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Abstract

In this paper we consider provable security for ElGamal-like digital

signature schemes. We point out that the good security criterion on the

underlying hash function is pseudorandomness. We extend Pointcheval-

Stern's results about the use of the random oracle model to prove the

security of two variants of the US Digital Signature Algorithm against

adaptive attacks which issue an existential forgery. We prove that a

very practical use of the random oracle model is possible whith tamper-

resistant modules.

1 The security of cryptographic hash functions

Cryptographic hash functions are commonly used for providing message authen-

tication. So far, several security criteria have been considered. The most popular

criteria are collision freedom and one-wayness. Roughly, collision freedom is the

property that no practical algorithm can issue a pair (x; x

0

) such that x 6= x

0

and F (x) = F (x

0

) (see Damg�ard [12, 13] and Merkle [25]). One-wayness is the

property that no practical algorithm can �nd x out from F (x) with a signi�cant

fraction of x (see Rabin [32] and Merkle [24, 25]). There exist more technical

criteria. (See for instance Preneel [31].)

So far, a few results have been found on the interaction of those criteria and

the security of (public-key) cryptographic schemes. For instance, Girault and

Stern showed how hash functions provide security in most of popular identi�ca-

tion schemes [19]. When used in digital signature schemes, we know no results

about which criterion shall be considered. Here, we consider the interesting

criterion of \pseudorandomness".

Pseudorandomness has already been considered in context with the secu-

rity of pseudorandom generators in the early beginning of the history of public

key cryptography. This has been formalized by Goldreich, Goldwasser and Mi-

cali [17], following previous work from Shamir [38], Blum and Micali [9] and

Yao [42]. This notion stands on the Turing Test [21]: a function is not a pseu-

dorandom generator if an intelligent opponent can distinguish (with relevant

probability) the output of the generator from a truly random sequence.

1
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Let us formally de�ne this notion.

De�nition1. Let H = (h

K

)

K2K

be a family of hash functions from a �nite

set A to a �nite set B, where the random key K follows a distribution K. We

say H is a (n; �)-pseudorandom hash functions family if no probabilistic Turing

machine which can send only n queries to an oracle can distinguish the random

oracle h

K

from a truly random oracle within an advantage greater than �. More

precisely, for any n-limited probabilistic Turing machine A, we have

�

�

�

�

Pr

!;K

h

A

h

K

(!) accept

i

� Pr

!;O

h

A

O

(!) accept

i

�

�

�

�

� �

where ! is the random tape and O is a truly random A-to-B mapping.

In this paper we show that this criterion can be used for providing security of

digital signature schemes.

So far, this criterion has not been consider for hash functions. It has already

been considered for encryption functions. Actually, Luby and Racko� proved

that a truly random 3-round Feistel cipher for `-bit messages is (n; n

2

=2

`=2

)-

pseudorandom, so that the privacy is safe until n � 2

`=4

messages have been

encrypted [22]. This was to argue that the US Data Encryption Standard [1]

was strong. Later on, Patarin generalized this result [27]. He proved that a truly

random 6-round Feistel cipher is (n; 12n

3

=2

`

)-pseudorandom, so that it is safe

until n � 2

`=3

. He further conjectured it is still safe until n � 2

`=2

, maybe with

a little more rounds. We point out this is the strongest possible result since a r-

round random Feistel cipher is de�ned by r(`=2)2

`=2

bits and Shannon's Theorem

states we cannot expect any unconditional security whenever n` is greater than

this number [40].

This construction can be adapted to make pseudorandom hash functions.

Theorem2. Let B be the set of `-bit strings, and A = B

2

. From a 2`2

`

-bit

key K = (F;G) we de�ne two B-to-B functions denoted F and G. We de-

�ne h

K

(x; y) = y �G(x� F (y)). The family (h

K

)

K

is (n; (1=2)n

2

=2

`

)-pseudo-

random.

This family is nothing but a truncated two-round Feistel construction.

