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1 Introduction

A type may be a subtype of another type. The intuition about this should be clear: a

type is a type of data, some data then may live in a given type as well as in a larger

one, up to a simple \transformation". The advantage is that those data may be \seen"

or used in di�erent contexts. The formal treatment of this intuition, though, is not so

obvious, in particular when data may be programs.

In Object Oriented Programming, where the issue of \reusing data" is crucial, there

has been a long-lasting discussion on \inheritance" and ... little agreement. There are

several ways to understand and formalize inheritance, which depend on the speci�c

programming environment used.

Since early work of Cardelli and Wegner, there has been a large amount of papers

developing several possible functional approaches to inheritance, as subtyping. Indeed,

functional subtyping captures only one point of view on inheritance, yet this notion

largely motivated most of that work. Whether or not inheritance is exactly functional

subtyping, this notion raised several problems and many relevant answers (see, for

example, [CW85, Mit88, BL90, BTCG

+

91, CMMS91, CG92, PS, Tiu96, TU96]). We

take the most naive approach, here, and survey two recent approaches and some of

their consequences, one for the second order types (variable types), the other for types

which may depend on �rst order variables.

�

Longo's Invited Lecture at \Type Theory and Term Rewriting", Glasgow, September 1996.
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2 System Fc

Our starting point is Girard's System F [Gir71]. Its language has two kinds of expres-

sion, types and terms, de�ned by the following syntax:

(Types) � ::= X j � ! � j 8X:�

(Terms) M ::= x j �x :�:M j MN j �X:M j M�

We will use:

�; �; �; � for types M;N; P;Q;R for terms

X; Y; Z for type variables x; y; z for term variables

An environment � is a set of term variables with their types. We write �; x :� to extend

� with a new term variable x of type �, where x must not already occur in �.

We use the notation � `

Fc

M : � for type assignment in system Fc, where term equality

is de�ned below. The following rules de�ne valid type assignments.

System Fc

(ax) �; x :� `

Fc

x : �

(! intro)

�; x :� `

Fc

M : �

� `

Fc

�x :�:M : � ! �

(! elim)

� `

Fc

M : � ! � � `

Fc

N : �

� `

Fc

MN : �

(8 intro)

� `

Fc

M : �

� `

Fc

�X:M : 8X:�

�

for X not free in the type of

any free term variable in M

(8 elim)

� `

Fc

M : 8X:�

� `

Fc

M� : [�=X ]�

Reduction of terms is de�ned as usual by the closure of the following rules, where

FV (M) stands for the set of free type and term variables in M :

(�

1

) (�x :�:M)N =

�

1

[N=x]M (�

2

) (�X:M)� =

�

2

[�=X ]M

(�

1

) �x :�:Mx =

�

1

M

�

for x =2 FV (M )

(�

2

) �X:MX =

�

2

M

�

for X =2 FV (M )

Equality of terms is the intended equality: namely the usual reexive and transitive

closure of the reduction rules above augmented by the following axiom.
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(Axiom C)

M : 8X:�

M�

1

= M�

2

�

for X not

free in �

It may be fair to call intended this extension as it formalizes an early and relevant

remark of J.Y. Girard, in [Gir71]: in System F, there are no type discriminators.

Indeed, (Axiom C) forces terms of universally quanti�ed type, whose outputs live in

the same type, to be constant; that is, it says that a term cannot discriminate between

di�erent types, by giving provably di�erent output (di�erent normal forms in the same

type). The very sound idea is that in our constructive framework a type represents

possibly in�nite information. Thus a �nite program, a term, cannot output 0 or 1,

say, according to a check on the equality of possibly in�nite entities. Note also that all

known proper models of F realize (Axiom C), that is all known models except the term

model and models of the inconsistent theory Type:Type, see [Lon95]. The extended

system, call it Fc, has a decidable term-equality; indeed, it may be obtained by a

normalizing and Church-Rosser reduction relation (ongoing work of Bell�e).

3 Sets and Propositions

Usually, formalisations are guided by semantic intuition. We then sketch �rst a path

through informal meaning towards a sound theory. Later we will survey the basic

ideas of a mathematical model. There exist several alternative interpretations of types,

which may suggest di�erent treatment of subtyping. Types may be sets, propositions

or objects of categories. We briey discuss the �rst two understanding of subtyping

and just mention the latter.

3.1 Types as Sets or as Objects

As a type is a type of data, not necessarily a structured one, the �rst idea is to under-

stand subtypes as subsets and extend System Fc by suitable rules, which mimic the

intended properties of subsets. This interpretation is naif, indeed impossible, yet it

may guide the �rst few steps towards a formalization.

Viewed as a set, a type is identically injected into a larger one. As for universal quan-

ti�cation, the core construction of System F, sets provide an immediate intuition and

an easy formalization. The intuitive meaning of 8X:� is the following: the intersection

of all the instances of �, when X ranges in the intended domain. In this naif interpre-

tation, 8X:� is always a subset of �. Conversely, � may also be a subset, thus identical

to 8X:�, in the special case that X does not occur in �. More formally,

(8 left, axiom) 8X:� � [�=X ]�
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(8 right, axiom) � � 8X:� for X not free in �

In [Mit88] these are two of the formal axioms of the subtyping system. So far so good:

sets provide a good intuition and suggest an easy formalization of the crucial inclusion

relations, the ones between a type and its universal quanti�cation. This relation is

crucial, as the strength of impredicative second order systems is given by the possibility

of quantifying over type variables, thus one has to say something on how types and

their universal quanti�cations relate to each other. Note �nally that, over sets, the

intended inclusion, in each direction, is an injection: indeed, the identical embedding.

