

In [LMS93], Axiom C was introduced in order to prove the Genericity Theorem

below (note that there is no restriction on �).

Theorem (Genericity). Let M and N have type 8X:�. Then:

(Exists �; M� =

Fc

N�) =)M =

Fc

N .

This theorem shows that two polymorphic terms that are equal on one input

type are equal on any input type. In other words, the behaviour of polymorphic

terms is so \uniform" that one can reduce Fc equality on every possible types

to Fc equality on one single type � (no matter which one!). That is, if (M� =

Fc

N�) then MX =

Fc

NX.

2

The categorical signi�cance of the PER models, i.e. the meaning of \quanti�cation as

product" as well as the meaning of Axiom C are both given by the validity in the E�ective

Topos of the Uniformity Principle, see [Lon87], [LM91], [Lon95].

7

For the purposes of our forthcoming application, observe that the Genericity

Theorem in [LMS93] is actually shown by proving the following Main Lemma:

Let M and N have type �. Then:

(Exists �; [�=X]M =

Fc

[�=X]N) =)M =

Fc

N .

With reference to very di�erent matters, as an anology, one may remember

the \regular behaviour" of analytic functions of complex variable: when known

on the border of a regular shape, they are known everywhere inside. Thus, if

two of these functions coincide on the border, they coincide everywhere [Rud80].

This regularity or uniformity could be surprising, and perhaps it is, but this

is actually what makes second order impredicative Type Theory become safe

(and allows the proof of the Normalization Theorem, see the last section).

Recall now that, if M is a polymorphic term, it can take as input any type,

and in particular types that are more complex that its own type. One can

then wonder what happens in these \circular" cases. The answer inspired by

the Genericity theorem is: \It happens the same as on a simpler input type,

because the computational behaviour of M \in extenso" is determined by its

behaviour on a single type". In this sense, the term or computation does not

depend on the input type.

As shown in the next section, the proof of Genericity is (di�cult but) \ele-

mentary". More precisely, it is possible to code it into PRA (Primitive Recursive

Arithmetic), provided that the Church-Rosser property for system F is assumed

(but this is elementary and easy). Indeed, PRA is an elementary arithmetic the-

ory, where one can handle basic mathematical computations and deductions.

Thus, in spite of the circularity generated by polymorphism, a strong \regular-

ity" property of terms in system Fc is established by the Genericity Theorem

and the proof of this regularity is elementary, i.e. logicaly complex reasonings

are not necessary to deal with this key property of the impredicativity of Fc.

According to the realizability or BHK interpretations, the constructive mean-

ing of 8X:�, the crucial, impredicatively given type, is the following. A proof-

term M : 8X:� is a computation or function that takes any type � to a proof

M�: [�=X]�. Thus, from a term M : 8X:� one can reconstruct the terms or

proofs M� for each speci�c instance [�=X]� of �. However, as Carnap stresses,

a proof of 8X:� is not constructed by running through all speci�c cases or in-

put types �, but by giving a prototype proof, in the sense of Herbrand, w.r.t.

a \generic" instance �. The most obvious prototype proof and generic case is

given by MX:�. However, this does not save us from the circularity of impred-

icativity, as variables in Type Theory have a double \status": they are atomic

entities (types in this case) but they also formally represent the mathematical

use of \variable" as arbitrary elements of the intended domain of variation, since

they may be instantiated by any element of that domain. Then, in particular,

the variable X which may occur in � can be instantiated by � or even 8X:�.

8

Our thesis though, in view of the Genericity Theorem, is that an arbitrary

speci�c instance type, possibly simpler than �, may su�ce to determine a fully

general proof. The idea then is to start from a speci�c instance [�=X]� and

discuss the prototype nature of its proof, if any. In a sense we want to describe

the backwards process, w.r.t. the one described above, as we want to go from a

proof of [�=X]� to one of 8X:�.