Proof. This proof is freely adapted from previous work [22, 27] and also from

Maurer [23]. The bulk of the proof consist in �nding a meaningful lower bound

for the probability that n di�erent x

i

y

i

's produce n given z

i

's. More precisely,

the ratio between this probability and the same probability for a truly random

function needs to be greater than 1� �.

Let T = x� F (y). We have

Pr[h

K

(x

i

y

i

) = z

i

; i = 1; : : : ; n] � Pr[h

K

(x

i

y

i

) = z

i

and T

i

di�erents]

�

�

1

2

`

�

n

 

1�

n(n� 1)

2

min

i;j

Pr[T

i

= T

j

]

!
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and for any i 6= j, since we have x

i

y

i

6= x

j

y

j

, either we have y

i

6= y

j

so we get

Pr[T

i

= T

j

] = 1=2

`

, or we have y

i

= y

j

and x

i

6= x

j

and then Pr[T

i

= T

j

] = 1.

So, we have

Pr[h

K

(x

i

y

i

) = z

i

; i = 1; : : : ; n] �

�

1

2

`

�

n

 

1�

n(n� 1)

2

1

2

`

!

so � = (1=2)n

2

=2

`

.

From this lemma, let us consider a probabilistic distinguisher A

O

which uses

a random tape !. We have

Pr

!;K

[A

h

K

(!) accepts] =

X

accepting

x

1

y

1

z

1
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=

X

x

i

y

i

z

i
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y

i

O
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i
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K
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i
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i
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i

=x

i

y

i

O

! z

i

] Pr

O

[O(x

i

y

i

) = z

i

]

= (1� �) Pr

!;O

[A

O

(!) accepts]

so we have

Pr

!;K

[A

h

K

(!) accepts]� Pr

!;O

[A

O

(!) accepts] � ��

therefore the advantage is smaller than � by symmetrical argument (i.e. by using

another distinguisher which accepts if and only if A rejects). ut

We also remark we can improve this construction by replacing F by a

random linear function: if K = (a;G) where a is an `-bit string, we de�ne

h

K

(x) = y �G(x� a� y) where a � y is the product in GF(2

`

). Actually, we

only used that F (y

i

) � F (y

j

) were uniform in the proof (which corresponds to

the notion of xor-universal hash function, see Carter and Wegman [11]). Simi-

larly, by replacing G by a polynomial with degree n� 1, the same result holds.

We thus obtain a family of (n; (1=2)n

2

=2

`

)-pseudorandom hash functions with a

(n+ 1)`-bit key.

On a more practical level we can consider usual hash functions like Rivest's

MD4 or MD5 functions [33, 34] in a keyed mode. One can assume a given hash

function family is pseudorandom as one assumes the discrete logarithm is not

computable. For instance, we can de�ne h

K

(x) = MD4

K

(x) where K is used

as the initial value (see [33]). Although Dobbertin proved MD4 is not collision-

resistant [14] and that MD5 is likely not to be so too [15], we can wonder whether

this has any consequence on the assumed pseudorandomness.

2 Short-term provably secure scheme

We recall that a digital signature scheme is de�ned by a distribution Gen over the

keys (which can be given by a pseudorandom generation algorithm), a signing
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algorithm Sig which depends on the secret key and which may be probabilistic,

and a veri�cation algorithm Ver which depends on the public key (see Gold-

wasser, Micali and Rivest [18]). Here we also assume that both Sig and Ver use

an oracle O. This commonly formalizes the cryptographic hash function which

issues a message digest from the document to be signed.

De�nition3. Let �

O

= (Gen;Sig

O

;Ver

O

) be a signature scheme which depends

on a random oracle O with a speci�ed distribution. We say � is (n; t; �)-secure

against adaptive attacks for existential forgery if no probabilistic Turing machine

which is allowed to have only n accesses to O and Sig can forge a pair (m;�)

within a time t where � is a valid signature for the messagem within a probability

greater than �. More precisely, for any (n; t)-limited probabilistic Turing machine

A which outputs valid signatures or fails, we have

Pr

!;O

h

A

O;Sig

(!) succeeds

i

� �

where ! is the random tape.