The other type constructor of System F(c) is not less relevant: it is the arrow type

constructor. Its set-theoretic interpretation poses no problem: (the interpretation of)

� ! � is the set of functions from (the interpretation of) � to � . Can we inherit to

arrow types the identical injection of a subset into a set? No, there is no way: suppose

that � is a subset of � then � ! � is not a subset, nor a superset of � ! � . In the

set-theoretic interpretation of the functions in � ! � as graphs, that is as single-valued

subsets of the cartesian product � � � , the two function sets are simply incomparable.

Of course, there are maps going from one arrow set to the other (by extending functions,

say), but the identical embedding is lost in either case.

Unfortunately, general Category Theory cannot help either for an interpretation: sub-

objects nicely generalize subsets, but, similarly as for sets, the monomorphic embedding

which characterizes subobjects (see any text in Category Theory, such as [AL91], say)

is not inherited at higher types, as a monomorphism is an injection in the speci�c case

of the Category of Sets (a recent, though complex, categorical frame for subtyping has

been proposed in [Jac95]). In conclusion, both naif Set and Category Theory cannot

suggest any sound formalization of inclusion between arrow types. Moreover, even for

universal quanti�cation, the suggestion was very informal, as its meaning is far from

granted in either approach, as we will mention later.

3.2 Types as Propositions

Even though naif Set Theory suggested a well motivated formalization for subtyping

universally quanti�ed types, it did not help us with the arrow types. We are then

forced to try another meaning for inclusion and derive a formal treatment from it. The

well-known interpretation of types as propositions may turn out to be useful. How can

we interpret subtypes as subpropositions? By a blend of logical and naif set-theoretic

meaning of inclusion as implication or entailment. A proposition naively determines a

set, its set of validity. Then, when the intended set for � is a subset of the intended

one for � or � � �, this means that � implies �. Let's then maintain this interpretation

and consider inclusion as a special case of logical implication, when types are viewed

as propositions, and forget that this actually originated from looking at propositions
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as sets. One of the tasks of the formalization will be to determine exactly what kind

of implication it is.

We check �rst inclusion for arrow types, as it caused problems. Since aristotelian logic

it is known that if � implies � then � ! � implies �! � , if! is understood as linguistic

implication. Assume � ! � and that � implies �, then, given �, go �rst to � and then

from � to � , by using � ! � . Thus, � ! � implies �! � . So far as for the crucial �rst

argument of the ! type constructor. The second argument, here as before, does not

pose any problem: if � implies �, then � ! � trivially implies � ! �. In conclusion,

once inclusion is understood as implication (or entailement), ancient logic suggests the

following rule, contravariant in the �rst argument and covariant in the second.

(!)

� � � � � �

0

� ! � � � ! �

0

By chance, it happens that this rule has also a clear computational meaning, in the

modern terminology, in spite of the lack of set-theoretical and categorical sense. Go

back again to the naif interpretation of subtypes as subsets and assume that � is \set-

theoretically" included in �. A program of type � ! � can \a fortiori" act on any input

of the smaller type �. Thus, the programs in � ! � inhabit also � ! � , or � ! � is

included in � ! � . The di�erence with the set-theoretic and the categorical approach

should be clear. In this computational perspective, programs are not single-valued set-

theoretic relations, nor categorical morphisms with intended source and target, but list

of symbols, acting on inputs. The understanding is naif, as we are discussing of typed

programs and use a type-free understanding of their manipulation of inputs. This is

fair though, as it corresponds to the practice of many typed programming languages,

the ML family for example, where types are used only at compile time and not at run

time, when they are actually fed with inputs. This computational intuition motivated

the introduction of the !-rule in [BCDC83] and [CW85].

Let's now investigate the other key case: the inclusion relation between a type and its

universal quanti�cation. No problem here: in logic, 8X:� clearly implies [�=X ]� for

any instantiation of X by � in �. Similarly for the reverse inclusion, when X does not

occur in �, as quanti�cation in this case is dummy. The point though will be to check

whether this implication is the special kind of implication that interprets \inclusion"

between propositions, some sort of \simple" implication representing the intended iden-

tical embedding of sets, within a logic frame. Note that, in order to work out the formal

details, Set Theory cannot help, as there is no rigorous set-theoretic interpretation of

system F [Rey83]. The miracle happens in a few categories, for example in the original

blend of sets and categories provided by the E�ective Topos, see [Hyl82], [LM91] and

[BL90], an issue to be discussed later.

Before going to the formal description of subtyping as \implication", entailment to be

precise, recall though that naif Set Theory suggested an understanding of inclusion

as identical embedding, where possible, in particular from 8X:� to [�=X ]�. When
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subtyping is logical implication, do we still have, in general, an injective map which

represents the implication from 8X:� to [�=X ]�? We will discuss this issue in sec-

tion 6.2. The reader, for the time being, may try to answer the question for exercise ...

or, at least, to formalize it in Type Theory (i.e. write the implication which would say

that �x:8X:�:x� : 8X:� ! [�=x]� is injective, for any given � and �).

