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Introduction 3

0. INTRODUCTION

CLAIRE is a high-level functional and object-oriented language with advanced rule processing
capabilities. It is intended to allow the programmer to express complex algorithms with fewer lines
and in an elegant and readable manner.

To provide a high degree of expressivity, CLAIRE uses

• A rich type system including type intervals and second-order types (with static/dynamic typing),
• Parametric classes and methods,
• An object-oriented logic with set extensions,
• Dynamic versioning that supports easy exploration of search spaces.

To achieve its goal of readability, CLAIRE uses

 • set-based programming with an intuitive syntax,
 • simple-minded object-oriented programming,
 • truly polymorphic and parametric functional programming,
 • a powerful-yet-readable extension of DATALOG to express logical conditions,
 • an entity-relation approach with explicit relations, inverses and unknown values.

CLAIRE was designed for advanced applications that involve complex data modeling, rule
processing and problem solving. CLAIRE was meant to be used in a C++ environment, either as a
satellite (linking CLAIRE programs to C++ programs is straightforward) or as an upper layer
(importing C++ programs is also easy). The key set of features that distinguishes CLAIRE from other
programming languages has been dictated by our experience in solving complex optimization
problems using a complex hybrid prototype language called LAURE. In order to implement complex
algorithms with programs that are still easy to read (and thus, to maintain) we have found ourselves to
make  heavy use of  two key features:

• production rules: CLAIRE supports rules that binds a CLAIRE expression (the conclusion) to a
logical condition. Whenever the condition's value (a boolean) changes for a given object or set
of objects, the conclusion is evaluated. This allows to trigger the same conclusion from many
different types of changes and makes programs simpler. In addition, rules can be added to any
class of object without any code modifications. The object logic used for conditions has been
carefully crafted so that it combines expressive power with inference compilation techniques
that rival hand code writing. Thus, CLAIRE is a choice language for artificial intelligence
applications such as expert systems.

• versioning: CLAIRE supports versioning of a user-selected view of the entire system. The view
can be made as large (for expressiveness) or as small (for efficiency) as is necessary. Versions
are created linearly and can be viewed as a stack of snapshots of the system. CLAIRE supports
very efficient creation/rollback of versions, which constitutes the basis for powerful
backtracking, a key feature for problem solving. Contrary to most logic programming
languages, this type of backtracking covers any user-defined structure, not simply a set of logic
variables.

 CLAIRE also provides automatic memory allocation/de-allocation which would have prevented an
easy implementation as a C++ library. A less compelling feature for a new language is that set-
oriented programming is much easier with a set-oriented language like CLAIRE than with C++
libraries.

CLAIRE is a high-level language, that can be used as a complete development language, since it is
a general purpose language, but also as a pre-processor to C++, since a CLAIRE program can be
naturally translated into a C++ program. CLAIRE is a set-oriented language in the sense that sets are
first-class objects, typing is based on sets and control structures for manipulating sets are parts of the
language kernel. Similarly, CLAIRE makes manipulating lists easy since lists are also first-class
objects. CLAIRE can also be seen as a functional programming language, with full support for lambda
abstraction, where functions can be passed as parameters and returned as values, and with powerful
parametric polymorphism. Last, CLAIRE is meant to be reflective (i.e., implemented as a reflective
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system, where each program is represented as an object). This aspect is out of scope of this book
which is only concerned with the language itself, but makes CLAIRE very extensible, in a way similar
to LISP.

CLAIRE is an object-oriented language with single inheritance. As in SMALLTALK, everything
that exists in CLAIRE is an object. Each object belongs to a unique class and has a unique identity.
Classes are the corner stones of the language, from which methods (procedures), slots and arrays
(relations) are defined. Classes belong themselves to an single inheritance hierarchy. However,
classes may be grouped using set union operators, and these unions may be used in most places where
a class would be used, which offers an alternative to multiple inheritance. In a way similar to Modula-
3, CLAIRE is a modular language that provides recursively embedded modules with associated
namespaces. This is a clear departure from C++, since the module decomposition can either be
parallel to the class organization (mimicking C++ encapsulation) or orthogonal (e.g., encapsulating
one service among multiple classes).

CLAIRE is a typed language, with full inclusion polymorphism. This implies that one can use
CLAIRE with a variety of type disciplines ranging from weak typing in a manner that is close to
SMALLTALK up to a more rigid manner close to C++. This flexibility is useful to capture
programming styles ranging from prototyping to production code development. The more typing
information available, the more CLAIRE's compiler will behave like a statically-typed language
compiler. This is achieved with a rich type system, based on sets, that goes beyond types in C++. This
type system provides functional types (second-order types) similar to ML, parametric types associated
to parametric classes and many useful type constructors such as unions or intervals. Therefore, the
same type system supports the naive user who simply wishes to use classes as types and the utility
library developer who needs a powerful interface description language.

As the reader will notice, CLAIRE draws its inspiration from a large number of existing languages.
A non-exhaustive list would include SMALLTALK for the object-oriented aspects, SETL for the set
programming aspects, OPS5 for the production rules, LISP for the reflection and the functional
programming aspects, ML for the polymorphism and C for the general programming philosophy. As
far as its ancestors are concerned, CLAIRE is very much influenced by LORE, a language developed
in the mid 80s for knowledge representation. It was also influenced by LAURE  but is much smaller
and does not retain the original features of LAURE such as constraints or deductive rules. CLAIRE is
also closer to C in its spirit and its syntax than LAURE was. Another major difference is that CLAIRE

was designed to be simple and easy to teach, which this user's manual will try to demonstrate.

This document is organized as follows. The first chapter is a short tutorial on the main aspects of
CLAIRE. A few selected examples are used to gradually introduce the concepts of the language
without worrying about completeness. These are running programs that can be used to practice with
the interpreter and the compiler. Our hope is that a reader familiar with other object-oriented
languages should be able to start programming with CLAIRE without further reading. Chapter 2 gives
a description of objects, classes and basic expressions in CLAIRE. It explains how to define a class
(including a parameterized class) and how to read a slot value, call a method or do an assignment.

Chapter 3 deals with the control structures of the language. These include block and conditional
structures, loops and object instantiation. It also describes the set-oriented aspects of CLAIRE and set
iteration. Chapter 4 covers methods and types. It explains how to define a method, how to define and
use a type. Types being set expressions and first-class objects can be used in many useful ways. This
chapter also covers more advanced polymorphism in CLAIRE.

Chapter 5 is the most important chapter of the book since it covers the aspects that are the most
original in CLAIRE, namely rules and versions. It introduces the notion of generalized array (binary
relation) and the logic sub-language for writing conditions. It then describes rules and versioning,
with its use for hypothetical reasoning and search for problem solving.  Chapter 6 covers the
remaining topics, namely input/output, modules and global variables.

In addition, three appendices are included. The first appendix focuses on the external syntax of the
CLAIRE language (includes lexical conventions and a formal grammar). The second appendix is the
description of the application programming interface. It is a description of the methods that are part of
the standard CLAIRE system library. The last appendix is a very short description of the standard
CLAIRE system (compiler & interpreter) that has been made available through ftp.
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1. TUTORIAL

1.1 Loading a Program

This first chapter is a short tutorial that introduces the major concepts gradually. It contains
enough information for a reader familiar with other object-oriented language to start practicing with
CLAIRE. Each aspect of the language will be detailed in a further chapter. All the examples that are
shown here should be available as part of the standard CLAIRE system so that you should not need to
type the longer examples.

The first step that must be mastered to practice with CLAIRE is to learn how to invoke the compiler
or the interpreter. Once you have found this out, you are ready to try our first program. This program
simply prints the release number of the CLAIRE system that you are using.

[main() -> printf("claire release ~S\n", release() ]

You must first save this line on a file, using your favorite text editor (e.g. emacs). Let us now
assume that this one-line program is in a file release.cl.  Using a file that ends with .cl is not
mandatory to load a CLAIRE file but it is necessary for the compiler to work properly so it is a good
habit to take.

When you invoke the CLAIRE executable, you enter a loop called a top-level1. This loop prompts
for a command with the prompt "CLAIRE>" and returns the result of the evaluation with a prompt
"[..]". The number inside the brackets can be used to retrieve previous results (this is explained in the
last appendix). Here we assume that you are familiar with the principle of a top-level loop; otherwise,
you may start by reading the description of the CLAIRE top-level in the Appendix C. To run our
program, we enter two commands at the top-level. The first one load("release") loads the file
that we have written and returns true to say that everything went fine. The second command main()
invokes the method (in CLAIRE a procedure is called a method) that is defined in this file.

% claire

claire> load("release")

[1] true

claire> main()

[2] claire release 1.0.

claire> q

%

Each CLAIRE programs is organized into blocks, that are surrounded by parentheses, and
definitions that are surrounded by brackets for class and method definition. Our program has only one
definition of the method main. The declaration main() tells that this method has no parameters, the
expression after the arrow -> is the definition of the method. Here it is just a printf statement, that
prints its first argument (a format string) after inserting the other arguments at places indicated by the
control character ~ (followed by an option character which can be A,S,I). This is similar to a C printf,
except that the place where the argument release()  must be inserted in the control string is denoted
with ~S. There is no need to tell the type of the argument for printf, CLAIRE knows it already. We also
learn from this example that there exist a pre-defined method release() that returns some version
identification and that you exit the top-level by typing q (^D also works).

1  In the following we assume that CLAIRE is invoked in a workstation environment using a command shell.

You must first find out how to invoke the CLAIRE system in your own environment. This should be explained in

you installation documents.
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In this example, release() is a system-defined method2. The list of such methods is given in the
second appendix. When we load the previous program, it is interpreted (each instruction is a CLAIRE

object that is evaluated). It can also be compiled (through the intermediate step of C code generation).
Here is how we would compile the previous program and generate the executable "test".

% claire -cf release -o test

% test

claire> main()

claire release 1.0.

test2> q

We can also notice that the main() method is not executed automatically as it would with a C
compiler, but that we enter a standard CLAIRE top level. This behavior, as well as the use of
parameters in the command line (i.e., the -cf option), is OS (operating system) dependent. The
compiler generates an equivalent C file that is linked with a default main.c file which is provided by
the host system.  This file can easily be customized or replaced to achieve different behaviors (cf.
Appendix C).

Let us now write a second program that prints the first 10 Fibonacci numbers. We will now
assume that you know how to load and execute a program, so we will only give the program file. The
following example defines the fib(n) function, where fib(n) is the nth Fibonacci number.

[fib(n:integer) : integer
-> if (n < 2) 1 else fib(n - 1) + fib(n - 2)]

MAX :: 10 // global constant (cf. 6.4)

[main() -> for i in (1 .. MAX) printf("fib(~S) = ~S\n",i,fib(i)) ]

From this simple example, we can notice many interesting rules for writing method in CLAIRE.
First, the range of a method is introduced by the "typing" character ":". The range is almost
mandatory, since the default range is void, which will imply that the method does not return a value
(e.g., main). Conditional in CLAIRE use a traditional if construct (Section 3.3), but the iteration
construct "for" is a set iteration. The expression for x in S e(x) evaluates the expression e(x)
for all values x  in the set S. There are many kinds of set operators in CLAIRE (Section 3.1); for
instance n .. m is the interval of integers between  n and m.

Obviously, this program is very naive and is not the right way to print a long sequence of
Fibonacci numbers, since the complexity of fib(n) is exponential. We can compute the sequence using
two local variables to store the previous values of fib(n - 1) and fib(n - 2).  The next example
illustrates such an idea and the use of let, which is used to introduce a list of local variables. Notice
that they are local variables, whose scope is only the instruction after the keyword in. Also notice that
a variable assignment uses the symbol :=, as in PASCAL, and the symbol = is left for equality.

[main()
-> let n := 2, f_n-1 := 1, f_n-2 := 1 in

( printf("fib(0) = 1 \nfib(1) = 1\n"),
while (n < 10)

let f_n := f_n-1 + f_n-2 in
   ( printf("fib(~S) = ~S \n",n,f_n),

2 The release is a float number X.Y, where X is the version number and Y the release number. The version

number in this book should be the same as the one obtained with your system. Changes among different release

numbers should not affect the correctness of this documentation (Note: X.99 ≈ X+1.00)
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 n :+ 1, // short cut for n := n + 1
 f_n-2 := f_n-1, f_n-1 := f_n)  ) ]

Note that we used f_n-1 and f_n-2 as variable names. Almost all characters are allowed within
identifiers (all characters but separators, '/', '#' and @). Hence, x+2 can be the name of an object
whereas the expression denoting an addition is x + 2. Blank spaces are always mandatory to separate
identifiers.

Warning: CLAIRE’s  syntax is intended to be fairly natural for C programmers, with  expressions that exist  
both in CLAIRE and C having the same meaning. There are two exceptions to this rule: the choice of
:= for assignment and = for equality, and the absence  of special status for  characters +, *, -, etc. 
Minor differences include the use of & and | for boolean operations and % for membership.

A more elegant way is to use an array fib[n], as in the following version of our program.

[fib[n:integer] : integer -> 1]

[main()
-> for i in (2 .. MAX) fib[i] := fib[i - 1] + fib[i - 2],

for i in (0 .. MAX) printf("fib(~S) = ~S\n",i,fib[i]) ]

An interesting feature of CLAIRE is that the domain of an array is not necessarily an interval of
integers. It can actually be any type, which means that arrays can be seen as "extended dictionaries"
(Section 5.1). On the other hand, when the domain is a finite set, CLAIRE allows to define an "initial
value" using the -> keyword, as for a method. For instance, the ultimate version of our program could
be written as follows (using the fact that intervals are enumerated from small to large).

[fib[n:(0 .. 10)] : integer -> if (n < 2) 1 else fib[n - 1] + fib[n - 2]]

[main() -> for i in (0 .. 10) printf("fib(~S) = ~S\n",i,fib[i])]

Let us now write a file copy program. We use two system functions getc(p) and putc(p) that
respectively read and write a character c on an input/output port p. A port is an object usually
associated with a file from the operating system. A port is open with the system function fopen(s1,s2)
where s1 is the name of the file (a string) and s2 is another string that controls the way the port is used
(cf. Section 6.1; for instance "w" is for writing and "r" is for reading).

[copy(f1:string,f2:string)
-> let p1 := fopen(f1,"r"),

p2 := fopen(f2,"w"),
c := ' ' in

( use_as_output(p2),
while (c != EOF) (c := getc(p1), putc(c,p2)),
fclose(f1), fclose(f2) )]

Let us now write a program that copies a program and automatically indents it. Printing with
indentation is usually called pretty-printing, and is offered as a system method in CLAIRE: pretty(x)
pretty-prints on the output port. All CLAIRE instructions are printed so that they can be read back. In
the previous example, we have used two very basic read/write methods (at the character level) and
thus we could have written a very similar program using C. Here we use a more powerful method
called read(p) that reads one instruction on the port p (thus, it performs the lexical & syntactical
analysis and generate the CLAIRE objects that represents instructions). Surprisingly, our new program
is very similar to the previous one.

[copy&indent(f1:string,f2:string)
-> let p1 := fopen(f1,"r"),

p2 := fopen(f2,"w"),
c := unknown in

( use_as_output(p2),
  while (c != eof)

pretty_print(c := read(p1)),
    fclose(p1), fclose(p2) )]
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In the next example, we will illustrate how to use modules to obtain different namespaces. All
identifiers in CLAIRE belong to a namespace, represented by a module. Modules are organized into a
tree, the top of which is the default CLAIRE module. All the previous examples have used this default
namespace implicitly. Our next program is a very simplified phone directory. The public interface for
that program is a set of two methods store(name,phone) and dial(name). We want all other objects
and methods to be in a different namespace, so we create a new module called phone_application. We
also use comments that are defined in CLAIRE as anything that in on the same line after the character;.

;; definition of the module
phone_application :: module(part_of = claire)
open(phone_application)

;; value is an extended array that stores the phone #
[private/value[s:string] : string]

;; lower returns the lower case version of a strin
;; (i.e. lower("aBcD") = "abcd")
[lower(s:string) : string
-> let s2 := copy(s) in

 ( for i in (1 .. length(s))
(if (s2[i] % 'A' .. 'Z')

s2[i] = char!(integer!(s2[i]) - 32)))
s2)]

[claire/store(name:string,phone:string)
  -> value[lower(name)] := phone]

[claire/dial(name:string) : string  ; returns the phone #
  -> value[lower(name)] ]

end(phone_application)

This example illustrates many important features of modules: they are classes just like any other
objects: once the module x has been defined, we can use the associated namespace with the open(x)
method, and later return to the initial namespace with end(x). The statement part_of(x)=y  defines x
as a new child of the module y. When open(x) has been executed, any new identifier that is read will
belong to the new namespace associated with x. This has an important consequence on the visibility
of the identifier, since an identifier lower  defined in a module phone_application is only visible (i.e.
can be used) in the module x itself or its descendants. Otherwise, the identifier must be qualified
(phone_application/lower) to be used. There are two ways to escape this rule: first, an identifier can
be associated to any module above the open module, if it is declared with the qualified form. Second,
when an identifier is declared with the prefix private/, it becomes impossible to access the identifier
using the qualified form. For instance, we used private/value to forbid the use of the array (in the
CLAIRE extended sense) anywhere but in the descendants of the module phone_application.

Module organization is a key aspect of software development and should not be mixed with the
code. The previous example is not the preferred way to use modules. It is better to put module
definitions in a project file, and to load a file inside a module's namespace using the load(m:module)
method. For instance, we could remove the first three lines and the last two in the previous example
and put the result in the file phone.cl; then we write a init.cl project file as follows.

;; modules definitions
phone_application :: module( part_of = claire,

made_of = list(“phone”))
phone_database :: module(part_of = phone_application)

We could have given any name to the project file, but calling it init.cl will make CLAIRE load it
automatically when it start. We can then call load(phone_application) to load the file in the
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phone_application  namespace. This is achieved through the slot made_of that contains the list of files
that we want to associate with the module (cf. Section 6)

1.2 Objects and Classes

Our next example is a  small pricing software for HiFi Audio components3. The goal of the
program is to manage a small database of available material, to help build a system by choosing the
right components (according to some constraints) and compute the price.

We start by defining our class hierarchy according to the following figure.

object thing

stereo

component source

amplifier

speaker

headphone

CDplayer

turntable

tuner

tape

[component <: thing(price:integer, brand:string)]
[amplifier <: component( power:integer, input:integer,

ohms:set[{4,8}])]
[speaker <: component(maxpower:integer, ohms:{4,8})]
[headphone <: component(maxpower:integer,  ohms:{4,8})]
[musical_source <: component(sensitivity:integer)]
[CDplayer <: musical_source(laser_beams:(1 .. 3))]
[turntable <: musical_source]
[tuner <: musical_source]
B :: thing() C :: thing() nodolby :: thing()
[tape <: musical_source(dolby:{nodolby,B,C})]
[stereo <: object( sources:set[musical_source],

amp:amplifier,
out:set[speaker U headphone],
warranty:boolean = false)]

Now that we have defined the taxonomy of all the objects in our HiFi world, we can describe the
set of all models actually carried by our store. These are defined by means of instances of those
classes.

amp1 :: amplifier( power = 120, input = 4, ohms = {4,8},
price = 400, brand = "Okyonino")

amp2 :: amplifier( power = 40, input = 2, ohms = {4},
price = 130, brand = "Cheapy")

tuner1 :: tuner(sensitivity = 10, price = 200, brand = "Okyonino")
tuner2 :: tuner(sensitivity = 30, price = 80, brand = "Cheapy")
CD1 :: CDplayer( sensitivity = 3, price = 300,

laser_beams = 3, brand = "Okyonino")
CD2 :: CDplayer( sensitivity = 7, price = 180,

laser_beams = 2, brand = "Okyonino")
CD3 :: CDplayer( sensitivity = 15, price = 110,

laser_beams = 1, brand = "Cheapy")
t1 :: tape( sensitivity = 40, price = 70,

dolby = nodolby, brand = "Cheapy")

3 All brands and product names are totally fictitious.
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s1 :: speaker( ohms = 8, maxpower = 150,
price = 1000, brand = "Magisound")

s2 :: speaker( ohms = 8, maxpower = 80,
price = 400, brand = "Magisound")

s3 :: speaker( ohms = 4, maxpower = 40,
price = 150, brand = "Cheapy")

ph :: speaker(ohms = 4, maxpower = 40, price = 50, brand = "Okyonino")
etc ...

