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Why SAFER K Changed Its Name

Abstract

In this paper we analyse the block cipher SAFER K. First we show a weakness

in the key schedule, that has the e�ect that for almost every key K, there exists on

the average 3 and half other keys K

�

keys such that the encryptions of plaintexts

di�erent in one of 8 bytes yield ciphertexts also di�erent in only one byte. Moreover,

the di�erence in the keys, plaintexts, and ciphertexts are in the same byte. This

enables us to do a related-key chosen plaintext attacks on SAFER K, which �nds 8

bits of the key. Also, the security of SAFER K when used for in standard hashing

modes, is greatly reduced, which is illustrated. Second, we propose a new key schedule

for SAFER K avoiding these problems. Finally, we do di�erential cryptanalysis of

SAFER K. We consider \truncated di�erentials" and apply them in an attack on 5-

round SAFER K, which �nds the secret key in time much faster than by an exhaustive

search.

1 Introduction

In [11] a new encryption algorithm, SAFER K-64, hereafter denoted SAFER K, was pro-

posed. Both the block and the key size is 64. The algorithm is an iterated cipher, such

that encryption is done by iteratively applying the same function to the plaintext in a

number of rounds. Finally an output transformation is applied to produce the ciphertext.

The suggested number of rounds is minimum 6 and maximum 10 [11, 12]. Also, Massey

proposed a 128 bit key version called SAFER K-128 [12]. Strong evidence has been given

that the scheme is secure against di�erential cryptanalysis after 5 rounds [12] and against

linear cryptanalysis after 2 rounds [3]. In [17] Vaudenay showed that by replacing the

S-boxes in SAFER K by random permutations, about 6% of the resulting ciphers can be

broken faster than by exhaustive search.

In this paper we show a weakness in the key schedule of SAFER K and use our ob-

servations to establish related-key chosen plaintext attacks, which using from 2

36

to 2

39

chosen plaintexts �nds 8 bits of the secret key with probabilities from 1 to 2

�59

depending

on certain circumstances of the attacks.

Furthermore, we show that for SAFER K with 6 rounds used in the standard hashing

modes collisions can be found much faster than by a brute force attack. We found collisions

of such hash functions in estimated time about 2

23

encryptions when SAFER K is used as

the underlying block cipher. This should be compared with a brute force collision attack,

which requires about 2

32

operations.
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To avoid these problems we suggest a new key schedule for SAFER K making only

small changes to the original one.

Also, in [14] Murhpy showed that there exists a projection on the input and output

spaces of the round function in SAFER K which is independent on one quarter of the key.

However, it is still unclear how to exploit Murphy's observations in an actual attack on

SAFER K.

As a consequence of all this, Massey decided to adopt our stronger key schedule and to

recommend that at least 8 rounds is used for SAFER K with a 64 bit key. The new cipher

has been named SAFER SK-64. Massey also proposed a 128 bit key variant this version,

namely SAFER SK-128.

Finally, we consider \truncated di�erentials" and apply them in an attack on 5-round

SAFER K, the original version, which �nds the secret key much faster than by exhaustive

search. The attack uses a 5-round truncated di�erential of probability 2

�70

, which can be

obtained using only about 2

39

chosen plaintexts. The attack uses several of these di�eren-

tials, needs totally about 2

45

chosen plaintexts and runs in time similar to 2

46

encryptions

of 5-round SAFER K. Another version of the attack needs totally about 2

46

chosen plain-

texts and runs in time similar to 2

35

encryptions of 5-round SAFER K. This should be

compared to the analysis made in [12], where a di�erential attack using conventional dif-

ferentials on SAFER K with 5 rounds was estimated to require more computations than a

brute force exhaustive attack. Our attack is independent of the S-boxes used in SAFER K

and furthermore it needs only a small amount of chosen plaintext compared to conventional

di�erential attacks [2] and illustrates the importance of truncated di�erentials.

This paper is organised as follows. First we give a short description of SAFER K and

SAFER SK. In Sect. 3 we describe the weakness in the key schedule of SAFER K and show

how to exploit this in a related-key chosen plaintext attack. In Sect. 4 we describe attacks

on hash modes using SAFER K and give examples of collisions. In Sect. 5 we give di�erent

methods of how to improve SAFER K to avoid the problems described in the preceding

sections and discuss the new key schedule used in the modi�ed version of the algorithm,

SAFER SK.

In Sect. 6 we consider truncated di�erentials of SAFER K and in Sect. 7 apply them

in di�erential attacks. We give our concluding remarks in Sect. 8.

2 Description of SAFER K

SAFER K is an r round iterated cipher with both block and key size of 64 bits and

with all operations done on bytes. The key is expanded to 2r + 1 round keys each of

64 bits, described later. The designer's recommendation for r is 6 [11]. Each round

takes 8 bytes of text input and two round keys each of 8 bytes. The input and the

round keys are divided into 8 bytes and the �rst round key is xor'ed, respectively added

modulo 256, according to Fig. 1. The bytes are then processed using 2 permutations or

S-boxes, X(a) = (45

a

mod 257) mod 256, and the inverse of X, L(a) = log

45

(a) mod 257

for a 6= 0 and where L(0) = 128. After the S-boxes each byte of the second round

2



p

1

p

2

p

3

p

4

p

5

p

6

p

7

p

8

c

1

c

2

c

3

c

4

c

5

c

6

c

7

c

8

X L L X X L L X

2-PHT 2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT 2-PHT

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ?

? ?

P

P

P

P

P

P

P

P

Pq

P

P

P

P

P

P

P

P

Pq

�

�

�	

�

�

�	

H

H

H

H

H

Hj

H

H

H

H

H

Hj

�

�

�

�

�

��

�

�

�

�

�

��

@

@

@R

@

@

@R

�

�

�

�

�

�

�

�

�)

�

�

�

�

�

�

�

�

�)

? ? ? ? ? ? ? ?

�

�

K

2i�1

K

2i

� + + � � + + �

+ � � + + � � +

Figure 1: One round of SAFER K.

key is added modulo 256, respectively xor'ed, and �nally the so-called Pseudo-Hadamard

Transformation (PHT) is applied to produce the output of the round. PHT is de�ned by

three layers of the 2-PHT , which is de�ned by

2-PHT (x; y) = (2 � x+ y; x+ y)

where each coordinate is taken modulo 256. Between two layers of 2-PHT 's a permutation

of the bytes is done, which using the cycle notation is (1); (8); (253); (467), see also Fig. 1.

After the last round an output transformation, OT , is applied, which consists of xor'ing,

respectively adding modulo 256, the last-round key. Let o

1

; :::; o

8

be the eight bytes of

the output after r rounds, and let k

1

; :::; k

8

be the eight bytes of the last-round key. The

ciphertext is de�ned

OT (o

1

; :::; o

8

; k

1

; :::; k

8

) =

(o

1

� k

1

; o

2

+ k

2

; o

3

+ k

3

; o

4

� k

4

; o

5

� k

5

; o

6

+ k

6

; o

7

+ k

7

; o

8

� k

8

):

2.1 The key schedule of SAFER K

The key of 64 bits is expanded to 2r + 1 round keys each of 64 bits in the following way.

Let K = (k

1;1

; :::; k

1;8

) be an 8 byte key. The round key byte j in round i is denoted K

i;j

.

