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Abstract

We present a method for characterizing the least �xed-points of a certain class of

Datalog programs in Presburger arithmetic. The method consists in applying a set

of rules that transform general computation paths into \canonical" ones. We use the

method for treating the problem of reachability in the �eld of Petri nets, thus relating

together some unconnected results and extending them in several directions.

R�esum�e

Nous pr�esentons une m�ethode pour caract�eriser les plus petits points-�xes d'une certaine

classe de programmes Datalog dans l'arithm�etique de Presburger. La m�ethode consiste �a

appliquer un ensemble de r�egles qui transforment les chemins g�en�eraux de calcul en chemins

\canoniques". Nous utilisons cette m�ethode pour traiter le probl�eme d'accessibilit�e dans

le domaine des r�eseaux de Petri. Nous rapprochons ainsi des r�esultats consid�er�es jusqu'ici

comme ind�ependendants, et nous les �etendons dans plusieurs directions.



A Decompositional Approach for Computing Least

Fixed-points of Datalog Programs with Z-counters

Laurent Fribourg Hans Ols�en

July 1996

Abstract

We present a method for characterizing the least �xed-points of a certain class of

Datalog programs in Presburger arithmetic. The method consists in applying a set

of rules that transform general computation paths into \canonical" ones. We use the

method for treating the problem of reachability in the �eld of Petri nets, thus relating

together some unconnected results and extending them in several directions.

1 Introduction

The problem of computing �xpoints for arithmetical programs has been investigated from

the seventies in an imperative framework. A typical application was to check wether or

not array bounds were violated. A pionneering work in this �eld is the work by Cousot-

Halbwachs [10]. The subject has known a renewal of interest with the development of logic

programming and deductive databases with arithmetical constraints. Several new applica-

tions were then possible in these frameworks: proof of termination of logic programs[16, 24,

28], compilation of recursive queries in temporal databases [2, 20], veri�cation of safety prop-

erties of concurrent systems[18]. However almost all these works are interested in �nding not

the least �xpoint but rather an approximation of it using some techniques of Abstract In-

terpretation (convex hull, widening, ...). A notable exception is the work of Revesz [25] and

of Chomicki-Imielinski [6] whose procedures allow to compute least �xpoints, but for very

restrictive classes of programs, viz. programs with no or at most one incremental argument.

In this paper we are interested in �nding the least �xed points for Datalog programs having

all their arguments incremented by the recursive clauses. The arguments of the programs

can be seen as counters. By applying a clause from-right-to left (in a forward/bottom-up

manner), one increments all the the arguments providing that the constraints of the clause

body are satis�ed. The problem of computing least �xed-points for such programs is closely

related, as will be explained, to the problem of characterizing the set of the reachable mark-

ings (\reachability set") of Petri nets. The main di�erence is that the variables of our

programs take their values on Z instead of N as in the case of Petri nets. We will see

however that some transformation rules by \decomposition" de�ned for Petri nets, such as

Berthelot's post-fusion rule [3], still apply to our programs with Z-counters. The fact that

we manipulate variables taking their values on Z rather than on N will allow us to encode

in a simple way the important extension of Petri nets with inhibitors. As an example, we
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will see how to prove the mutual exclusion property of a Petri net modelling a system of

readers and writers where the number of processes is parametric. We also show how our

method allows us to treat the reachability problem for a special class of Petri nets, called

BPP-nets, thus generalizing a result by Esparza [13].

The plan of this paper is as follows. In section 2 we give some preliminaries. Section 3

recalls some basic facts about Petri nets. Section 4 gives the basic rules of our decom-

positional method. Section 5 relates our results with those of Berthelot. Section 6 shows

that our method allows us to solve the reachability problem for the special class of Basic

Parallel Process nets. Section 7 interprets unfolding of propositional logic programs as a

transformation of BPP nets. Section 8 gives a further generalized form of our basic decom-

position rule. Section 9 briey discusses the compilation into an arithmetic formula and our

implementation. We conclude in section 9.