Now that we have defined some HiFi components with their technical features, we can manipulate
them and define some methods. For example, we can compute the total price of a stereo as the sum of
the prices of all its components. We first need an auxiliary method that computes the sum of a list of
integers.

[sum(s:list[integer]) : integer
-> let n := 0 in (for y in s n :+ y, n) ]

[price(s:stereo) : integer
-> sum(list{price(x) | x in sources(s) U {amp(s)} U out(s)}) ]

InventoryTotal:integer :: 0 // global variable with range integer

Note here the use of set image (we consider the list of all price(x)  for all x in the following set: the
union of sources(s), {amp(s)}  and out(s) ). Also, we introduce a global variable InventoryTotal, of
range integer and value 0. If we want to keep some “specials” which are sets of components for which
the price is less than the sum of its components, we may use an (extended) array to store them:

[discount[s:set[component]] : integer -> 0]
discount[{amp1,s1}] := 1200
discount[{amp1,CD1}] := 600

To find the best price of a set of components, we now write a more sophisticated method that tries
to identify the best subsets that are on sale. This is a good example of CLAIRE’s programming style
(if we assume that size(s) is small and that discount contains thousands of tuples).

 [price(s:set[component]) : integer
-> let p := 100000 in

(for s2 in set[s] ;; decompose s = s2 U ...
let x := size(s2),

p2 := ( if (x > 1) discount[s2]
else if (x = 1) price(s2[1])
else 0)  in

(if (p2 > 0) p :min (p2 + price(difference(s,s2)))),
 p) ]

Notice that we use some syntactical sugar here:  p :min x is equivalent to p := (p min x). This
works with any other operation (such as +).

1.3 Rules

We now want to do some reasoning about stereo systems. We start by writing down the rules for
matching components with one another. We want a signal to be raised whenever one of these rules is
violated. Hence we create the following exception:

[technical_problem <: exception(s:string) ]
event(speaker,amp,sources,out)

The event declaration (cf. Section 5) is necessary to tell CLAIRE when the rule should be checked.
A rule is defined by a condition (following the :: keyword) and a conclusion (following the =>
keyword). The condition is checked whenever an event occurs, that is whenever a relation r that was
declared with event(r) is modified. Then, for any set of objects that now satisfy the condition, the
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conclusion expression is evaluated. Here are some simple rules that will raise exceptions when some
technical requirements are not met.

[compatibility1(sp:speaker, a:amplifier) ::
exists(s:stereo, o = speaker(s) & a = amp(s) &

not(ohms(o) % ohms(a)) )
=> technical_problem(s = "conflict speakers-amp") ]

[compatibility2(s:stereo) ::
size(sources(s)) > inputs(amp(s))
=> technical_problem(s = "too many sources") ]

[compatibility3(s:stereo) ::
exists(o:speaker, o % out(s) & maxpower(o) < power(amp(s)))
=> technical_problem(s = "amp to strong for the speakers") ]

We can now use our system (applying the rules on the small database) to look for consistent
systems. For example, assume I want to buy speakers that fit my amp (for instance, amp1): we will try
several possibilities to fill the slot out  of my stereo and will watch whether they raise an exception or
not. In order for the rule to be triggered, we need to tell which changes in the database are relevant to
rule triggering. Here, modifications on the relation out  should trigger the evaluation of the concerned
rules. This was achieved by the command event(out)  (which could be disabled by the command
noevent(out). )

my_system :: stereo(amp = amp1)
( for sp in instances(speaker)

try (out(my_system) :add sp, break(my_system))
catch technical_problem out(my_system) :delete sp )

If we want to successively choose the speakers, the CD player, the tape, etc..., we cannot guarantee
that if a choice does not immediately raise an exception, there will always exist a solution in the end.
Thus, we need to make some hypothetical reasoning: we suppose one branch of the choice contains a
solution, and we backtrack on failure. The conclusions that had been drawn during the hypothesis
need to be undone. For this, we have the possibility to declare that some relations in the database are
stored in a special way such that one can go back to a previous state. Such states of the database
(versions) are called worlds. The methods world+()  and world-()  respectively create a new world
and return to the previous one. The command store(out)  means that the graph of the relation out  will
be stored in that special way adapted to the world mechanism. In this example, we create the list of all
possible (bringing no conflict according to the rules) stereos with two different musical sources.

store(out)

[all_possible_stereos() : list[stereo]
-> let solutions:list[stereo] := list() , syst:stereo := unknown in

(for a in amplifier
(amp(syst) := a,
 for sp in speakers try

  (world+(), out(syst) := {sp},
for h in headphones try
 ( world+(), out(syst) :add h,
 for s1 in source try

  ( world+(), sources(syst) := {s1},
  for s2 in {s in source | owner(s) != owner(s1)}
 try (world+(),

sources(syst) :add s2,
solutions :add copy(syst) )

catch any world-() )
  catch any world-() )
catch any world-() )

catch any world-()), solutions)   ]
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This method explores the tree of all possibilities for stereos and returns the list of all the valid
ones.

Following are more examples of rules that address the problem of proposing a warranty or
proposing additional equipment when the system is homogeneous. These rules will however not be
triggered if they are declared after the objects are created or modified or if no triggering relation has
been declared as an event.

[warranty1(s:stereo) :: price(s) > 10000 => warranty(s) := true]

[warranty2(s:stereo) ::
brand(amp(s)) = "Okyonino" => warranty(s) := true]

[warranty3(s:stereo) ::
exists(sp:speaker, sp % out(s) & brand(sp) = "Magisound")

=> warranty(s) := true]

[homogeneity(s:stereo, c:component) ::
size({so in sources(s) | brand(so) != brand(amp(s))}) = 0
& brand(c) = brand(amp(s))
& not(type(c) % {type(x) | x in sources(s)})

=> propose(c,s)]

Here is a last example of a method that returns the list of all possible stereos, classified by
increasing prices. The same thing could be done with other criteria of choice.

[price_order(s1:stereo, s2:stereo) : boolean
-> price(s1) <= price(s2) ]

[cheapest() : list[stereo] ->
let l := all_possible_stereos() in sort(l,price_order @ stereo) ]
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2. OBJECTS, CLASSES AND SLOTS

2.1 Objects and Entities

A program in CLAIRE is a collection of entities communicating one with another (everything in
CLAIRE  is an entity). Some entities are already created when you start running CLAIRE and you will
create new ones when writing programs. Entities are organized into three sorts:  primitive entities,
bags and objects. The set (class) of all entities is called any and the set (a class also) of all objects is
called object.

Primitive entities are already created before you start writing anything: they consist of integers,
floats, symbols, strings, streams and functions. The most common operations on them are already
built in, but you can add yours.

Bags are made of lists, printed (a,b,c,d) and sets, printed {a,b,c,d}. Members of the lists and sets
can be anything.

Objects can be seen as tuples (lists of a given length and structure), with named fields (called slots)
and unique identifiers. Two objects are distinct even if they represent the same tuple. The tuple
structure and the associated slot names is represented by a class. An object is uniquely an instance of
a class which describes the tuple structure (ordered list of slots). CLAIRE comes with a collection of
structures (classes) as well as with a collection of objects (instances).

Each entity in CLAIRE belongs to a special class called its owner, which is the smallest class to
which the entity belongs. The owner relationship is the extension to any of the traditional isa
relationship between objects and classes.

2.2 Classes

A class is a formal name for a set of objects: a class corresponds to the set of all its instances.
Classes are organized into a tree, each class being the subclass of another one, called its superclass.
This relation of being a subclass (inheritance) corresponds to set inclusion: each class denotes a subset
of its superclass. So, in order to identify instances of a class as objects of its superclass, there has to be
some correspondence between the structures of both classes: all slots of a class must be present in all
its subclasses. Subclasses are said to inherit the structure (slots) of their superclass (while refining it
with other slots). The root of the class tree is the class any since it is the set of all objects. Formally, a
class is defined by its superclass and a list of additional slots. Two types of classes can be created:
those whose instances will have a name and those whose instances will be unnamed. Named objects
must inherit (not directly, but they must be descendants) of the class thing.

Each slot is given as  <name>:<range>=<default>. The range is a type and the optional default
value is an object which type is included in <range>. The range must be defined before it is used, thus
recursive class definitions use a forward definition principle (e.g., person).

[person <: thing] // forward definition
[person <: thing(age:integer = 0, father:person)]
[woman <: person] // another forward definition
[man <: person(wife:woman)]
[woman <: person(husband:man)]
[child <: person(school:string)]
[complex <: object(re:float,im:float)]

A class inherits from all the slots of its superclasses, so they need not be recalled in the definition
of the class. For instance, here, the class child contains the slots age and father, because it inherited
them from person.

A default value is used to place in the object slot during the instantiation (creation of a new
instance) if no explicit value is supplied. The default value must belong to the range and will trigger
rules or inverses in the same way an explicit value would. The only exception is the “unknown” value
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which represents the absence of value. unknown is used when no default value is given (the default
default value). Note that the default value is a real entity that is shared by all instances and not an
expression that would be evaluated for each instantiation.

A class is the set union of all the instances of its descendants (itself, its subclasses, the subclasses
of its subclasses, etc...). A class can create new members of itself (see section 3.5), its instances.

In some cases, it may be useful to "freeze" the data representation at some point: for, this, two
mechanisms are offered: a class can be declared to have no instances with

abstract(person)

A class can also be declared to have no more descendants with

defined(colors)

A class can be declared to instantiate ephemeral objects, in which case its extension (the list of its
instances) is not kept. An important consequence is that ephemeral objects may be garbage collected
when they are no longer used. For this behavior, the class must inherit from ephemeral_object..

[action <: ephemeral_object(on:any, performed_by:object)]

A class definition can contain no slot definition, in which case the parenthesis may be dropped.
This would be for instance the case for a forward definition, which is necessary in the case of
recursive class definitions. Here is a simple example.

[parent <: thing]
[child <: thing(father:parent)]
[parent <: thing(son:child)]

A class cannot be defined twice in a different manner. It is necessary to restart the CLAIRE session
if you want to change a class.

2.3 Parametric Classes

A class can be parameterized by a subset of its slots. This means that subsets of the class that are
defined by the value of their parameters can be used as types. This feature is useful to describe
parallel structures that only differ by a few points: parametrization helps describing the common
kernel, provides a unified treatment and avoids redundancy.

A parameterized class is defined by giving the list of slot names into brackets. Parameters can be
inherited slots, and include necessarily inherited parameters.

[stack[of] <: object(of:type,content:list[any],index:integer = 0)]

[complex[re,im] <: object(re:float = 0.0,im:float = 0.0)]

The set of real numbers is then

complex[re:float, im:{0.0}]

When the range of a parameter is a singleton, a shorthand notation is allowed: one can replace the
previous declaration by complex[re : float, im = 0.0]. The set of stacks with range integer
and the set of stacks which contain integers are respectively4

stack[of:{integer}]  stack[of : subtype[integer]]

4Here again, intervals of types are mentionned. {}  denotes the smallest possible type (contained in any other

type, so it is the empty set). Hence, {} .. integer denotes the set of all types contained in integer (such as the

interval 1 .. 10).
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2.4 Calls

Calls are the basic building blocks of a CLAIRE program. A call is a polymorphic function call (a
message) with the usual syntax : a selector followed by a list of parameters between parentheses. A
call is used to invoke a method or to read a slot. As we saw in the tutorial, slots and methods can be
mixed to define one given selector (e.g., price), which is called a property.

eval(x), f(x,y,z), price(x), name(y)

If a slot is read before being defined (its value being unknown), an error is raised. To read a slot
that may not be defined, one must use the get(r:property;x:object) method.

father(John) ;; may provoke an error if father(John) is unknown
get(father,john) ;; may return unknown

When the selector is an operation, such as +,-,%,etc... (% denotes set membership) an infix syntax
is allowed (with explicit precedence rules). Hence the following expressions are valid.

1 + 2, 1 + 2 * 3

Note that new operations may be defined (Section 4.5). This syntax extends to boolean operations
(and:& and or:|). However, the evaluation follows the usual semantic for boolean expression (e.g., (x
& y) does not evaluate y if x evaluates to false).

(x = 1) & ((y = 2) | (y > 2)) & (z = 3)

The values that are combined with and/or do not need to be boolean values (although boolean
expressions always return the boolean values true or false). Using a philosophy similar to LISP, all
values are assimilated to true, except for false, nil and {}. The special treatment for the empty list and
the empty set (cf. Conditionals, Section 3.3) yields a simpler programming style when dealing with
lists or sets.

A dynamic functional call  where the selector is evaluated can be obtained using the call method.
For instance, call(+,1,2) is equivalent to +(1,2) and call(show,x) is equivalent to show(x). The
difference is that the first parameter to call can be any expression. Notice that the compiler will detect
if the first parameter is a constant property and subtitute the “call” with the equivalent functional call.
This is the key for writing parametric methods using the inline capabilities of CLAIRE (cf. Section
4.1). This also mean that using call is not a safe way to force dynamic binding, this should be done
using the property extensible. Notice that call takes a variable number of arguments. A similar method
named apply  can be used to apply a property to an explicit list of arguments.

Since the use of call is somehow tedious, CLAIRE supports the use of variables (local or global) as
selectors in a function call and re-introduce the call implicitly. For instance,

[compose(f:property, g:property, x:any) => f(g(x)) ]

is equivalent to

[compose(f:property, g:property, x:any) => call(f, call(g,x)) ]

The functional syntax for reading slots is elegant but not necessarily most readable. The dotted
syntax (i.e., x.age versus age(x)) is an interesting alternative. CLAIRE supports this syntax for calls
with one arguments. Its intended use is for handling slots (it may become the preferred way to use
slots in future versions) although it actually works for any call with one argument. In the rest of the
document we shall use both syntactical forms to illustrate their use.

2.5 Updates

Assigning a value to a variable is always done with the operator := . This applies to local variables
but also to the slots of an object. The value returned by the assignment is always the value that was
assigned.

age(x) := 10,  john.father := mary

When the instantiation is not made from scratch, but depends on the former value of the variable,
an implicit syntax  ":op" can be used to combine the previous value with a new one using the
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operation op. This can be done with any (built-in or user-defined) operation (An operation is a method
with arity 2 with same type for the range and the first parameter that has been explicitly declared as an
operation).

x.age :+ 1,  friends(john) :add mary, x.price :min 100

Note that the use of :op is pure syntactical sugar: A(x) :op y is equivalent to A(x) := (A(x) op
y). The receiving expression should not, therefore, contain side-effects as in the dangerous following
example A(x :+ 1) :+ 1.
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3. LISTS, SETS AND INSTRUCTIONS

3.1 Lists, Sets and Set expressions

CLAIRE provides two easy means of manipulating collections of objects: sets and lists. Lists are
ordered heterogeneous collections. To create a list, one must use the list(...) instruction : it admits any
number of arguments and returns the list of its arguments. Each argument to the list(...) constructor is
evaluated.

list(a,b,c,d)   list(1,2 + 3)   list()

Sets are collections without order and without duplicates. Sets are created similarly with the set(...)
constructor

set(a,b,c)   set(1,2 + 3)

Constant sets are valid CLAIRE types and can be build directly as

{a,b,c,d}  {3, 8}

A set can also be formed by selection. The result can either be a set with {x in a | P(x)}, or a list
with list{x in a | P(x)}, when one wants to preserve the order of a and keep the duplicates if a was a
list.

{x in class | (thing % x.ancestors) }
list{x in (0 .. 14) | x mod 2 = 0}

Also, the image of a set via a function can be formed. Here again, the result can either be a set with
{f(x) | x in a} or a list with list{f(x) | x in a}, when one wants to preserve the order of a and the
duplicates.

{(x ^ 2) | x in (0 .. 10)}
list{size(slots(x)) | x in class}

For example, we have the traditional average_salary method:

[av_sal(s:set[man]) : float -> sum(list{sal(m) | m in s}) / size(s)]

Last, two usual constructions are offered in CLAIRE to check a boolean expression universally
(forall) or existentially (exists). A member of a set that satisfies a condition can be extracted (a non-
deterministic choice) using the exists construct: exists(x in a | f(x)). For instance, we can write :

exists(x in (1 .. 10) | x > 2) ;; returns 3 in most implementations
exists(x in class | length(x.ancestors) > 10)

Conversely, the boolean expression forall(x in a | f(x)) returns true if and only if f(x) is true for all
members of the set a. The following example returns false (because of 1) :

forall(x in (1 .. n) | exists( y in (1 .. x) | y * y > x))

3.2 Blocks

Parentheses can be used to group a sequence of instructions into one. In this case, the returned
value is the value of the last instruction.

(x := 3, x := 5)

Parentheses can also be used to explicitly build an expression. In the case of boolean evaluation
(for example in an if), any expression is considered as true except false, the empty set {} and the
empty list list().

(1 + 2) * 3     if (x = 2 & l)
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Local variables can be introduced in a block with the let construct. These variables can be typed,
but it is LETnot mandatory. A let instruction contains a sequence of variable definitions and,
following the in keyword,  a body (another instruction). The scope of the local variable is exactly that
body and the value of the let instruction is the value returned by this body.

let x := 1, y := 3 in (z := x + y, y := 0)

The value of local variables can be changed with the same syntax as an update to an object: the
syntax :op is allowed for all operations op.

x := x + 1,   x :+ 1,  x :/ 2,  x :^ 2

When is a special form of the let which only evaluates the body if the value of the local variable
(unique) is not unknown (otherwise, the returned value is unknown). This is convenient to use slots
that are not necessarily defined as in the following example

when f := get(father,x) in printf(“his father is ~S\n”,f)

Local variables can also be introduced as pattern, that is a list of variables. In that case, the initial
value must be a list of the right length. For instance, one could write :

let (x,y,z) := list(1,2,3) in x + y + z

The list of variable is simply introduced as a sequence of variables surrounded by two parenthesis.
The most common use of this form is to assign the multiple values returned by a function with range
tuple, as we shall see in the next section. If we suppose that f is a method that returns a tuple with
arity 2, then the two following forms are equivalent :

let (x1,x2) := f() in ...

let l := f(), x1 := l[1], x2 := l[2] in ...

List of variables can also be assigned directly within a block as in the following example

(x1,x2) := list(x2,x1)

Although this mostly used for assigning the result of tuple-valed functions without any useless
allocation, it is interesting to note that the previous example will be compiled into a nice value-
exchange intruction without any allocation (the compiler is smart enough to determine that the list
“ list(x2,x1) ” is not used as such).

The key principle of lexical variables is that they are local to the “ let ” in which they are defined.
CLAIRE supports another similar type of block, which is called a temporary slot assignment. The idea
is to change the value of a slot but only locally, within a given expression. This is done as follows :

let r(x) := y in e

changes the value of r(x) to y, executes e and then restore r(x) to its previous value. It is strictly
equivalent to

let old_v := r(x) in (r(x) := y, let result := e in (r(x) := old_v, result)

3.3 Conditionals

if statements have the usual syntax (if <test> x else y) with implicit nestings (else if). The
<test> expression is evaluated and the instruction x is evaluated if the value is different from false, nil
or {} (cf. Section 2.4). Otherwise, the instruction y is evaluated, or the default value nil is returned if
no else part was provided.

if (x = 1) x := f(x,y)
else if (x > 1) x := g(x,y)
else (x := 3, f(x,y))

if (let y := 3 in x + y > 4 / x) print(x)
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If statements must be inside a block, which means that if they are not inside a sequence surrounded
by parenthesis they must be themselves surrounded by parenthesis (thus forming a block).

case is a set-based switch instruction: CLAIRE tests the branching sets one after another, executes
the instruction associated with the first set that contains the object and exits the case instruction
without any further testing. Hence, the default branch is associated with the set any. As for a if, the
returned value is nil if no branch of the case is relevant.

case x ({1} x + 1, {2,3} x + 2, any x + 3)
case x (integer (x := 3, print(x)), any error("~I is no good\n",x))

Note that the compiler will not accept a modification of the variable that is not consistent with the
branch of the case (such as case x ({1} x := 2))

3.4 Loops

CLAIRE supports two types of loops: iteration and conditional loops (while and until). Iteration is
uniquely performed with the for statement, it can be performed either on a list or on a set:

for x in (1 .. 3) a[x] := a[x + 3]
for x in list{x in class | size(x.ancestors) >= 4} printf("~S \n",x)

A set here is taken in a very general sense, that is an object that can be seen as a set through the
enumeration method set!. This includes all CLAIRE types but is not restricted since this method can be
defined on new classes. For instance, set!(n:integer) returns the subset of (0 .. 29) that is represented
by the integer n taken as a bit-vector.