The round key bytes are derived as follows: K

1;j

= k

1;j

for j = 1; :::; 8 and

k

i;j

= k

i�1;j

<< 3

K

i;j

= k

i;j

+ bias[i; j] mod 256

3



for i = 2; :::; 2r+ 1 and j = 1; :::; 8. '<< 3' is a bitwise rotation 3 positions to the left and

bias[i; j] = X(X(9i + j)), where X is the exponentiation function described above.

2.2 The key schedule of SAFER SK

The newly suggested SAFER SK varies from SAFER K in the suggested number of rounds,

which is 8, and in the key schedule. Let K = (k

1;1

; :::; k

1;8

) be an 8 byte key. De�ne

k

1;9

=

8

M

i=1

k

1;i

:

The round keys K

i;j

, are de�ned as follows.

K

1;j

= k

1;j

for j = 1; :::; 8

k

i;j

= k

i�1;j

<< 3 for j = 1; :::; 9

K

i;j

= k

i;(i+j�2 mod 9)+1

+ bias[i; j] mod 256 for j = 1; :::; 8

for i = 2; :::; 2r+ 1.

2.3 The 128 bit key schedules

The 128 bit key versions di�er 64 bit version in the suggested number of rounds which is 10

and in the key schedule. The key schedule is essentially two key schedules of the respective

64 bit version, such that the odd no. round keys are taken from the �rst key schedule and

the even no. round keys from the second key schedule. A 128 bit version is compatible

with its 64 version, if the two 64 bit key halves input to the key schedule are equal.

2.4 Some Properties of SAFER K

The following lemmas are used in this paper.

Lemma 1 Let X be the exponentiation function of SAFER K and let a be any byte value.

Then it holds that

X(a) +X(a+ 128) = 1 mod 256

Proof: The statement is proved as follows.

X(a) +X(a+ 128) mod 256 = (45

a

+ 45

a+128

mod 257) mod 256

= (45

a

� (1 + 45

128

) mod 257) mod 256

= (0 mod 257) mod 256

since 45

128

= �1 mod 257. And since both X(a) and X(a+ 128) are in the range [0; 256]

and their sum is not zero, the statement follows. 2

4



The mixed use of addition modulo 256 and exclusive-or operations in SAFER K was

introduced to give the cipher confusion [11]. There is a simple and useful connection

between the two operations when used on bytes, namely

Lemma 2 Let a be a byte value. Then a� 128 = a+ 128 mod 256.

Proof: Follows easily from the fact that the only possible carry bit of a+ 128 disappears.

2

A result similar to Lemma 2 is shown in [12].

3 Weakness in the Key Schedule

From the previous section it is seen that key byte j a�ects only S-box j directly in every

round. Let K = (k

1

; :::; k

8

) be an 8 byte key. Consider the �rst byte in the �rst round. A

key byte is �rst xor'ed to the plaintext byte, the result is exponentiated and another key

byte is added modulo 256, the ciphertext byte after one round is X(y�K

1;1

)+K

2;1

; where

K

1;1

;K

2;1

are derived from k

1

. While it is true that this is a permutation of the plaintext

byte to the ciphertext byte for a �xed key, it is not a permutation of the key byte to the

ciphertext byte for a �xed plaintext. That is, there exist keys K

�

1;1

;K

�

2;1

derived from k

�

1

,

such that

X(y �K

1;1

) +K

2;1

= X(y �K

�

1;1

) +K

�

2;1

(1)

for some inputs y.

Let K

�

= (k

�

1

; :::; k

�

8

) be an 8 byte key di�erent from K in only one byte, say byte no.

1. Then if k

1

and k

�

1

encrypt some of the 256 possible inputs to S-box 1 in every round

the same way, obviously K and K

�

encrypt some 64 bit plaintexts over 6 rounds the same

way.

If, say, n inputs to an S-box in the s'th round are encrypted the same way by two such

keys we will say that the keys encrypt equally with probability p

s

=

n

256

. Also we will

call two such keys related. Consider S-box 1, K and K

�

again. If a byte y is evaluated

the same way with the two keys in S-box 1, i.e. such that (1) holds, then so is the byte

~y = y �K

1;1

�K

�

1;1

� 128. This follows from Lemma 1 and 2. Since L is the inverse of

X, a similar property holds for the logarithmic S-boxes. Therefore n is always a multiple

of 2. The probability that a 64 bit plaintext encrypts into the same ciphertext using two

such keys is

6

Y

s=1

p

s

� 2

6

=2

48

= 2

�42

; (2)

and the number of plaintexts is P l = 2

64

�

Q

6

s=1

p

s

� 2

22

. Here we have tacitly assumed that

the p

i

's are independent. This is not the case, however our experimental results have shown

that the product (2) of the round probabilities is a good approximation for SAFER K with

6 rounds. Since this phenomenon is isolated to one S-box we can easily do an exhaustive

5



Plaintext Keys Ciphertexts

8a 2c 62 a2 a2 81 c1 8c e0 81 01 85 eb 3b 48 76 ca dd fc f6 30 ac 71 38

8a 2c 62 a2 a2 81 c1 8c e0 81 01 85 eb 3b 48 bc ca dd fc f6 30 ac 71 5c

50 1c 7a 44 39 63 f7 8c e0 81 01 85 eb 3b 48 76 6a 7d db 51 44 89 5a f7

50 1c 7a 44 39 63 f7 8c e0 81 01 85 eb 3b 48 bc 6a 7d db 51 44 89 5a 93

Table 1: Pseudo key-collisions for SAFER K (hex notation).

search for all such pairs of keys. We found that for two keys di�erent only in the third

byte with the values 132 and 173 respectively,

Q

6

s=1

p

s

=

6912

2

48

' 2

�35

and P l ' 1:7 � 2

28

:

Note that since the only requirement we make is that the two keys have certain values

in the third bytes, P l ' 1:7 � 2

28

for 2

56

pair of keys. For another 3 � 2

56

pairs of keys

P l ' 1:13 � 2

28

. How do we determine for how many keys there exist another key which

encrypts from 2

22

to about 2

28

plaintexts the same way? Take a key K. Consider all 2

8

�1

keys K

�

di�erent from K only in byte 1. If none of them are related to K, choose keys K

�

di�erent from K only in byte 2 and so on. Again we can do an exhaustive search for all

S-boxes isolated. The total number of keys for which there are no such other keys di�erent

in only one byte is about 2

40

. For many keys K there exists more than one related key, on

average about 2 related keys, and in some cases there are as many as 9 keys related to K.

In the search for the plaintext/ciphertext pairs that coincide for two keys it is not

necessary to do two full 6 rounds of encryptions. One can start the encryptions in the

second round with the inputs to this round such that the ciphertexts after the �rst two

rounds of encryption are the same. This can be done easily by pre-computing two small

tables. Assume that the two keys di�er in the �rst byte only. For the 256 possible values

of the text output of the �rst S-box in the �rst round, store in a table the values for which

the two keys decrypt to equal plaintexts. For the 256 possible values of the text input

to the �rst S-box in the second round, store in a table the values for which the two keys

encrypt to equal values. By pairing the values in the two tables and determining which

PHT inputs whose �rst byte equals the �rst byte of a pair give a PHT output whose �rst

byte equals the second byte of this pair, one can compute all the 64 bit inputs to the second

round, such that the two keys encrypt equally in both the �rst and the second round.