2 Preliminaries

Our aim in this report is to express the least model, of a certain class of logic programs,

as a closed form logical formula over the domain Z , [19][21]. We consider programs of the

form:

p(x

1

; : : : ; x

m

)  B(x

1

; : : : ; x

m

):

r

1

: p(x

1

+ k

1;1

; : : : ; x

m

+ k

1;m

)  x

i

1;1

> a

1;1

; : : : ; x

i

1;m

1

> a

1;m

1

;

p(x

1

; : : : ; x

m

):

.

.

.

r

n

: p(x

1

+ k

n;1

; : : : ; x

m

+ k

n;m

)  x

i

n;1

> a

n;1

; : : : ; x

i

n;m

n

> a

n;m

n

;

p(x

1

; : : : ; x

m

):

for some constants a

i;l

; k

i;j

2 Z . where B(x

1

; : : : ; x

m

) is a linear integer relation (relation

de�ned by a Presburger formula). This is more conveniently expressed as #

r

i

(x) � x > a

r

i

for a

r

i

2 (Z [ f�1g)

m

, where, as usual, n > �1 for any integer n 6= �1, and where

�1 � �1 and �1 � n = n � (�1) = �1 for any integer n 6= �1 holds. For any

vectors x

1

and x

2

, we de�ne x

1

> x

2

(resp. x

1

� x

2

) to hold, i� and only if the inequalities

holds componentwise. max(x

1

; x

2

) is the vector obtained by taking the maximum of x

1

and

x

2

componentwise. (thus, max(x

1

; x

2

) is the least upper bound in the h(Z [ f�1g)

m

;�i-

lattice. The vector with all components �1 is the bottom element.). The program is then

written in a more appealing fashion, as:

p(x)  B(x):

r

1

: p(x+ k

r

1

)  x > a

r

1

; p(x):

.

.

.

r

n

: p(x+ k

r

n

)  x > a

r

n

; p(x):

Since n > �1 holds for any n 2 Z , any constraint of the form x

i;j

> �1, is simply con-

sidered as true.
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We want to express the least �xed-point as a linear integer arithmetic expression (a Pres-

burger formula).

One can see these programs as classical programs with counters expressed under a logic pro-

gramming or Datalog form. These programs have thus the power of expressivity of Turing

machines. In the following we will refer to this class of programs as (Datalog) programs with

Z-counters.

The reason for considering the more general situation is partly because it can be done, and

partly to gain insight into what is needed for our approach to work.

We introduce a convenient description of the execution, in a bottom-up manner, of programs

of the general form above:

A clause, r, is a pair hk

r

; #

r

i, where #

r

� D is a constraint (or \guard"). A clause r is

applicable at a point x 2 Z

m

i� #

r

(x) holds. The result of applying the rule r at a point x is

xr = x + k

r

. More generally, let � = fr

1

; : : : ; r

n

g. A sequence w 2 �

�

is called a path, and

is interpreted as a sequence of applications of the clauses from right-to-left (in a bottom-up

manner). Given some point x, the point reached by applying the path w is denoted xw.

Formally: xw = x+ k

w

, where k

w

is de�ned by:

k

"

= 0

k

r

j

w

= k

r

j

+ k

w

Note that the expression xw does not take the constraints in the bodies of the clauses into

account. We say that a path w is applicable at a point x, if all constraints along the path

are satis�ed, and we write #

w

(x). Formally:

#

"

(x) � true

#

r

j

w

(x) � #

r

j

(x) ^ #

w

(xr

j

)

The expression #

w

(x) is said to be the constraint associated to path w at point x.

By the de�nitions above, we get:

#

r

j

w

(x)

, #

r

i

(x) ^ #

w

(xr

i

)

, x > a

r

i

^ x+ k

r

i

> a

w

, x > max(a

r

i

; a

w

� k

r

i

)

where a

w

� k

r

i

is well de�nied since k

r

i

2 Z

m

. It is immediately seen that, for programs

with Z-counters, the constraint associated with a path, is of the same form as that of a

clause of the original program. In general, with every path w, there is associated a clause

hwi = hk

w

; #

w

i. And so, the class of programs with Z-counters, is closed under the operation

of considering the clauses associated with paths. That is, if � is a program with Z-counters,

then any �nite language L � �

�

, is also a program with Z-counters. For instance, consider

the two clauses (borrowed from an example given later on):