We note that the oracle O must be used as a black box in this model. This

corresponds to a notion of black-box security which claims to have a practical

application if we think about h

K

as a tamper resistant device provided by a

trusted authority. In earlier work [6, 7, 29, 37, 30], the random oracle model

used to consider uniform distribution over all possible oracles. This means no

practical issue since the sample space is quite huge: a real tamper resistant

black box on all the 128-bit strings would have require a 2

102

Gbyte random

access memory! In this paper we show how to derandomize the oracle so that

this notion of security gets some practical mean.

We however note that our notion of security does not include security against

denying signatures: disability to forge signatures does not mean undeniability

by the secret key holder.

Theorem4. If H is a (n; �

1

)-pseudorandom hash functions family and �

O

is

(n; t; �

2

)-secure against adaptive attacks for existential forgery where O is a ran-

dom oracle uniformly distributed, then �

H

is (n; t; �

1

+ �

2

)-secure as well.

We recall that the hash function h

K

must be used as a black box for this Theorem

to be applicable. That is to say the signer must not have access to the key K.

(Note that the hash function family is not pseudorandom if we can get K after

a few requests to the black box.)

Proof. Let A

H;Sig

be a Turing machine which forges valid signature for h

K

within

a probability greater than �

1

+�

2

. We distinguish h

K

from a random oracle O by

applying A and considering whether it is a success or not. Since A

O;Sig

cannot

forge a signature within a probability greater than �

2

, the advantage is greater

than �

1

which contradicts the hypothesis. ut
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An interesting consequence of this Theorem is that if the computers of the

planet cannot compute n hashed value within a time t, the parameter K can be

chosen at random by a trusted authority, with a temporal validity. If we only

need short-term signatures, namely if the validity period of a signature is no

greater than t, this approach provides a provable signature scheme. Otherwise,

one needs to provide a timestamp on the signature: we need a trusted times-

tamping service which basically signs all long-term signatures before the end of

the period. Of course, this should be signed with the next public random oracle

as any new signature!

This situation is quite reasonable since the use of long-term signature al-

ready requires timestamp. A classical argument claims that a secret key can

be accidentally compromised, so we need a way to prove when a signature was

made to validate or invalidate it [20, 5].

To sum up the protocol, we assume there is a trusted authority and several

timestamping notaries. At the beginning of a period, the authority provides a

new random hash function h

K

as a tamper-proof black box. Then, the notaries

sign all previously deposited documents with this new black box. (If they are

not trusted, the signers may request for those signatures to check that it has

been done.) Then, all the users can sign with the new black box. For any

long-term signature, it is necessary to deposit the corresponding document to a

timestamping notary.

This only holds for avoiding forgery attacks. In order to avoid deniability,

the signer should re-sign himself his document and request for a new timestamp,

if the signature scheme provides security against this kind of attack during this

period.

3 Two provably secure variants of the US DSA

algorithms

In 1994 was proposed DSA as the US Digital Signature Standard [3]. We will

show now that slight variants of DSA are provably secure under some de�nite

hypothesis. First of all we recall the DSA algorithm.

There are public parameters: a 512-bit (or longer) prime p, a 160-bit prime

factor q of p� 1, and a qth primitive root of unity g modulo p. Each signer has

a secret key x and a public key y = g

x

mod p. The Gen distribution of x is the

uniform distribution over integers from 1 to q� 1. To sign a message m, the Sig

algorithm picks a random k from 1 to q � 1 and computes

r = g

k

mod p mod q (1)

s =

SHA(m) + xr

k

mod q (2)

where SHA denotes the algorithm described in the US Secure Hash Standard [2].

Formally, the random tape ! de�nes k and Sig(!;m) = (r; s). The Ver algorithm
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consists in checking whether s is invertible modulo q and

g

SHA(m)

s

y

r

s

mod p mod q = r (3)

or not.

3.1 First variant

At the Crypto'96 conference, Brickell claimed the following variant of the DSA

is secure in the random oracle model [10]. First we replace SHA by a random

oracle H

1

. Second, we replace the mod q hash function in Equation (1) by

another random oracle H

2

. So, we have

r = H

2

(g

k

mod p) (4)

s =

H

1

(m) + xr

k

mod q (5)

and

H

2

�

g

H

1

(m)

s

y

r

s

mod p

�

= r (6)

becomes the veri�cation formula.