After every round of encryption one checks whether the encryptions are equal. In most

trials only 1 round of encryption is needed for every plaintext in a pair. Therefore one needs

only to do about

1

6

� 2=

Q

6

i=3

p

i

encryptions, which is 2

22

in the optimal cases. Again we

note that the output transformation, which consists of xor'ing, respectively adding modulo

256, the key K

2r+1

makes the above ciphertexts di�er in one byte, exactly the byte for

which the keys di�er. As illustrations we list in Fig. 1 two such examples. The �rst such

pseudo-collision was found in time 2

22

, the second in time 2

22:1

. We summarize our results.

Theorem 1 For all but 2

40

keys K in SAFER K, there exists at least one and on average

two keys, K

�

, di�erent from K in one byte, say byte b

k

, such that K and K

�

encrypt

from 2

22

to about 2

29

plaintexts the same way in 6 rounds. The output transformation of

SAFER K makes the ciphertexts di�er in one byte, byte b

k

. The related keys can be found

6



easily by exhaustive search over a single 8 bit S-box in 6 rounds. Given two related keys

one such plaintext (and the two ciphertexts) can be found in time from about 2

22

to 2

28

encryptions.

From the above discussion also the following result follows.

Theorem 2 For all but 2

17

keys K in SAFER K, there exists at least one and on average

3:5 keys, K

�

, di�erent from K in one byte, say byte b

k

, such that K and K

�

encrypt from

2

29

to about 2

35

pairs of plaintexts, P , P

�

, di�erent in only byte b

k

the same way in 6

rounds. The output transformation of SAFER K makes the ciphertexts di�er in one byte,

byte b

k

.

To �nd such \collisions", one can use the same method as described above for the result of

Theorem 1, but this time start the search in the third rounds, such that the encryption in

the second and third rounds are equal. Once two ciphertexts di�erent in only byte b

k

are

found, the ciphertexts after one round are decrypted into two plaintexts di�erent in only

byte b

k

. Examples of collisions from Theorem 2 are given in the section about collisions of

hash functions. We can use Theorem 2 to establish a related-key attack on SAFER K.

3.1 A Related-key Chosen Plaintext Attack

In [5, 6, 1] new attacks based on related keys were introduced. In this section we apply the

principles of these attacks and introduce a chosen plaintext attack on SAFER K. Assume

we have access to two oracles, one encrypting plaintexts with a keyK, the other encrypting

plaintexts with a key K

�

, such that K and K

�

are related, i.e. encrypt a non-negligible

fraction of all plaintexts the same way. Assume without loss of generality that the keys

di�er only in byte b

1

. Consider the following attack

� Choose the values of the bytes b

2

to b

8

at random.

� Get the 256 encryptions fC

i

g of the plaintexts b

1

; b

2

; :::; b

8

for all values of b

1

encrypted

under the �rst key.

� Get the 256 encryptions fC

j

g of the plaintexts b

1

; b

2

; :::; b

8

for all values of b

1

en-

crypted under the second key.

� Sort the ciphertexts just received and check, if any ciphertext in fC

i

g di�ers from

any ciphertext in fC

j

g only in byte b

1

. If a match is found the two ciphertexts are

output.

If ciphertexts are output in the last step of the above attack, we search exhaustively for

two 8 bit keys k and k� for which the encryptions of the bytes b

1

for the two corresponding

plaintexts yields equal outputs after one round. For these key bytes we check if the xor

of the byte b

1

for the two ciphertexts is the value of the xor of the last-round key bytes

induced by k and k�. If this is the case we have found 8 bits of the secret key with a high

7



# Plaintexts Probability Conditions

2

36

0:63 � 1 Two related keys

2

36

0:63 � 1=73 The two keys di�er in

one known byte position.

2

39

0:63 � 1=73 The two keys di�er in

one unknown byte position.

2

39

0:63 � 2

�59

The two keys are randomly chosen.

Table 2: Related-key chosen plaintext attacks on SAFER K �nding one byte of the key.

(Worst case considerations.)

probability. It could happen by accident that two ciphertext blocks are di�erent only in

one byte without the property that the encryptions after each of the 6 rounds are equal.

But clearly that would happen only with negligible probability.

The attack is repeated until the last step of the algorithm outputs two ciphertexts.

Note that since we choose all 256 plaintexts di�erent in one byte, we can consider 2

16

pairs

of plaintexts, consisting of one plaintext encrypted under one key and another plaintext

encrypted under the second key. It follows that there are 256 pairs of plaintexts encrypted

the same way in the �rst round. According to Theorem 2 two related keys encrypt from

2

29

to 2

35

pairs of plaintexts equally in 6 rounds, and therefore the above algorithm needs

to be repeated at most about 2

27

times, in the optimal cases only 2

21

times. The number

of chosen plaintexts needed in the worst cases is about 2� 2

8

� 2

27

= 2

36

. The probability

of success is about 0.63. The attack can be extended to the case where the attacker has

no knowledge of the byte for which the keys di�er. The above attack is simply repeated

for all 8 bytes requiring a total of 2

39

chosen plaintexts. If the two keys are chosen at

random di�erent in only one byte, the attack succeeds with a probability of

3:5

256

, according

to Theorem 2. Two randomly chosen 8 byte keys will be di�erent in only one byte with

probability 8�

255

256

�2

�56

' 2

�53

. Therefore, if all of the 8 bytes of the two keys are chosen

at random, the attack succeeds with a probability of 2

�53

�

3:5

256

' 2

�59

. We summarize

our results in Table 2 for SAFER K with the recommended 6 rounds. We note that the

complexities given are worst case considerations. The factor 0.63 in the probabilities can

be increased by using more chosen plaintexts. In Table 3 we give the complexities for

similar related-key attacks on SAFER K with 4 and 8 rounds. Our attacks may seem

unrealistic. But imagine Alice and Bob are sending many messages to each other every

day. Alice and Bob have been acting in many cryptographic papers, so they know that the

key should be changed often. So, they change the key every day, but to save computations

only in one byte, so that all the bytes in the key are changed after eight days. Nowhere in

the literature have they found evidence that this should be dangerous. Using SAFER K

it will be. Eve hasn't appeared in as many papers as Alice and Bob, but is smart enough

to trick one of the parties into encrypting many chosen plaintexts every day. Eve �nds 8

bits of the secret key with probability

3:5

256

every day, except the �rst day, using at most

2

39

chosen plaintexts. We assume here that the time to sort and compare ciphertexts is

8



4 rounds 8 rounds

Pl.texts Prob. Pl.texts Prob. Conditions

2

22

0:63 � 1 2

50

0:63� 1 Two related keys.

2

22

0:63 � 1=14 2

50

0:63� 1=256 The two keys di�er in

one known byte position.

2

25

0:63 � 1=14 2

53

0:63� 1=256 The two keys di�er in

one unknown byte position.

2

25

0:63 � 2

�57

2

53

0:63� 2

�61

The two keys are randomly chosen.

Table 3: Related-key chosen plaintext attacks on SAFER K with four and eight rounds

�nding one byte of the key. (Worst case considerations.)

negligible compared to the time of getting the many encryptions. After 73 days Eve has

asked for about 2

45

chosen plaintexts and with a probability 0.63 found at least 8 key bits.