r

3

: p(x

2

+ 1; x

3

� 1; x

4

; x

5

+ 1; x

6

; x

7

)  x

3

> 0; p(x

1

; : : : ; x

7

):

r

5

: p(x

2

; x

3

; x

4

; x

5

� 1; x

6

+ 1; x

7

)  x

5

> 0; p(x

1

; : : : ; x

7

):
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The constraint #

r

3

r

5

(x) associated with r

3

r

5

is #

r

3

(x)^#

r

5

(xr

3

), that is x

3

> 0^x

5

+1 > 0,

i.e.: x

3

> 0 ^ x

5

> �1, and the associated clause of the program is:

r

3

r

5

: p(x

2

+ 1; x

3

� 1; x

4

; x

5

; x

6

+ 1; x

7

)  x

3

> 0; x

5

> �1; p(x

1

; : : : ; x

7

):

A point x

0

is reachable from a point x by a path w if xw = x

0

and w is applicable at x:

x

w

! x

0

, xw = x

0

^ #

w

(x)

A point x

0

is reachable from a point x by a language L � �

�

if there exists a path w 2 L

such that x

0

is reachable from x by w:

x

L

! x

0

, 9w 2 L : x

w

! x

0

We usually write x

L

1

!
x

00
L

2

!
x

0

, instead of x

L

1

!
x

00

^ x

00
L

2

!
x

0

. From the de�nitions

above, we immediately get:

Proposition 1:

For any path w 2 �

�

and and any languages L

1

; L

2

� �

�

. We have:

1. x

;

!

x

0

, false

2. x

;

�

!

x

0

, x

"

! x

0

, x = x

0

3. x

w

! x

0

) #

w

(x)

4. (L

1

� L

2

) )

�

x

L

1

!
x

0

) x

L

2

!
x

0

�

5. x

L

1

+L

2

!
x

0

, x

L

1

!
x

0

_ x

L

2

!
x

0

6. x

L

1

L

2

!
x

0

, 9 x

00

: x

L

1

!
x

00
L

2

!
x

0

7. x

w

�

!
x

0

, 9 n � 0 : x

0

= x+ n � k

w

^ 8 0 � n

0

< n : #

w

(x+ n

0

� k

w

)

�

The four last implications are the most important ones and, as will soon be explained,

our method is based on these. Note, in the last implication, that if n = 0, then x = x

0

and

8 0 � n

0

< n : #

w

(x+n

0

� k

w

) is vacuously true. Also note that the last implication may be

expressed as

7. x

w

�

!
x

0

, 9 n � 0 : x

0

= x+ n � k

w

^ 8 0 � n

0

< n : x+ n

0

� k

w

> a

w

It is easy to see that, for n > 0, the universally quanti�ed expression 8 0 � n

0

< n :

x + n

0

� k

w

> a

w

is equivalent to x + (n � 1) � k

�

w

> a

w

where k

�

w

is the vector obtained

from k

w

by letting all nonnegative components be set to zero. For example if #

w

(x) is

x

1

> 0 ^ x

2

> 0, and k

w

is h2;�3i , then 8 0 � n

0

< n : x+ n

0

� k

w

> a

w

is:

8 0 � n

0

< n : x

1

+ n

0

� 2 > 0 ^ x

2

+ n

0

� (�3) > 0

, x

1

+ (n� 1) � 0 > 0 ^ x

2

+ (n� 1) � (�3) > 0

, x

1

> 0 ^ x

2

� 3n > �3

Therefore, the formula of (7) is equivalent to:
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7. x

w

�

!
x

0

, x

0

= x _ 9 n > 0 : x

0

= x+ n � k

w

^ x + n � k

�

w

> a

w

+ k

�

w

As a consequence, from part 3 of the proposition, it follows that, given a �nite sequence

of transitions w, the relation x

w

�

!
x

0

is actually an existentially quanti�ed formula of

Presburger arithmetic having x and x

0

as free variables. More generally, de�ne a at language

as:

1. Any �nite language is at.

2. w

�

is at for any w 2 �

�

.

3. L

1

+ L

2

and L

1

L

2

are at if L

1

and L

2

are at.