The iteration control structure plays a major role in CLAIRE.  It is possible to optimize its behavior
by telling CLAIRE how to iterate a new class (C) of set. This is done through adding a new restriction
of the property iterate for this class C, which tells how to apply a given expression to all members of
an instance of C. This may avoid the explicit construction of the equivalent set which is performed
through the set! method. This optimization aspect is described in Section 4.6.

Conditional loops are also standard (the exiting condition is executed before each loop in a while
and after each loop in a until),

while (x > 0) x :+ 1
until (x = 12) x :+ 1
while not(i = size(l)) (l[i] := 1, i :+ 1)

The value of a loop is {}. However, loops can be exited with the break(x) instruction, in which
case the return value is the value of x.

for x in class (if (x % subtype[integer]) break(x))

3.5 Instantiation

Instantiation is the mechanism of creating a new object of a given class; instantiation is done by
using the class as a selector and by giving a list of "<slot>=<value>" pairs as arguments.

complex(re = 0.0, im = 1.0)
person(age = 0, father = john)

Recall that the list of instances of a given class is only kept for classes that do not inherit from the
ephemeral_object  class. In fact, the creation of a new instance of a class corresponds to a function
call to the method close. Objects with a name are represented by the class thing, hence descendants of
thing (classes that inherit from thing) can be given a name with the definition operation ::. These
named objects can later be accessed with their name, while objects with no name offer no handle to
manipulate them after their creation outside of their block (objects with no name are usually attached
to a local variable with a let whenever any other operation other than the creation itself is needed)

paul :: person(age = 10, father = peter)
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Additionally, there is a simpler way of instantiating parameterized classes by dropping the slot
names. All values of the parameter slots must be provided in the exact order that was used to declare
the list of parameters. For instance, we could use :

complex(0.0,1.0), stack(integer)

3.6 Exception Handling

Exceptions are a useful feature of software development: they are used to describe an exceptional
or wrong behavior of a block. Exception can be raised, to signal this behavior and are caught by
exception handlers that surround the code where the exceptional behavior happened. Exceptions are
CLAIRE objects (a descendent from the class exception) and can contain information in slots. The
class exception is a descendent from ephemeral_object, so the list of instances is not kept. In fact,
raising an exception e is done by creating an instance of the class e. Then, the method close is called:
the normal flow of execution is aborted and the control is passed to the previously set dynamic
handler. A handler is created with the following instruction.

try <expression> catch <class> <expression>

For instance we could write

try 1 / x catch any (printf("1/~A does not exists",x),0)

A handler  "try e catch c f", associated with a class c, will catch all exceptions that may occur
during the evaluation of e as long as they belong to c. Otherwise the exception will be passed to the
previous dynamic handler (and so on). When a handler "catches" an exception, it evaluates the "f"
part and its value is returned. The last exception that was raised can be accessed directly with the
exception!() method.

The most common exceptions are errors and there is a standard way to create an error in CLAIRE

using the error(s:string,l:listargs) instruction. This instruction creates an error object that will
be printed using the string s and the arguments in l, as in a printf statement (cf. Section 6). Here are a
few examples.

error("stop here")
error("the value of price(~S) is ~S !",x,x.price)

Another very useful type of exception is the contradiction. CLAIRE provides a class contradiction
and a method contradiction!() for creating new contradictions. This is very commonly used for
hypothetical reasoning with forms like

try ( world+(),    ; create a new world
...          ; performs an update that may cause a contradiction

catch contradiction (world-(), ; return to previous world
...
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4. METHODS AND TYPES

4.1 Methods

A method is the definition of a property for a given signature. A method is defined by the
following pattern : a selector (the name of the property represented by the method), a list of typed
parameters (the list of their types forms the domain of the method), a range expression and a body (a
list of instructions introduced by ->).

[<selector>(<typed parameters>) : <range>opt ->|=>   <body> ]

[fact(n:{0}) : integer -> 1]
[fact(n:integer) : integer -> n * fact(n - 1)]
[print_test() : void -> print("Hello"), print("world\n") ]

If two methods have intersecting signatures and the property is called on objects in both
signatures, the definition of the method with the smaller domain is taken into account. If the two
domains have a non-empty intersection but are not comparable, a warning is issued and the result is
implementation-dependent. The set of methods that apply for a given class or return results in another
can be found conveniently with methods.

methods(integer,string) ; returns (string!@integer, make_string@integer)

The range declaration can only be omitted if the range is any. In particular, this is convenient when
using the interpreter.

[loadMM() -> open(my_module), load("f1"), load("f2"), end(my_module)]

If the range is void (unspecified), the result cannot be used inside another expression (a type-
checking error will be detected at compilation).

CLAIRE supports methods with a variable number of arguments using the listargs keyword. The
arguments are put in a list which is passed to the (unique) argument of type listarg. For instance, if we
define

[f(x:integer,y:listargs) -> x + size(y)]

A call f(1,2,3,4) will produce the binding x = 1 and y = list(2,3,4) and will return 4.

The body of a method is either a CLAIRE expression (the most common case) or an external (C)
function. In the first case, the method can be seen as defined by a lambda abstraction. This lambda
can be created directly through the following:

lambda[(<typed parameters>), <body> ]

Defining a method with an external function is the standard way to import a C/C++ function in
CLAIRE. This is done with the function(...) constructor, as in the following.

[f(x:integer,y:integer) -> function(my_version_of_f)]

[cos(x:float) -> function(cos_for_claire)]

The integration of external functions is detailed in Section 6.5.

CLAIRE also provides inline methods, that are defined using the => keyword before the body
instead of ->. An inline method behaves exactly like a regular method. The only difference is that  the
compiler will use in-line substitution in its generated code instead of a function call when it seems
more appropriate5. Inline methods can be seen as polymorphic macros, and are quite powerful
because of the combination of parametric function calls (using call(...)) and parametric iteration

5 The condition for substitution is implementation-dependent. For isntance, the compiler checks that the

expression that is substituted to the input parameter is simple (no side-effects and a few machine instructions) or

that there is only one occurence of the parameter.
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(using for).  Let us consider the two following examples, where subtype[integer] is the type of
everything that represents a set of integers:

[sum(s:subtype[integer]) : integer
=> let x := 0 in (for y in s x :+ y, x) ]

[min(s:subtype[integer], f:property) : integer
=> let x := 0, empty := true in

(for y in s
(if empty (x := y, empty := false)
 else if call(f,y,x) x := y),

 x) ]

For each call to these methods, the compiler performs the substitution and optimizes the result. For
instance, the optimized code generated for sum({age(x) | x in person})  and for           min({x
in 1 .. 10| f(x) > 0}, >)  will be

let x := 0 in
(for %v in person.instances

let y := %v.age in x :+ y, x)

let x := 0, empty := true, y := 1, max := 10 in
(while (y <= max)

(if (f(y) > 0)
(if empty (x := y, empty := false)

  else if (y > x) x := y),
 y :+ 1),

 x)

Notice that in these two cases the construction of temporary sets is totally avoided. The combined
use of inline methods and functional parameters provides an easy way to produce generic algorithms
that can be instantiated  as follows.

[mymin(l:list[integer]) : integer -> min(l, my_order) ]

The code generated for the definition of mymin @  list[integer] will use a direct call to my_order
(with static binding) and the efficient iteration pattern for lists, because min is an inline method. In
that case, the previous definition of min may be seen as a pattern of algorithms.

4.2 Types

CLAIRE uses an extended type system that is built on top of the set of classes. As a class, a type
denotes a set of objects, but  it  can be much more precise than a class. Since methods are attached to
types (by their signature), this allows to attach methods to complex sets of objects.

Any class (even parameterized) is a type. Finite sets of objects can also be used as types. For
example, {john, jack, mary} and {1,4,9} are types.

<type> ≡ <class> | <class>[<parameter>:<type>seq] | {<item>seq } |
(<item> .. <item>) |(<type> U <type>) | (<type>  ̂<type>) |
set[<type>] | list[<type>]  | subtype[<type>]  |
tuple(<type>seq)

Extended intervals (x .. y) are accepted for items x and y in some classes that are ordered by <=.
The set of such classes is integer, float, symbols and strings. For example, (1 .. 10) and ('a' ..
'z'), the set of lower-case characters are types. Moreover, CLAIRE offers type constructors for union,
intersection, typed sets, typed lists and tuples. For example, integer U float denotes the set of
numbers and (1 .. 100) ^ (-2 .. 5) denotes the intersection of both integer intervals, i.e. (1 .. 5).
set[(1 .. 10)] denotes the type of sets of integers between 1 and 10 and list[float] denotes all lists
of floats. Finally, the last constructor is used to denote tuples. For instance, tuple(integer, char)
denotes the set of pairs with an integer as first element and a character as second.
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Classes are sorted with the inheritance order. This order can be extended to types with the same
intuitive meaning that a type t1 is a subtype of a type t2 if the set represented by t1 is a subset of that
represented by t2. The relation "t1 is a subtype of a type t2" is noted t1 <= t2. This order supports the
introduction of the “ subtype ” constructor: subtype[t] is the type of all types that are less than t. For
example, subtype[ list[integer U float]] denotes the set of types are subtypes of list[integer U
float], which are types that contain lists of numbers.For instance, list[integer] and tuple(integer U
float, integer U float) are both members of this type.

A syntactical remark: CLAIRE also accepts the expression C[p = v] as a shortcut for C[p:{v}]. For
instance, stack[of = integer] is the set of stacks whose parameter "of" is exactly integer, whereas
stack[of:subtype[integer]] is the set of stacks whose parameter (a type) is a subset of integer.

The tuple types play an important role since they are used to represent functions that returns
multiple values. A function that should return multiple values is represented in CLAIRE with a method
with range tuple that returns the list of these values. For instance, here is a method that returns the
minimum and the “ second smallest ” members of a list :

[min2(l:list[integer]) : tuple(integer,integer)

  -> let x1 := INT+, x2 := INT+ in

             (for x in l ( if (x < x1) (x2 := x1, x1:= x)

 else if (x < x2) (x2 := x)),

  list(x1,x2)) ]

By declaring the range of this method as tuple, we allow the compiler to perform a few
optimizations. Especially, if min2 is used in a multi-variable assignment such as

 let (x,x’) := min2(l) in ...

no useless list allocation will be perfomed, which enables the use of tuple-valued methods as the
righteous implementation of multi-valued functions.

4.3 Polymorphism

In addition to the traditional "objet-oriented" polymorphism, CLAIRE also offers two forms of
parametric polymorphism, which can be considered as advanced features and skipped by a novice
reader.

(1) There often exists a relation between the types of the arguments of a method. Capturing such a
relation is made possible in CLAIRE through the notion of an "extended signature". For instance, if we
want to define the operation "push" on a stack, we would like to check that the argument y that is
being pushed on the stack s belongs to the type of(s), that we know to be a parameter of s. The value
of this parameter can be introduced as a variable and reused for the typing of the remaining variables
(or the range) as follows.

[push(s:stack[of = X], y:X) -> ( content(s) :add y, index(s) :+ 1)]

The declaration s:stack[of = X] introduced X as a type variable with value of(s), since stack[of]
was defined as a parameterized class. using X in y:X simply means that y must belong to the type
of(s). Such intermediate type variables must be free identifiers (the symbol is not used as the name of
an object) and must be introduced with one of the following templates:

    <class>[pi=vi,...,], tuple(...,vi,...)

The use of type variables in the signature can be compared to pattern matching. The first step is to
bind the type variable. If  (p = V) is used in c[ ...] instead of  p:t, it means that we do not put any
restriction on the parameter p but that we want to bind its value to V for further use. Note that this is
only interesting if the value of the parameter is a type itself. Similarly, the use of type variables inside
tuple(...) only applies to tuple of types, since the variable will be bound to the i-th component of the
tuple (not to the type of this i-th component). Once a type variable V is defined, it can be used to form
a pattern (called a <type with var> in the CLAIRE syntax in Appendix A) as follows:
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<type with var> ≡  <type> | <var> | {<var>} |
    tuple(<type with var>seq+ ) |
     <class>[〈 <var>:<type with var> | <var>=<var> 〉seq+]

For instance, here is the definition of a method that pushes a pair (y,0) on the stack, assuming that
each stack member is a pair whose second item is an integer  :

[push(s:stack[of = tuple(X,integer)], y:X) -> push(s, list(y,0)) ]

(2) The second advanced typing feature of CLAIRE is designed to capture the fine relationship
between the type of the output result and the types of the input arguments. When such a relationship
can be described with a CLAIRE expression e(x1,...,xn), where x1, ..., xn are the types of the input
parameters, CLAIRE allows to substitute type[e] to the range declaration. It means that the result of the
evaluation of the method should belong to e(t1,...,tn) for any types t1,...,tn that contain the input
parameters.

For instance, the identity function is known to return a result of the same type as its input
argument (by definition !). Therefore, it can be described in CLAIRE as follows.

[id(x:any) : type[x] -> x]

In the expression that we introduce with the type[e] construct, we can use the types of the input
variables directly through the variables themselves. For  instance, in the "type[x]" definition of the
Identity example, the "x" refers to the type of the input variable. Notice that  the types of the input
variables are not uniquely defined. Therefore, the user must ensure that her "prediction" e of the
output type is valid for any valid types t1, ..., tn of the input arguments.

The expression e may use the extra type variables that were introduced earlier. For instance, we
could define the "top" method for stacks as follows.

[top(s:stack[of = X]) : type[X] -> content[s.index] ]

The "second-order type" e (second-order means that we type the method, which is a function on
objects, with another function on types) is built using the basic CLAIRE operators on types such as U,
^ and some useful operations such as "member". If c is a type, member(c) is the minimal type that
contains all possible members of c. For instance, member({c}) = c by definition. This is useful to
describe the range of the enumeration method set!. This method returns a set, whose members belong
to the input class c by definition. Thus, we know that they must belong to the type member(X) for any
type X to whom c belongs (cf.  definition of member). This translates into the following CLAIRE

definition.

set!(c:class) : type[set[member(c)]] -> instances(c)

For instance, if  c belongs to (A .. B) then set!(c) belongs to set[B].

To summarize, here is a more precise description of the syntax for defining a method:

[<property> (<vi>:<ti>, i ∈ (1 .. n)) : <range> -> <exp> ]

Each type ti for the variable vi is an "extended type" that may use type variables introduced by the
previous extended types t1, t2 ... ti-1 . An extended type is defined as follows.

<et> ≡ <class> | <set> | <var> | (<et>  ^ | U <et>) | (<obj> .. <obj>)|
set[<var>] | list[<var>] | class[<var>] | tuple(<et>seq)

The <range> expression is either a regular type or a "second order type", which is a CLAIRE

expression e introduced with the "type[e]" syntactical construct .

<range> ≡ <type> | type[<expression>]

Here is a last interesting example, which illustrates the power of extended signature to capture
polymorphic functions. We want to import a method sort from C that sorts a list according to an order
specified as a parameter (a method). To use an optimized C implementation, we want to make sure
that the method will apply correctly to members of the list and that no type error will occur inside the
C function. Here is the correct  CLAIRE definition.
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[sort(m:method[domain:tuple(X,X), range = boolean], l:list[X])
: type[l]  -> function(sort_list)]

4.4 Escaping Types

There are two ways to escape type checking  in CLAIRE. The first one is casting, which means
giving an explicit type to an expression. The syntax is similar to C

<cast> ≡ (<expression> as <type>)

This will tell the compiler that <expression> should be considered as having type <type>. Casting
is ignored by the interpreter and should only be used as a compiler optimization. The second type
escaping mechanism is the non-polymorphic method call, where we tell what method we want to use
by forcing the type of the first argument. This is equivalent to the super message passing facilities of
many object-oriented language.

<super> ≡ <selector>@<type>(<exp>seq)

The instruction f@c(...) will force CLAIRE to use the method that it would use for f(...) if the first
argument was of type c (CLAIRE only checks that this first argument actually belongs to c).

CLAIRE supports side-effects on lists and sets which are not type safe. What this means is that
these operations may cause further type error that will not be caught by the compiler. The cause is the
fact that it is possible, under certain occasions (such as a cascade of function calls passing a list as an
argument), to add a new member x to a list l that currently belongs to list[t], while x does not belong
to t.  Although rare, this possibility (due to the nature of the list[t] type) means that the compiler will
only use these kinds of type when it can be sure that no special side-effects can be performed
(fortunately, this is often the case). The rest of the time, the compiler will generate code that relies on
dynamic typing (type checking at run time).

4.5 Selectors, Properties and Operations

As we previously said, CLAIRE supports two syntaxes for using selectors, f(...) and (.... f ....). The
choice only exists when the associated methods have exactly two arguments. The ability to be used
with an infix syntax is attached to the property f and not to a particular restriction of it (a method
attached to a given signature).

f :: operation()

Once f has been declared as an operation, CLAIRE will check that it is used as such subsequently.
Restrictions of f can then be defined with the usual syntax

[f(x:integer, y:integer) : ... ]

Note that declaring f as an operation can only be done when no restriction of f is known. If the first
appearance of f is in the declaration of a method, f is considered as a normal selector and its status
cannot be changed thereafter. Each operation is an object (inherits from property) with a precedence
slot that is used by the reader to produce the proper syntax tree from expressions without parentheses.

gcd :: operation(precedence = precedence(/))
12 + 3 gcd 4            ;; same as 12 + (3 gcd 4)

So far we have assumed that any method definition is allowed, provided that inheritance conflict
may cause warning. Once a property is compiled, CLAIRE uses a more restrictive approach since only
new methods that have an empty intersection with existing methods (for a given property) are
allowed. This allows the compiler to generate efficient code. It is possible to keep the "open" status of
a property when it is compiled through the abstract declaration.

abstract(f)

Such a statement will force CLAIRE  to consider f as an "abstract" parameter of the program that
can be changed at any time. In that case, any re-definition of f (any new method) will be allowed.
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When defining a property parameter, one should keep in mind that another user may redefine the
behavior of the property freely in the future.

It is sometimes useful to model a system with redundant information. This can be done by
considering pairs of relations inverse one of another. In this case the system maintains the soundness
of the database by propagating updates on one of the relations onto the other. For example if husband
is a relation from the class man onto the class woman and wife a relation from woman to man, if
moreover husband and wife have been declared inverse one of another, each modification (addition or
retrieval of information) on the relation husband will be propagated onto wife. For example
husband(mary) := john will automatically generate the update wife(john) := mary. Syntactically,
relations are declared inverses one of another with the declaration

inverse(husband) := wife

This can be done for any relation: slots and arrays (cf. Section 5). Inverses introduce an important
distinction between multi-valued relations and mono-valued relations. A relation is multi-valued in
CLAIRE when its range is a subset of bag (i.e. a set or a list). In that case the slot multivalued of the
relation is set to true6 and the set associated with an object x is supposed to be the set of values
associated with x through the relation.