Theorem5. The digital signature scheme (Gen;Sig

H

1

;H

2

;Ver

H

1

;H

2

) de�ned by

the Equations (4,5,6) is (n; t; �)-secure against adaptive attacks for existential

forgery where H

1

and H

2

are uniformly distributed unless we can compute the

discrete logarithm in the group spanned by g within a time 11nt=� with probability

greater than 1=11.

Moreover we obtain in a straightforward way that if H

2

and H

1

mod q are col-

lision resistant, than the signatures are undeniable.

Proof. We adapt the proof of security from Pointcheval and Stern on a variant of

the ElGamal signature scheme [29, 28]. We assume there exists a (probabilistic)

algorithm A which on input y can issue a valid signed message (m; r; s) by

querying the random oraclesH

1

,H

2

and the signature algorithm Sig. We assume

the A's valid signature has not been queried to the Sig oracle. (Otherwise, this

is not an attack!) Let u = g

H

1

(m)=s

y

r=s

mod p. Since the signature is valid, we

must have

u = g

H

1

(m)

s

y

H

2

(u)

s

mod p (7)

from Equation (6). We can assume that both m and u has been queried to

oracles H

1

and H

2

respectively (otherwise, the signature is not valid for any

other oracle which answer the same to the queries).

By arguments similar than in [29] if we runA on a random (H

1

;H

2

) 1=� times

in order to get a valid signature, depending on which, from m and u was the

last query, we fork H

1

and H

2

and rerun A an extra 11n=� times. By using

an improved forking lemma (due to Pointcheval [28]) we obtain two forking

signatures. By applying the Lemma 7, we obtain a fork with probability 1=11

within a time 11nt=�.
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� If m is queried before u, we obtain H

1

(m) = H

0

1

(m) = h and H

2

(u) = r

and H

0

2

(u) = r

0

with r 6= r

0

. Hence we have

g

h

s

y

r

s

� g

h

s

0

y

r

0

s

0

(mod p)

from Equation (7) which leads to the discrete logarithm of y in basis g (we

cannot have r=s = r

0

=s

0

otherwise we obtain h=s = h=s

0

then s = s

0

then

r = r

0

which is false).

� If m is queried after u, we obtain H

1

(m) = h, H

0

1

(m) = h

0

with h 6= h

0

and

H

2

(u) = H

0

2

(u) = r. From Equation (7) we obtain

g

h

s

y

r

s

� g

h

0

s

0

y

r

s

0

(mod p)

which leads to x too (we cannot have r=s = r=s

0

for similar reasons).

Therefore, we proved A can be used to compute discrete logarithms modulo p

by having access to the Sig oracle.

Now it is easy to argue we can simulate a Sig oracle with the same distribu-

tion. Actually, on query m, we can forge a valid (h

1

; r; s)-signature since H

1

(m)

and r = H

2

(u) are truly random. Hence there is no way for the discrete loga-

rithm algorithm to distinguish the real Sig from the simulator, so it is able to

compute the discrete logarithm on its own. ut

Although Brickell did not publish his proof, we can reasonably say this one

is fairly similar [10]. This approach however su�ers from the drawback that we

cannot argue the US DSA is secure by handwaving the mod q mapping behaves

like a random oracle!

3.2 Second variant

The DSA essentially comes from the ElGamal signature scheme [16]. There are

two main di�erences between them. Firstly, the change from p � 1 itself to a

prime factor q of p � 1 which was originally due to Schnorr [35, 36]. This �xes

some weaknesses later on discovered by Bleichenbacher [8], van Oorschot and

Wiener [26] and also discussed by Anderson and Vaudenay [4]. Secondly, the

use of the hash function mod q (also used by Schnorr in another way) in order

to reduce the length of the signature. We have just seen that replacing mod q

by a random oracle enables to prove the security.

