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Abstract

A polygonal cover of a �nite collection of pairwise disjoint convex compact sets in the plane is

a �nite collection of non-overlapping convex polygons such that each polygon covers exactly

one convex set. We show that computing a polygonal cover with worst case minimal number

of sides reduces to computing a pseudo-triangulation of the collection of convex sets. We

obtain a similar reduction for two related problems concerning convex compact sets in the

plane : computing a lighting set and computing a family of separating lines.

Keywords: Pseudotriangle, pseudo-triangulation, polygonal cover, translation query, Art

gallery theorem, packing, covering.
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1 Introduction

A polygonal cover of a �nite collection of pairwise disjoint convex compact sets in the plane

(convex disks for short) is a �nite collection of non-overlapping convex polygons such that

each polygon covers exactly one convex disk; see Figure 1. In 1950, L. Fejes T�oth [8] has

Figure 1: A polygonal cover of a collection of six disks.

shown the existence of polygonal covers with a total of no more than 6n�9 sides for n disks,

this bound being tight in the worst case [7]. He used this result in order to show that the

upper density of a packing with congruent copies of a convex disk in the plane is bounded

by the ratio of the area of the disk to the area of a hexagon of minimum area circumscribed

round the disk (see [14] and the reference cited therein). More recently, polygonal covers

have been used to show the existence of a disk separated by a line from at least n=12 other

disks (see [12] and [1, 4, 5] for more separation problems) and to design e�cient algorithms

to answer translation queries for sets of polygons (see [6]).

The proof of L. Fejes T�oth proceeds by growing the convex disks unboundedly in all

directions but the growth (in a given direction) is limited by the condition that the convex

disks remain pairwise interior disjoint. In this way the convex disks expand into convex

polygons that �ll the plane except for a �nite number of gaps that are also convex polygons.

A simple application of the Euler relation for planar graph leads to the announced upper

bound. The purpose of this note is to give a constructive proof of the result of L. Fejes T�oth.

Our main result is the following.
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Theorem 1 A polygonal cover with worst case minimal number of sides for a collection of

n convex disks is computable in O(n log n) time under the assumption that each disk has

constant computational complexity.

Our proof is based on properties of the so-called pseudo-triangulations introduced by the

authors [15, 16] to design e�cient algorithms to compute visibility graphs. In Section 2 we

review the terminology on pseudo-triangulations. In Section 3 we give the proof of our main

theorem, and in Section 4 we elaborate on two related problems concerning convex disks in

the plane, namely computing a lighting set and computing a family of separating lines.

2 Background material

Consider a �nite collection of pairwise disjoint convex disks in the plane. For the ease of

the exposition we assume that the boundary of each disk is a smooth closed curve such that

for each �, 0 � � � 2�, the curve has exactly one point where its tangent makes an angle

of � with the positive x-axis; furthermore we assume that no line is tangent to three disks.

A bitangent is a closed line segment whose supporting line is tangent to two disks at its

I

I

Figure 2: A pseudo-triangulation (exterior bitangents are shown dashed and type I pseudotriangles

are labeled I ) and a pseudotriangle.

endpoints. It is called free if it lies in free space, i.e., the complement of the union of the

interior of the disks. A bitangent is said to be interior if its supporting line separates the

two convex disks to which it is tangent, otherwise the bitangent is said to be exterior. A

pseudo-triangulation is a maximal subset of non-crossing free bitangents|according to our

assumptions two bitangents are disjoint or they cross at an interior point.
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The boundaries of the convex disks and the bitangents in a pseudo-triangulation induce

a regular cell decomposition of the plane, still called a pseudo-triangulation; see the left

part of Figure 2. According to [15, 16], a bounded free face of a pseudo-triangulation is a

pseudotriangle, that is a simply connected subset of the plane whose boundary consists of

three smooth convex curves that are tangent at their endpoints, and which is contained in

the triangle formed by the three endpoints of these convex curves; the convex curves are

called the sides of the pseudotriangle, and their endpoints are called the cusp points of the

pseudotriangle; see the right part of Figure 2. The number of pseudotriangles is 2n � 2 for

n disks, and the number of bitangents is 3n � 3. A pseudo-triangulation of a collection of

n disks is computable in O(n log n) time under the assumption that each disk has constant

computational complexity in the sense that the tangent to a disk with a given direction, the

common tangents to two disks or the common tangents to a disk and a point are computable

in constant time. See [15, 16] for more details. (If we assume that the convex disks are

composed of a total of m arcs, each of constant computational complexity, then a pseudo-

triangulation is computable in time O(m+ n logm) time.)