The number of chosen plaintexts can be reduced to 2

42

, if Eve can predict which byte of

the secret key is changed from day to day. Similar attacks on SAFER K with a reduced

number of rounds will have much lower complexities.

Recently, Wagner [18] improved our related key attacks.

3.2 The Rotations and Bias Additions

In this section we consider the rotations and bias additions used in the key schedule of

SAFER K. In [11] it is argued that the bias additions prevent weak keys. Moreover, by

letting out the key biases, for any key K there exists another key K

�

, such that the �rst

5 rounds of the encryption function induced by K are the same as the last 5 rounds of

the encryption function induced by K

�

. This is not a desirable property as illustrated in

[5, 6, 1]. We have found a reason to have byte rotations as well.

Lemma 3 PHT has 256 �xed points.

This result can be found by using Gauss-eliminations on the 8 � 8 matrix of PHT . In

each �xed point every byte value is a multiple of 64. There are 16 �xed points where every

byte value is either 0 or 128. They are given in Appendix A, Table 7. If one leaves out

the key rotations, but keeps the addition of the biases then these 16 �xed points for PHT

are "linear structures" for SAFER K with any number of rounds in the following way. Let

a

1

; ::::::; a

16

be the �xed points from Table 7. Let E(K;P ) = C be the encrypted value of

plaintext P using key K, then

E(K;P ) = C ) E(K + a

i

; P + a

i

) = C:

where '+' is byte-wise addition modulo 256. Thus, an exhaustive search for the key could

be reduced by a factor of 16 using 16 chosen plaintexts. The 16 �xed points are the only

such linear structures. Fixed points with entries of values 64 or 192 are a�ected/destroyed

by the group operation changes exclusive-or/addition mod 256, but the values 0 and 128

9



are not, which follows from Lemma 2. The above illustrates that SAFER K needs both

key rotations and bias additions in the key schedule.

4 Collision of Hash Functions

Often a block cipher is used as building block in hash functions. A hash function for which

the hash code is of the same size as the block cipher is called a single block length hash

function. In these hash functions the message blocks are hashed in a number of rounds,

each round requiring one encryption of the underlying block cipher. There are essentially

12 secure single block length hash functions, which by a linear transformation of the inputs

to one round of the hash function can be transformed into only 2 di�erent schemes [15, 16]:

H

i

= E

M

i

(H

i�1

)�H

i�1

(3)

H

i

= E

M

i

(H

i�1

)�H

i�1

�M

i

(4)

The �rst scheme is known as the Davies-Meyer scheme. These schemes are believed to

be secure, in the sense that, if the underlying block cipher has no weaknesses, free-start

pre-image attacks and free-start collision attacks have time complexities 2

m

and 2

m=2

en-

cryptions, respectively, of the underlying m-bit block cipher [10, 15]. In a free-start attack

the attacker is free to choose the initial values. Using SAFER K as the underlying block

cipher it is possible to �nd both free-start and �xed-start collisions with a complexity of

much less than the brute force method of 2

32

operations.

Also, we note that the attacks to follow will be applicable to many double block length

hash functions based on a block cipher, since in free-start attacks it is possible to attack

the two blocks independently. In the next section we show how to �nd free-start collisions

for the schemes (3) and (4).

4.1 Free-start Collisions

In this section we exploit the phenomenon of Theorem 2. In the attacks to follow we choose

two plaintexts di�erent only in the byte for which both the keys di�er. We hope in this

way to obtain plain- and ciphertexts and keys, such that

E

K

1

(P

1

)� P

1

= E

K

2

(P

2

)� P

2

and=or

E

K

1

(P

1

)� P

1

�K

1

= E

K

2

(P

2

)� P

2

�K

2

depending on the type of hash function we are attacking.

We can speed up this search by choosing the inputs of SAFER K to the third round,

such that the keys encrypt equally in the second and third rounds. For (3), when we

�nd two ciphertexts di�erent in only one byte, we calculate the plaintexts and check for a

collision. In the optimal cases these collisions can be found in estimated time about 2

22:8

encryptions of SAFER K. In Table 4 we give examples of such collisions for hash functions

10



Initial value (pl. text) Message (key) Hash code

6e 32 68 46 c8 fd f1 a9 6f 2d 73 46 e1 2f 62 45 e5 12 8b 4d 3d 58 c2 18

6e 32 68 46 c8 fd f1 9c 6f 2d 73 46 e1 2f 62 f7 e5 12 8b 4d 3d 58 c2 18

f4 b1 a3 27 0b ed 78 a9 57 f5 9b 4e 49 77 0a 45 54 43 57 c4 be f9 88 c9

f4 b1 a3 27 0b ed 78 9c 57 f5 9b 4e 49 77 0a f7 54 43 57 c4 be f9 88 c9

Table 4: Free-start collisions for hash functions of type (3) with SAFER K.

Initial value (pl. text) Message (key) Hash code

� 4e 79 3f c3 4f 52 5b 6d e6 02 f2 54 f0 59 a8 a7 a9 3e 8c 23 30 c3 b4

� 4e 79 3f c3 4f 52 5b e5 e6 02 f2 54 f0 59 a8 a7 a9 3e 8c 23 30 c3 b4

� 9d e5 f5 c1 bc eb 71 6d 9b 13 2f 4d f5 7a b5 11 47 f9 f4 53 c8 e3 17

� 9d e5 f5 c1 bc eb 71 e5 9b 13 2f 4d f5 7a b5 11 47 f9 f4 53 c8 e3 17

Table 5: Fixed-start collisions for hash functions of type (4) with SAFER K.

of type (3). The �rst collision was found in time 2

20:6

encryptions, the second collision in

time 2

19:3

encryptions.

Similarly, it is possible to �nd free-start collisions for hash functions of type (4). We

found such collisions in time about 2

22

. In the next section we give examples of collisions

for hash functions of type (4) with a �xed start.

4.2 Fixed-start Collisions

Although the collisions found in the last section are considered hard to �nd, if the underly-

ing block cipher has no weaknesses, it is interesting to �nd collisions also for a �xed start,

i.e. where the plaintexts of SAFER K are �xed. Using our observations about SAFER K

this cannot be done for the hash round function (3), since if the plaintexts are equal for

two related keys the hash value of (3) will always be di�erent. However, it is possible to

�nd collisions if we consider two rounds of the hash function. Assume H

0

is a �xed initial

value. Using the related key properties described earlier in this paper one �nds M

1

and

M

0

1

, such that H

1

= E

M

1

(H

0

) �H

0

and H

0

1

= E

M

0

1

(H

0

) �H

0

di�er in one byte. Then use

the related key properties once again in the second round and �nd M

2

and M

0

2

, such that

H

2

= E

M

2

(H

1

)�H

1

equals H

0

2

= E

M

0

2

(H

0

1

)�H

0

1

. We did not implement this attack. For

the hash functions (4) it is possible to �nd �xed start collisions for the hash round function.

For our pseudo-collisions for SAFER K, see Table 1, the ciphertexts and keys di�er in the

same byte. Therefore when both the plaintexts and the keys are fed forward in the hash

mode, we can obtain collisions. The di�erence in the ciphertexts of Table 1 is equal to

the di�erence in the last-round keys, which is not necessarily the di�erence in the keys

themselves. Therefore for this attack to work we must use pairs of keys for which the byte

di�erences in the keys are equal to the byte di�erences in the last-round keys of the keys.