 This has the following impact on inversion. If r and s are two mono-valued relations inverse one
of another, we have the  following equivalence :

s(x) = y ⇔ r(y) = x

In addition, the range of r needs to be included in the domain of s and conversely. The meaning is
different if r is multi-valued since the inverse declaration now means :

s(x) = y ⇔  x ∈ r(y)

Two multi-valued relations can indeed be declared inverses one of another. For example, if parents
and children are two relations from person to set[person] and if inverse(children) = parents, then

children(x) = {y in person | x ∈ parents(y)}

Modifications to the inverse relation are triggered by updates (with :=) and creations of objects
(with filled slots). Since the explicit inverse of a relation is activated only upon modifications to the
database (it is not retroactive), one should always set the declaration of an inverse as soon as the
relation itself is declared, before the relation is applied on objects. This will ensure the soundness of
the database. To escape the triggering of updates to inverse relations, the solution is to fill the relation
with the method put instead of :=. For example, the following declaration

let john := person() in (put(wife,john,mary), john)

does the same as

john :: person(wife = mary)

without triggering the update husband(mary) := john.

4.6 Iterations

We just saw that CLAIRE will produce in-line substitution for some methods.  This is especially
powerful when combined with parametric function calls (using call(...)) taking advantage of the fact
that CLAIRE is a functional language. There is another form of code substitution supported by CLAIRE

that is also extremely useful, namely the iteration of set data structure.

Any object s that understands the set! method can be iterated over. That means that the
construction for x in s e(x) can be used. The actual iteration over the set represented by s is done by
constructing explicitly the set extension. However, there often exists a way to iterate the set structure
without constructing the set extension. The simplest example is the integer interval structure that is
iterated with a while loop and a counter.

It is possible to define iteration in CLAIRE through code substitution. This is done by defining a
new inline restriction of the property iterate, with signature (x:X,v:Variable,e:any). The principle is

6 This slot can be reset to false in the rare case when the relation should actually be seen as mono-valued.
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that CLAIRE will replace any occurence of (for v in x  e) by the body of the inline method as soon as
the type of the expression x matches with X (v is assumed to be a free variable in the expression e).
For instance, here is the definition of iterate over integer intervals :

[iterate(x:interval[min:integer,max:integer],v:Variable,e:any)
=>  let v := min(x), %max := max(x) in

(while (v <= %max) (e, v :+ 1)) ]

Here is a more interesting example. We can define hash tables as follows. A table is defined with a
list (of size 2n - 3, which is the largest size for which a chunk of size 2n is allocated), which is full of
“unknown” except for these objects that belong to the set. Each object is inserted at the next available
place in the table, starting at a point given by the hashing function (a generic hashing function
provided by CLAIRE: hash).

[htable <: object( count:integer = 0,
index:integer = 4,
arg:list = nil)]

[set!(x:htable) -> {y in x.arg | known?(y)}]
[insert(x:htable,y:any)

-> let l := x.arg in
(if (x.count >= length(l) - 3)

 (x.arg := make_list(^2(x.index - 3), unknown),
 x.index :+ 1, x.count := 0,
 for z in {y in l | known?(y)} insert(x,z),
 insert(x,y))

 else let i := hash(l,y) in
(until (l[i] = unknown | l[i] = y)

   (if (i = length(l)) i := 1 else i :+ 1),
 if (l[i] = unknown)

(x.count :+ 1, l[i] := y)))]

To iterate over such tables without computing set!(x) we define

[iterate(s:htable, v:Variable, e:any)
=> for v in s.arg (if known?(v) e) ]

Thus, CLAIRE will replace

let s:htable := ... in sum(s)

by

let s:htable := ... in
(let x := 0 in

(for v in s.arg
(if known?(v) x :+ v),

 x))

The use of iterate will only affect the compiled code unless one uses oload, that calls the optimizer
for each new method. iterate is a convenient way to extend the set of CLAIRE data structure that
represent sets with the optimal efficiency. Notice that, for a compiled program, we could have defined
set! as follows (this definition would be valid for any new type of set).

[set!(s:htable) -> {x | x in s}]
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5. ARRAY, RULES AND HYPOTHETICAL REASONING

5.1 Generalized Arrays

Arrays can be defined in CLAIRE with the following syntax :

[ <name>[var:(<integer> .. <integer>)] : <type> -> <expression(var)> ]

The <type> is the range of the array and <expression> is an expression that is used to fill the array.
This expression may either be a constant or a function of the variables of the array (i.e., an expression
in which the variables appear). If the expression is a constant, it is implicitly considered as a default
value, the domain of the array may thus be infinite. If the default  expression is a function, then the
array is filled when it is created, so the domain needs to be finite. When one wants to represent
incomplete information, one should fill this spot with the value unknown. For instance, we can define

[square[x:(0 .. 20)] : integer -> x * x]

Arrays can be accessed through square brackets and can be modified with assignment expressions
as for local variables.

square[1], square[2] := 4, square[4] :+ 5,

Arrays have been extended in CLAIRE by allowing to use any type instead of an integer interval for
their domain. They are thus useful to model relations, when the domain of a relation is more complex
than a class (in which case a slot should rather be used to model the relation).The syntax for such a
definition is, therefore,

<array> ≡ [<name>[var:<type>] : <type> -> <expression(var)>]

This is a way to represent many sorts of complex relations and use them as we would with arrays.
Here are some examples.

[creator[x:class] : string -> "who created that class" ]
[maximum[x:set[0 .. 10]] : integer

-> (if x min(x,> @ integer) else 0) ]
[color[x:{car,house,table}] : colors -> unknown ]

We can also define two-dimensional arrays such as

[distance[x:tuple(city,city)] : integer -> 0]
[cost[x:tuple(1 .. 10,1 .. 10)] : integer -> 0]

The proper way to use such an array is distance[list(denver,miami)] but CLAIRE also supports
distance[denver,miami]. CLAIRE also supports a more straightforward declaration such as :

[cost[x:(1 .. 10), y:(1 .. 10)] : integer -> 0]

As for properties, arrays can have an explicit inverse, which is either a property or an array. Notice
that this implies that the inverse of a property can be set to an array.

5.2 Logical Assertions

The purpose of the two next sections is to describe how to write logical rules. A rule in CLAIRE is
made by associating a logical condition to an expression. Each time that the condition becomes true
for one or two entities, the expression will be evaluated for these entities. To define a logical
condition, we use the logic language defined by the following grammar.

<assertion> ≡ <expression> <comp> <expression> |
exists(<var>, <assertion>) |
not(<assertion>) |
if (<expression><comp><expression>) <assertion>
else <assertion> |
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<assertion> & <assertion> |
<assertion> | <assertion>

<expression> ≡ <variable> | <entity> | <property>(<expression>) |
<array>[<expression>] | <expression> <operation> <expression> |
{<var> in <expression> | assertion} |
list{<var> in <expression> | assertion}

The basic building block of a logical condition is a logical expression. The set of logical
expressions is a subset of CLAIRE expressions with the same semantics. For instance, here are some
logical expressions.

age(Paul), Paul, size[x], x + y, x + (y * z),
{x in person| age(x) > 10}

The value of a logical expression is a CLAIRE entity. Logical assertions are made by combining
expressions. The most common type of assertion is obtained by comparing two expressions with a
comparison operation. A comparison operation is an operation that returns a boolean value. For
instance, =, <, <=, % are very commonly used comparisons. Here are some logical assertions:

age(Paul) = 10,
size({x in person | Paul % friend(x)}) < 2,
y % integer

Existential quantification (there exists a ... such that ...) is introduced with the exists construction.
For instance, here is how we say that there exists a common friend (z) to two persons x and y:

exists(z, x % friend(z) & y % friend(z) )

Existential variables can be typed, as in

exists(z:woman, x % friend(z) & y % friend(z) )

Notice that this form of exists in only permited inside logical conditions because there is an
implicit iteration over any (i.e., exists(x, P(x)) ⇔  exists(x in any | P(x))). Variables that are not
introduced in the logical condition by an "exist" or an "{.. in .. | ...}" are called free variables, they can
be used within their scope to form expressions. Last, assertions can be formed as a conditional
expression using if. The test in a logic conditional is necessarily of the form (expression comp
expression) and it must have two branches. Here is an example that one could use to compute taxes:

if (r < 10000) x = 0
else if (r < 20000) x = r * 0.1
else x = r * 0.2 - 2000

The value of a logical assertion is always a boolean, thus logical assertions can be combined with
& (and) and | (or). In addition to pre-defined operations such as <= or +, it is possible to use new
properties inside logical assertions but they need to be described using the description array and a set
of keyword including comparison, bijection, binary_operation, monoid, group_operation and
mapping. For instance, to use the operation less_than inside a logical assertion, we need to declare :

description[less_than] := comparison

A complete description of description can be found in Appendix B.

 5.3 Rules

A rule in CLAIRE is made by associating a logical condition to an expression. The rule is attached
to one or two entities: each time that the condition becomes true, the expression will be evaluated for
these entities. The interest of rules is to attach an expression not to a functional call (as with methods)
but to a logical condition : the programmer needs not to explicitly place method calls wherever the
condition might become true, the system automatically evaluates the expression whenever the
condition becomes true.
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To define a rule, we must define one or two free variables, that are introduced as parameters of the
rule (these free variables can be seen as universally quantified variables), a condition, that is given as
an assertion using the previously defined variables and a conclusion that is preceded by =>. Here is a
classical transitive closure example:

[r1(x:person, y:person) ::
exists(z, x % friend(z) & z % friend(y) )
=> friend(y) :add x]

Rules are named (for easier debugging) and can use any CLAIRE expression as a conclusion, using
both free and existentially quantified variables, such as in:

[r2(x:person, y:person) ::
 exists(z, age(x) + age(y) = age(z) )

=> printf("~S ~S ~S\n",x,y,z)]

It is now important to understand how a rule works. Rules are checked (efficiently) each time that
an event  occurs. Events are update to slots or arrays that are declared as event-generating with the
event statement.

<events definition> ≡  event | noevent( < <array> | <property> >seq)

These declarations can be grouped together with the following syntax :

event(age,friend,fib)  ⇔ (event(age), event(friend), event(fib) )

Rules are associated to a logical condition, which uses certain relations. One can foresee that the
condition is liable to become true when these relations are updated. The control offered to the user is
the ability to choose which of the relations (arrays and slots) that appear in the condition of the rule
should trigger an evaluation of that condition (and in the case of a fulfilled requirement, evaluate the
conclusion of the rule). Hence, a rule is triggered only upon updates to relations that are relevant to
the rule (that may change the evaluation of the condition) and that are declared events. Rule triggering
can be traced using trace(if_write), as shown in Appendix C. Note that a rule like:

[r1(x:(0 .. 20)) :: x mod 2 = 0 => printf("~S is even\n",x)]

will never be fired since no relation appears in its condition. Since rules are triggered by events, a
rule is never applied at the time it is created to objects that would already satisfy its condition. For
instance, let us define the following rule to fill the array fib with the Fibonacci sequence.

[r3(x:(0 .. 100), y:integer) ::
if (x < 2) y = 1 else y = fib[x - 1] + fib[x - 2] =>  fib[x] := y]

This rule will not compute fib[x] for all x in (0 .. 100). However, as soon as we give two
consecutive values fib[x] and fib[x+1] for some x, the rule will compute all further values. Thus the
right CLAIRE statement should be

[r3(x:(0 .. 100), y) ::
y = fib[x - 1] + fib[x - 2] =>  fib[x] := y ]

 (fib[0] :=1, fib[1] := 1)

or, more simply

fib[0] :=1, fib[1] := 1,
for x in (2 .. 100)  fib[x] := fib[x - 1] + fib[x - 2]

A rule considers as events all slots or arrays that have been declared as such before  the rule has
been declared, so the event declaration needs to precede the rule declaration, in order to create the
“demons” that will watch over the given relation and fire the rule when needed. The declaration
noevent(...) is usually used to correct mistakes at the top-level, but it can also be used to prevent
explicitly a rule to react to some relations that were declared previously as events for other rules. By
spreading the event declarations (and occasionally noevent declarations) before and between the rules,
one has a complete control over the triggering of the rules. Updates that are considered as events are:
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• r(x) := y,  where r is a slot of x and event(r) has been declared.

• a[x] := y, where a is an array and event(a) has been declared.

• r(x) :add y, where r is a multi-valued property of x (with range bag) and event(r) has been
declared.

• a[x] :add y, where a is a multi-valued array  and event(a) has been declared.

Note that an update of the type r(x) :delete y (resp. a[x] :delete y), where r is a slot of x (resp. a is
an array), will never be considered an event if r is multi-valued.  However, one can always replace
this declaration by r(x) := delete(r(x), y) which is an event, but which costs a memory allocation for
the creation of the new r(x).

Each time such an event occur, the conclusion of each rule is evaluated for each set of objects that
satisfy the condition because of the event. Although this usually means that the condition was not
satisfied before, this is not always the case. For instance, consider the rule:

[r4(x:integer) :: f[x] = 1 | f[x] = 2 => print(x)]

if f[x] is 1 and is changed to 2, the rule will be triggered. This is the desired behavior in most
cases, but sometimes it is needed that the rule is triggered only once. The proper solution is to guard
the conclusion with a flag:

[flag[x:integer] : boolean -> false]
[r4'(x:integer) ::

f[x] = 1 | f[x] = 2 => if not(flag[x]) (flag[x] := true, print(x))

It is possible to perform an update without creating any triggering event with the method put. It is
possible to perform the rule propagation later with the method propagate. This allows the user to keep
a precise control over when and how rule propagation is performed. Also, since the logical variables
may be used in the conclusion, it is necessary not to introduce new local variables in the conclusion
with the same name.

5.4 Hypothetical Reasoning

In addition to rules, CLAIRE also provides the ability to do some hypothetical reasoning. It is
indeed possible to make hypotheses on part of the knowledge (the database of relations) of CLAIRE,
and to change them whenever we come to a dead-end. This possibility to store successive versions of
the database and to come back to a previous one is called the world mechanism (each version is called
a world). The slots or arrays x on which hypothetical reasoning will be done need to be specified with
the declaration store(x). This command has the same syntax as events . For instance, the declaration

store(age,friend,fib)  ⇔  store(age), store(friend), store(fib)

Each time we ask CLAIRE to create a new world, CLAIRE saves the status of arrays and slots
declared with the store command. Worlds are represented with numbers, and creating a new world is
done with world+(). Returning to the previous world is done with world-(). Returning to a previous
world n is done with world=(n). Worlds are organized into a stack (sorry, you cannot explore two
worlds at the same time) so that save/restore operations are very fast. The current world that is being
used can be found with world?(), which returns an integer.

In addition, you may accept the hypothetical changes that you made within a world while
removing the world and keeping the changes. This is done with the world!- and world!= methods.
world!-() decreases the world counter by one, while keeping the updates that were made in the current
world. It can be seen as a collapse of the current world and the previous world. world!=(n) repeats
world!-() until the current world is n.

For instance, here is a simple program that solves the n queens problem (the problem is the
following : how many queens can one place on a chessboard so that none are in situation of chess,
given that a queen can move vertically, horizontally and diagonally in both ways ?)

[column[n:(1 .. 8)] : (1 .. 8) -> unknown]
[possible[x:(1 .. 8), y:(1 .. 8)] : boolean -> true]

 event(column), store(column, possible)
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[r1(x,y) :: exists(z, column[z] = y)
=> possible[x,y] := false]

[r2(x,y) :: exists(z, column[z] + z = x + y)
=> possible[x,y] := false]

[r3(x,y) :: exists(z, column[z] - z = x - y)
=> possible[x,y] := false]

[queens(n:(0 .. 8)) : boolean
-> if (n = 0) true
   else exists(p in (1 .. 8) |

(possible[n,p] &
   ( (world+(),

  column[n] := p,
  queens(n - 1)) |

            world-())) ]

for p in (1 .. 8)
(if possible[n,p]

(world+(),
 column[n] := p,
 if queens(n - 1) break(true),
 world-(),
 false )) ]

queens(8)

In this program queens(n) returns true if it is possible to place n queens. Obviously there can be at
most one queen per line, so the purpose is to find a column for each queen in each line : this is
represented by the column array. So, we have eight levels of decision in this problem (finding a line
for each of the eight queens). The search tree (these imbricated choices) is represented by the stack of
the recursive calls to the method queens. At each level of the tree, each time a decision is made (an
affectation to the array column), a new world is created, so that we can backtrack (go back to previous
decision level) if this hypothesis (this branch of the tree) leads to a failure.

Note that the array possible which tells us whether the nth queen can be set on the pth line is filled
by means of rules triggered by possible (declared event) and that both possible and column are
declared store so that the decisions taken in worlds that have been left are undone (this avoids to keep
track of decisions taken under hypotheses that have been dismissed since).

Updates on lists can also be “stored” on worlds so that they become defeasible. Instead of using
the nth= method, one can use the method  store(l,x,v,b) that places the value v in l[x] and stores the
update if b is true. In this case, a return to a previous world will restore the previous value of l[x].
Here is a typical use of store:

store(l,n,y,l[n] != y)

This is often necessary for arrays with range list or set. For instance, consider the following :

[A[i:integer] : tuple(integer,integer,integer) -> list(0,0,0)]
(let l := A[x] in

(l[1] := 3, l[3] := 3))

even if store(A) is declared, the manipulation on l won’t be recorded by the world mechanism.
You would need to write :

A[x] := list(3,A[x][2],3)

Using store, you can use the original (and more space-efficient) pattern and write:

(let l := A[x] in
(store(l,1,3,true), store(l,3,3,true)))

Last, it is worth noticing that hypothetical reasoning makes a heavy use of contradictions and their
associated handlers.
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5.5 Additional tuning

CLAIRE supports some additional tuning of its rules through the mode declaration. First, we
noticed that a rule is only applied to future events. There are some cases, however, where it is
convenient to apply a rule to all existing objects, which we call enforcing the rule. The enforcing
mode can be turned on and off with the mode declaration.

<modes> ≡ mode( < default | break | set | <boolean> | <integer> >seq)

mode(true) will set the enforcing mode, which will cause any new rule to be applied to all possible
objects, until mode(false) is invoked. Enforcing rules may be expensive and it is usually preferable to
define rules before the objects that they designate, rather than using this feature.

Rules should not, in general, be written in such a way that the result is order-dependent. The order
in which they are triggered depend on the event (the propagation pattern) and the order in which the
rules were entered. If it becomes necessary to have a more precise control over this order, priorities
may be used. A priority is an integer attached to the rule using the mode declaration. mode(i) sets the
current level of priority to i. This level will be attached to all newly created rules (the default level is
10). CLAIRE will ensure that rules with higher priority will be triggered first for each new event.
Notice that there is no implicit stack structure for triggering rules: the events generated by the
application of a first rule may cause a new rule to be evaluated before a second rule is applied to the
original event.

 The conslusion is applied to any pair of object that is obtained through a logical derivation of the
the conclusion and the update. This assumes that the conclusion can be fired more than once when the
logical expression is redundant (multiple derivation paths for the same pair). However, it may be
wrong to apply the conclusion twice even if a pair is obtained from two different paths. Consider the
following example :

[strange1(x:person) :: x.age = 18 | x.age > 10  => give(x, $1000)]

An update "John.age := 12" may cause the rule to be fired twice. The solution in CLAIRE is to use
the mode(set) declaration before the rule which will force the computation of the set of pairs before
firing the conclusion (thus eliminating duplicates). The regular mode is obtained with mode(default).
Similarly, rules should have a monotonous behaviour which means that their conclusion should not
invalidate the condition. Non-monotonous rules are supported by CLAIRE but the user must be aware
of possible difficulties. Let us consider a second example :

[strange2(x:person, y:person) :: x.age = 18 & y % x.friends
=> (x.age := 19, invite(x,y)) ]

Should the rule invite one friend (which one) or all friends when the age of John is set to 18. The
default behavior as well as the "set" behavior will invite all friends. The mode(break ) declaration will
ensure that the conclusion is fired only once for each update event. Using non-monotonic rules is
tricky, but it is sometimes very useful.