Assume then that from a proof N of an instance [�=X]� one tries to re-

construct a proof of the universal proposition 8X:�. In general, this may not

be possible. It is possible, though, when the structure of a speci�c proof N

of [�=X]�, that is of N : [�=X]�, is \parametric" in � or it may be described

uniformely as a substitution of a type variable by �. In that case, we call N a

prototype proof, in the sense of Herbrand. This is formalized by the following

de�nition:

De�nition. Given a type �, we say that a type � is generic and a

proof N : [�=X]� is a prototype if there exists M :�, such that X is

not free in the type of a free term variable of M and

[�=X]M =

Fc

N : [�=X]�.

Notice that if � and a proof N : [�=X]� are, respectively, generic and proto-

type, by M :�, then �X:M : 8X:�. That is, the construction (existence) of M ,

from the prototype and generic proof and type N and �, allows to give a proof

of the universal statement. As the converse is trivial, given a type, there exist a

generic and prototype type and proof if and only if the corresponding universal

statement is provable. Clearly, not any proof nor type of a speci�c instanciated

type need be prototype and generic: for example, [�=X]X has no prototype

proof with � generic, otherwise the universal statement 8X:X, the absurdum or

empty type, would be provable. We claim that, given N ,� and �, it is decidable

whether N is a prototype proof with � generic (ongoing work).

We focused on a second order notion of prototype proof and generic type. Of

course, the de�nition can be easily extended to �rst order statements, the more

usual ground of \prototype" proofs in mathematics: if r is an arbitrary real and

the proof of P (r) = [r=x]P does not depend on r (or r is generic and the proof

is a prototype similarly as in the de�nition above), any mathematician would

say that we actually proved 8x:P (x). However, as already mentioned, the �rst

order case is not problematic at all: individuals are distinct from propositions

and there is no apparent vicious circle. This is not so in the impredicative

case, which motivates the doubts of many in the use of impredicative second

order quanti�cations (and variables). Thus, the very simple notions of generic

types and prototype proof turn out to be a more delicate issue in impredicative

systems.

However, exactly because of the relevant property of System F given by the

Genericity Theorem, we are now able to assure that prototype proofs are sound,

also when the generic type may be as complex as the universal assertion to be

9

proved. The soundness is given, as in Category Theory, by a \coherence result",

which states the independence of the reconstruction of the proof of the universal

statement from speci�c prototype proof and generic types.

Corollary (Coherence). Given a type �, let � and a proof N : [�=X]�

be generic and prototype, respectively. Then,

if [�=X]M =

Fc

N =

Fc

[�=X]M

0

: [�=X]�, one has M =

Fc

M

0

and, thus, �X:M =

Fc

�X:M

0

: 8X:�.

This immediate corollary to the Genericity Theorem says that no matter

how we extract a proof of a universal statement from a prototype one of a

speci�c instance, in any case we obtain just one proof (modulo \=

Fc

"). Thus,

also the type � does not matter, or it is truely generic, since from the unique

proof �X:M of 8X:� we can obtain, uniformely and e�ectively, proofs for each

instance [�

0

=X]�, just by application (�X:M)�

0

.

The independence of the proof of the universal statement from the speci�c

\structure" of a proof of a speci�c instance, as well as from the generic type

used, garanties that, exactly in the \shaky" second order case, the mathematical

soundness of those statements. The system is \coherent" both in the categorical-

technical sense, and in the sense of the possibility of disregarding the complexity

of the instantiating type, since all types are generic and act like variables.

As already mentioned, this garanty is given \exactly" in the critical second

order case, as the (obvious variant of the) Genericity Theorem is clearly (and

fortunately) false in the �rst order case.

The proof of Genericity Theorem in PRA.

So far we tried to justify the \non-elementary" tools of impredicativity by an

application of the Genericity Theorem. We next show that the proof of the

Genericity Theorem is elementary. Our goal is to focus here on the main points

that allow to encode the Genericity Theorem into Primitive Recursive Arith-

metic (PRA) without many detail, since the complete coding would be very

long (and not very interesting). Hence, we �rst recall the basics of PRA, then

we explain how to code types, terms, and properties of system F into PRA,

and �nally how to code the Genericity proof into PRA.