An exhaustive search reveals many pairs of keys with this property. Two keys di�erent

only in the �fth byte with values 9 and 129 respectively, encrypt about 2

28

plaintexts in

11



the same way after 6 rounds. By using similar techniques as for free-start collisions one

can show that a collision can be found in expected time about 2

22

encryptions. In Table 5

we list such collisions. The �rst collision was found in time 2

22:3

encryptions, the second

collision in time 2

20:0

encryptions. Many of our collision implementations ran faster than

expected, which may be due to the fact that probabilities in (2) are not independent as

assumed.

5 Improvements of SAFER K

In this section we suggest modi�cations of SAFER K, such that the above attacks cannot

be e�ected. An obvious and immediate way is to increase the number of rounds.

5.1 An Increased Number of Rounds

In SAFER K with 8 rounds there are still many pairs of keys encrypting some plaintexts

the same way. In the optimal case a pair of keys encrypt 1:5� 2

14

plaintexts into the same

ciphertexts after 8 rounds of encryption using our method. Also, related keys encrypt

pairs of plaintexts into equal ciphertexts with non-negligible probability. Therefore, a key-

related attack is possible for SAFER K with 8 rounds, the complexity is given in Table 3.

Collisions for hash modes using SAFER K with 8 rounds cannot be found faster than the

time of 2

32

encryptions.

In the optimal case for SAFER K with 10 rounds a pair of keys encrypt equally for all

10 rounds with probability of only 2

�66

using our method. Since there are only 2

64

di�erent

plaintexts there are no keys with the above phenomenon, thus the key-related attack is not

possible and collisions based on related keys cannot be found faster than by brute force

attack.

5.2 New Key Schedule for SAFER K

Another and in our taste better solution is to change the key schedule. The discoveries

in this paper come from the fact that a key is applied to the text input before and just

after the S-box, thus enabling collisions considering one byte isolated in every round. One

way to hinder this is, paradoxically, to remove the second xor/addition of the key in every

round or just in one of the middle rounds. To �nd collisions similar to the ones we've

found would now require an incorporation of the PHT-transformation. That seems very

unlikely to succeed. But, the fact that a one byte key is connected to the same S-box in

every round seems dangerous and unnecessary.

We next discuss the modi�ed key schedule for SAFER K already described in Sect. 2.2.

As can be seen, there is a circular shift of the nine key bytes. In that way the 8 user-

selected key bytes k

1

; :::; k

8

are connected to di�erent S-boxes from round to round. The

parity byte is introduced to provide an avalanche e�ect in the key schedule. The new key

schedule ensures that the round keys of two di�erent keys are always di�erent in two bytes

12



in some rounds and in one byte in the remaining rounds. For instance, in SAFER K with 6

rounds, two keys will be di�erent in two bytes in 9 out of the 13 round keys. In SAFER K

with 8 rounds, this will be the case in 13 out of the 17 round keys. Thus, our method of

�nding key-collisions is no longer applicable. Also, note that if the key is chosen uniformly

at random, any round key is uniformly random.

6 Di�erentials of SAFER K

In [12] strong evidence was given that SAFER K is secure against di�erential cryptanalysis.

It was argued that a 5-round di�erential for SAFER K will have a probability of much less

than 2

�57

, and that a di�erential attack will require more computations than a brute force

search for the key.

In this section we consider other types of di�erentials than the ones given in [12]. We

will use the notation of \expanded views" from [12] and denote a one round di�erential

by three tuples of each 8 entries. The �rst tuple indicates the di�erence in the 8 bytes

of the inputs to the round, the second tuple indicates the di�erence of the bytes before

the PHT -transformation and the third tuple indicates the di�erence of the bytes after

the PHT -transformation, i.e. the di�erence of the outputs of the round. For convenience,

when considering s-round di�erentials for s > 1, we will omit the third tuple in all but

the last round, since the output di�erence of one round equals the input di�erence to the

following round. To cope with the mixed use of addition modulo 256 and the exclusive-or,

Massey introduced quasi-di�erentials, where the notions of di�erence are di�erent in input

and output [12].

In our attacks, we can avoid doing that and throughout the rest of this paper, a di�er-

ence of two bytes (a; b) is de�ned as

a� b mod 256:

De�nition 1 ([8]) A di�erential that predicts only parts of an n bit value is called a trun-

cated di�erential. More formally, let (a; b) be an i-round di�erential. If a

0

is a subsequence

of a and b

0

is a subsequence of b, then (a

0

; b

0

) is called an i round truncated di�erential.

In [12] ten tables of \PHT correspondences" are given. The truncated di�erentials we have

found follows from these properties of the PHT transformation. As an example, consider

the following one-round di�erential with the expanded view

[a; b; c; d; 0; 0; 0; 0]; [e; f;�e;�f; 0; 0; 0; 0]; [2g; g; 2h; h; 0; 0; 0; 0]; (5)

where g = 2e+f and h = e+f . This truncated di�erential has probability 2

�16

on average

for all values of a; b; c; d. Consider the �rst and second tuples of (5). A di�erence a in the

�rst byte and a di�erence c in the third byte will yield di�erences e and �e, respectively,

with an average probability of 2

�8

, the probability taken over all 2

16

possible keys. More

13



formally, let Pr(a ! e) denote that an input di�erence a to an S-box yields an output

di�erence e etc., then

2

�16

�

X

a

X

c

X

e

Pr(a! e)� Pr(c! �e) =

2

�16

�

X

c

X

e

Pr(c!�e)�

X

a

Pr(a! e) =

2

�16

�

X

c

(

X

e

Pr(c! �e)) =

2

�16

�

X

c

1 = 2

�8

Since the round key bytes are independent, the probability of the di�erential can be calcu-

lated by multiplying the probabilities for the di�erentials for every single S-box. Similarly,

a di�erence b in the second byte and a di�erence d in the third byte will yield di�erences f

and �f , respectively, with an average probability of 2

�8

. The PHT transformation takes

the second tuple into the third tuple which is easily veri�ed. As another example, consider

the following one-round di�erential with the expanded view

[0; 0; 0; 0; 0; 0; a; b]; [0; 0; 0; 0; 0; 0; 0; 0; e;�e]; [e; e; 0; 0; e; e; 0; 0]: (6)

This truncated di�erential has probability 2

�8

on average for all values of a; b. In the

above examples, we did not state any speci�c values of the non-zero bytes. We do not

intend to predict the actual values of the non-zero bytes, merely predict the bytes which

are zero. There are many one-round di�erentials like (5) and (6) above. To save space, we

introduce a new notation. We will denote a di�erential by the indices of the bytes which

are non-zero. We will write 1234! 1234 for the di�erential (5) and, similarly, 78! 1256

for the di�erential (6). In Appendix B Tables 8 and 9, many such di�erentials are listed.

E.g. the di�erential (5) can be found in Table 9 as Input: 1234, Output: 1234, Prob. 16.