Last, CLAIRE supports rules with no conclusions, which are only defined by a condition. These
rules are called queries and can be used to manipulate a logical condition. A query can be used as a
method: R(x) will return the set of objects y such that (x,y) satisfy the condition. For instance,
suppose that we have defined :

[r5(x:person, y:integer) ::
y = size({z in person | z % children(x)})
=>  printf(“~S has ~A children\n”) ]

We can define a similar query as follows :

[r5’(x:person, y:integer) :: y = size({z in person | z % children(x)})]

This query can be evaluated directly, such as in r5’(john) or implicitly as in inverse(r5’,2). Queries
are not necessarily optimized and are provided as a programming convenience. Here is a last example,
which illustrates the use of queries together with the use of bijections inside a logic condition. The
goal is to reason about lines and points (that belong to lines)  using logic rules (that are not easy to
represent with a “pure” object-oriented model).
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[point <: object] // naive class
line :: tuple(point,point) // a line is defined by two points
[line!(a:point,b:point) : line -> list(a,b)] // constructor
[p1(l:line) : point -> l[1]] // first point
[p2(l:line) : point -> l[2]] // second point

 description[line!] := bijection // tell CLAIRE about the
projection1[line!] := p1 // bijection:
projection2[line!] := p2 // LINE <-> POINT x POINT
[holds(l:line) : set[p:point] -> {}] // set of points on the line

 [reflexivity(l:line,p:point) :: p = l.p1 => l.holds :add p]
[symmetry(l:line,p:point) :: p % l.holds

=> line!(l.p2,l.p1).holds :add p  ]
[transitivity(l:line,p:point) ::

exist(x:point, x % l.holds, p % line!(p2(l),x).holds) ]

the last rule is defined as a query so that we can evaluate the result of the logic condition and
check that it correspond to our intention. transitivity(line!(A,B))  will return the set of points p that
belong to a line (B,C) such that C belongs to the line (A,B). Once we are satisfied that the condition is
correct, we can transform the rule into :

[transitivity(l:line,p:point) ::
exist(x:point, x % holds(l), p % holds(line!(p2(l),x)))
=> holds(l) :add p]
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6. I/O, MODULES AND SYSTEM INTERFACE

6.1 Printing

There are several ways of printing in CLAIRE. Any entity may be printed with the function print.
When print is called for an object that does not inherit from thing (an object without a name), it calls
the method self_print  of which you can define new restrictions whenever you define new classes. If
self_print was called on an object x owned by a class toto for which no applicable restriction could be
found, it would print <toto>

In the case of bags (sets or lists), strings, symbols or chars, the standard method is princ. It formats
its argument in a somewhat nicer way than print. For example

print("john") gives "john"
princ("john") gives john

Finally, there also exists a printf  macro as in C. Its first argument is a string with possible
occurrences of the control sequences ~S, ~I and ~A. The macro requires as many arguments as there
are tilde forms in the string, and pairs in order of appearance arguments together with tildes. These
control sequences do not refer to the type of the corresponding argument but to the way you want it to
be printed. The macro will call print for each argument associated with a ~S form, princ for each
associated with a ~A form and will print the result of the evaluation of the argument for each ~I form.
A mnemonic is A for alphanumeric, S for standard and I for instruction. Hence the command

printf("~S is ~A and here is what we know\n ~I",john,23,show(john) )

will be expanded into

(print(john), princ(" is "), princ(23),
princ(" and here is what we know\n"), show(john) )

Output may also be directed to a file or another device instead of the screen, using a port. A port is
an object bound to a physical device or a file. The syntax for creating a port bound to a file is very
similar to that of C. The two methods are fopen and fclose. Their use is system dependent and may
vary depending on which C compiler you are using. However,  fopen always requires a second
argument : a control string most often formed of one or more of the characters 'w', 'a', 'r': 'w' allows to
(over)write the file, 'a' ('a' standing for append) allows to write at the end of the file, if it is already
non empty and 'r' allows to read the file. The method fopen returns a port. The method use_as_output
is meant to select the port on which the output will be written. Following is an example:

(let p:port := fopen("agenda-1994","w") in
( use_as_output(p), write(agenda), fclose(p) ) )

Note that for the sake of rapidity, communications through ports are buffered, so it may happen
that the effect of printing instructions is delayed until other printing instructions for this port are
given. To avoid problems of synchronization between reading and writing, it is sometimes useful to
ensure that the buffer of a given port is empty. This is done by the command flush(p:port). flush(p)
will perform all printing (or reading) instructions for the port p that are waiting in the associated
buffer.

Two ports are created by default  when you run CLAIRE : stdin and stdout .  They denote
respectively the standard input (the device where the interpreter needs to read) and the standard output
(where the system prints the results of the evaluation of the commands). Because CLAIRE is
interpreted, errors are printed on the standard output. The actual value of these ports is interface
dependent.

It is sometimes also convenient to have access to the text printed directly as a string. Two methods
are offered to do this: print_in_string and end_of_string. print_in_string() starts redirecting all
printing statements towards the string being built. end_of_string() returns the string formed by all the
printing done between these two instructions.
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Last, CLAIRE also provides a special port which is used for tracing: trace_output(). This port can
be set directly or through the trace(_) macro (cf. Appendix C). All trace statements will be directed to
this port. A trace statement is either obtained implicitly through tracing a method or a rule, or
explicitly with the trace statement. the statement trace(n, <string>, <args> ...) is equivalent to
printf(<string>, <args> ..)  with two differences: the string is printed only if the verbosity level
verbose() is higher than n and the output port is trace_output().

To avoid confusion, the following hierarchy is suggested for verbosity levels:

1 -  error: this message is associated with an error situation

2 - warning: this message is a warning which could indicate a problem

3 - note: this message contains useful information

4 - debug: this message contains additional information for debugging purposes

This hierarchy is used for the messages that the CLAIRE system send to the user (which are all
implemented with trace).

6.2 Reading

Ports offer the ability to direct the output to several files or devices. The same is true for reading.
Ports just need to be opened in reading mode (there must be a ‘r’ in the control string when fopen is
called to create a reading port). The basic function that reads the next character from a port is
getc(p : port). getc(p) returns the next characters read on p. When there is nothing left to be read in a
port, the method returns the special character EOF. As in C, the symmetric method for printing a
character on a port also exists: putc(c : char, p : port) writes the character c on p.

There are however higher-level primitives for reading . Files can be read one expression at a time :
read(p : port) reads the next CLAIRE expression on the port p or, in a single step, load(s : string) reads
the file associated to the string s and evaluates it. It returns true when no problem occurred while
loading the file and false otherwise. A variant of this method is the method sload(s : string) which
does the same thing but prints the expression read and the result of their evaluation. Another variant is
the method oload(s : string) which does the same thing but substitute an optimized form to each
method’s body. This may hinder the inspection of the code at the toplevel, but it will increase the
efficiency of the interpreter.

Files may contain comments. A comment is anything that follows a ; until the end of the line.
When reading, the CLAIRE reader will ignore comments (they will not be read and hence not
evaluated). For instance

   x :+ 1, ;;  increments x by 1

To increase the compatibility with C++, CLAIRE also recognizes lines that begin with // as
comments. These comments are not allowed inside expressions and are passed to C++ through
compilation (see Appendix C).

The second type of special instructions are immediate conditionals. An immediate conditional is
defined with the same syntax as a regular conditional but with a #if if instead of an if

#if <test> <expression> <else <expression> >opt

When the reader finds such an expression, it evaluates the test. If the value is true, then the reader
behaves as if it had read the first expression, otherwise it behaves as if it had read the second
expression (or nothing if there is no else). This is useful for implementing variants (such as debugging
versions). For instance

#if debug printf("the value of x is ~S",x)
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6.3 Modules

Organizing software into modules is a key aspect of software engineering : modules separate
different functionalitites as well as different level of abstractions for a given task. To avoid messy
designs and to encourage modular programming, programs can be structured into modules which all
have their own identifiers and may hide them to other modules. A module is thus a namespace that
can be visible or hidden for other modules. CLAIRE supports multiple namespaces, organized into a
hierarchy similar to the UNIX file system. The root of the hierarchy is the module CLAIRE, which is
implicit. A module is defined as a usual CLAIRE object with two important slots: part_of which
contains the name of the father module, and a slot uses which gives the list of all modules that can be
used inside the new module. For instance,

interface :: module(part_of = library, uses = list(claire))

defines interface as a new sub-module to the library module that uses the module CLAIRE (which
implies using all the modules). All module names belong to the CLAIRE namespace (they are shared)
for the sake of simplicity. Note that the slot uses may also contain the name of C++ libraries that are
used for imported functions (cf. § 6.5).

Identifiers always belong to the namespace in which they are created (CLAIRE by default). The
instruction current_module() returns the module currently opened. To change to a new module, one
may use open(m : module) and end(m : module). The instruction open(m) makes m the current
module. Each newly created identifier (symbol) will belong to the module m, until end(m) resumes to
the original module. For instance, we may define

open(interface)
window <: object(...)
end(interface)

This creates the identifier interface/window. Each identifier needs to be preceded by its module,
unless it belongs to the current module or one of its descendent, or unless it is private (cf. visibility
rules). We call the short form "window" the unqualified identifier and the long one
"interface/window" the qualified identifier.

The visibility rules among name spaces are as follows:

• unqualified identifiers are visible if and only if they belong to a descendent of the current
module,

• all qualified identifiers that are private  are not visible.

• other qualified identifiers are visible everywhere, but the compiler will complain if their
module of origin does not belong to the list of allowed modules of the current modules.

Any identifier can be made private when it is defined by prefixing it with private/. For instance,
we could have written

open(interface)
claire/window <: object(...)
private/temporary <: window(...)
end(interface)

The declaration private/temporary makes "temporary" a private identifier that cannot be accessed
outside the module interface (or one of its descendants). The declaration CLAIRE/window makes
window an identifier from the CLAIRE module (thus it is visible everywhere), which is allowed since
CLAIRE belongs to the list of usable modules for interface.

In practice, there are almost always a set of files that we want to associate with a module, which
means that we want to load into the module’s namespace. CLAIRE allows an explicit representation of
this through the slots made_of and source.  made_of(m) is the list of files (described as strings) that
we want to associate with the module and source(m) is the common directory (also described as a
string). The benefit are the load/sload methods that provide automatic loading of the module’s files
into the right namespace and the module compiling features (cf. Appendix C).
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6.4 Global Variables and Constants

CLAIRE offers the possibility to define global variables; they are named objects from the following
class :

[global_variable <: thing(range:type,value:any)]

For instance, one can create the following

tata :: global_variable(range = integer, value = 12)

However, there is a shorthand notation:

tata:integer :: 12

Variables can be used anywhere, following the visibility rules of their identifiers. Their value can
be changed directly with the same syntax as local variables.

tata := 12, tata :+ 1, tata :- 10

The value that is assigned to a global variable must always belong to its range, with the exception
of the unknown value which is allowed. If a variable is re-defined, the new value replaces the old one,
with the exception still of unknown, which does not replace the previous value. This is useful for
defining flags, which are global_variables that are set from the outside (e.g., by the compiler). One
could write, for instance,

talk:boolean :: unknown
(#if talk printf( ....

The value of talk may be set to false before running the program to avoid loading the printf
statements.  When the value does not change, it is simpler to just assign a value to an identifier. For
instance,

toto :: 13

binds the value 13 to the identifier toto. This is useful to define aliases, especially when we use
imported objects from other modules. For instance, if we use Logic/Algebra/exp, we may want to
define a simpler alias with :

exp :: Logic/Algebra/exp

6.5 System Integration

Methods are usually defined within CLAIRE. However, it is also possible to define a method
through a C function, since most entities in CLAIRE can be shared with C.  The C function must
accept the method’s parameters with the C types that correspond to the CLAIRE types of the
parameters and return accordingly a result of the type associated with the range. The ability to
exchange entities with the “outside world” was a requirement for CLAIRE and is a key feature.

To understand how C and CLAIRE can share entities, we must introduce the notion of “sort”, which
is a class of entities that share the same physical representation. There are five sorts in CLAIRE:
object, integer, char, imported and any which cover all other entities. Objects are represented as
pointers to C structures: to each class we associate a structure with the same name where each slot of
the object becomes a field in the structure. Integers share the same representation with C and
characters are also represented with integers. Imported objects are “tagged pointers” and are
represented physically by this associated pointer. For instance, a CLAIRE string is the association of
the tag string   and the “char*” pointer which is the C representation of the string. Imported objects
include strings, floats (where the pointer is of type “double*”), ports (pointer of type “FILE *”) and
external functions. Last, the sort any contains all other entities (such as symbols or bags) that have no
equivalent in C and are, therefore, represented in the same way, with an object identifier with C type
“OID” (OID is a system-dependent macro).

The method c_interface(c) (cf. Appendix C) can be used to obtain the C type used for the external
representation of entities from the class c.
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 claire> c_interface(float)
eval[1]> “double *”

Now that we understand the external representation of entities in CLAIRE, we can define, for
instance, the cos method for floats. The first part goes in the CLAIRE file and stands as follows.

[cos(x:float) : float -> function(cos_for_claire)]

We then need to define in the proper C file the C function cos_for_CLAIRE as follows.

double *cos_for_claire(double *y)
{double *x;

x = malloc(size_of(double));
*x = cos(*y);
return x;}

When the two files are compiled and linked together, the method cos is defined on floats and can
be used freely. The linking is either left to the user when a complex integration task is required, or it
can be done autoimatically by CLAIRE when a module m is compiled. The slot  (m) may contain a
string such as "XX", which tells CLAIRE that the external functions can be found in a library file
XX.lib and that the header file with the proper interface definitions is XX.h.

There is one special case when importing an external function if this external function makes use
of CLAIRE memory allocation either directly or through a call back to CLAIRE. In this case, the
compiler must be warned to insure proper protection from garbage collection. This is done with the
additional argument true in the function(...) constructor. Note that this cannot be the case unless the
external function make explicit use of CLAIRE’s API. Here is a simple example.

[mycopy(x:bag) : bag -> function(mycopy,true)]

OID mycopy(OID x)
{count++; return (copy_bag(x)); }

When a method is defined within CLAIRE and compiled later, the compiler produces an equivalent
C function that operates on the external representation of the parameters. This has two advantages: on
the one hand, the C code generated by the compiler is perfectly readable (thus we can use the
compiler as a code generator or modify its output by hand); on the second hand, the compiled
methods can be invoked very easily from another C file, making the integration between compiled
CLAIRE module and C programs reasonably simple (especially when compared with the LAURE
language).

The only catch is the naming convention due to polymorphism and extensibility. The default
strategy is to generate the function m_c  for the method m defined on the class c (i.e. a method which
is a restriction of the property m and whose first type in the signature is the class c). When this first
type t is not a class, the class class!(t) is used instead. However, this is ambiguous in two cases: either
there are already multiples definition of m on c, or the property m is open and further definitions are
allowed. In the first case a number is added to the function name; in the second case, the name of the
module is added to the function name. Therefore, the preferred strategy is to avoid overloading for
methods that are used as interfaces for other programs, or to look at the generated C code otherwise to
check the exact name.

For instance, in the previous example with the fib method, the generated C function will simply be
(as it will appear in the generated header file) :

int fib_integer(int x);

Another interesting consequence is that all the library functions on strings can be used within any
C program that is linked with the compiled CLAIRE code. Since these functions use the same “char *”
type as other string functions in C,  we can freely use the following (as they appear in the header
files):

char * copy_string(char *s);

char * substring_string(char *s, int n1, int n2);



40 The Claire Programming Language Part 6

The API with CLAIRE is not limited to the use of functions associated with methods. It also
includes access to all the objects which are seen as C structures. When a CLAIRE file is compiled, the
structure definitions associated with the classes are placed in a header file. This header file allows the
C user to manipulate the C pointers obtained from CLAIRE in a very natural way (see Appendix C).
The pointers that represent objects can be obtained in two ways: either as a parameter of a function
that is invoked from CLAIRE, or through a C identifier when the object is a named object. The
compiler generates a C global variable (L_x)  for each named object x whose value is the
representation of the object7. For instance, if John is an object from the class person, the following
declaration will be placed into the header file:

extern struct person *L_John;

The set of primitive classes (symbol, boolean, char, bag) is fixed once for all and trying to add a
new one will provoke an error. On the other hand, the set of imported object can be enriched with new
classes. More details about the integration between CLAIRE and C code will be given in the Appendix
C, where we examine the CLAIRE compiler and its output.

7 As for external functions, special characters (e.g., +, / ) are dealt with through a transformation described in

the last Appendix.
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APPENDIX A: CLAIRE DESCRIPTION

In the following summary of the grammar, we have used the following conventions:

<a>seq denotes a (possibly empty) list of <a> separated by commas
<a>seq+ denotes a non empty list of <a> separated by commas
<a>opt denotes <a> or nothing

keywords of CLAIRE are printed boldface.  〈 and 〉  are simply used for grouping. | is used for
choices and | is used for the CLAIRE character ‘|’

A1. Lexical Conventions

a. Identifiers in the CLAIRE language

A name expression in the CLAIRE language is called an identifier. It is used to designate a named
object or a variable inside a CLAIRE expression. Each identifier belongs to a namespace. When it is
not specified, the namespace is determined by the current reading environment, the identifier is
unqualified. A qualified identifier contains its namespace as a qualification, designed by another
identifier (the name of the namespace), followed by a slash '/', itself followed by the unqualified form
of the identifier.

An unqualified identifier in CLAIRE is a non-empty sequence of basic characters, beginning with a
non-numerical character. A basic character is any character, with the exception of '[', ']', '{', '}', '(', ')',
' '(space), EOL (end of line), ';',  '”', '’', '/', '.', '@' and ':' that play a special role in the grammar. The
first six are used to define expressions. Spaces and EOL are meaningless, but are not allowed inside
identifiers (therefore they are separators characters).  The characters ';', ''', '" ', '@ ', '/' and ':' are
reserved to the CLAIRE system. The point character (.) is special because it is used for slot access in
expressions such as x.age. An identifier should not start with the character #. Each sequence of
characters defines one unique identifier, inside a given namespace.

< ident>  ≡  <unqualified identifier> | <qualified identifier>
<qualified identifier>  ≡   <identifier>/<unqualified identifier>
<unqualified identifier> ≡      <'a' .. 'Z'><basic character>*

Implementation note: in CLAIRE 1.0,  the length of an unqualified identifier is limited to 50

characters.

b. Symbols

Identifiers are represented in CLAIRE with entities called symbols. Each identifier is represented by
a symbol. A symbol is defined by a namespace (where the identifier belongs), a name (the sequence of
character from the unqualified symbol) and a status. The status of a symbol is either private or export
(the default status). When the status of an identifier is private, the reader will not recognize the
qualified form from a module that is not a submodule of that of the identifier. Therefore, the only way
to read the identifier is inside its own namespace. When the status of the identifier is export, the
qualified form gives access to the designated object, if the sharing declarations of namespaces have
been properly set (Section 6.1).

Each symbol may be bound to the object which it designates. The object becomes the value of the
symbol. The name of the object must be the symbol itself. In addition, the symbol collects another
piece of useful information: the module where its value (the named object) is defined. If the symbol is
defined locally (through a private or export definition), this definition module is the same as the
owner of the symbol itself. If the symbol is shared (if it was defined as an identifier of an above
module), this module is a subpart of the owner of the symbol.
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c. Characters and Strings

Characters are CLAIRE objects, that can be expressed with the following syntax:

<CLAIRE character>  ≡   ' <character> '

Implementation note:  A character is an ASCII representation of a 8bits integer. The ASCII

value for the character 'x' may be obtained directly with #/x. The end-of-

file character (ascii value -1) is stored in the global variable EOF.

Strings are objects defined as a sequence of characters. A string expression is a sequence of
characters beginning and ending with ' " '. Any character may appear inside the string, but the
character ' " '. Should this character be needed inside a string, it must be preceded by the ' \ ' character.