4 Subtyping as Logical Entailment

We are now in the position to summarize in a uni�ed approach the scattered remarks

above on the meaning of subtyping. This Gentzen-style presentation of subtyping as

entailment is taken from [LMS95] (see [LMS96] for a more recent version).

4.1 The Unlabelled System

Here is the core system:

(ax) � ` � (!)

�

0

` � � ` �

0

� ! � ` �

0

! �

0

(8 left)

[�=X ]� ` �

8X:� ` �

(8 right)

� ` �

� ` 8X:�

�

for X not

free in �

Note that only one premise is allowed in a sequent � ` � , as even the swapping of

inputs is forbidden: this will help us in determining the exact class of maps representing

subtyping as constructive implication. Thus, in order to deal with nested implications,

we generalize (8 right) to:

(8

n�0

right)

� ` �

1

! : : : (�

n

! �) : : :)

� ` �

1

! : : : (�

n

! 8X:�) : : :)

�

for X not

free in � nor

in �

1

; : : : ; �

n

(8

n

right) is a family of rules indexed by n � 0. Note that, if more than one premise

was allowed, (8

n

right) would be the curried variant of (8 right) with n premises.

These four rules are, basically, all we need. The reader may wonder what happened to

a fundamental property of subtyping, that is, to transitivity. Indeed, in [LMS95] and

[LMS96] it is proven that ` is a partial order, thus, in particular that it is transitive

and anti-symmetric. But transitivity is just a (cut) rule:
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(cut)

� ` � � ` �

� ` �

The proof of transitivity is then a proof of admissibility for the rule (cut). That is,

each time the premises are derivable, then the consequence is derivable too, see below.

Or, equivalently, that the system extended with (cut) has the cut-elimination property.

Note that the rules above are all derivable in System F. However, the proof that one can

\eliminate cuts", in general, is not inherited to subsystems (a reduction path may lay

outside the subsystem). Thus, we cannot use the normalization theorem of System F

to prove it (see the full version of [LMS95] for a direct proof and a detailed discussion).

In summary, the entailment system for subtyping is given by the rules:

(ax), (!), (8 left), (8

0�n

right).

4.2 The Labelled System

Recall now that we are in a constructive frame. That is, proofs are not platonic

observation of an outside ontology, but actual constructions; in particular, they are

programs that transform proofs as inputs to proofs as outputs. This is the essence of

Type Theory as formalized Intuitionistic Logic. Let's then write the explicit terms as

programs in the entailment rules. We consider terms as \labels" of the deduction rules.

System Co

`

(labeled)

(ax) x :� `

co

x : �

(!)

x

0

:�

0

`

co

M : � y :� `

co

N : �

0

x :� ! � `

co

�x

0

:�

0

: [xM=y]N : �

0

! �

0

(8 left)

y : [�=X ]� `

co

M : �

x :8X:� `

co

[x�=y]M : �

For 0 � k � n

(8

k;n

)

x :� `

co

�x

1

:�

1

: : :�x

k

:�

k

:M : (�

1

! : : :(�

n

! �) : : :)

x :� `

co

�x

1

:�

1

: : : �x

n

:�

n

:�X:Mx

k+1

: : :x

n

: (�

1

! : : :(�

n

! 8X:�) : : :)

This presentation of the last rule of Co

`

in [LMS95] is taken from [Tiu96].

We already mentioned that the other approach dealing explicitly with the subtyping

relation between a type and its universal quanti�cation has been proposed by Mitchell
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in his seminal paper [Mit88]. The latter is an axiomatic approach, based on seven

axioms and rules, which include transitivity among the assumption, and it is essentially

equivalent to the one above, see [LMS95]. The advantages of a Gentzen style approach

should be clear: we may derive transitivity and we can explicitly construct terms, as

our deductions are typing rules, in the usual sense. This will also allow to state and

prove a new fact: the coherence of the system, in a categorical sense.

5 Coherence, Completeness and Transitivity

(The results reviewed in this section are all from [LMS95] and [LMS96], unless otherwise

stated). The terms given by the typing system above have several strong restrictions.

They are clearly terms of System F, in normal form. They are \linear" in the precise and

restrictive sense that each \abstrated" variable, that is each variable in the assumption,

appears free exactly once in the consequence. Moreover, each sequent has exactly one

assumption. We call coercions the typed terms in the systems, with reference to the

meaning of this term in the practice of computing.

Are these coercions needed and useful? Note that we are in Type Theory, thus it make

no sense to say, when � is di�erent from � , that \� can be identically embedded into �":

there is no identity of type � ! � , if � is di�erent from � . Naif Set Theory suggested an

axiomatization, but then, in the account above, we had to forget the vague hints coming

from it, as Set Theory fails to give (even naively) a sound meaning to contravariance of

the arrow type in the �rst argument. We had then to switch to Types as Propositions,

where the meaning of a constructive approach is exactly given by the presence of typed

terms. Thus coercions are needed, in Type Theory. (Note that also in categories one

needs a non-identical morphism to go from � to � , if � is di�erent from � .) The point

is to prove how \simple" these maps are.