We call such a language L \at" because the Kleene's star operator `*' applies only to

strings w. By proposition1, it follows that the relation x

L

! x

0

for a at language L, can

be expressed as closed logical formula, and for programs with Z-counters, in particular,

as an existentially quanti�ed formula of Presburger arithmetic, having x and x

0

as free

variables. More precisely, the reachability is expressed as a disjunction of a number of

matrix expressions of the form:

9 n

i

: x

0

= x+K

i

n

i

^ x+ C

i

n

i

> a

i

where K

i

and C

i

are matrices, and a

i

some vector of constants.

Given a program with B(x) as a base case and recursive clauses �, the least �xed-point of

its immediate consequence operator (see [19][21]), which is also the least Z-model of the

program, may be expressed as:

lfp = f x

0

j 9x : B(x) ^ x

�

�

!
x

0

g

Our aim is to characterize the membership relation y 2 lfp as a closed formula having y

as a free variable, and in particular, for programs with Z-counters, as a linear arithmetic

formula. For solving this problem, it su�ces actually to characterize the relation x

�

�

!
x

0

as a closed formula having x and x

0

as free variables. In order to achieve this, our ap-

proach here is to �nd a at language L � �

�

, such that the following equivalence holds:

x

�

�

!
x

0

, x

L

! x

0

. This gives us an arithmetic characterization of the least �xed-point.

The language L is constructed by making use of decomposition rules on paths. Such rules

state that, if a path v links a point x to a point x

0

via �

�

, then v can be replaced by (usually

reordered into) a path w of the form w = w

1

w

2

� � �w

s

such that w

1

; w

2

; � � � ; w

s

belong to

some restricted languages. In order to illustrate more concretely, let us already here state

(without proof) the simplest and most obvious of the decomposition rules, called strati�ca-

tion.

Proposition 2:

Let R;R

0

� � be sets of clauses such that � = R [R

0

, and such that

x

R

0

R

!

x

0

) x

RR

0

!

x

0

Then we have:

x

�

�

!
x

0

, x

R

�

R

0�

!

x

0
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�

Proposition 6 simply says, that any reachable point can be reached by a path such that

every occurence of a clause belonging to R is before all occurrences of clauses of R

0

. Or

stated di�erently, any path w

1

r

0

rw

2

, can always be replaced by a path w

1

; tt

0

w

2

, where

r; t 2 R and r

0

; t

0

2 R

0

. By repeating this replacement, one must sooner or later get a

path belonging to R

�

R

0�

. The point is that the precondition of the decomposition involves

only �nite languages (viz, R

0

R and RR

0

) and can therefore be checked, while the conclusion

refers to in�nite languages (viz, �

�

and R

�

R

0�

). By simply going back to the de�nition of

x

L

! x

0

, one sees that the precondition reduces to verifying a number of inequalities among

constants:

^

r

0

r2R

0

R

_

tt

0

2RR

0

max(a

r

0

; a

r

� k

r

0

) � max(a

t

; a

t

0

� k

t

)

An obvious su�cient condition (the most common situation) is:

^

r

0

r2R

0

R

max(a

r

0

; a

r

� k

r

0

) � max(a

r

; a

r

0

� k

r

)

That is, the rules commute: 8r 2 R; r

0

2 R

0

: x

r

0

r

!

x

0

) x

rr

0

!

x

0

. Consider for example

the program:

p(x

1

; x

2

)  x

1

= 5; x

2

= �13:

r

1

: p(x

1

� 1; x

2

+ 3)  x

1

> 1; p(x

1

; x

2

):

r

2

: p(x

1

� 2; x

2

� 1)  x

2

> �3; p(x

1

; x

2

):

In proposition 6, choose, R = fr

1

g and R

0

= fr

2

g. To check the precondition, consider:

x

R

0

R

!

x

0

) x

RR

0

!

x

0

, x

r

2

r

1

! x

0

) x

r

1

r

2

! x

0

, max(h�1;�3i; h1;�1i� h�2;�1i) � max(h1;�1i; h�1;�3i� h�1; 3i)

, max(h�1;�3i; h3;�1i)� max(h1;�1i; h�1;�6i)

, h3;�3i � h1;�6i

which is true, and therefore, by proposition 6, the �xpoint is given by

lfp = f hx

0

1

; x

0

2

i j h5;�13i

r

�

1

r

�

2

!