< string> ≡ "  〈 <character - ' "'  〉 *  "

The empty string, for instance, is expressed by: "". Note that the "line break" character can be
either a line break (new line) or the special representation '\n'.

d.  Integer and Floats

Numbers in CLAIRE can either be integers or floating numbers. Only the decimal representation of
integers and floats is allowed. The syntax for integer is straightforward:

<integer> ≡  〈 − 〉opt  <positive integer>
<positive integer> ≡  <'0' .. '9'>+

If the integer value is too large, and overflow error is produced. The syntax for floating numbers is
also very classical:

<float> ≡  <integer>.<positive integer>   |
<integer>〈.<positive integer>〉opt e 〈 + | − 〉opt <positive integer>

Implementation note:  in CLAIRE 1.0,  integers are coded on 30 bits and floats on  64 bits.

e.  Booleans and External Functions

The two boolean values of CLAIRE are false and true:

<boolean> ≡  false | true

External functions may be represented inside the CLAIRE system. An external function is defined
with the following syntax:

<external_function> ≡    function(<unqualified identifier> 〈 , <boolean>  〉opt  )

The identifier must be the name of a function defined elsewhere. Therefore, it is an unqualified
identifier.

Implementation note: in most implementations of CLAIRE, external functions can only be used

for a function call when the CLAIRE program has been compiled and

linked to the definition of the external function. However, this is not true,

for instance, of a LISP implementation.

f. Spaces, Lines and Comments

Spaces and end_of_lines are not meaningful in CLAIRE. However they play a role of separator:

<separator> ≡    | [  |  ] |  { |  } |  ( |  ) |  :  |  " |  ' | ; |
    @ |    | EOL |  /

 <basic character> ≡ <character - separator>

Comments may be placed after a ';' on any line of text. Whatever is between a ';' and a EOL
character is considered as a comment and ignored:
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<comment> ≡ ;'<character - EOL>* EOL

CLAIRE also supports the use of // to define a comment, as in C++, but only between blocks in a
file. These comments have a special status since they are passed into the code generated by the
compiler.

Named objects (also called things) are also designated entities, since they can be designated by
their names. The following convention is used in this syntax description for any class C:

<C>   ≡   <x:identifier, where x is the name of a member of class C>

This convention will be used for <class>, <property> and <array>.

The set of designated entities is, therefore, defined by:

<designated entity> ≡  <thing> | <integer>  | <float> |
         <boolean> | <external function> |
         <CLAIRE character> |  <string>

A2. Grammar

Here is a summary of the grammar. A program (or the transcript of an interpreted session) is a list
of blocks. Blocks are made of definitions delimited by square brackets and of expressions, either
called exp, when they need not to be surrounded by parentheses or fragment when they do.

<program> ≡ <block>seq+

<block> ≡ (<fragment>) | <definition> | <call>

<fragment> ≡ 〈 <statement | <conditional>  〉seq

<statement> ≡ for <var def> in <exp> <statement> |
while <exp> <statement> |
until <exp> <statement> |
let  < <var def> := <comp-exp>  〉seq+ in <statement> |
when  <var def> := <comp-exp>  in <statement> |
case <exp> ( < <type> <statement>  〉seq+ ) |
try <statement> catch <type> <statement> |
<comp-exp> | <update>

<definition> ≡ <ident> :: <exp> |
<var def> :: <exp> |
[ <ident>(〈 <var>:<type with var>  〉seq) : <range>
     〈-> | => 〉   <fragment> ] |
[ <ident>[<var def>] : <type> -> <fragment> ] |
[ <ident>〈[<var>seq+]〉opt <: <class>
  〈 (〈 <property> : <type> 〈 = <exp> 〉opt  〉seq+)  〉opt ] |
[ <ident>(<var def> 〈, <var def〉opt) ::
    <assertion> 〈 => <fragment>〉opt ]

<conditional> ≡ if <exp> <statement> 〈 else <conditional> | <statement>  〉opt

<update> ≡   〈 <var> | <property>(<exp>) | <array>[<exp>seq+]  〉
:<operation> <comp-exp>

The basic building block for a CLAIRE instruction is an expression. The grammar considers
different kinds of expressions :

<comp-exp> ≡ <exp> | <comp-exp> <operation> <comp-exp>
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<exp> ≡ <exp> as <class> | <ident> | <set exp> | <fragment> | <call> |
<array>[<exp>] | <class>(< <property> = <exp> >seq ) | break(<exp>)
lambda[〈 <var>:<type with var>  〉seq, <exp>]

<set exp> ≡ set(<const>seq+)  list(<const>seq+) |
{ <statement>seq+ } | <type> |
〈list〉opt{ <var> in <exp> | <statement> } |
〈list〉opt{ <statement> | <var> in <exp> } |
forall(<var> in <exp> | <statement> )  |
exists(<var> in <exp> | <statement> )

<call> ≡ <property> 〈@ <type> 〉opt(<exp>seq) | <exp>.<property>

The typing system is the following

<var def> ≡ <var>:<type>
 <var> ≡ <ident>

<type> ≡ <class> | <class>[< <var> : <type> >seq+] |
set[<type>] | list[<type>] | subtype[<type>] | {<const>seq+ } |
tuple(<type>seq+ ) | (<comp-type>)

<comp-type> ≡  <type> U <type> | <type> ̂  <type> | |<const> .. <const>

<const> ≡ <integer> | <float> | <named object> | <string> | <char> | <symbol>

Typing also includes second-order typing which has special syntactical conventions :

<type with var> ≡  <var> | <type> | {<var>} |
tuple(<type with var>seq+ ) |
<class>[〈 <var>:<type with var> | <var>=〈<var>|<const>〉 〉seq+]

<range> ≡ <type> | type[<exp>]

The logic language used for rules (to describe the logic condition to which a rule is attached)
describes the condition as a logical assertion, itself made of logical expressions.

<assertion> ≡ <expression> <comp> <expression> |
exists(<var> | <var def>, <assertion>) |
if (<expression><comp><expression>) <assertion>
else <assertion> |
<assertion> & <assertion> |
<assertion> | <assertion>

<expression> ≡ <var> | <designated entity> | <property>(<expression>) |
<array>[<expression>] |
〈list〉opt{<var> in <expression> | assertion} |
<expression> <operation> <expression>
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APPENDIX B: CLAIRE'S API

This section contains the list of all methods and (visible) slots in CLAIRE. For each method we
give the signature of the restrictions, the modules where they are defined and a brief description of
their use.

^ System method

x:integer ^ y:integer → integer
x:float ^ y:float → float
x:list ^ y:integer → list
x:set ^ y:set → set

(x ^ y) returns xy when x and y are numbers. If x is an integer, then y must be a positive integer,
otherwise an error is raised.

(l ^ y) skips the y first members of the list l. If the integer y is bigger than the length of the list l,
the result is the empty list, otherwise it is the sublist starting at the y+1 position in l (up to the end).

(s1 ^ s2) returns the intersection  of the two sets s1 and s2 that is the  set of entities that belong to
both s1  and s2.

Other internal restrictions of the property ^ exist, where ^ denotes the intersection (it is used for
the type lattice)

^2 System method

^2(x:integer) → integer

^2(x) returns 2x

% Class method

x:any % y:class → boolean
x:any % y:any → boolean

(x % y) returns (x ∈ y) for any entity x and any abstact set y. An abstract set is an object that
represents a set, which is a type or a list.

* System method

x:integer * y:integer → integer
x:float * y:float → float

(x * y) returns x × y when x and y are numbers. If x is an integer, then y must also be an integer,
otherwise an error is raised (explicit conversion is supported with float!).

The operation * defines a commutative monoid, with associated divisibility operator divide? and
associated division /.

/ System method

x:integer / y:integer → integer
x:float / y:float → float

(x / y) returns x / y when x and y are numbers. If x is an integer, then y must also be an integer,
otherwise an error is raised (explicit conversion is supported with float!).

+ System method

x:integer + y:integer → integer
x:float + y:float → float

(x + y) returns x + y when x and y are numbers. If x is an integer, then y must be a an integer,
otherwise an error is raised (explicit conversion is supported with float!).

The operation + defines a group structure, with associated inverse -.

- System method
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x:integer - y:integer → integer
x:float - y:float → float
-(x:integer) → integer
-(x:float) → float

(x - y) returns x + y when x and y are numbers. -(x) return the opposite of x.

. System method

x:list . y:list → list
x:string . y:string → string
x:symbol . y:(string U symbol) → symbol

(x . y) returns the concatenation of x and y (. represents the append operation). Concatenation is an
associative operation that applies to strings, lists and symbols. When two symbols are concatenated,
the resulting symbol belongs to the namespace (module) of the first symbol, thus the second symbol is
simply used as a string. By extension, a symbol can be concatenated directly with a string.

.. System method

x:integer .. y:integer → interval
x:float .. y:float → interval
x:char .. y:char → interval
x:string .. y:string → interval
x:type .. y:type → interval

(x .. y) returns the interval {z | x ≤ z ≤ y}. Intervals are supported for integers, floats, characters,
strings and types, using the system-defined order <= (see method <= below). The result is an object
from the class interval, which is a type.

=, != System method

x:any = y:any → boolean
x:any != y:any → boolean

(x = y) returns true if x is equal to y and nil otherwise. Equality is defined in Section 2: equality is
defined as identity for all entities except strings, lists and sets. For lists, sets and strings, equality is
defined recursively as follows: x and y are equal if they are of same size n  and if x[i] is equal to y[i]
for all i  in (1 .. n).

(x != y)  is simply the negation of (x = y).

=type? System method

=type?(x:all, y:all) → boolean

returns true if x and y denote the same type. For example =type?(boolean, {true, false}) returns
true because defined(boolean) was declared after the two instances true and false were created, so the
system knows that no other instances of boolean may ever be created in the future. This equality is
stronger than set equality in the sense that the system answers true if it knows that the answer will
hold everafter.

<=, >=, <, > Class method

x:integer <= y:integer → boolean
x:float <= y:float → boolean
x:char <= y:char → boolean
x:string <= y:string → boolean
x:type <= y:type → boolean
x:X < y:X → boolean for X = integer, float, char and string
x:X > y:X → boolean for X = integer, float, char and string
x:X >= y:X → boolean for X = integer, float, char and string

The basic order property is <=. It is defined on integers and floats with the obvious meaning. On
characters, it is the ASCII order, and on strings it is the lexicographic order induced by the ASCII
order on characters. The order on types is the inclusion: ((x <= y) if all members of type x are
necessarily members of type y).
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(x < y), (x > y) and (x >= y) are only defined for numbers, char and strings with the usual
meaning.

<< System method

l:list << n:integer → list

(l << n) left-shifts the list l by n units, which means that the n first members of the list are
removed. This is a method with a side-effect since the returned value is the original list, which has
been modified.

@ Class method

p:property @ t:type → entity
t:type @ p:parameter → type

(p @ t) returns the restriction of p that applies to arguments of type t. When no restrictions applies,
the value nil is returned. If more than one restriction applies, the value unknown is returned. Notice
that the form p@t (without blank spaces) is used to print the restriction and also in the control
structure <property>@<class>(...).

abstract System method

abstract(x:class) → void

abstract(p:property) → void

abstract(c) forbids the class c to have any instance. abstract(p) tells CLAIRE that the property p
should be kept open to future re-definition. This makes p an abstract parameter of the program. (cf. §
4.5).

add System, Class method

add(s:set,x:any) → set System
add(l:list,x:any) → list System
add(p:property,x:object,y:any) → any Class

add(s,x)  adds x to the set s. The returned value is the set s  {x}. This method may modify the set
s but not necessarily. When x is a list, add(l,x) inserts x at the end of l. The returned value is also the
list obtained by appending (x) to l, and l may be modified as a result but not necessarily.

add(p,x,y)  is equivalent to p(x) :add y  (This form is interesting when one wants to write such an
expression for a variable p)

add* System method

add*(l1:list, l2:list) → list

add*(l1,l2)  returns the concatenated list l1 . l2, but it is destructive: it uses l1 as the data structure
on which to perform the concatenation. Hence, the original l1 is no longer available after the method
add* has been called

apply System method

apply(p:property, l:list) → any

apply(f:external_function, ls:list[class], lx:list) → any

apply(la:lambda, lx:list) → any

apply(m:method, lx:list) → any

apply(p,l)  is equivalent to a function call where the selector is p and the argument list is l.  For
instance, apply(+,list(1,2)) = (1 + 2) = call(+,1,2).

apply(f,ls,l)  applies the function f to the argument list l, where ls is the list of sort of the arguments
and the result (i.e. length(ls) = length(l) + 1). For instance, if f is the external function that defines +
@ integer, apply(f,list(integer,integer,integer),list(1,2)) = 1 + 2.

apply(la,lx)  applies the lambda expression to the argument list. apply(m,lx)  applies the method to
the argument list.

but System method
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but(s:any,x:any) → any

Returns the set of members of s that are different from x.

car, cdr System method

car(l:list) → type[member(l)]
cdr(l:list) → type[l]

These two classical LISP methods return the head of the list , e.g. l[1] (for car) and its tail, e.g. the
list l starting at its second element (for cdr).

call Class method

call(p:property, l:listargs) → any

call(p,x1,x2 ,...,xn) is equivalent to apply(p,list(x1,x2 ,...,xn)).

char! System method

char!(n:integer) → char

char!(n) returns the character which ASCII code is n.

class! System method

class!(x:any) → class

class!(x) returns the intersection of all classes y such that x <= y (Such an intersection always
exists since classes are organized in a lattice). Hence, if c is a class class!(c)=c.

close CLAIRE method

close(m:module) → module Class
close(c:class) → class Language
close(e:exception) → any System
close(v:global_variable) → global_variable System

The method close is called each time an object is created. It is executed and returns the created
object. It can sometimes be very helpful to define new restrictions, they will be automatically called
when an instance is created. Exceptions are a special case: raising an exception is done internally by
creating an instance of exception. The method close is responsible for looking for the innermost
handler, etc.

cons System method

cons(x:any, l:list) → list

This traditional method appends x at the beginning of l and returns the constructed list.

contradiction!() System method

contradiction!() → void

This method creates a contradiction, which is an instance of the class contradiction. It is
equivalent to contradiction() but is more efficient and should be preferred.

copy System method

copy(x:object) → object
copy(s:bag) → bag
copy(s:string) → string

copy(x) returns a duplicate of the object x. It is not recursive : the slots of the copied object are
shared with that of the original one. Similarly, the copy of a bag (a set or a list) returns a fresh set or
list with the same elements and the copy of a string is ... a copy of the string.

current_module Class method

current_module() → module

current_module() returns the module which is currently open.
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defined Class method

defined(c:class) → void

defined(c) forbids the user to create any new instance of the class c.

delete Class, System method

delete(p:property, x:object, y:any) → any Class
delete(s:bag, x:any) → bag System

delete(s,x) returns s if x is not in s and the list (resp. set) s without x otherwise. delete(p,x,y) is
equivalent to p(x) :delete y.  This is a destructive method in the sense that it modifies its input
argument unless the result is nil (there is only one empty list). The proper way to use delete, therefore,
is either destructive (l :delete x) or non-destructive (delete(copy(l),x)).

description Logic array

description[p:property] → Logic/relational_description

The description associated with a property is an object that tells CLAIRE how the property should
be understood inside a logical assertion. relational_description is a class with the following
instances: bijection (invertible one-to-one function),  binary_operation (operation with two
arguments), comparison (binary_operation that returns a boolean), monoid (associative & commutative
operation), group_operation (monoid with an inverse function) or mapping (operation with two inverse
functions). The most common case is using description to define a property as a comparison (in which
case no further work is required). For more advanced relational descriptions, it may also be necessary
to update the following relations :

Logic/function_inverse[p:property] → property ; e.g.   +  →  -
Logic/ternary_inverse[p:property] → property ; e.g.   *  →  /
Logic/comparison_inverse[p:property] → property ; e.g.   *  →  factor?
Logic/projection1[p:property] → property ; e.g.   cons  →  car
Logic/projection2[p:property] → property ; e.g.   cons  →  cdr

If description[p] = bijection, you are expected to define inverse(p). If description[p] = monoid, you
are expected to define ternary_inverse[p] and comparison_inverse[p]. If description[p] =
group_operation, you are exprected to define ternary_inverse[p] and function_inverse[p]. If
description[p] = mapping, you are exprected to define projection1[p] and projection2[p].

The semantic of these relations is defined by the following re-writing rules

[ x + y = z ⇔  x = z - y ]   if    function_inverse[+] = -

[ x * y = z ⇔  f?(z,y) ∧  x = z / y ]   if   ternary_inverse[*] = /  and  comparison_inverse[*] = f?

[ x ⊗ y = z ⇔  x = p1(z) ∧ y = p2(z)]   if  projection1[⊗] = p1 and  projection2[⊗] = p2

In addition, CLAIRE also uses the following array:

Logic/compatible[p:property] -> set[property]. ; e.g.  + → {=,!=,<,>}

compatible[op] is the set of comparison that are compatible with the operation op. For instance, <
is compatible with + since x < y  => x + z < y + z.

difference System method

difference(s:set, t:set) → set

difference(s,t) returns the difference set s - t, that is the set of all elements of s which are not
elements of t.

divide? System method

divide?(x:integer, y:integer) → boolean

divide?(x,y) returns true if y is a multiple of x.

domain Class method

domain(r:restriction) → list
domain(r:relation) → any
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A restriction is either a slot or a method. If r is a slot, domain(r) is the class on which r is defined.
If r is a method, domain(r) is the list formed by the types of the parameters required by the method.
For a relation r, domain(r) is the type on which r is defined.

end_of_string System method

end_of_string() → string

end_of_string() returns the string containing everything that has been printed since the last call to
print_in_string().

exception! System method

exception!() → exception

exception!() returns the last exception that was raised.

exit System method

exit(n:integer) → void

quit() → void

exit(n) stops CLAIRE running and returns to the hosting system the value n. What can happen next
is platform-dependent.

extensible System method

extensible(p:property) → void

defines p as an extensible property. This is used by the compiler to preserve the ability to add new
restrictions to p in the future that would change its semantics on existing classes. By default, a
property is extensible until it is compiled. A corollary is that function calls that use extensible
properties are compiled using late binding.

factor? System method

factor?(x:integer, y:integer) → boolean

factor?(x,y) returns true if x is a multiple of y.

finite? System method

finite?(t:type) → boolean

finite?(t) returns true if the type t represents a finite set. Set iteration (with the for loop) can only
be done over finite sets

float! System method

float!(x:integer) → float

transforms an integer into a float.

flush System method

flush(p:port) → void

Communications with ports are buffered, so it can happen that some messages wait in a queue for
others to come, before being actually sent to their destination port. flush(p)  for input and output ports
and empties the buffer associated with p, by physically sending the print messages to their destination.

fopen, fclose System method

fopen(s1:string,s2:string) → port
fclose(p:port) → any

fopen returns a port that is handle on the file or external device associated with it. The first string
argument is the name of the file, the second is a combination of several control characters, among
which 'r' allows reading the file, 'w' (over)writing the file and 'a' appending what will be write at the
end of the file. Other possibilities may be offered, depending on the underlying possibilities. Such
other possibilities are platform-dependent.
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format System method

format(string,list) → any

This method does the same thing as printf, except that there are always two arguments, thus the
arguments must be replaced by an explicit list.

formula Class, System slot

formula(m:method) → lambda Class
formula(d:demon) → lambda System

formula gives the formula associated with the method/demon.

funcall System slot

funcall(m:method, x:any) → any

funcall(m:method, x:any, y:any) → any

Applies a method or a lambda to one or two arguments.

gc System method

gc() → any

gc() forces a garbage collection to take place

gensym System method

gensym() → symbol

gensym() generates randomly a new symbol.

get Class, System method

get(p:property + slot, x:object) → any Class
get(a:array, x:any) → integer Class
get(s:string, c:char) → integer System
get(l:list, x:any) → integer System
get(m:module) → integer System

get(p,x)  is equivalent to p(x), but without any verification on unknown.   So does get(a,x) for an
array.get(s,x)  returns i such that s[i]=x (if no such i exists, 0 is returned). So does get(l,x) for a list.
get(m)  is equivalent for a module m to (load(m), open(m))

getc System method

getc(p:port) → char

getc(p) returns the next character read on port p.

getenv System method

getenv(s:string) → string

getenv(s) returns the value of the environment variable s if it exists (an error occurs otherwise
since an attempt is made to create a string from  the NULL value that is returned by the environment).

hash System method

hash(l:list,x:any) → integer

hash(l,x) returns an integer between 1 and length(l) that is obtained through generic hashing. To
obtain the best dispersion, one may use a list of size 2i-3. This function can be used to implement hash
tables in CLAIRE; it is the basis of the array implementation.