In another variant, we consider a �xed function F such as mod q in order to

reduce the size of the signature, but we introduce another idea due to Schnorr,

which consists in hashing the message together with the r value. So, we have

r = F (g

k

mod p) (8)

s =

H(m; r) + xr

k

mod q (9)
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and

F

�

g

H(m;r)

s

y

r

s

mod p

�

= r (10)

becomes the veri�cation formula. We note that F needs to be a mapping from

the q-ordered subgroup spanned by g in ZZ

p

�

to a �nite set. In context with

F (x) = x mod q, we assume this set to have cardinality q too. We say F

has a `-collision if there exist ` two-wise di�erent inputs x

1

; : : : ; x

`

such that

F (x

1

) = : : : = F (x

`

).

Theorem6. The digital signature scheme (Gen;Sig

H

;Ver

H

) de�ned above by

the Equations (8,9,10) is (n; t; �)-secure against adaptive attacks for existential

forgery where H is uniformly distributed provided that the discrete logarithm is

intractable within a time 44tn` log 2`=� operations, and that we cannot �nd any

`-collisions within the same time for F .

Proof. By similar argument, an attacking algorithm will have a fork on (m; r).

If we have an `-fork, we have ` two-wise di�erent signatures (r; s

i

) for the same

message m. For this, we need another improved forking lemma we prove below.

Hence, the values t

i

= g

h

i

=s

i

y

r=s

i

cannot be two-wise di�erent (otherwise, they

make an `-collision), so we have an equation g

h

i

=s

i

y

r=s

i

= g

h

j

=s

j

y

r=s

j

which leads

to the secret key x.

Simulating the Sig algorithm to forge a valid (h; r; s) from a message m is

easy: we �rst pick two random values for h=s and r=s, then we compute r

from Equation (10). From r=s and r we compute s, then from h=s and s we

compute s. ut

Lemma7 (Improved Forking Lemma). If there exists an algorithm A which

produces a signature within a probability � and n queries, we can make an al-

gorithm which produces an `-fork for the signature scheme within a probability

greater than 1=11 by 4n` log 2`=� executions of A.

We also mention there is a uniform version of this algorithm (see the Appendix).

Proof. Let q

1

; : : : ; q

n

be the queries to the oracle. We assume without loss of

generality that the queries are two-wise di�erent. We also assume that all the

necessary oracle values used in the veri�cation scheme are queries, for any ac-

cepted oracle. Let A

1

; : : : ; A

n

be the (random) answers from the oracle. Any

execution of the algorithm A is de�ned by the random tape ! and the answers

to the queries. We denote G the set of all accepting (!;A

1

; : : : ; A

n

). For such

an accepting execution, we denote I(!;A

1

; : : : ; A

n

) the index of the last useful

query q

i

for the veri�cation process of the signature.

Now we de�ne an algorithm B which uses A to obtain an `-fork.

1. First B runs A on random (!;A

1

; : : : ; A

n

) until A accepts. We denote

(!

1

; A

1

1

; : : : ; A

1

n

) the accepted one and I

1

= I(!

1

; A

1

1

; : : : ; A

1

n

).
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2. We repeat 4n` log 2`=� times the algorithm A on (!

1

; A

1

1

; : : : ; A

1

I

1

�1

) tailed

with random (A

I

1

; : : : ; A

n

). If we obtain a success such that I

1

is the index

of the last useful query, we register the input as a new (!

j

; A

j

1

; : : : ; A

j

n

).

Now we will prove we obtain an `-fork (!

j

; A

j

1

; : : : ; A

j

n

) for j = 1; : : : ; ` with

probability greater than 1=11.

Let

I =

�

i; Pr [I(!;A

1

; : : : ; A

n

) = i=(!;A

1

; : : : ; A

n

) 2 G] �

1

2n

�

be the set of all i's such that the probability that an accepting execution has its

last useful index equal to i greater than 1=2n. We have

Pr [I

1

2 I] = 1� Pr [9i 62 I I

1

= i] � 1� n

1

2n

so this probability is greater than 1=2.