Recall now that we are thinking to System Fc, namely to system F extended with

the constructive equality given by adding (Axiom C). Up to a \subtyping version" of

(Axiom C), it is then possible to make some use of coercions as they may be shown to

be unique, if any, between two types. Thus, a type is a subtype of another in \at most

one way"; this corresponds also to the intuition of computing, as we only want one way

to coerce integers, say, into reals.

Let's �rst state the subtyping version of (Axiom C): following an idea for equality in

presence of subtyping in [CMMS91], extend (Axiom C) to the following rule.

(eq appl2 co)

y

1

: [�

1

=X ]� `

co

N

1

: � y

2

: [�

2

=X ]� `

co

N

2

: �

x :8X:� `

co

[x�

1

=y

1

]N

1

=

�co

[x�

2

=y

2

]N

2

: �

Intuitively, (eq appl2 co) says that if two di�erent instances of the same type are

coerced to the same type �, then these coercions equate the two coerced values, in the
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two instances, of each term in 8X:�. (Note that there is an underlining commuting

diagram, in the categorical sense of \coherence"). It is easy to observe that, when

[�

1

=X ]� = � = [�

2

=X ]�, and thus when � does not contain X free, (eq appl2 co)

collapses to (Axiom C), for coercions.

We can then state the Coherence theorem for coercions.

Theorem 1 (Coherence of Co

`

derivations) Consider two derivations x : � `

co

M :� and x :� `

co

N :� . Then, x :� `

co

M =

�co

N .

In system F extended with subtyping, coherence has been investigated also in [CG92],

from a di�erent perspective though.

One may wonder then whether these coercions, which seem so few, are \su�ciently

many", namely whether system Co

`

is enough expressive as to capture all \intended"

subtyping relations. How to formalize this? There are two (equivalent) ways: a syn-

tactic and a semantic one.

As for the syntax, what kind of computations should \all" coercions be? We already

said that in Type Theory they cannot be identities. There is no doubt though that

coercions should make little or no transformation on terms: at most they should update

the type of the inputs and, viewed as type-free computations, they should compute like

the identity. Indeed, in [Mit88] they are called \retyping" functions. Here comes, of

course, the ML-like practice: at run time, when computing, we only want type-free

terms.

It is very easy to show that the typable terms in Co

`

erase to the identity. Namely, that,

when all type information is inductively erased, one gets type-free terms �-equivalent

to the identity. The point is that also the converse holds:

Theorem 2 (Completeness) Let M be a term in �-nf such that x :� `

F

M : � and

erase(M) �!

�

x. Then, x :� `

co

M : � .

As for the semantic completeness, this may be obtained by factorizing via Mitchell's

system, [Mit88], where a model-theoretic completeness theorem is given via that prov-

ably equivalent system to Co

`

.

Completeness, besides its relevance, has an indirect application: transitivity. We al-

ready mentioned that the strength of the Gentzen style approach, as a type assignment

system, was going to allow us to derive a key property of partial orders, transitivity,

instead of assuming it.

Recall that, in the unlabeled system, transitivity may be written as the fact that the

rule:

9



(cut)

� `

co

� � `

co

�

� `

co

�

is admissible.

At �rst thinking a labeled version could be the following:

x :� `

co

M : � y :� `

co

N : �

x :� `

co

[M=y]N : �

But the term [M=y]N may not be a coercion; in particular, it may not be in �-nf.

However, without making use of the strong normalization property of System F, it is

easy to show that, under the assumptions in the rule, [M=y]N normalizes (just use the

strong linearity of coercions: coercions contain one lambda-abstraction for the unique

occurrence of the unique free variable ...).

The existence and unicity of the �-nf of [M=y]N now motivates the following alternative

version of the labeled (cut)-rule, where nf

�

([M=y]N) means the �-nf of [M=y]N :

(cut)

x :� `

co

M : � y :� `

co

N : �

x :� `

co

nf

�

([M=y]N) : �

The theorem below proves than that x : � `

co

nf

�

([M=y]N) : � is actually a coercion,

that is, derivable in Co

`

; or, in other words, that the rule above is admissible.

Theorem 3 (Transitivity) (cut) is an admissible rule in Co

`

.

Proof: (Sketch) Just observe that if the assumptions erase to the identity, then also

the consequence erases to the identity. By the completeness theorem we are done.

De�nition (Bicoercibility) Two types � and � are de�ned to be bicoercible, written

�

�

=

b

� , i� � `

co

� and � `

co

�.

For example, �

�

=

b

8X:� for X not free in � . Now, recall that, in general, two objects

or types A and B are isomorphic, A

�

=

B, if there are maps f :A ! B and g :B ! A

such that g � f = id and f � g = id. Thus the following can be easily shown:

Corollary (Anti-symmetry) If �

�

=

b

� then �

�

=

� in Co

`

.

Note that bicoercibility is strictly stronger than isomorphism. In [Tiu95] it is shown

that bicoercibility is decidable, while subtyping is not (see [TU96] and [Wel95]).

10



As a �nal remark, note that it is easy to extend Co

`

with base types. Just extend the

language of Co

`

with fresh type constants �

1

; �

2

; �

3

; : : : . For example, these could be

base types such as bool, int, real. To assert that a subtyping relation holds between

some of these base types, between �

i

and �

j

say, add a fresh term constant c

i;j

to the

language and add the following Gentzen-style rule asserting that �

i

is a subtype of �

j

via coercion c

i;j

:

(�

i

� �

j

)

x :� `M : �

i

x :� ` c

i;j

M : �

j

Then Co

`

+� may be shown to be a conservative extension of Co

`

, which satis�es

(the extended versions of) the Coherence, Completeness and Transitivity Theorems.