Id System method

id(x:any) → type[x]

Id(x) returns x. Id would be useless (by definition) but it has a special behavior when compiled.
The argument is evaluated before being compiled. Thus Id(v) may be used to capture the value of the
variable v in the compiling environment.
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index Class method

index(s1:string, s2:string, b:boolean) → integer System

index(s1,s2,b) returns i if s2 is a subsequence of s1, starting at s1's ith character. The boolean b is
there to allow case-sensitiveness or not (identify 'a' and 'A' or not).In case s2 cannot be identified with
any subsequence of s1, the returned value is 0.

inherit? Class method

inherit?(c1:class, c2:class) → boolean

inherit?(c1,c2) returns (c2 % ancestors(c1))

instances Class slot

instances(c:class) → type[set[c]]

returns the set of all instances of c, created up to now (if c has not been declared ephemeral).

integer! System method

integer!(s:string) → integer
integer!(f:float) → integer
integer!(c:char) → integer
integer!(l:set[(0 .. 29)]) → integer

integer!(s)  returns the integer denoted by the string s if s is a string formed by a sign and a
succession of digits, integer!(f)  returns the lower integer approximation of f, integer!(c)  returns the
ASCII code of c and integer!(l)  returns the integer represented by the bitvector l, i.e. the sum of all 2i

for i in l.

inverse Class slot

inverse(r:relation) → relation

inverse(r) contains the inverse relation of r. If the range of r inherits from bag then r is considered
multi-valued by default (cf. Section 4.5). If r and its inverse are mono-valued then if r(x) = y then
inverse(r)(y) = x. If they are multi-valued, then inverse(r)(y) returns the set  (resp. list) of all x such
that (y % r(x)).

isa Class slot

isa(x:object) → class

returns the class of which x is an instance.

kill, kill! Reader, System method

kill(x:thing) → any Reader
kill(x:class) → any Reader
kill!(x:any) → any  System

kill is used to remove an object from the database of the language. kill  does it properly, removing
the object from all the relation network but without deallocating. kill!  is more brutal and deallocates
without any checking.

known? Class method

known?(p:property, x:object) → boolean
known?(x:any) → boolean

known?(p,x)  is equivalent to get(p,x) != unknown . The general method known? simply returns
true whenever the object exists in the database.

last System method

last(l:list) → type[member(l)]

last(l)  returns l[length(l)]

length System method
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length(l:list) → integer
length(l:string) → integer

returns the length of a list or a string. The length of a list is not its size !

list! System method

list!(s:set) → type[list[member(s)]]

list!(s) transforms s into a list. (The order of the elements in the list can be anything)

load, sload, oload Reader method

load(s:string) → any
sload(s:string) → any
oload(s:string) → any
load(m:module) → any
sload(m:module) → any
oload(m:module) → any

These methods load a file (or the files associated to a module). The difference between them is that
load(s) reads and evaluates all the instructions found in the file named s, whereas sload(s) reads,
prints, evaluates and prints the results of the evaluation of all the instructions found in the file named
s. oload(s) is similar to load(s) but also optimizes the methods that are newly defined by substituting
an optimized version of the lambda abstraction.

made_of Class slot

made_of(m:module) → list[string]

made_of(m) contains the list of files that contain the code of the module.

make_list System method

make_list(n:integer,x:any) → type[list[x]]

returns a list of length n filled with  x (e.g., make_list(3,0) = list(0,0,0)).

make_string System method

make_string(i:integer, c:char) → string
make_string(s:symbol) → string

make_string(i,c) returns a string of length i filled with the character c.

make_string(s) returns a string denoting the same identifier. If s is given in the qualified form
(module/identifer), than the result will contain the name of the module ("module/identifier")

mem System method

mem() → list[integer]

mem returns a list of 4 integers (a,b,c,d) where

a is the number of cells used by chunks (objects and lists of size > 5)
b is the number of cells used by small objects and lists
c is the number of cells used by imported objects
d is the number of cells used by symbols.

The method stat() pretty prints this information.

member System method

member(x:any) → type

member(x) returns the type of all instances of type x, assuming that x is a CLAIRE type which
contains objects y such that other objects z can belong to. If this is the case, member(x) is a valid type
for all such z, otherwise the returned value is the empty set. For instance, if x is list[integer], all
instances of x are lists that contain integers, and all members of these lists are integers. Therefore,
member(list[integer]) is integer.

methods System method
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methods(d:class,r:class) → set[method]

methods(d,r) returns the set of methods with a range included in r and a domain which is a tuple
which first component is included in d.

min / max Class method

min(m:method[domain:tuple(X,X), range:boolean],
l:set[X] U list[X]) → type[X]

min(x:integer,y:integer) →  integer
max(x:integer,y:integer) →  integer

given an order function (m(x,y) returns true if x <= y) and a bag, this function returns the
minimum of the bag, according to this order. min/max on integer returns the smallest/largest of two
integers.

mod System method

mod(x:integer, y:integer) → integer

mod(x,y) is the rest of the Euclidean division of x by y.

module! Class, System, Optimize method

module!(r:restriction) → module Class
module!(n:integer) → module System
module!(s:symbol) → module System
module!(x:thing) → module Optimize

module! returns the module where the identifier s was created.

new Class method

new(c:class) → any
new(c:class, s:symbol) → thing

new is the generic instantiation method. new(c)  creates an object of class c (It is equivalent to c()).
new(c,s)  creates an object of class c with name s.

not System method

not(x:any) → boolean

not(x) returns false for all x except false, nil, the empty set and the empty list.

nth, nth=, nth+, nth- Class, System method

nth(a:array, x:any) → any Class
nth(x:integer, i:integer) → boolean System
nth(l:bag, i:integer) → any System
nth(s:string, i:integer) → char System
nth=(a:array, x:any, y:any) → any Class
nth=(l:list, i:integer, x:any) → any System
nth=(s:string, i:integer, x:char) → char System
nth+(l:list, i:integer, x:any) → bag System
nth-(l:list, i:integer) → bag System

nth is used for accessing elements of structured data: nth(l,i) is the ith element of the bag l, nth(s,i)
is the ith character of the string s. For arrays, nth(a,x) is equivalent to a[x], even when x is not an
integer. Finally, nth also deals with the bitvector representation of integers: nth(x,i) returns true if the
ith digit of x in base 2 is 1.

nth= is used for changing an element at a certain place to a certain value. In all the restrictions
nth=(s,i,x)  means: change the ith value of s to x.

There exists two other ways of modifying the values in such data structures: nth+ and nth-. nth+
uses the same syntax as nth= : nth+(l,i,x)  returns a list (that may be l) where x has been inserted in
the  ith  position. By extension, i may be length(l) + 1, in which case x is inserted at the end of l.
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nth-  is used for removing an element. nth-(s,i)  returns a value that differs from s only in that the
ith place has been erased.

occurrence Language method

occurrence(exp:any, x:variable) → integer

returns the number of times when the variable x appears in exp

open Class method

open(m:module) → any

open(m)  enters the namespace m. Each identifier that will be created between the call open(m)
and end(m) will be created by default in the namespace m.

owner Class method

owner(x:any) → class

owner(x)  returns the class from which the object is an instance. It x is an object, then owner(x) =
isa(x) = the unique class c such that x % instances(c).

pair, pair_1, pair_2 Class method

pair(x:any,y:any) → tuple(any,any)
pair_1(tuple(any,any)) → any
pair_2(tuple(any,any)) → any

A simpler way to manipulate pairs inside logic rules:

pair(x,y) = list(x,y), pair_1(l) = l[1], pair_2[l] = l[2].

parts, part_of, Class slot

parts(m:module) → list
part_of(m:module) → module

part_of(m) contains the module to which m belongs. parts is the inverse of part_of : parts(m) is the
set of submodules of m (in the module hierarchy).

pretty_print Language method

pretty_print(x:any) → void

performs the pretty_printing of x. For example, you can pretty print CLAIRE code: if <inst> is a
CLAIRE instruction pretty_print(`<inst>) will print it nicely idented (the backquote here is to prevent
the instruction from begin evaluated).

princ, print System method

princ(x:integer) → void
princ(x:string) → void
princ(x:char) → void
princ(x:symbol)  → void
princ(x:list) → void
print(x:any) → void

print(x)  prints the entity x (x can be anything). princ(x:integer) is equivalent to print(x). If x is a
string / char / symbol/ bag, print(x) prints x without the “ / ‘ / ‘/ separator.

print_in_string System method

print_in_string() → void

print-in-string()  opens a new output port that will be stored as a string. The user is given access to
the string at the end of the transcription, when the call to end_of_string()  returns this string.

propagate System method

propagate(p:relation, x:object, y:any) → void
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propagate(r,x,y)  triggers the rules that would be triggered by the update p(x) := y (resp. p[x] := y).
The propagation only occurs if p(x) = y.

put Class method

put(p:property, x:object, y:any) → any
put(a:array, x:object, y:any) → any
put(s:slot, x:object, y:any) → any
put(s:symbol,x:any) → any

put(p,x,y)  is equivalent to p(x) := y but does not trigger the rules associated to r or the inverse of r.
Besides, this operation is performed without any type-checking. The method put is often used in
conjunction with propagate.  put(s,x) binds the symbol s to the object x.

putc System method

putc(c:char, p:port) → void

putc(c,p)  sends c to the output port p.

random System method

random(n:integer) → integer

random(n)  returns an integer in (0 .. n-1), supposedly with uniform probability.

range Class, System, Language method

range(r:restriction) → any Class
range(r:relation) → any Class
range(v:global_variable) → any System
range(v:Variable) → any Language

For a relation or a restriction r, range(r) returns the allowed type for the values taken by r over its
domain. For a variable v, range(v)  is the allowed type for the value of v.

read Class, Reader method

read(p:property, x:object) → any Class
read(p:port) → any Reader
read(s:string) → any Reader

read(p,x)  is strictly equivalent to p(x): it reads the value and raises an exception if it is unknown.
read(p)  and read(s) both read an expression from the input port p or the string s.

read_in_string Reader method

read_in_string(r:meta_reader, s:string) → void

considers s as the new stream of input. meta_reader is the class of the object reader.

release System method

release() → any

returns a release number of your CLAIRE system  (<version>.<release>).

restrictions Class method

restrictions(p:property) → list[restriction]

returns the list of all restrictions of the property. A property is something a priori defined for all
entities. A restriction is an actual definition of this property for a given class (or type).

self_print Class method

self_print(x:any) → any

this is the standard method for printing unnamed objects (objects that are not in thing). It is called
by default by printf on objects.

set! System method
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set!(s:abstract_set) → set
set!(x:integer) → set[(0 .. 29)]

set!(s) returns an enumeration of the abstract set s. The result is, by definition, a set that contains
exactly the members of s. An error occur if s is not finite, which can be tested with finite?(x).

set!(x) returns a set that contains all integers i such that  (x / 2i)  mod 2 = 1. This method considers
x as the bitvector representation of a subset of (0 .. 29). The inverse is integer!.

shell System method

shell(s:string) → any

Passes the command s to the operating system (the shell).

show Reader method

show(x:any) → any

The method show prints all the information it can possibly find about the object it has been called
on: the value of all its slots are displayed. This method is called by the debugger.

shrink Reader method

shrink(x:list,n:integer) → list
shrink(x:string,n:integer) → string

The method shrink truncates the list or the string so that its length becomes n. This is a true side-
effect and the value returned is always the same as the input. As a consequence, shrink(l,0) returns an
empty list that is different from the canonical empty list nil.

size System method

size(l:bag) → integer
size(x:any) → integer

size(l)  gives the number of elements in l. If x is an abstract set (a type, a class, ...) then size(x)
denotes the number of elements of type x. If the set is infinite, an exception will be raised. Note that
the size of a list is not its length because of possible duplicates.

slots Class method

slots(c:class) → any

slots(c)  returns the list of all slots that c may have

sort Class method

sort(m:method, l:list) → type[l] Class

The method sort has two arguments: an order method m such that m(x,y) = true if x <= y and a list
of objects to be sorted in ascending order (according to m). The method returns the sorted list. The
method is usually designated using @ as in sort(< @ integer, list(1,2,8,3,4,3)).

sqrt System method

sqrt(x:float) → float

returns the square root of x. Returns an irrelevant value when x is strictly negative.

stat Class method

stat() → void

stat() pretty prints the result given by mem(): it prints the memory situation of the CLAIRE system:
the number of used cells and the number of remaining cells for each type of cell (chunk, small object,
imported object, symbol)

store System method

store(r1: relation, r2:relation ...) → void
store(l:list,n:integer,v:any,b:boolean) → void
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store(r1,r2,...) declares the relations (properties or arrays) as defeasible (using the world
mechanism). store(l,n,v,b) is equivalent to l[n] := v but also stores this update in the current world if b
is true.

string! System method

string!(s:symbol) → string
string!(n:integer) → string

string! converts a symbol or an integer into a string, for example string!(toto) returns "toto" and
string!(12) returns "12". Unlike make_string, it returns the unqualified form (string!(Francois/agenda)
= “agenda", whereas make_string(Francois/agenda) = "Francois/agenda").

substitution Language method

substitution(exp:any, v:Variable, f:any) → any

substitution(exp,v,f) returns exp where any occurrence of the free variable v is substituted by f.
Hence, if occurrences(exp,v) = 0 then substitution(exp,v,f) returns exp for any f.

substring System method

substring(s:string, i:integer, j:integer) → string

returns the substring of s starting at the ith character and ending at the jth. For example,
substring("CLAIRE",3,4) returns "AI". If i is negative, the empty string is returned and if j is out of
bounds (j > length(s)), then the system takes j=length(s).

symbol! System method

symbol!(s:string) → symbol

symbol!(s) returns the symbol associated to s. For example, symbol!("toto") returns 'toto'

time_get, time_set, time_show System method

time_get() → integer
time_set() → void
time_show() → void

time_set() starts a clock, time_get() stops it and returns an integer proportional to the elapsed time.
Several such counters can be embedded since they are stored in a stack. time_show() pretty prints the
result from time_get().

type! Language method

type!(x:any) → any

returns the smallest type greater than x (with respect to the inclusion order on the type lattice), that
is the intersection of all types greater or equal to x.

U System method

U(s1:set, s2:set) → set
U(s:set, x:any) → any
U(x:any, y:any) → any

U(s1,s2) returns the union of the two sets. Otherwise, U returns a type which is the union of its two
arguments. This constructor helps building types from elementary types.

use_as_output System method

use_as_output(p:port) → port

uses_as_output(p) changes the value of the current output (the port where all print instructions will
be sent) to p. It returns the previous port that was used as output which can thus be saved and possibly
restored later.

value Reader method

value(s:string) → any
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returns the object whose name corresponds to the string.

verbose Class slot

verbose(s:meta_system) → integer

verbose(system)  (also verbose() ) is the verbosity level that can be changed.

world?, world=, world+, world- Class method

world?() → integer
world+() → void
world-() → void
world=(n:integer) → void
world!-() → void
world!=(n:integer) → void

These methods concern the version mechanism and should be used for hypothetical reasoning:
each world corresponds to a state of the database. The slots s that are kept in the database are those for
which store(s) has been declared. These worlds are organized into a stack, each world indexed by an
integer (starting form 0). world?() returns the index of the current world; world+() creates a new
world and steps into it; world-() pops the current world and returns to the previous one; world=(n)
returns to the world numbered with n, and pops all the intermediary worlds. world!-() returns to the
previous world but carries the updates that were made within the current world; world!=(n) returns
similarly to the world numbered with n.

write Class method

write(p:property, x:object, y:any) → any

This method is used to store a value in a slot of an object. write(p,x,y) is equivalent to p(x) := y.
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APPENDIX C: USER GUIDE

1. CLAIRE

When you run CLAIRE, you enter a toplevel loop. A prompt claire> allows you to give commands
one at a time The expression is entered, followed by <enter> on the Macintosh version or <return> on
the UNIX or OS/2 version8. The expression is evaluated and the result of the evaluation is printed out
after an eval[n]> prompt where n starts from 0 and gets incremented by one on each evaluation. This
counter is there to help you keep track of your session. To quit, you can type ^D, q (for quit) or
exit(1).

claire> 2 + 2
eval[0]> 4

The value returned at the level n can also be retrieved later using the array EVAL.
EVAL[n] contains the value returned by eval[n]>, modulo the size of this array. To prevent the
evaluation of an instruction, one may use the backquote character (`) in a way similar to LISP’s quote.

claire> ̀ (2 + 2)
eval[1]> 2 + 2

Formally, the expression entered at the toplevel can be any <fragment>, to avoid painful
parenthesis. To prevent ambiguities, the newline character is taken as a separator inside compounded
expressions (cf. Appendix A, <comp-exp>). This restriction is only true at the top-level and not inside
a file. It prevents from writing

claire>  1 + 2
+ 3

but not

claire>  1 + 2 +
3

The CLAIRE system takes care of its memory space and triggers a garbage collection whenever
needed. If CLAIRE is invoked from a shell, it can accept parameters according to the following syntax:

claire 〈-s <int> <int>〉opt

〈-n| -v  <integer> | -f  <file> | -m <module>〉*

〈 -F <flag>〉* 〈 -D | -O 〉opt

〈  〈   〈 〈-cm | -cc〉 <module>〉 | 〈-cf | -c〉 <file>〉   〈-o <file>〉opt 〉opt

The -s option allows to change the size of the memory zone allocated for CLAIRE. The first
number is a logarithmic increment9 for the static zone (bags, objects, symbols), the second number is
a logarithmic increment for the dynamic zone (the stacks). For instance, -s 0 0 provides the smallest
possible memory configuration and -s 1 1 multiplies the size of each memory zone by 2. The method
stat() is useful to find out if you need more memory for your application. A good sign is the presence
of numerous garbage collection messages.

Whenever CLAIRE starts, it looks for the init.cl file in the current directory. This file is loaded
before any other action is started. When the environment does not include a shell (e.g. Macintosh), the
first line of the init.cl file can be a comment of the form

;claire 〈-s <int> <int>〉opt

8 The prompt may also be ¿claire?  depending on your operating system.

9 A logarithmic increment  n  means that the size is multiplied by 2n .
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The parameters after CLAIRE will be used as if they were entered from a shell. The loading of the
init.cl file can be prevented with the -n option. The -v (for verbose) option will set the value of
verbose() to the integer parameter and thus produce more or fewer messages.

The options -f and -m are used to load files and modules into CLAIRE. The argument <file> is a
name of a file (e.g. -f test is equivalent to load(“test”)) . The argument <module> is the name of
a module that is either part of the CLAIRE system or defined in the init.cl file ( -m test is equivalent
to get(test)) .

The option -F is used to set the value of a global_variable <flag> to false. This option can be used
in conjunction with #if if to implement different versions of a same program in a unique file.

There are four options that invoke the CLAIRE compiler: -c, -cf, -cm and -cc. They are used to
compile respectively a file (without and with linking), a module and a multi-module project. The -o
option may be used to give a new name to the executable that is generated (if any). The options -O
and -D are used respectively to increase the optimization or the debugging level (cf. Section 3).

When claire -c test is invoked, the file compiler takes a CLAIRE file, produces an equivalent
C or C++ file and another C file called the system file. The first file is named <file>.c (here test.c) and
the second file is named <out>-s.c (here test-s.c). They are both placed in the directory
source(compiler) (cf. Section 3). The name <out> is <file> by default and is changed with the -o
option. The option -cf is similar except that the generated files are compiled and linked directly by
CLAIRE. This is done by producing a makefile <out>.mk that links the generated binaries with the
necessary CLAIRE modules. The option -cf is the option that people use most, while the -c option
corresponds to using CLAIRE as a code generator.

The -cc option is the equivalent of -c for a module: claire -cc m will produce a C/C++ file for
each CLAIRE file in made_of(m). It does not produce a system file, because it is designed to be used
in a project with multiple modules. A unique system file for a set of modules is obtained with the
compile method, as explained in section 3. On the other hand, the -cm option is the module equivalent
of the -cf option. It is similar to -cc, but in addition it produces a system file for the module that is
being compiled and a makefile which is executed by CLAIRE, producing the C/C++ compilation and
link of the generated code.