A pseudotriangle of a pseudo-triangulation is said to be of type I (II) if none (one)

of its sides is a bitangent. The boundary of a pseudotriangle of type I contains exactly

three interior bitangents, namely the bitangents at its cusp points. The bitangent side of a

pseudotriangle of type II is an exterior bitangent and the boundary of a pseudotriangle of

type II contains exactly one interior bitangent, namely the bitangent at the opposite cusp

point of the bitangent side. Note that an exterior bitangent is the side of a unique type II

pseudotriangle. The pseudo-triangulation depicted in Figure 2 has two pseudotriangles of

type I. The following lemma gives a lower bound on the number of exterior bitangents in a

pseudo-triangulation.

Lemma 1 Consider a pseudo-triangulation of a collection of at least three disks. Then its

number of exterior bitangents is at least 3. Furthermore if the number of exterior bitangents

lying on the convex hull of the convex disks is 2 then this number is at least 4.

Proof. Consider the graph whose nodes are the convex disks and whose edges are the pairs

of convex disks connected by an interior bitangent of some pseudo-triangulation. Clearly

3
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this graph is a plane graph without multiple edges; thus its number of edges is at most

3n � 6 where n is the number of disks. Since the total number of bitangents in a pseudo-

triangulation is 3n � 3 the result follows. A similar argument applies if the number of

bitangents on the boundary of the convex hull is 2.

Collections of n interior disjoint circles whose contact graphs are triangular planar graphs

on n points are examples of con�gurations of n disks with exactly three free exterior bitan-

gents (according to the `Koebe-Andreev-Thurston Circle Packing Theorem' [18, page 117]

or [14, pages 95{96] any triangular planar graphs on n points is realizable as the contact

graph of a collection of n interior disjoint circles).

Figure 3: The edges of the screen graph inside a type I (left) or a type II (right) pseudotriangle.

3 Proof of our theorem

The idea is to generate a convex tessellation of the plane that covers and separates the

convex disks. To this end we start from the geometric graph consisting of the collection of

interior bitangents of a pseudo-triangulation and we extend its edges along their supporting

lines until their endpoints hit the current extended geometric graph. The resulting geometric

graph realizes a convex tessellation of the plane. However in order to generate a tessellation

that covers and separates the convex disks the bitangents have to be extended in a speci�c

order. This is done in two steps. First we extend each interior bitangent inside the (two)

pseudotriangles to which it belongs, as illustrated in Figure 3. A pseudotriangle of type I is

split into three curved triangles and one (straight) triangle, possibly reduced to a point. A

pseudotriangle of type II is split into two curved triangles. The resulting geometric graph

4
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is unique and clearly computable in O(n) time (assuming that each pseudotriangle is repre-

sented by its three cusp points). We call this graph the \screen graph", for a reason that

will be clari�ed in a moment. Note that the vertices of the screen graph are of degree one or

three. The number of vertices of degree three is three times the number of type I pseudotri-

angles while the number of vertices of degree one is the number of type II pseudotriangles.

The second step is completely free : we just have to extend the half-edges incident to vertices

of degree one until they hit the current extended geometric graph. There are several ways

to realize this second step, leading to di�erent geometric graphs. Such a graph is called an

\extended screen graph"; see Figure 4 for an illustration. An extended screen graph can

be computed in O(n log n) time using a straightforward adaptation of the Bentley-Ottmann

sweep algorithm to compute the intersections of a collection of line segments.

(a) (b)

(c)

Figure 4: (a) A pseudo-triangulation, (b) its screen graph, and (c) an extended screen graph.

Theorem 2 An extended screen graph induces a convex tessellation of the plane that covers

and separates the convex disks.