As we will show now, one can concatenate the one-round di�erentials of Tables 8 and

9. Consider the following three-round truncated di�erential

1. [a; b; c; d; 0; 0; 0; 0]; [e; f;�e;�f; 0; 0; 0; 0];

2. [2g; g; 2h; h; 0; 0; 0; 0]; [i; j;�i;�j; 0; 0; 0; 0];

3. [2k; l; 2k; l; 0; 0; 0; 0]; [m;n;�m;�n; 0; 0; 0; 0]; [2p; p; 2q; q; 0; 0; 0; 0],

where g = 2e + f and h = e + f etc. In the other notation, the di�erential is 1234 !

1234 ! 1234 ! 1234. The probability in the �rst round is 2

�16

, as we saw earlier. The

probabilities in the second round and in the third round will both be approximated by 2

�16

,

although the input di�erences are dependent. The overall probability for the three-round

di�erential is approximated by the product of the probabilities of the three one-round

di�erentials, in this case 2

�48

. Since the round keys are dependent this is not a correct way

to calculate the probability. Despite this, and the fact that the input di�erences to pairs

of two bytes in both the second and third rounds are dependent, computer experiments

have shown that the probability is well approximated this way which is illustrated later.

Consider now the following three-round di�erential.

14



1. [a; b; c; d; 0; 0; 0; 0]; [e;�e; f;�f; 0; 0; 0; 0];

2. [2g; g; 0; 0; 2h; h; 0; 0]; [i; j; 0; 0;�i;�j; 0; 0];

3. [2k; 0; 2l; 0; k; 0; l; 0]; [m; 0;�m; 0; n; 0;�n; 0]; [2p; 2q; p; q; 0; 0; 0; 0].

or similarly, 1234! 1256 ! 1357 ! 1234. This di�erential has also a probability of 2

�48

.

Now since the two above di�erentials have the same input di�erence and the same output

di�erence, that is, the outputs di�er in the same bytes, a truncated di�erential with input

di�erence [a; b; c; d; 0; 0; 0; 0] and output di�erence [x; y; z; w; 0; 0; 0; 0] will contain both the

above di�erentials. There are totally 8 di�erentials each of probability 2

�48

covered by this

truncated di�erential, which therefore will have a probability of about 8 � 2

�48

= 2

�45

:

7 Di�erential attacks on SAFER K

In this section we consider di�erential attacks using truncated di�erentials for SAFER K.

Consider 3-round SAFER K and the 3-round truncated di�erential with input di�erence

[a; b; c; d; 0; 0; 0; 0] and output di�erence [x; y; z; w; 0; 0; 0; 0]. The probability of the di�er-

ential is approximately 2

�45

. In a conventional di�erential attack with a di�erential of

probability p one needs about 1=p chosen plaintext pairs to get one right pair [2]. Using

the above truncated di�erential for SAFER K we can choose n di�erent plaintexts, all of

them with the four rightmost bytes of equal values. From these n plaintexts one can form

about (n � (n � 1))=2 �

n

2

2

pairs of plaintexts with an input di�erence zero in the four

rightmost bytes. As an example, by choosing 2

23

plaintext this way, one obtains about 2

45

pairs with the desired di�erence and thus with a high probability one right pair. How does

one identify a right pair? Pairs with a non-zero di�erence in the four rightmost bytes of the

outputs after three rounds can be discarded. A wrong pair has a zero di�erence in these

bytes with probability 2

�32

. This �ltering of pairs leaves only 2

13

pairs. Note that in this

example the output transformation of SAFER K should be applied after the third round of

encryption. Therefore we cannot determine wrong pairs by looking at the di�erence in the

four leftmost bytes directly. Each of the 2

13

pairs will suggest about 2

16

values of the four

leftmost key bytes in the �rst round. The remaining key bytes can be found by exhaustive

search. In this case the complexity of the attack is about 1=2 � 2

61

= 2

60

. Additional �l-

tering is possible and would decrease the complexity dramatically, but we omit the details

here. The attack in general goes as follows

1. Get the encryptions of the n chosen plaintexts.

2. Check for wrong pairs.

3. Get the key candidates for all non-discarded pairs.

4. Do an exhaustive search for all remaining key bits.
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The storage of plaintexts is of great importance. In the general attack one needs to store

about n 64 bit quantities. Sorting the ciphertexts will take time about n log n simple

operations. This can be reduced to n operations by using a hash table and a hash function

to store values equal in the four rightmost bytes in the same entry, which is illustrated later.

We will assume that the time to store (and sort) the ciphertexts is small and unimportant

compared to the time to get the n encryptions.

The above estimation is only an approximation, since, �rst, the round keys of SAFER K

are not independent as assumed, second, the many pairs we get are not independent. To

justify the above method of estimating the probabilities, we did some tests on a mini-

version of SAFER K. Instead of working on bytes we let SAFER K work on nibbles

(4 bits), i.e. a 32-bit block cipher with a 32-bit key, called SAFER K(32). We de�ne

X

4

(a) = (3

a

mod 17) mod 16, and the inverse of X

4

, L

4

(a) = log

3

(a) mod 17 for a 6= 0 and

where L(0) = 8. Since 17 is a prime number, exponentiation with the primitive element, 3,

is a permutation. All xor operations are on nibbles and additions are calculated modulo 16.

We considered the 5-round truncated di�erential 1234 ! 5678 in SAFER K(32). There

are 824 di�erent di�erentials in this truncated di�erential, each of probability 2

�40

, and

the overall probability of the truncated di�erential is about 2

�30:3

. We used structures

consisting of 2

16

plaintexts, all di�erent in the four leftmost bytes and equal in the four

rightmost bytes. From each structure we obtain about 2

31

pairs, of which the expected

number of right pairs is 1.6 and about 2

31

=2

16

= 2

15

= 32768 pairs will have zero di�erence

in the four leftmost bytes, but are wrong pairs. In ten structures of each 2

16

plaintexts and

each with a di�erent key we found 17 right pairs and 327781 wrong pairs, thus con�rming

our theory. In the following section we show how to attack 5-round SAFER K, 64 bits,

using truncated di�erentials.

7.1 A di�erential attack on 5-round SAFER K

Consider the following 4-round truncated di�erential with input di�erence

[a; 0; 0; b; c; 0; 0; d]

and output di�erence [0; 0; 0; 128; 0; 0; 0; 0] There are four di�erentials in this truncated

di�erential, each of probability 2

�71:7

. They are

1458! 1357! 1357! 13! 4 (7)

1458! 2468! 1357! 13! 4 (8)

1458! 1357! 2468! 13! 4 (9)

1458! 2468! 2468! 13! 4 (10)

The probabilities in the �rst two rounds are of each 2

�16

and the probability in the third

round is 2

�24

, according to Tables 8 and 9. The expanded view of this four-round truncated

di�erential in the fourth round is

4. [2v; 0; v; 0; 0; 0; 0; 0]; [128; 0; 128; 0; 0; 0; 0; 0]; [0; 0; 0; 128; 0; 0; 0; 0]
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This round has probability 2

�15:7

, which has been found by a direct computation. We

concatenate the four-round truncated di�erential with the following one-round di�erential

with the expanded view

5. [0; 0; 0; 128; 0; 0; 0; 0]; [0; 0; 0; x; 0; 0; 0; 0]; [2x; x; 2x; x; 2x; x; 2x; x];

where the value of x is odd. This di�erential has probability 1, since an input di�erence 128

to the exponentiation permutation always yields an odd output di�erence [12]. Therefore

we obtain a 5-round truncated di�erential with input di�erence [a; 0; 0; b; c; 0; 0; d] and

output di�erence [2x; x; 2x; x; 2x; x; 2x; x] for odd x and with a probability of 2

�69:7

.