Primitive Recursive Arithmetic

The language of this theory contains one function letter for each primitive re-

cursive function, and one predicate letter for each primitive recursive predicate.

The axioms of PRA are the (usual) equality axioms, the de�nitional axioms|

that de�ne the behaviour of primitive recursive functions letters (resp predicates

letters) as expected| and the induction axiom:

P(0) ^ 8x(P(x)! P(Sx))! P(y)

10

where P is quanti�er free, and Sx stands for the successor of x.

In PRA, one may express the usual mathematical reasonings. Some di�cult

theorems can be proved in this theory (G�odel �rst incompleteness theorem, for

instance). The core of its expressive power is the induction axiom.

This axiom de�nes primitive recursive induction, that is induction on !.

More complex forms of induction (like induction on !

2

, used to prove the totality

of the Ackerman function) are not possible in PRA. In what follows, we sketch

the proof that induction on ! su�ces for coding and proving the Genericity

Theorem in PRA. For more details see [Fru96].

Coding F into PRA

Types and terms of F will be coded by integers, type assignment by a function

letter, reductions by predicate letters, and �nally equalities by formulas of PRA.

This coding is rather long, so we just mention here the key points.

We �rst de�ne the code of types and terms of system F by induction re-

spectively on types and terms. We will write

y

M

y

for the code of M , and

< a

0

; : : : ; a

n�1

> for the integer 2

a

0

+1

� � � � � p

a

n�1

+1

n

, where p

n

stands for the

n

st

prime number:

Types Terms

y

t

1

t

2

y

= < 3;

y

t

1

y

;

y

t

2

y

>

y

8X

i

:T

y

= < 5;

y

X

i

y

;

y

T

y

>

y

�x

�

i

: t

y

= < 7;

y

x

�

i

y

;

y

t

y

>

y

T

1

! T

2

y

= < 9;

y

T

1

y

;

y

T

2

y

>

y

t:T

y

= < 11;

y

t

y

;

y

T

y

>

y

X

i

y

= 13+ 4i

y

�X

i

:t

y

= < 15;

y

X

i

y

;

y

t

y

>

y

x

�

i

y

= 19+ 4 < i;

y

�

y

>

Both coding and decoding are primitive recursive. Hence this allows to de�ne

functions and predicates by induction on the code of types (respectively terms).

Since codes are integers, those inductions are usual \course of value" inductions,

i.e, ordinary primitive recursive inductions.

For instance, one may de�ne the (primitive recursive) predicates Type(n)

and Term(n) which mean respectively \n is the code of a type of F", and \n

is the code of a (well typed) term of F", by course of value induction on !.

The main function, that is also de�ned in this way, associates the code of its

type to each code of a well typed term. This function is called typing, and its

de�nition codes formally the following property:

typing(

y

M

y

) =

y

T

2

y

if M � t

1

t

2

; t

2

: T

1

; and t

1

: T

1

! T

2

y

T

1

! T

2

y

if M � �x

T

1

:t; and t : T

2

y

T

1

[T

2

=X]

y

if M � t:T

2

; and t : 8X:T

1

y

8X

i

:T

y

if M � �X

i

:t; and t : T ; and X

i

is not free in

the type of a free term variable of t

11

y

�

y

if M � x

�

0 else

FcEqual is the main predicate used in the proof of the Genericity Theorem

in PRA. It is not a predicate letter of PRA, but it is de�ned directly by the

use of the primitive recursive predicate letter FcEqualproof such that:

FcEqualproof(a; b; c) means \c is the code of an Fc equality proof

between both terms coded respectively by a and b".