5
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Proof. This follows from the observation that the screen graph is a screen with respect to the

collection of convex disks, that is it intersects any line segment joining two distinct convex

disks. Indeed, follow a ray in free space starting from a point on the boundary of some disk:

if we enter a type I pseudotriangle the ray is going to hit the screen graph (and consequently

the extended screen graph) thanks to the �rst step of the extension process; now what

happens if the ray enters a pseudotriangle of type II? If we enter the pseudotriangle along

one of its two non-bitangent sides the ray is going to hit the screen graph (thanks to the �rst

step of the extension process) or is going to leave the pseudotriangle along its bitangent side;

in the latter case we enter a type I pseudotriangle or a type II pseudotriangle along one of

its two non-bitangent sides since, as observed in the previous section, an exterior bitangent

determines a unique pseudotriangle of type II. It follows by induction that we can't enter

a type II pseudotriangle along its bitangent side, and therefore we will eventually hit the

screen graph. This proves our theorem.

Proof of Theorem 1. In view of Theorem 2 it su�ces to show that the polygonal cover

induced by an extended screen graph has a worst case minimal number of sides, i.e., at

most 6n � 9 sides for n disks. To count the number of sides we count the number of

vertices (counting multiplicities) of the polygonal cover. Each vertex of degree three of the

screen graph counts for one and each vertex of degree one of the screen graph generates

a vertex of the extended screen graph that counts for 2. Therefore the number of sides is

2a + 3(2n � 2 � a) = 6n � 6 � a where a is the number of type II pseudotriangles or the

number of exterior bitangents. Since a is at least three the result follows.

4 Two related problems

4.1 Separating lines

A family of separating lines for a collection of disks is a collection of lines such that each pair

of convex disks is separated by at least one of the lines of the family; see Figure 5. It is well

known (and easy to prove) that the family of supporting lines of the sides of a polygonal

cover is a family of separating lines. From the previous discussion we deduce the following

theorem.
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Figure 5: A family of separating lines.

Theorem 3 The collection of supporting lines of the interior bitangents of a pseudo-triangulation

of a collection of pairwise disjoint convex disks is a family of separating lines for the collec-

tion of disks.

4.2 L. Fejes T�oth illumination problem revisited

Partitioning theorems and algorithms are key tools to solve Art gallery problems [2, 11, 13,

17]. For example Fisk's proof [10] of 'Chv�atal's Art Gallery Theorem' [3], which asserts

Figure 6: Two (one) lighting points are su�cient to illuminate the boundary of a type I (II)

pseudotriangle.

that bn=3c lighting points are occasionally necessary and sometimes su�cient to illuminate

a polygon of n vertices, can be summarized as follow: computing a lighting set of at most

bn=3c lighting points for a given polygon of n vertices reduces in O(n) time to computing a
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triangulation of the polygon. We give now a similar reduction for L. Fejes T�oth's art gallery

theorem [9], which asserts that the boundary of a set of n � 3 pairwise disjoint convex

disks can be illuminated by 4n� 7 points. As the reader might have suspected the suitable

partition for this theorem is a pseudo-triangulation. Our result is the following.

Theorem 4 Computing a lighting set with at most 4n� 7 lighting points for a collection of

n pairwise disjoint convex disks reduces in linear time to computing a pseudo-triangulation

of the collection of convex disks.

Proof. Since the boundary points of the convex disks are the boundary points of the pseu-

dotriangles (forget for a moment the points lying on the convex hull of the convex disks)

it is su�cient to �nd a lighting set for the pseudotriangles of a pseudo-triangulation. How

many lighting points are necessary for a pseudotriangle? Two in general (computable in O(1)

time) but only one if a side of the pseudotriangle reduces to a line segment, as illustrated in

Figure 6. Let a be the number of pseudotriangles with a line segment side or, equivalently,

the number of exterior bitangents in the pseudo-triangulation. From the above discussion

a lighting set with 4n � 4 � a lighting points exists and is computable in O(n) time from

the pseudo-triangulation. According to Lemma 1 the number a is at least three from which

the result follows (We take care to send the lighting points on the convex hull far enough

to in�nity in suitable directions to guarantee that they illuminate also the boundary of the

convex hull).
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