6 Models and Parametricity

6.1 Intersection as Product

In the motivating discussion for the entailment system for subtyping above, we started

with the issue of \injectivity" of subtypes into types. Indeed, both the set-theoretic

identical embedding and the categorical monomorphism represent \injective" maps.

And ... this is the reason why both Set Theory and Category Theory failed to provide

the right abstract setting for subtyping, even in the propositional case: both forms of

injectivity are lost at arrow types. However, consider just the subtyping relation in

(8 left) axiom or rule. It was an easy remark that, over sets, the naif interpretation

of \for-all" as intersection yields injective embeddings: just the identity between an

intersection of sets and one component of the intersection.

This interpretation of \for-all" as intersection is not sound, though: it could just infor-

mally guide the formalization. The technical reasons are given in [Rey83]. The intuition

is that the intersection is \too small" or too much information is lost: from an inter-

section of sets, one cannot reconstruct the sets which gave it (the components of the

intersection). Recall instead the constructive meaning of 8X:�. A proof-term M :8X:�

is a computation or function that takes any type � to a proof M� : [�=X ]�. Thus,

from the terms M :8X:� one can reconstruct the terms M� in each of its components

[�=X ]�. Even in set-theoretic terms, the understanding of such an M as a function f

and � as a functional G in X may �nd a better representation as `indexed product".

Let then G be a function(al) from a set Tp of \semantic types" to the category Set.

The set-theoretic indexed product is de�ned as the set or class

Y

X2Tp

G(X) = f f j f(X) 2 G(X); for X 2 Tpg

11



There is a problem though: this is ... \too big". Tp should interpret the set of Types,

that is 8X:� :Types should mean

Q

X2Tp

G(X) 2 Tp, while there is no non-trivial set

Tp closed under products indexed over itself.

The solution comes from categorical logic, since the work of Lawvere, where universal

quanti�cation is (soundly) interpreted as a dependent or indexed product in suitable

Toposes (see [AL91] for details in second order Type Theory, the case we are dealing

with). As a matter of fact, in Category Theory, the intended interpretation of \for-all"

as product is similar to the set-theoretic one above: categories just add more structure,

which reduces the \size" of

Q

X2Tp

G(X).

The connection between intersection and products is given in Hyland's E�ective Topos,

[Hyl82], [Hyl88]. In short, in that speci�c model, the categorical interpretation of

second order universal quanti�cation, as \indexed product" (or adjoint to the diagonal

functor), which is formally sound, happens to be (isomorphic to) an intersection, by a

non-trivial result, see [LM91]. In a sense, by the validity of a strong proof-principle in

that Topos, the Uniformity Principle, the intersection is so informative, or the product

is so small, that they can both interpret second order universal quanti�cation. By

this, that model is the only known interpretation, up to now, of the subtyping rules

for \arrow" and \for all", see [BL90],[CL91],[LMS95]. The point though is that the

embedding in (8 left) axiom or rule, is not interpreted by an identical injection, since

we are in a category and there is no identity between di�erent objects. It is even not a

monomorphism. Yet it is \computed" by the identical function, a true coercion in the

sense above, indeed the closest we could go to the set-theoretic intuition. The further

advantage is that this interpretation is �nally sound and it is inherited at arrow types

too.

6.2 E�ective Parametricity

In the interpretation of Types as Propositions, which motivated our approach to sub-

typing as entailment, the injectivity of the coercions in the rules left for universal

quanti�cation may seem a minor curiosity, in particular because, also when Types are

Propositions, injectivity is lost at arrow types. However, it is not so, as that par-

ticular injectivity sets an unexpected bridge towards an apparently unrelated topic:

Parametricity.

We owe to Strachey, in the sixties, the distinction between "parametric" or uniform and

"ad hoc" polymorphism, according to how polymorphic functions depend on their type

parameters. Reynolds later proposed a formalization of the early ideas of Strachey: in

his (rather complex) approach, parametricity is formalized as a notion of invariance by

means of "relations". The idea is that the independence of computations w.r.t. (the

internal structure of) types is expressed by their invariance w.r.t. arbitrary relations

on types. The pivotal result is the \abstraction theorem", which essentially says that a

12



polymorphic function takes related input types to related output values. This approach

has been given a categorical presentation in [MR92] and further developed by many,

see for example [ACC93], [Has93].

The �rst link to our approach is that (Axiom C) can be (easily) derived in Reynolds'

relational extension of system F, see [ACC93], [Lon95].

The other connection is given by an alternative, but related (by (Axiom C)), approach

to parametricity. This is given by the injectivity of the intended coercion in (8 left).

Recall the structure of this coercion:

(8 left)

y : [�=X ]� `

co

M : �

x :8X:� `

co

[x�=y]M : �

Then, for each � and �, the coercion from 8X:� to [�=X ]� is the following map (just

take � to be [�=X ]� in the rule):

x :8X:� `

co

x� : [�=X ]�

Is this injective? And how is this related to parametricity?