For each i in I, let G

i

be the set of all (!;A

1

; : : : ; A

n

) in G such that I = i

and let

G

0

i

=

�

(!;A

1

; : : : ; A

i�1

); Pr [(!;A

1

; : : : ; A

n

) 2 G

i

] �

�

4n

�

the set of all heads (!;A

1

; : : : ; A

i�1

) such that the probability over all tailing

(A

i

; : : : ; A

n

) to be in G

i

is greater than �=4n. From an usual technic, since we

have Pr[(!;A

1

; : : : ; A

n

) 2 G

i

] � �=2n

Pr [(!;A

1

; : : : ; A

i�1

) 2 G

0

i

=(!;A

1

; : : : ; A

n

) 2 G

i

] = 1� Pr

h

G

i

=

�

G

0

i

i

Pr

h

�

G

0

i

i

Pr [G

i

]

� 1�

�

4n

2n

�

=

1

2

so the �rst step gets such an (!;A

1

; : : : ; A

i�1

) (with a good I) with probability

greater than 1=4: we have

Pr

h�

!;A

1

1

; : : : ; A

1

I

1

�1

�

2 G

0

I

1

and I

1

2 I

i

�

1

4

(11)

Now we assume the �rst step of B gets an I

1

in I and (!;A

1

1

; : : : ; A

1

I

1

�1

) in G

0

I

1

.

If we run (4n=�) log 2` times the algorithmA with new random (A

I

1

; : : : ; A

n

),

we get at least a fork on I

1

within a probability greater than

1 �

�

1�

�

4n

�

4n log 2`

�

which tends towards 1 � 1=2` and stay greater than this limit. If we do this `

times, we obtain ` forks with probability greater than e

�1

. If `

2

is small against

the number of possible tails, there is no collision between the forks, and we

obtain an `-fork. Thus, the algorithm B produce an `-fork within a probability

greater than 1=11 and essentially less than 4n` log 2`=� executions of A. ut
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Hence, in order to use a de�nite F function, either we prove it has no `-

collision for a reasonably small `, or we use a probabilistic argument.

Lemma8. If F is a random function from a set with q elements to itself, the

probability it has no log q-collision tends to zero.

Proof. We have

Pr[F has no `�collision] � q Pr[#F

�1

(0) � `]

= q

q

X

i=`

�

q

i

�

 

1

q

!

i

 

1 �

1

q

!

q�i

� q

 

1�

1

q

!

q

q

X

i=`

1

i!

 

1 �

1

q

!

�i

� qe

�1

e

(

1�

1

q

)

1

`!

 

1 �

1

q

!

�`

� e

q

`!

 

1�

1

q

!

�`

So if ` is negligible against q, the probability is approximately less than eq=`!,

which can be very small for a reasonable `. More precisely, if ` = log q, the

righthand term of previous Inequality is negligible against q

3�log log q

which tends

towards zero. ut

For instance, if q � 2

256

, we notice that the probability that F has no 50-

collision is less than 2

�43

. So, for a random choice of (p; q; g), the mapping

x 7! x mod q on the subgroup spanned by g has no 50-collision unless we are

very unlucky or there is some unknown mathematical property.

We notice that using ` = log q and q > 2

80

we have log log q > 4 so we have

no `-collisions with probability greater than 1 � 1=q.

This result is robust in the sence it is highly improbable the mod q mapping

has any easy 2-collision. Indeed, such a collision would lead to an important

weakness in the DSA design by an attack similar than Vaudenay's [41]. If for

a given (p; q; g) provided by a honest authority someone happens to �nd out a

2-collision

r = g

k

mod p mod q = g

k

0

mod p mod q

then, by assuming he knows k and k

0

, he can choose two di�erent messages m

and m

0

and choose a particular x as his secret key so that the signature of m

and m

0

collides. Namely, if

x =

kSHA(m

0

)� k

0

SHA(m)

r(k � k

0

)

mod q

then

SHA(m) + xr

k

mod q = s =

SHA(m

0

) + xr

k

0

mod q



11

so that he can reveal the signature (r; s) of m and later on claim it was the

signature of m

0

. Since we believe such an attack is impossible, we can apply the

Theorem with ` = 2. In this case, we can guaranty undeniability when F and

H mod q are collision-resistant.