The de�nition of FcEqualproof is complex, and requires in particular the cod-

ing of F reductions (�

1

, �

2

, �

1

, and �

2

), which would be too long to present here

in detail. Thus, we just mention the possibility of coding Fc equality,M =

Fc

N

with the predicates FcEqual:

FcEqual(

y

M

y

;

y

N

y

) � 9c FcEqualproof(

y

M

y

;

y

N

y

; c)

By this coding, one can express the Genericity Theorem by the following

formula of PRA:

Type(�) ^ (typing(

y

M

y

) =

y

8X

0

:�

y

) ^ (typing(

y

N

y

) =

y

8X

0

:�

y

)^

�

9� (Type(�) ^ FcEqual(

y

M�

y

;

y

N�

y

)

�

+

FcEqual(

y

M

y

;

y

N

y

)

Now we know how to code the Genericity Theorem by a formula of PRA, we

have to �nd how to code its proof.

Structure of the proof

The proof of the Genericity Theorem is rather long, and divided in several

lemmas. As it would be extraordinarily tiresome to code the proof lemma after

lemma, and line after line, we just point out the main arguments that are used

in the proof, and we explain how they can be coded by deductions in PRA.

In what follows, we will not consider the basic logical reasonings (that can

be coded easily), but, �rst the main direct arguments used for proving a \type

generalization" lemma, and then the inductive arguments.

Direct arguments (no induction)

As a matter of fact, the Genericity Theorem deals with type substitution: actu-

ally, a (trivially) equivalent wording for it (we just apply a �

2

reduction) is the

following (formulated as the Main Lemma in [LMS93]):

M;N : � ^ [�=X]M =

Fc

[�=X]N =)M =

Fc

N

12

Thus, the use of type-substitution properties in the Genericity proof is absolutely

not surprising. The most important properties of type substitution are called

\type generalization", and \term generalization". We focus here on the �rst one

that deals with type substitution in types themselves (Lemma 5.1 in [LMS93]):

If �

1

and �

2

are two types such that �

1

[�=X] � �

2

[�=Y], then exists

�

0

(type generalizer of �

1

and �

2

) such that, for suitable �

1

and �

2

:

�

0

[�

1

=Z] � �

1

; �

0

[�

2

=Z] � �

2

The proof of this lemma is based on the notion of occurrence.

Occurrences are usually de�ned by induction on the structure of terms. We

can here code this notion with integers, by the use of a (primitive recursive)

induction on codes of terms, and then code the following notions by induction

on the codes of occurrences:

� substitution at an occurrence: �[u �] is the result of the substitution

of � at the occurrence u.

� subterm (�

ju

) taken (from �) at the occurrence (u).

Since all those notions are de�ned by primitive recursive induction, it is possible

to prove the following properties, also by primitive recursive induction (on the

occurrences):

�[u �

ju

] = �

(�[u X])[Y=X] = �[u Y] for X 62 V ar(�)

Now, these properties are essentially su�cient to prove Lemma 5.1. Other

arguments that are also used in this proofs are not inductive, (propositional

reasoning, case analysis) and easy to formulate by the corresponding deduction

in PRA.

Although induction is not explicitly used in the proof of Lemma 5.1 above,

the easiest way to formalize it in the frame of PRA is based on induction,

as induction is the key tool in PRA and the notion of occurrence is given

inductively.

Coding inductions

Di�erent kinds of inductions are used in the proof of Genericity: inductions on

types, on terms, on type derivation, on the length of an equalities (or reduction)

chain, and on the number of C-equalities in chains of Fc-equalities .

Since types, terms, and chains are coded by integers, one may code induc-

tions on them by inductions on integers. This does not present any problem as

the code of a truncated type (resp. term, chain) is strictly less than the code of

the original type (resp. term, chain).

As for induction on type derivations, proving P(M) by such an induction is

a \pleasant way" of proving Term(M) ! P(M) by induction on terms, (Term

13

is the predicate letter that codes the fact that its argument is a well typed term

of F).

In short, the coding of induction is relatively straightforward, because all

inductions used in the Genericity proof are primitive recursive, hence codable

into PRA.

Conclusion

The Church-Rosser property (CR) for system F is the only non logical assump-

tion in the proof of the Genericity Theorem

3

: If M

F

�! M

1

and M

F

�! M

2

,

then exists M

0

such that:

M

1

M

2

&

F

.