The reader was already asked to write, at least, the exact statement of injectivity, for

the coercion above. If he/she did so, he/she would now recognize that, by the following

theorem, for each � and �, with no restriction on � nor �, the coercion above is injective.

But, beyond the (minor) point of injectivity, one should understand the theorem for

what it really says about terms parametrized by types (or polymorphic).

Theorem 4 (Genericity) Let � `

F

M : 8X:� and � `

F

N : 8X:�. Then, if

� `

Fc

M� = N� : [�=X ]� for some �, one has � `

Fc

M = N : 8X:�.

The proof requires about 15 pages and is given in [LMS93]. It is based in a close

proof-theoretic analysis of the derivation of the assumption and in the proof that, in

that derivation, types are \generic"; namely, that the \value" of a type appearing in a

term is not used in any computation from that term. Note that any term of System

F yields a term of universally quanti�ed type and, thus, satis�es an obvious variant of

the theorem in terms of substitution.

Is this a form of \parametricity", in the sense of Strachey? Yes, as it says that poly-

morphic terms have a \uniform behaviour" w.r.t. input types. Indeed, the meaning

(and the strength) of the theorem is the following: if two polymorphic functions of the

same type agree on one input, then they agree on all inputs. In other words, any type

is generic (or behaves like a variable). In our understanding, the Genericity Theorem

says that we cannot use the possibly in�nite information carried by a type, as predi-

cate or (structured) set. This corresponds to the e�ective nature of Intuitionistic Logic:

terms may compute only on �nite information. Thus, computations deal with types

as \black holes": if two terms compute to the same value on a given black hole, they
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will compute in the same way on all other black holes. This suggests that Genericity

expresses a form of E�ective Parametricity. (Or a strong uniformity for polymorphic

functions, similar to the one for functions of complex variables: if they are known on

the border of a sphere, then they are known everywhere.)

In conclusion, an easy to state injectivity property, which is trivial in Set Theory, false

in Category Theory, yields an informative result in Type Theory: the e�ectiveness and

uniformity of the dependence of terms on types. (For a discussion on model theoretic

issues, in particular concerning the interpretation of Genericity in the E�ective Topos,

one should consult [Lon95]; some Proof Theory is discussed in [FL96].)

7 Subtyping dependent types (some motivations)

System F extends simply typed �-calculus, �

!

, by adding variable types and in par-

ticular, functions which are mappings from types to terms:

�X:M : Types 7! Terms

On the other hand, dependent type systems have functions which give types as outputs.

The �rst-order dependent type system �� (also called �P ) is the extension of �

!

by

functions which maps terms to types:

�x : �:� : Terms 7! Types

A function of this kind is called a type family, or simply, a family, which lives in the

"kind" �x:�:K where K is the kind for � . There is a special kind ? representing the

class of all types. Suppose that a type family L lives in the kind �x:�:?, then for y : �,

Ly : ? is a type. This shows that a type may contain terms with free variables. So an

ordinary �-term may have a �-type instead of an arrow type: �x:�:M : �x:�:� . Note

also that there are no unique principal types, in general, because of the type conversion

(�x : �:�)M !

�

3

� [x :=M ]

and the fact that N : �

1

^ �

1

=

�

�

2

) N : �

2

, where � = �

1

[ �

3

.

Since �rst order variables have a clear mathematical meaning and use,dependent types

have been used as the basis of many proof development systems. Recently, researchers

in this area strongly feel the need of combining subtyping with dependent types. Here is

an example given by Pfenning [Pfe93] concerning economic encoding of logics. Consider

the set (or the type) of well formed formulas in propositional calculus de�ned by the

syntax:

� ::= Atom j :� j � ^ � j � _ � j � ) � j

and a subset of these formulas de�ned as:

�

1

::= Atom j :�

1

j �

1

_ �

1
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As pointed out by Pfenning, without subtyping, the representation of subsets of for-

mulas like �

1

is awkward and will lead to ine�cient implementations of proof search

procedures. To overcome the problem, he proposed the subsorting relation, which could

be viewed as a restricted form of subtyping. With subsorting and bounded intersection,

the above formula could have a nice declaration as

Atom <: �

1

� � Atom is a subsort of the type formula �

1

�

1

<: � � � �

1

is a subsort of �

: : � ! � : : �

1

! �

1

^ : � ! � ! � _ : �

1

! �

1

! �

1

_ : � ! � ! �

) : � ! � ! �

where � <: � denotes that � is a subsort of �. Thus, for example, assume that v

1

; v

2

are variables of atomic type, then :v

1

_ v

2

is in type �

1

, so, by the subsorting relation,

it is in the type � .