We can use structures of each 2

32

plaintexts yielding 2

63

pairs with the desired di�erence

in the inputs. We need about 2

70

pairs to get one right pair and therefore about 128

structures, a total of 2

39

plaintexts. We can perform our analysis on each structure and

thus the memory requirements are 2

32

64 bit quantities. In the following we will do the

analysis for all 2

70

pairs simultaneously.

In SAFER K an output transformation is applied to the outputs of the last round to

obtain the ciphertexts. This transformation consist of byte wise xor'ing and adding modulo

256 the last-round key. Therefore, right pairs for the above truncated di�erential will have

the following form

[z

1

; x; 2x; z

2

; z

3

; x; 2x; z

4

]; (11)

where the z

i

's are values we cannot predict exactly. The following lemma is easily proved.

Lemma 4 Let ~z and ẑ be two bytes and let k be a key byte. The least signi�cant bit of

z = ~z � ẑ mod 256 and of z

0

= (~z � k)� (ẑ � k) mod 256 are equal.

Since it is known that x is odd, it follows from Lemma 4 that z

1

and z

3

must be even, and

z

2

and z

4

must be odd.

The �ltering of wrong pairs goes as follows. For every pair, let x

0

be the value of the

di�erence of the second byte of the ciphertexts. Check if x

0

is odd, and if so, check if the

di�erence in bytes 3, 6 and 7 have values 2x

0

; x

0

; 2x

0

, respectively. This �rst �ltering process

discards all but one out of 2

25

pairs. For all remaining 2

45

pairs, check if the z

i

's have the

right parity. This second �ltering process discards all but one out of 16 pairs, thus we are

left with 2

41

pairs. We know that the di�erence before the output transformation must

be [2x; x; 2x; x; 2x; x; 2x; x] for a pair to be a right pair. On average each of the remaining

pairs will suggest two values of each of the bytes 1,4,5 and 8 of the last-round key, i.e.

16 values of a 32 bit subkey. For every pair and for all these 16 key values, one checks

if the di�erence in the plaintexts yields a correct di�erence in the outputs after the �rst

round. Since there are two possible sets of four bytes with non-zero values after the �rst

round, every pair will suggest 16 � 2

�15

= 2

�11

values on average of the four key bytes

1,4,5, and 8. Here we used the fact that the round key byte i, 1 � i � 8, in each round is

derived from the same key byte. Totally, the 2

41

pairs will suggest 2

30

values of four bytes

of the key. Thus, an exhaustive search at this point for the key can be done in time about

1=2 � 2

30

� 2

32

= 2

61

.
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Rounds Time Plaintexts Storage

5 2

61

2

39

2

32

5 2

46

2

45

2

32

5 2

35

2

46

2

32

Table 6: Complexities of the di�erential attack on SAFER K with 5 rounds. Time units

are encryptions with SAFER K. Storage units are 64 bits.

The time and space requirements of the �ltering processes above can be made small.

One method is the following, proposed by an anonymous referee of [9]. Let the ciphertexts

be denoted (c

1

; :::; c

8

). Hash each ciphertext to (c

3

�2�c

2

; c

6

�c

2

; c

7

�2�c

2

). The ciphertexts

with the same such hash value will be candidates for a right pair after the �rst �ltering

process. The second �ltering process can be done at the same time.

By repeating the attack several times the complexity can be decreased considerably.

The basic attack described above suggests 2

30

values of 32 bits of the key. The di�erential

we use has probability about 2

�70

, so by generating 2

70

pairs one gets one right pair with

probability 0.63. Thus the right key value is suggested with probability 0.63 and a wrong

key value is suggested with probability 2

30

=2

32

= 0:25. We keep a counter for every possible

value of the 32-bit key and increment the respective counter for every suggested value of

the key. Let T be the number of times we repeat the above basic attack. Let X(T ) be a

random variable counting the number of times the right key is suggested and let Y (T ) be

a random variable counting the number of times any other value of the key is suggested

in T basic attacks. From the above E(X(T )) = T � 0:63 and E(Y (T )) = T � 0:25. By

assuming that the X(T ) and Y (T ) are independent and that the suggested wrong values of

the key are uniformly distributed, one can approximate the probability that Y (T ) takes on

a greater value than X(T ) after T basic attacks, i.e. Pr(X(T ) < Y (T )). By the Central

Limit Theorem [4], Pr(X(64) < Y (64)) ' 2

�19

and Pr(X(128) < Y (128)) < 2

�32

. Thus,

by repeating the attack 64 times using totally 2

45

plaintexts, the right key value will be

among the 2

32

� 2

�19

= 2

13

most suggested values with a high probability. To increase

the probability of success, we choose the 2

14

most suggested values of the key and do an

exhaustive search for the remaining 32 key bits for every one of these values using a few of

the obtained plaintext- ciphertext pairs, thus totally one needs to do about 2

46

encryptions.

Every counter can be implemented as one byte, thus the storage needed for the counters

is only 1=8 one the storage needed for the plaintexts. Another possibility is to repeat the

attack 128 times using totally 2

46

plaintexts. The right key value will be among the �rst

few most suggested values with a high probability. Taking the 8 most suggested values

and searching exhaustively for the remaining 32 bits, the time complexity of the attack is

about 2

35

. We summarize the complexities of our attacks for SAFER K with 5 rounds in

Table 6.

In the above attack we used the four round truncated di�erential 1458 ! 4 with

probability 2

�69:7

. There are many other di�erentials that can be used in variants of the

above attacks, which the reader can verify by taking a closer look at Tables 8 and 9.
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7.2 Attacks on 6-round SAFER K

For SAFER K with 6 rounds there is a similar truncated di�erential as the one above

for SAFER K with 4 and 5 rounds. It has input di�erence [a; 0; 0; b; c; 0; 0; d] and output

di�erence [2x; x; 2x; x; 2x; x; 2x; x] after 6 rounds with a probability of 2

�81:8

. To get a right

pair, one needs about 2

50:8

chosen plaintexts. However, we have not been able to �nd a

method to �lter out enough wrong pairs in order to do a successful attack on SAFER K

with 6 rounds. Also, there are truncated di�erentials predicting the exact values of four

bytes after 6 rounds with similar probabilities. As an example, the 6-round truncated

di�erential with input di�erence [a; b; c; d; 0; 0; 0; 0] and output di�erence [x; y; z; w; 0; 0; 0; 0]

has a probability of 2

�83:8

. This truncated di�erential contains more than 4000 di�erentials.

To get a right pair, one needs about 2

52:8

chosen plaintexts. However, the number of wrong

pairs is too high to do a successful di�erential attack.

7.3 SAFER K-128, SAFER SK-64, and SAFER SK-128

The above attack for SAFER K with 5 rounds is applicable to SAFER K-128 also. The

�ltering of wrong pairs and the procedure of getting 16 suggested key values in the last

round are the same. The suggested key values in the �rst round will give us candidates

only for the bytes in the �rst round key, since the addition modulo 256 of the second round

key will be invariant because of the notion of di�erence used. But since the �rst and the

last round keys depend only on the same 64 bits of the original key, we will �nd 64 bits of

the 128 bit key by the above attack.