If the environment does not provide a shell, compiling becomes a more complex task. One can use
the compile method that is presented in section 3 to generate C or C++ files from CLAIRE files or
modules. In addition the method compile must be used to generate the system file that contains the
start up procedures. These files need to be compiled and linked explicitly using the users’ choice of
programming environment.

2. The Environment

CLAIRE provides a few simple but powerful tools for software development: interactive debugger,
stepper and inspector. All three of them are contained in the System library and have the same
structure of top level loops.

CLAIRE provides a powerful tool to trace programs. Trace statements are either explicit or
implicit. To create an explicit trace statement, one uses the instruction

  trace(level:integer,pattern:string,l:listargs)

which is equivalent to a format(pattern,l) onto the port trace_output() if verbose() is more than
level. . Explicit trace statement are very useful while debuging. They may often be seen as "active
comments" that describe the structure of an algorithm. For instance, we may use

trace(DEBUG, ”start cycle exploration from node ~S\n”,x)

Such a statement behaves like a "printf" if the verbosity level is less than the value of the global
variable DEBUG, and is inactive otherwise. The goal is to be able to selectively turn on and off pieces
of the debugging printing statements. By changing the value of the DEBUG variable, we can control
the status of all trace statements that use this variable as their verbosity level.

It would be nice if we could separate visually these tracing statements from the rest of the code,
especially since too many trace statements can quickly reduce the readability of the original
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algorithm. To achieve this goal, CLAIRE provides the notion of extended comments. An extended
comment is a comment that starts with //[..], and which is treated like an explicit trace statement. For
instance, the previous trace statement would be written as

//[DEBUG] start cycle exploration from node ~S // x

More precisely, an extended comment can only be used inside a block (i.e., within parentheses).
The verbosity level is the string contained between the two brackets after //, the rest of the line is the
concatenation of the pattern string and the argument list, separated with another "//", unless the list is
empty. The last chararacter should be a comma if a comma would be required after a trace statement
in a similar position (i.e., if the trace statement is not the last statement of the block). Here is a simple
example :

let x := 1 in
( //[1] start the loop with ~S // x,
  while (x < 10)

 (if g(x) f(x,x),
//[2] examine ~S // x

        ))

Implicit trace statements are produced by tracing methods or rules. The instruction
trace(m:property) will produce two trace statements at the beginning and the end of each
restriction of m (method). For instance, here what we could get by tracing the function fib.

1:=> fib(3)
2:=>> fib(2)
3:=>>> fib(1)
[3]>>> 1
3:=>>> fib(0)
[3]>>> 1
[2]>> 1
2:=>> fib(1)
[2]>> 1
[1]> 3

The level associated with the method's trace statement is the current level of verbose(). At any
time, the trace statements can be deactivated with untrace(m:method). The other way to generate trace
statements is to activate the trace generation of the rule compiler with trace(if_write). Whenever
trace(if_write) is active, the code generated by the rule compiler will be instrumented with trace
statements. Therefore, a statement will be printed as soon as the rule is triggered. One can play with
trace(if_write) and untrace(if_write) to selectively instrument some rules and not the others, and later
to activate/deactivate the trace statements that have been generated.

The output_port can be set with trace(p:port) or trace(s:string) which creates an implicit port
fopen(s,"w"). In addition, trace(...) can be used for two special functions. trace(m:module) activates a
compiled module, which means that its compiled methods can be traced exactly like interpreted
method. This will only happen if the module was compiled with the -D option (cf. Section 3).
trace(spy) activates the spy property if the method spy @ void has been defined previously. This
means that spy() is invoked after each method call. This will slow down execution quite a lot but is
extremely useful to detect which method has caused an undesired situation. Suppose for instance that
the value r(X) must always be lower than 10. After the execution of your program, you find that r(X)
= 12. If you try

[spy() -> assert(r(X) <= 10)]
trace(spy)

and run your program, it will stop exactly after the "wrong" method call that violated your
assumption. assert(X) is a convenient macro which is equivalent to (if not(X) error(...)).  The error
message indicates in which file/line the error occurred. assert() statements are  not compiled unless
the debug mode of the compiler is active, or unless safety(compiler) = 0. Thus, assert statements
should be used freely in a CLAIRE program since they are known  to have a very positive effect on
code safety and reliability.
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The debugger is a toplevel loop that allows the user to inspect the stack of function calls. The
debugger is invoked each time an error occurs, or by an explicit call through a breakpoint() statement.
First, the debugger must be activated with the debug() method which works as a toggle
(activate/deactivate). Then, whenever an error occurs, the debug toplevel presents the debug> prompt.
In addition to being a standard read-eval-print toplevel (thus any CLAIRE expression can be
evaluated), the following additional methods are supported:

where(n:integer) shows the n last function calls in the stack. For each call, only

                              the selector (the property) and the value of the arguments are

                              shown

block(n:integer) shown the n last function calls with the explicit method that was

                              called, all the local variables (including the input) parameters and

                              their current values.

dn(n:integer) moves the current top of the stack down by n levels

up(n:integer) moves the top of the stack up by n levels

For instance, here what we could get

[f(n:integer) -> let y := n - 1 in 1 / n + f(y)]
debug()
f(2)
---------------------- Debug ---------------------------
Integer arithmetic: division/modulo of 1 by 0
debug> where(10)
debug[1] > f(2)
debug[2] > f(1)
debug[3] > f(0)
debug[4] > 1 / 0
debug> block(10)
debug[1] > f@integer(x = 2, y = 1)
debug[2] > f@integer(x = 1, y = 0)
debug[3] > f@integer(x = 0, y = -1)
debug[4] > 1 / 0

The debugger only shows method calls that occur in interpreted code or in compiled code from an
active module. As for trace statements, an active module needs to be compiled with the  -D option
first and activated with the trace(m) statement. For a compiled method, the block(n) instruction will
only show the module where the method is defined.

The debugger can be invoked explicitly with the breakpoint() statement, which allows the user to
inspect the stack of calls and the values of the local variables at the time the breakpoint is set. Once
the inspection is completed, the execution resumes normally (as opposed to the usual error handling
case). The debugger prompt allows the user to evaluate any expression, thus to inspect the current
state of any objects.

This library also provides a stepper. The method step() invokes the stepper, which will be active
for the next message evaluation. The stepper can also be turned on after a given method p is
evaluated, with the command step(p). Once it is triggered, the stepper stops at each function call,
shows the name of the method and the value of the arguments and offers the following menu:

[s,i,o,q,t,b,x]

s:step the stepper will evaluate the function

i:in the stepper enters the function and stops at the first function call

o:out the stepper exits the function
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q:quit the stepper stops (but may restart if there are other calls to active methods)

t:trace the stepper starts tracing the function

b:breakpoint you enter a breakpoint toplevel, to inspect the current state of objects.

x:exit you exit the stepper by raising an exception. You come back to the interpreter prompt.

Finally, an inspector is also available for browsing CLAIRE objects. It is turned on by the method
inspect. Calling inspect(x) will give information about x (the same information that the method show
would give, that is the list of all slots and their values) and make you enter another toplevel loop with
an inspect> prompt.

Each information about the inspected object is numbered. Typing in a number will make the
inspector focus on the corresponding slot of the object.

If the inspected object is x, typing the property p will drive the inspector to the object p(x)

Typing in the name of an object will focus the inspector on that object

Typing up will return to the previously inspected entity.

Typing q will have you quit the inspector.

3. The compiler

3.1 C/C++ code generation

The CLAIRE compiler generates C or C++ files from a CLAIRE file  (or a set of files associated
with a module). The use of C or C++ is determined by  a global variable as we shall later see.  For a
given file f.cl, it will produce a code file f.cp (or f.c) and a header file f.h. In the case of a module m,
it will produce a unique header file m.h and multiple code files. Each code file contains a list of C
functions for each method in the file, plus one large method that contains the C code for generating
the CLAIRE objects that are defined in f.cl. In addition to a few compiler-generated comments lines,
the comments lines that begin with // in the CLAIRE source file are also included in the C generated
file.

The interface file contains the C structures or C++ classes generated for each CLAIRE class, the
function prototypes for each compiled method, and the extern definition of all the generated
identifiers (see later). In addition, the compiler can also be used to generate a "system file", which
name is f-s.c, where f is the output parameter. This system file is either produced directly by a call to
compile(out:string,l:list[module]) or implicitly by using the -cm or -cf options (out is the name of
executable and l is the list of necessary modules).

The system file contains code for building all the modules and loading them in the right order. Its
key generated function is run_claire() which must be invoked by the main() function of your program
(this is done automatically with the main.c file that is used  with the -cm or -cf option). If you decide
to  write your own main() function, you must  remember to call run_claire before using any CLAIRE

objects.  The mainm.c file that the CLAIRE compiler uses for the -cm and -cf option is straightforward.
It contains a very simple toplevel and provides only two features: it loads the start.cl file before
entering the toplevel (if it exists) and it accepts the "-s a b" option as shell parameters to change
dynamically the size of the memory allocated to your program.

CLAIRE provides a way to include C++ directly into the generated code. The method externC has
one argument (a string) and no effect when interpreted. On the other hand, a call to externC is
compiled into its string argument. For instance, to define a bitwise and operation we may use

  [bit&(x:integer,y:integer) : integer -> externC("(x & y)") ]

3.2 What the compiler produces

Reading or using the C++ generated code is very easy as soon as you have a vague  idea of what is
produced by the compiler (here we assume that you have already read  Section 6.5). The first output
of the compiler is a set of structure or class definition that is placed in the header file. Each CLAIRE

class that is an object sort (i.e., that is included in object) produces such a structure, where each slot of



Appendix C CLAIRE's User Guide 65

the class becomes a data member in the structure. This structure will be used to access CLAIRE objects
within a C program as if it was a standard C/C++ object. For instance, a definition like

  [C <: object(x:string,y:int,z:float)]

will produce

class C : public object
{ char *x;

int y;
double *z;}

The name used for the structure is exactly the same as the CLAIRE name, with the exception of
special characters in {'.', '&', '-', '’','+', '%', '*', '?', '!', '<', '>', '=', '^', '@'} that are translated into a short
sequence of charcacters that are acceptable for C/C++. Using the CLAIRE name for the structure has
the advantage of simplicity but the user must keep this in mind to avoid name conflicts (such as using
a C++ keyword for a class name).

The second output of the CLAIRE compiler is a set of identifiers that correspond to the set of
CLAIRE named objects. For each named object x (i.e. that belongs to thing), CLAIRE generates a C
identifier with name L_x (the prefix "L_" is added). If the name is a qualified symbol m/x from
module m, the generated identifier is L_m_x. As previously, special characters are translated. To find
out which identifier is generated, one may use the c_test method. This method is an on-line compiler
that is intended to show what to expect. c_test(x:any) takes an instruction x and shows what type
will be inferred and what code will be produced. For instance, c_test(x:thing) will show which
identifier will be generated. To use c_test with a complex instruction, one may use the  ` (backquote)
special character that prevents evaluation. For instance, one may try

c_test(`(for x in class show(x)))

Let us consider a small example that will show how to create a claire object from C++ or how to
invoke a method. Suppose that we define :

[point <: class(x:integer, y:integer, tag:string)]
[f(p:point,s:string) -> tag(p) := s ]

The code shown by

c_test(`f(point(x = 1), “test”)

will be (modulo the GC statements that depend on the settings and that will be discussed later) :

{ point * v_arg1;
char * v_arg2;
{ point * _CL_obj = (point *) make_object_class(L_point);

_CL_obj->x = 1;
add_I_property(L_instances, L_point, 11, _object_(CL_obj));
v_arg1 = _CL_obj;}

v_arg2 =  “test”;
f_point_claire(v_arg1,v_arg2);}

In addition, CLAIRE also generates a special variable for each module that contains their index
value. This variable is obtained with the prefix "N_".

The third output of the CLAIRE compiler is a set of functions. CLAIRE generates a C function for
each method in the CLAIRE file. The function uses a name that is unique to the method as explained in
Section 6.5. The function name associated to a method can be printed with the c_interface(m:method)
method. The input variables (as for any local variables) are a straightforward translation from CLAIRE

(same name, equivalent C/C++ type). The body of  the function is the C code that is  equivalent to the
original CLAIRE body of the method. The C code generated by CLAIRE is an almost straightforward
translation of the source code. The only exceptions are the additional GC protection instructions that
are added by the compiler. These macros (GC...) can be ignored when reading the code (they are
semantically transparent) but they should not be removed ! In addition, CLAIRE also produces one
load function for each file f (with name "load_f") that contains code which builds all the objects,
including the classes and methods, contained in the file.
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3.3 Customizing the compiler

There are a few parameters that the user can control the CLAIRE compiler. They are all represented
by slots of the compiler object. The string source(compiler) is the directory where all generated C
code will be placed. You must replace the default value of this slot by the directory that will contain
the generated code.

The second slot safety(compiler) contains an integer that tells which level of safety and
optimization is required, according to the following table:

      0  -> super-safe: the type of each value returned by a method is checked against its
range, and the size of the GC protection stack is minimized. All assertions
are checked

      1  -> safe (default)

      2  -> we trust explicit types & super. The type information contained in local variable
definition (inside a let) and in a super (f@c(...)) has priority over type inference
and run-time checks are removed.

      3  -> no overflow checking (integer & arrays), in addition to level 2

      4  -> we assume that there will be no selector errors or range errors at run-time.
This allows the compiler to perform further static binding.

      5  -> we assume that there will be no type errors of any kind at run-time.

      6  -> unsafe (level 5 + no GC protection). Assumes that garbage collection will
never be used at run-time

The slot external(compiler) contains the name of the C/C++ compiler that should be used by the
-cm and -cf options. For instance, its default UNIX value is "gcc". It could be changed to "gcc -p" to
use the profiler (for instance).

The slot headers(compiler) contains a list of strings, each of which is a header file that needs to be
used the generated C file. This is useful when you define methods by external functions, whose
prototypes are in a given header (such as a GUI library header).

The last slot, debug?(compiler), contains a list of the modules for which debuggable code  must be
generated. This slot is usually set up directly using the -D option. By default,  generated code is not
instrumented which means that the tracer, the debugger or the  stepper cannot be used for compiled
methods. On the other hand, when debuggable  code is generated, they can be used just as for
interpreted code. One just needs to activate the compiled module with a trace(m) statement. The
overhead of the instrumentation is marginal when the module is not active. Once it is active, the
overhead can vary in the 10-100% range.

The last way to customize the compiler is to introduce new imported sorts, as defined in Section
6.5. This is done by defining a new class c that inherits from the root imported and telling the compiler
what the equivalent C type is with the c_interface method. c_interface(c:class,s:string) instructs the
compiler to use s as the C type for the external representation of entities of type c. For instance, here
is a short CLAIRE program that defines a new type: long integer (32bits integers).

long <: imported()
(#if loaded(Compile) c_interface(long,"long"))

[+(x:long,y:long) : long -> function(plus_long) ]
[self_print(x:long) : void -> function(print_long) ]

Notice that we guard the c_interface declaration with an #if to make sure that the compiler is
loaded. We may now define the C implementation of the previous method as follows.

long plus_long(long x, long y) { return x + y;}
void print_long(long x) {fprintf(LO.port,"%dL",x);}
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Last, we must make sure that the header file corresponding to the previous functions is included by
the CLAIRE compiler using the headers(compiler) slot. The choice between C and C++ cannot be
reversed lightly since the C and the C++ code generated by CLAIRE are incompatible. However, it is
easy to force the compiler by using the two following variables (in the Compile module). *C++* is a
boolean that tells that C++ should be used, *fe* is a string that contains the extension for the
generated files.

The CLAIRE compiler also generates code to check that objects slots do not contain the special
“unknown” value. This can be avoided by declaring one or many properties as “known”, through the
following declaration :

known!(<relation>*)

The compiler will not generate any safety check for the relations (properties or arrays) that are
given as parameters in a known! statement.

3.4  Iteration and Patterns

We have seen how CLAIRE supports the optimization of iteration and membership for sets that are
represented with new data structure. This is done through the addition of inline restrictions to
respectively the iterate and the % property. However, there are cases where sets are better represented
with expressions than with data structures. Let us consider two examples, but and xor, with the
following samples

for c in ({c in class | length(slots(c)) > 5} but class) ....

(for x in (s1 & s2) ...         ;; iterate the intersection
for x in (s1 xor s2) ... ;; iterate the rest of (s1 U s2)

The definition of the sets are as follows; (s but x) is the set of members of s that are different from
x; (s1 xor s2) is the set of members of s1 or s2 but not both. It would be perfectly possible to
implement these sets with either simple methods (set computation) or new data structures, with the
appropriate optimization code. However, there are two strong drawbacks to such an approach

• it implies an additional object instantiation which is not necessary,

• it implies evaluating the component sets to create the instance, which could have been
prevented as shown by our first example (the selection set can be iterated without being built
explicitly).

A better approach is to manipulate expression that represent sets directly and to express the
optimization rules directly. Although this is supported by CLAIRE through the use of reflexion and
thus out of scope for this manual, we have identified a subset of expressions for which a better
(simpler) support for such operations is provided.

The key concept is the pattern concept, which is a set of function calls with a given selector and a
list of types of the arguments (that is a list of types to which the results of the expressions that are the
arguments to the call must belong). A pattern in CLAIRE is written p[tuple(A,B,...)] and contains calls
p(a,b,...) such that a is an expression of type A ... and so on. Patterns have two usage: the iteration of
sets represented by expressions and the optimization of function composition (including membership
on the same expressions). To better understand what will follow, it is useful to know that each
function call is represented in CLAIRE by an object with two slots: selector (a property) and args (the
list of arguments).

First, the CLAIRE compiler can be customized by telling explicitly how to iterate a certain set
represented by a function call. This is done by defining a new inline restriction of the property Iterate,
with signature (x:p[tuple(A,B,...)],v:Variable,e:any). The principle is that the compiler will
replace any occurence of (for v in p(a,b,...)  e) by the body of the inline method as soon as the type of
the expressions a,b,... matches with A,B,.... This is very similar to the use of iterate, but we leave as
an exercice for the reader to find out why two different properties are needed.

For instance, we can define two new restrictions of Iterate as follows.
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[Iterate(x:but[tuple(any,any)],v:Variable,e:any)
=> for v in eval(args(x)[1]) (if (v != eval(args(x)[2])) e) ]

[Iterate(x:xor[tuple(any,any)],v:Variable,e:any)
=> (for v in eval(args(x)[1]) (if not(v % eval(args(x)[2])) e),

 for v in eval(args(x)[2]) (if not(v % eval(args(x)[1])) e) ]

If we need to have access to a component of the call that matches the pattern, we use a special eval
call: instead of performing the substitution, the compiler will evaluate what is inside the eval call.
Here is what will be obtained for our two initial examples :

for c in get_instances(class)
(if (length(slots(c)) > 5)

 (if (c != class) ....

(for x in (s1 & s2) ...         ;; iterate the intersection
(for x in s1 (if not(x % s2) ...
 for x in s2 (if not(x % s1) ...

Patterns are also useful to add new code substitution rules. This is achived with a restriction (an
inline method) whose signature contains one or more patterns and the class any. The compiler tries to
use it based on the matching of the expressions (pattern-matching as opposed to type-matching). For
instance, here is how we optimize the membership to sets represented by a “but” expression.

[%(x:any,y:but[tuple(any,any)])
=> x % eval(args(x)[1]) & (x != eval(args(x)[2]))]

The use of patterns is an advanced feature of claire, which is not usually available in programming
languages. It corresponds to what could be called composition polymorphism, where the
implementation of a call f(...,y, ...) may change if y is itself the result of applying another function g. It
allows to implement simplification rules such as

(A + B)[i,j] = A[i,j] + B[i,j]

by declaring

[nth(x:+[tuple(matrix,matrix)],i:any,j:any)
=> eval(args(x)[1])[i,j] + eval(args(x)[2])[i,j] ]
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