There is an implicit use of intersection type in the declaration. The declaration of :

and ^ should be transformed to:

: : (� ! �) \ (�

1

! �

1

)

_ : (� ! � ! �) \ (�

1

! �

1

! �

1

)

Pfenning's study is within the proof environment Elf which is an implementation of

Edinburgh LF. Other groups working on proof systems, based on dependent type theory,

also found the need of using subtyping. The motivating examples are similar. An early

work can be found in [Coq92] in the ALT group. The groups LEGO, Coq and Nuprl are

studying implementations of abstract algebra. All of them have proposed extensions of

type systems by some sort of subtyping: ZhaoHui Luo [Luo96] has studied the Coercive

subtyping extension to LEGO; Jason Hickey in the Nuprl group [Hic95] has combined

object-calculus and dependent types and proposed a form of subtyping based on the

inheritance mechanism of objects; Courant [Cou95] in the Coq group is working on

an extension of Calculus of Construction by subtyping: CC

�

. The strong interests

in this area are mainly due to the fact that proof development systems are attacking

the problem of scale. As said by ZhaoHui Luo[Luo96]: "The lack of useful subtyping

mechanisms in dependent type theories with inductive types and the associated proof

development systems is one of the obstacles in their applications to large-scale formal

development."
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8 Subtyping in �P

�

Aspinall and Compagnoni [AC96] have studied �P

�

as a subtyping extension to the

pure dependent type system ��. Its subtyping system is as follows:

S-CONV

� ` �; � : K � =

�

�

� ` � � �

S-�

� ` �

0

� �; �; x : �

0

` � � �

0

� ` �x:�:� : ?

� ` �x:�:� � �x:�

0

:�

0

S-�

�; x : � ` � � �

0

� ` �x:�:� : K

� ` �x:�:� � �x:�:�

0

S-TRANS

� ` � � � � ` � � �

� ` � � �

S-VAR

� ` ? � � �(�) : K in �

� ` � � �(�)

S-APP

� ` � � � � ` �M : K

� ` �M � �M

Compared to the case of second order polymorphism, there are several new features in

this formulation of subtyping relation:

Kinding condition Kinding requirements, such as � ` �; � : K and � ` �x:�:� :

?, are used to make sure that the types and type families involved in sub-

typing are well-formed. Without them, we may have undesirable subtyping

judgements, e.g. (�x:�:�)M � (�x:�

0

:�

0

)M , where the expressions at two

sides of � are not well-formed since �-types are not type families and they

can not be applied to terms.

The kinding premises in the subtyping rules complicates the study of the sys-

tem because of the dependencies between typing, kinding, context formation

and subtyping.

Conversion rule The analysis of �P

�

is challenging, principally because it in-

troduces the conversion rule S-CONV guaranteeing that �-convertible types

occupy the same equivalent class in the subtype relation, and the rule S-APP

for subtyping family applications. These rules are responsible for the failure

of cut-elimination at type level, that is, for derivations with cut that can not

be transformed to cut-free derivations, as it can be seen from the following

example of cut application:

� =

�

�x:�:�

� ` � � �x:�:�

S-CONV

� ` �

0

� � �; x : �

0

` � � �

0

� ` �x:�:� � �x:�

0

:�

0

S-�

� ` � � �x:�

0

:�

0

S-TRANS

Type family Type families are objects living in kinds of the form: �x

1

:�

1

:::�x

n

:�

n

:?

A type family is either a type variable, or an �-abstraction of the form

�x:�:�, or an application �M . Strictly speaking, if �; � are type families

of the same kind, the relation � � � is not a subtyping relation since �; �

are not types (although, for the convenience, we still use the terminology of
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subtyping). They are functionals, or type constructors mapping a number

of terms to a type:

TypeFamily : Term

1

� :::� Term

n

7! Type

From logic point of view, �; � of the above kind are �rst-order predicates with

n parameters. Subtyping between �; � are actually an extension of logical

implication to the relation between n-ary predicates in the sense that : "

for all values M

1

; :::;M

n

such that �(M

1

; :::;M

n

) implies �(M

1

; :::;M

n

), then

� � �". As �; � are functionals, they may take the form of �-abstractions:

�x

1

:�

1

:::�x

n

:�

n

:�

Therefore we can have a logic understanding of the subtyping between family

abstractions and between applications of type families:

� ` �

0

� �; �; x : � ` � � �

0

� ` �x:�:� � �x:�

0

:�

0

� ` � � �

� ` �M � �M

Subtyping relation de�ned in �P

�

(or in ��

�

) is actually weaker than this

general form by the restriction that �

0

= � . This is because the proof

techniques used in these work have not achieved such a generality.

�P

�

has the desired meta-theoretic properties: Conuence, Strong normalization, Sub-

ject reduction and Decidability of subtyping. One of the main technical contribution

of �P

�

is its algorithmic subtyping system de�ned on �

3

-normalized types. Reexivity

and transitivity are all admissible in this system. The algorithmic system is the key

step towards the proofs of subject reduction and the decidability.

9 Subtyping in ��

�

The study of ��

�

[Che96] begins with two motivations:

1. could kinding premises be removed from the subtyping rules?

2. is there a subtyping system with cut-elimination at the type level?

�P

�

is a pure dependent type system with subtyping. Proofs in �P

�

are quite delicate

due to the circularity of the subtyping and typing system. In practical application, one

will need to add other type constructions such as inductive types, intersection types,

overloaded types etc. A system with complicated proofs will be di�cult to extend.

Without kinding premises, then subtyping rules are more "independent", allowing a

relatively easy study.
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Cut-elimination is an essential property in the study of subtyping. Proofs of subject

reduction and decidability all depends on this property. It would be desirable to lift the

cut-elimination to the type level instead of being restricted to normalized expressions.