The truncated di�erential used above in our attack on SAFER K with 5 rounds was

chosen to minimize the number of counters for key candidates of a 32 bit subkey. For

SAFER SK-64 (and SAFER SK-128) the four key bytes in positions 1, 4, 5 and 8 in the

round keys will depend on di�erent bytes of the key from round to round. Therefore the

above analysis is not directly applicable to SAFER SK-64. However, it is clear that the

�rst part of the attack with time complexity 2

61

is applicable. The 2

41

non-discarded pairs

will suggest 16 values of round key bytes in positions 1, 4, 5 and 8 in the last round. These

bytes correspond to bytes no. 2, 5, 6 and 9 in the original key, where byte 9 is the parity

byte [7]. For every one of these 16 values, the check in the �rst round of the di�erentials

will give us about 2

9

values of the key bytes 1, 4, 5, and 8 of the original key. Thus, we get

suggested values of key bytes 1, 2, 4, 5, 6, 8 and 9, and totally about 2

41

� 16 � 2

9

= 2

54

possible values for the 56 bit key. The remaining 8 bits can be found exhaustively.

It is infeasible to keep a counter for each 56 bit key and repeat this attack, as we did for

SAFER K. But simply trying all possible candidates is possible and an exhaustive search

for the key at this point would require about 1=2 � 2

62

= 2

61

operations. We leave it

so far as an open problem to �nd other di�erentials to improve our attack on SAFER K

versions with the new key schedule of [7]. One idea is to use several di�erentials in parallel

attacks, for example using the following, 1357 ! 4, 2468! 4 and 2367! 4, all three with

probability 2

�69:7

.
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8 Conclusion

In this paper we analysed the 6 round block cipher SAFER K. We discovered a weakness in

the key schedule and exploited it in related-key attacks and to �nd collisions for SAFER K

in the standard hashing modes much faster than by brute-force. Our analysis together

with Murphy's [14] analyses led Massey to adopt our proposed strengthened key schedule

for SAFER K, yielding the new block cipher SAFER SK with a recommended minimum

of 8 rounds.

We considered truncated di�erentials for 5-round SAFER K and established a di�er-

ential attack, which �nds the secret key in time much faster than exhaustive search. The

attack is independent of the S-boxes used in SAFER K and needs only a small amount of

chosen plaintext compared to conventional di�erential attacks which illustrates the impor-

tance of truncated di�erentials.

Our attacks are not directly applicable for SAFER SK, but they are not prevented in a

signi�cant way. The main property that makes our truncated di�erential attacks possible

is the PHT transformation, not so much the key schedule. However, for SAFER K with

more than 5 rounds our method of �ltering out wrong pairs is not e�cient enough to do a

successful di�erential attack. We encourage the reader to improve our methods. Though

it might be possible to improve our methods to attack SAFER K versions with 6 rounds,

we strongly believe that SAFER SK with 8 rounds, as now recommended, or more rounds

are invulnerable to all our attacks.
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A Some �xed points of the PHT

( 0 0 0 0 0 0 0 0 )

( 0 0 0 0 128 128 0 0 )

( 0 0 128 0 0 0 128 0 )

( 0 0 128 0 128 128 128 0 )

( 0 128 0 128 0 0 0 0 )

( 0 128 0 128 128 128 0 0 )

( 0 128 128 128 0 0 128 0 )

( 0 128 128 128 128 128 128 0 )

( 128 0 0 128 0 128 128 128 )

( 128 0 0 128 128 0 128 128 )

( 128 0 128 128 0 128 0 128 )

( 128 0 128 128 128 0 0 128 )

( 128 128 0 0 0 128 128 128 )

( 128 128 0 0 128 0 128 128 )

( 128 128 128 0 0 128 0 128 )

( 128 128 128 0 128 0 0 128 )

Table 7: The 16 �xed points for the PHT with only entries 0 and 128.
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B One round di�erentials of SAFER

In Out Prob. In Out Prob. In Out Prob. In Out Prob.

2 68 8 3 48 8 4 2468 8 5 78 8

6 5678 8 7 3478 8 12 6 16 12 256 16

12 1256 8 12 3478 8 13 234 16 13 4 16

13 1234 8 13 5678 8 14 246 16 14 1278 8

14 1278 8 15 7 16 15 357 16 15 1357 8

15 2468 8 16 567 16 16 1458 8 17 347 16

17 1368 8 23 46 16 23 3456 8 24 24 16

24 1234 8 24 5678 8 25 67 16 25 2367 8

26 57 16 26 1357 8 26 2468 8 27 3467 16

28 1368 8 34 26 16 34 1256 8 34 3478 8

35 47 16 35 2457 8 36 4567 16 37 37 16

37 1357 8 37 2468 8 38 1458 8 46 2457 8

47 2367 8 48 1357 8 48 2468 8 56 56 16

56 1256 8 56 3478 8 57 34 16 57 1234 8

57 5678 8 58 1278 8 67 3456 8 68 1234 8

68 5678 8 78 1256 8 78 3478 8 123 78 24

123 3456 16 124 5678 16 125 48 24 127 38 24

134 3478 16 135 68 24 136 58 24 145 28 24

234 1278 16 234 28 24 246 68 24 256 58 24

347 48 24 357 38 24 567 78 24

Table 8: One-round truncated di�erentials for SAFER K with inputs di�erent in less than

four bytes. Probabilities are (� log

2

).
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In Out Prob. In Out Prob. In Out Prob. In Out Prob.

1234 2 32 1234 12 24 1234 34 24 1234 56 24

1234 78 24 1234 1234 16 1234 1256 16 1234 3478 16

1234 5678 16 1256 5 32 1256 15 24 1256 26 24

1256 37 24 1256 48 24 1256 1256 16 1256 1357 16

1256 2468 16 1256 3478 16 1278 16 24 1278 25 24

1278 38 24 1278 47 24 1278 1256 16 1278 1368 16

1278 3478 16 1357 3 32 1357 13 24 1357 24 24

1357 57 24 1357 68 24 1357 1234 16 1357 1357 16

1357 2468 16 1357 5678 16 1368 14 24 1368 23 24

1368 58 24 1368 67 24 1368 1234 16 1368 1458 16

1368 5678 16 1458 17 24 1458 28 24 1458 35 24

1458 46 24 1458 1278 16 1458 1357 16 1458 2468 16

2367 17 24 2367 28 24 2367 35 24 2367 46 24

2367 1357 16 2367 2468 16 2367 3456 16 2457 14 24

2457 23 24 2457 58 24 2457 67 24 2457 1234 16

2457 2367 16 2457 5678 16 2468 13 24 2468 24 24

2468 57 24 2468 68 24 2468 1234 16 2468 1357 16

2468 2468 16 2468 5678 16 3456 16 24 3456 25 24

3456 38 24 3456 47 24 3456 1256 16 3456 2457 16

3456 3478 16 3478 15 24 3478 26 24 3478 37 24

3478 48 24 3478 1256 16 3478 1357 16 3478 2468 16

3478 3478 16 5678 12 24 5678 34 24 5678 56 24

5678 78 24 5678 1256 16 5678 3478 16 5678 1234 16

5678 5678 16

Table 9: One-round truncated di�erentials for SAFER K with inputs di�erent in four

bytes. Probabilities are (� log

2

).
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