4 Conclusion, application

In this Section we construct a signature scheme which uses results from the

previous sections. First of all we assume we are given random p, q and g such that

p is a 512-bit prime, q is a 256-bit prime factor of p�1 and g is a qth primitive root

of unity modulo p. Each entity chooses his own secret key x as a random integer

between 1 and q � 1 and communicates his public key y = g

x

mod p (which is

verifyed to have order exactly q). We agree on a random function F . Every year,

each user receives a tamper-resistant module from the trusted authority which

implements the function H(m) = trunc[SHA(K

1

M)SHA(K

2

M)]. This is the

SHA function truncated to 255 bits so that H mod q is collision-resistant if and

only if H is collision-free and where K = (K

1

;K

2

) is a yearly secret parameter.

The signature and veri�cation algorithms are described in Section 3.2.

We assume that

1. the tamper-resistant implementation of the function H has an access time

limited to 100ms (which is reasonably slow)

2. no opponent has access to more than 1000 tamper-resistant modules

3. the validity period is two years

4. H is (n; 1=2)-pseudorandom for n = 2

40

(which corresponds to accesses to

1000 devices H during two years)

5. F has no 50-collisions (which is true with probability 2

�43

)

6. the discrete logarithm problem modulo p in the subgroup spanned by g

is intractable within less than 2

128

multiplications (which corresponds to

Shanks's baby-step giant-step algorithm [39]) which cannot be performed

within less than 2

80

s (this corresponds to the use of a 10; 000; 000-processor

parallel machine with processors doing a 512-bit modular multiplication

within 400ns)

so, let t = 2

26

s equal to two years and � = 1=2. From Theorem 6 we obtain

that the signature scheme is secure against any adaptive attacks for existential

forgery which runs within a time less than two years with probability of success

greater than 1=2 when H is random. Then from Theorem 4 we obtain that our

signature scheme is secure as well. Signatures are moreover undeniable provided

that both F and H are collision-resistant.
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We presented an approach on how to construct practical ElGamal-like sig-

nature schemes provably as secure as the discrete logarithm problem. We also

pointed out what is the suitable security hypothesis on the hash function for

providing secure signatures. The question of removing the hypothesis on the

tamper-resistance hypothesis is still an open problem.

Note

The �rst author works in the University of Caen. The second one in the Ecole

Normale Sup�erieure. Both in laboratories (GREYC, LIENS) supported by the

Centre National pour la Recherche Scientifique.
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Appendix: uniform version of the forking lemma

Lemma9 (Uniform Improved Forking Lemma). There exists a uniform

reduction which transforms any signing algorithm A into an `-fork for the sig-

nature scheme within a probability greater than 1=224 by 12n` log `=� executions

of A when A is limited to n queries to the oracles an makes a signature within

a probability �.

Proof. The idea consists in estimating the 1=� value by using the running time

T

1

of the �rst step of B:

1. First B runs A on random (!;A

1

; : : : ; A

n

) until A accepts. We denote T

1

the number of iterations used. We denote (!

1

; A

1

1

; : : : ; A

1

n

) the accepted

one and I

1

= I(!

1

; A

1

1

; : : : ; A

1

n

).
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2. We repeat 8nT

1

` log ` times the algorithm A on (!

1

; A

1

1

; : : : ; A

1

I

1

�1

) tailed

with random (A

I

1

; : : : ; A

n

). If we obtain a success such that I

1

is the index

of the last useful query, we register the input as a new (!

j

; A

j

1

; : : : ; A

j

n

).

The distribution of T

1

tends towards a Poisson distribution. We have

0:14 � Pr

�

1

2�

� T

1

�

3

2�

�

� 0:56

hence this probability is greater than 1=7.

In the analysis, we replace Equation 11 by

Pr

�

�

!;A

1

1

; : : : ; A

1

I

1

�1

�

2 G

0

I

1

and I

1

2 I and

1

2�

� T

1

�

3

2�

�

�

1

28

and we obtain a probability of success of 1=224 and 12n` log `=� runs of A. ut