��

�

has a set of subtyping rules which can be seen as a non-trivial modi�cation to the

algorithmic subtyping rules of �P

�

. The subtyping rules are:

S-�

� ` �

0

� � �; x : �

0

` � � �

0

� ` �x:�:� � �x:�

0

:�

0

S-�

�; x : � ` � � �

0

� ` �x:�:� � �x:�:�

0

S-ApR

M

1

=

�

M

0

1

� � � M

n

=

�

M

0

n

� ` �M

1

::M

n

� �M

0

1

::M

0

n

S-ApT

� ` �(�)M

1

::M

n

� �

� ` �M

1

::M

n

� �

S-ApSL

� ` [M

1

=x]�M

2

::M

n

� �

� ` (�x:�:�)M

1

::M

n

� �

S-ApSR

� ` � � [M

1

=x]�M

2

::M

n

� ` � � (�x:�:�)M

1

::M

n

This system is equivalent to �P

�

in the following sense, where `

��

�

;`

�P

�

;`

�P

alg

�

denote

judgements in ��

�

, �P

�

and the algorithmic version of �P

�

respectively:

� `

��

�

� � � ^ � ` �; � : ? , � `

�P

�

� � � , � `

�P

alg

�

�

�

3

� �

�

3

^ � ` �; � : ?

This result implies the admissibility of transitivity in ��

�

. Note that no kinding

premises is present in the rules, so the subtyping system is independent from the typing

system. These rules can be turned into an ordered rewriting system to check subtyping.

As subtyping is de�ned on types rather than on �

3

normalized types, the algorithm is

more e�cient.

The ��

�

realizes the desired properties like subject reduction, strong normalization

and decidability. The key step of the proof of decidability of subtyping is the proof

of ��-strong-normalization, to which we have developed an easy and general proof

applicable also to �P

�

; F

!

and other systems.

It is expected that the technique can be easily adapted for future extensions and that

the algorithm can be used in real implementations for extending the type theory based

proof systems with subtyping.

10 Semantical Analysis of Subtyping Relation

Recall that the logical interpretation of a subtyping relation � ` � � � consists of two

points:

1. � ,� are logical propositions and � implies �;

2. any proof M of � is also a proof of � in the sense that there is a coercion function
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c from � to � such that: (a) cM is a proof of �; (b) c is "almost" an identity function,

formally, erase(c) is equal to the identity function �x:x in type-free �-calculus.

This interpretation captures two aspects of subtyping: 1. subtyping as logical implica-

tion; 2. subtyping as set inclusion. So the subtyping relation � � � can be understood

as "any proof of the proposition � can be used as a proof of � with straightforward

modi�cations in the type labels". If we take �; � as speci�cations for programs, then

the subtyping relation means that any programs satisfying the speci�cation of � can be

straightforwardly adapted for the speci�cation �. The second point in the above logical

interpretation of subtyping has made it clear what this straightforward modi�cation is.

In this section, we mainly analyse the subtyping from the logical implication point of

view.

In �P

�

and ��

�

, there are subtyping relations between type families. Type families

are not types, so they can neither be interpreted as sets nor as formulas. But we use

subtyping rules only in the subsumption rule for checking subtyping relations between

"true" types, that is, we only want to check � ` � � � such that � ` �; � : ?. In

��

�

, one can observe that all judgements in the derivation for such "true" subtyping

judgement contains only types of kind ?. Therefore, subtyping between type families

is not directly used, especially the rule S-A of �-abstraction can be eliminated.

Now we give a logical interpretation for subtyping rules in ��

�

except S-�.

Conversion-based rules Observe that rules S-ApR, S-ApSL and S-ApSR con-

cern only the �-conversion. In logic, two �-convertible formulas are simply

identi�ed. So these rules are easily justi�ed.

Subtyping �-types The logical interpretation of a � type �x:�:� is the �rst-

order universal quanti�ed formula 8x:�:�. Therefore, the subtyping relation

� ` �x:�:� � �x:�

0

:�

0

can be understood as the implication between unversal

quanti�ed �rst-order propositions: � ` 8x:�:�) 8x:�

0

:�

0

, where the context

� is used to record the free variables in these formulas.

Using context variables The rule S-ApT is an application of subtyping rela-

tion de�ned in the context. For example, if � � � : �x

1

:�

1

:::x

n

:�

n

:? is

de�ned in the context, then � and � represent n-ary predicates such that for

any n terms M

1

; :::;M

n

�(M

1

; :::;M

n

) ) �(M

1

; :::;M

n

)

That is, the relation � � � in the context can be interpreted as the logical

implication

8x

1

:�

1

:::x

n

:�

n

:(�(x

1

:::x

n

)) �(x

1

:::x

n

))

The rule S-ApT is just a reformulation of this statement in order to preserve

the cut-elimination property.
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11 Conclusion and Future Work

In this short survey, we have presented subtyping for two type systems: Co

`

for System-

F(c) and �P

�

; ��

�

for ��.

There are several common features in these studies. From the syntactic point of view,

both in Co

`

and ��

�

transitivity is admissible. From the semantical side, the in-

terpretation of subtyping as logical entailment with coherent coercions has been �rst

developed in the study of Co

`

and then applied to ��

�

. We are currently studying the

coercion version of ��

�

and its properties. Another direction is to use the technique

developed in these works to establish subtyping extensions of Calculus of Construc-

tions or other systems in the �-cube. The aim is that these extensions by subtyping

could be used in the designs of programming languages and in the proof development

environments.
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