hx

0

1

; x

0

2

i g

Since r

�

1

r

�

2

is a at language, by proposition 1.6 and 1.7

00

, we get (after arithmetical simpli-

�cation):

p(x

1

; x

2

) , (3x

1

+ x

2

� 2 = 0 ^ 5 � x

1

� 0) _

(35 � x

1

� 2x

2

+ 4 � 0 ^ 0 > x

2

> 4)

Thus, the preconditions of the decomposition rules are essentially syntactic criteria on the

program, and the proof of correctness of the decomposition rules, becomes a combinatorial

problem of showing how any path in general can be reordered under various assumptions of

\replaceability".
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Such a \decompositional approach" is well known in Petri-net theory (see, e.g., [29]). The

rest of the report is mainly devoted to describe the decomposition rules that we use and their

applications for solving the reachability problem with Petri nets and some of their extensions.

Since we will reason a lot about languages (mainly regular expressions), we introduce some

convenient notation. Although we have already used concatenation, sum and Kleene closure,

we give their de�nitions for the sake of completeness. We will also introduce some special

notation that do not extend the class of regular languages, but provide us with some short

hands.

Let us simply list the de�nitions:

1. L

1

+ L

2

= L

1

[ L

2

. Thus, by abuse of notation we consider + and [ as synonymous.

2. L

1

L

2

= f vw j v 2 L

1

and w 2 L

2

g

3. L

0

= f"g and L

n+1

= LL

n

. It is practical to extend the de�nition of exponentiation

to allow a negative exponent as follows: L

�n

= ; when n > 0.

4. L

�k

=

S

n�k

L

n

. By 3, if k < 0, then L

�k

= ;.

5. L

<k

=

S

n<k

L

n

. By 3, we have L

<0

= ;.

6. L

k

1

<�<k

2

=

S

k

1

<n<k

2

L

n

. Here, if k

1

= k

2

, then L

k

1

<�<k

2

= ; since in that case the

union is empty.

7. For the sake of completeness: L

�

=

S

1

n=0

L

n

, and L

+

=

S

1

n=1

L

n

.

Let us here make an observation useful for proofs by induction. For any language L, we

have:

x

L

�

!
x

0

, 9n � 0 : x

L

n

! x

0

3 The Reachability Problem for Petri Nets

3.1 Petri nets as programs with Z-counters

There is a close connection between the class of programs with Z-counters and Petri nets,

and more precisely, between the computation of the least �xed-point of programs with

Z-counters and the \reachability problem" for Petri nets. Let us �rst give an informal ex-

planation of what a Petri net is. (This is inspired from [12].) A Petri net is characterized by

a set of places (drawn as circles), a set of transitions (drawn as bars), and for each transition

� , a set of weighted input-arcs going from a subset of places (\input-places") to � , and a set

of weighted output-arcs going from � to a subset of places (\output-places"). A marking is

a mapping of the set of places to the set N of nonnegative integers. The number assigned

to a place represents the number of tokens contained by this place. A marking enables a

transition � if it assigns all the input places of � with a number greater than or equal to

the weight of the corresponding input-arc. If the transition is enabled, then it can be �red,
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and its �ring leads to the successor marking, which is de�ned for every place as follows: the

number of tokens speci�ed by the weight of the corresponding input-arc is removed from

each input place of the transition, and the number of tokens speci�ed by the weight of the

corresponding output place is added to each output place. (If a place is both an input and

an output place, then its number of tokens is changed by the di�erence of weights between

the corresponding output and input arcs.)

The reachability problem for a Petri net consists in characterizing the set of all the markings

that are \reachable" from a given initial marking, that is the set of markings that can be

produced by iteratively �ring all the possible enabled transitions. Let us explain how the

reachability problem of a Petri net with n transitions and m places can be encoded as a

Datalog program with Z-counters. Each place �

i

of the Petri net is represented by a variable

x

i

, and its value encodes the number of tokens at that place. As a base case relation B(x),

one take the equation x = a

0

where a

0

denotes the initial marking; each transition �

j

in the

net is represented by a recursive clause r

j

of the program as follows:

head constants: For each place �

i

, the constant k

j;i

is equal to the weight of the output-arc

going from �

j

to �

i

, minus the weight of the input arc going from �

i

to �

j

.

body constraints: For each input place �

i

of transition �

j

, there is a constraint in the clause

r

j

of the form x

i

> a

j;i

� 1 where a

j;i

is equal to the weight of the input arc going out

from �

i

to �

j

. (No other constraints occur in the clause.)