F

M

0

This property is not more di�cult to establish for system F than for the type-

free �-calculus. Hence, the Genericity Theorem is based on a (elementary)

property of system F and its proof can be given in PRA. In this sense, one can

say that Genericity Theorem is elementary.

Second order arithmetic (PA

2

)

System F veri�es the strong normalisation property: all terms of F have a

normal form (i.e: are F -equal to an irreducible term). From a logical point of

view, the strong normalisation theorem for system F implies the consistency of

second order arithmetic, PA

2

, and | in virtue of G�odel's second incompleteness

theorem | it can not be proved within PA

2

. As we will see, the strength

and main di�culties of the proof of this theorem are due to the presence of

polymorphism, and are related to impredicativity.

The proof of F normalisation is due to Girard, who adapted Tait's notion

of reducibility [GLT89][Tait67]. At �rst trial, an intuitive notion of reducibility

for F terms could be the following:

�We would like to say that t of type 8X:� is reducible i� for all types

�, t� is reducible (of type � [�=X]). [: : :] But � is arbitrary|it may be

8X:�|and we need to know the meaning of reducibility of type � before

we can de�ne it! We shall never get anywhere like this.� [GLT89, p. 115]

As a matter of fact, the impredicativity of F creates logical di�culties. The

key idea that makes the proof possible is based on the notion of reducibility

with parameters. The parameter is called \reducibility candidate", and it is

3

CR is used in several places in [LMS93]. As a matter of fact, in the proof of Theorem

6.2, there is a reference to Strong Normalization. However, this reference, which is just a

shortpath to the proof, may be easily replaced by a simple application of CR (see [Fru96]).

14

taken as a temporary de�nition of reducibility on some types, to break the

\circle" discribed in the citation above. The point is that no matter which

collection of candidates is chosen, its use as a (type) parameter does not a�ect

the computation (nor the proof).

�A term t of type 8X:� is reducible when, for every type � and every

reducibility candidate R of type �, the term t� is reducible of type � [�=X],

where reducibility for this type is de�ned taking R as the de�nition of

reducibility for �. Of course, if R is the \true" reducibility of type �,

then the de�nition we shall be using for � [�=X] will also be the \true"

one. In other words, everything works as if the rule of universal

abstraction (which forms functions de�ned for arbitrary types) were so

uniform that it operates without any information at all about its

arguments.� [GLT89, p. 115]

The main de�nitions (and properties) that are necessary for the proof of F nor-

malisation use implicitely the essential feature of F , that is informally described

above: the regularity of polymorphic terms behaviour. Since this \uniformity"

allows the (di�cult) proof of strong normalisation, it is then at the core of this

consistency proof of PA

2

.

In conclusion, one can now consider the Genericity theorem as a (partial) for-

malisation of this feature. The regularity of the universal abstraction rule, that

operates �without any information at all about its argument� corresponds in

our views, to the fact that any type is generic is the sense described above. One

can then wonder about a possible use of the Genericity Theorem for a better

understanding of the \mysteries" of the consistency proof of Arithmetic. This

issue is part of our current research project.

Aknowledgement

We would like to thank Sergei Soloviev for his detailed comments to this paper.

Longo would also like to thank Sergei for the long lasting stimulating collabo-

ration in Type Theory and for the many discussions on key issues in Logic and

the foundation of Mathematics.

References

[Bel97] G. Bell�e. Syntactical properties of an extension of Girard's System

F where types can be taken as \generic" inputs. Preliminary note,

DISI - Universit�a di Genova. E-mail: gbelle@disi.unige.it.

[Car31] R. Carnap. The logicist foundation of mathematics, in P. Benac-

erraf, H. Putnam, Philosophy of mathematics; selected readings,

Prentice-Hall philosophy series, 1964.

15

[CMMS91] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension

of system F with subtyping. Information and Computation 94, pages

4{56, 1994. First appeared in the proceedings of the Conference on

Theoretical Aspects of Computer Software (Sendai, Japan), T. Ito

and R. Meyer, eds., Lecture Notes in Computer Science 526, pages

750{770, Springer-Verlag, 1991.

[Fefe64] S. Feferman. Systems of predicative Analysis, Journal of Symbolic

Logic vol. 29, pages 1{30, 1964.

[Fefe75] S. Feferman. A language and axioms for explicit mathematics, in

Lecture Notes in Mathematics 450, Springer-Verlag, pages 87{139,

1975.

[Fefe88] S. Feferman. Weyl vindicated: \Das Kontinuum" 70 years later,

Proceedings of the Cesena Conference in Logic and Philosophy of

Science, 1988.

[Fru96] T. Fruchart. Normalisation et G�en�ericit�e dans le syst�eme F , rap-

port de stage de DEA. Available on author's Home page:

http://www.ens.fr/�fruchart/publi.html.

[Gir71] J.-Y. Girard. Une extension de l'interpr�etation de G�odel �a l'analyse,

et son application �a l'�elimination des coupures dans l'analyse et la

th�eorie des types. Proceedings of the 2nd Scandinavian Logic Sym-

posium, J.E. Fenstad, ed., pages 63{92, North-Holland, 1971.

[Gir86] J.-Y. Girard. The system F of variable types, �fteen years later,

Theoretical Computer Science, vol 45, pages 159{192.

[GLT89] J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and types. Cambridge

Tracts in Theoretical Computer Science 7, Cambridge University

Press, 1989.

[Gold87] H. Goldfarb, Jacques Herbrand: logical writings, 1987.

[Kreis60] G. Kreisel. La pr�edicativit�e, in Bulletin de la Soci�et�e Math�ematique

Fran�caise, vol. 88, pages 371{391, 1960.

[Lon87] G. Longo. Some aspects of impredicativity: notes on Weyl's philoso-

phy of Mathematics and on todays Type Theory, Logical Colloquium

87, Studies in Logic (Ebbinghaus et al. eds), North Holland, 1989.

[Lon93] G. Longo. Review of Feferman's paper \Weyl vindicated, Das Con-

tinuum 70 years later", Journal of Symbolic Logic, vol 58, n. 3, 1993.

[Lon95] G. Longo. Parametric and type-dependent polymorphism. Funda-

menta Informaticae, 22(1-2):69{92, 1995.

16

[LM91] G. Longo and E. Moggi. Constructive natural deduction and its

!-set interpretation. Mathematical Structures in Computer Science

vol. 1, pages 215{253, 1991.

[LMS93] G. Longo, K. Milsted, and S. Soloviev. The Genericity Theorem and

the notion of parametricity in the polymorphic �-calculus. Theoret-

ical Computer Science 121, pages 323{349, 1993.

[MR92] Q. Ma and J.C. Reynolds. Types, abstraction, and parametric poly-

morphism, part 2. Proceedings of the Conference on Mathematical

Foundations of Programming Semantics, S. Brookes, M. Main, A.

Melton, M. Mislove, and D. Schmidt, eds., Lecture Notes in Com-

puter Science 598, pages 1{40, Springer-Verlag, 1992.

[ML84] P. Martin-L�of Intuitionistic Type Theory, Bibliopolis, Napoli, 1984.

[Poi13] H. Poincar�e. Derni�eres pens�ees, english edition, Dover publ., New

York 1963.

[Rud80] F. Rudin. Real and Complex Analysis, MacGraw Hill, 1980.

[Tait67] W.W. Tait. Intensional interpretation of functionals of �nite type I,

Journal of Symbolic Logic 32, 1967.

[Troe73] A. Troelstra.Metamathematical investigation of intuitionistic arith-

metic and analysis, Lecture Notes in Mathematics 344, Springer

Verlag, 1973.

[Wey18] H.Weyl.Das Kontinuum, italian edition, care of B. Veit, Bibliopolis,

Napoli, 1977.

17