Each clause of the program encodes the enabling condition of the corresponding Petri net

transition. The above program therefore encodes the reachability problem for the consid-

ered Petri net: a tuple y belongs to the least �xed-point of the program i� it corresponds

to a marking reachable from the initial one via the �ring of a certain sequence of Petri net

transitions. In other words the least �xed-point of the recursive program coincides with the

set of the reachable markings (\reachability set") of the Petri net.

Note that the class of Datalog programs with Z-counters is more general than the class of

above programs encoding the reachability problem for Petri nets. From a syntactical point

of view, the di�erence is that, with programs encoding the reachability problem, all the

variables take their values on the domain N of non-negative integers while the domain for

programs with Z-counters is Z . From a theoretical point of view, programs with Z-counters

have the power of Turing machines while (programs coding for the reachability problem of)

Petri nets have not. We will come back to this issue in the forthcoming subsection.

3.2 0-tests

There are many extensions to the Petri-net formalism, one of which allows inhibitors or

0-tests. In such extensions, the transitions may be conditioned by the fact that some input

place contains 0 token. This test is materialized by the existence of an \inhibitor-arc" (rep-

resented as circle-headed arcs) from the place to the transition. Petri-nets with inhibitors

are naturally encoded as Datalog programs with Z-counters by adding a constraint x

i

= 0

in the body of clause r

j

whenever there is an inhibitor arc from place i to transition j. When

8



the input place is known to be bounded (i.e., the place can never contain more than a �xed

number of tokens during the evolution of the Petri net con�guration), it is well-known that

one can simulate such a 0-test using conventional Petri nets. For example, if the bound of

the inhibitor place is known to be 1, it is easy to add a \complementary place" to the net

whose value is 0 (resp. 1) when the inhibitor place is 1 (resp. 0). Instead of testing the

inhibitor place to 0, it is equivalent to test if the complementary place contains (at least)

one token. Such a simulation is not possible when the place is unbounded. Actually Petri

nets with inhibitor places can simulate Turing machines, so there is no hope to simulate

such an extension while keeping inside the class of Petri nets.

On the other hand, within our framework where the variables of the program can take

negative values, it is easy to simulate 0-tests. We encode inhibitor arcs by replacing a

constraint x

j

= 0 by x

0

j

> 0 where x

0

j

is a newly introduced variable. This new variable x

0

j

is to be equal to 1� x

j

. The variable x

0

j

is introduced as a new argument into p. Its initial

value a

00

j

is set to 1 � a

0

j

, where a

0

j

denotes the initial value of x

j

. Within each recursive

clause r

i

of the program, the new argument x

0

j

is incremented by �k

i;j

(where k

i;j

denotes

the value the variable x

j

is incremented by r

i

). Formally, if we denote the newly de�ned

predicate by p

0

, we have in the least Z-model of P [ P

0

: p(x) , 9x

0

j

p

0

(x; x

0

j

).

3.3 parametric initial markings

Recall that the least �xed-point of the encoding program (i.e., the reachability set of the

corresponding Petri net) can be expressed as follows:

lfp = f x

0

j 9x : B(x) ^ x

�

�

!
x

0

g

Here B(x) is x = a

0

where a

0

denotes the initial marking of the Petri net, that is a priori

a tuple of nonnegative constants. Our aim is to characterize the relation y 2 lfp as an

arithmetical formula having y as a free variable. It is however often interesting to reason

more generically with some parametric initial markings, i.e., initial markings where certain

places are assigned parameters instead of constant values. This de�nes a family of Petri nets,

which are obtained by replacing successively the parameters with all the possible positive

or null values.

One can easily encode the reachability relation for a Petri net with a parametric initial

marking via a program with Z-counter by adding the initial marking parameters as extra

arguments of the encoding predicate. For the sake of notation simplicity however, we will not

make such extra predicate arguments appear explicitly in the following. (The parameters

will just appear in the base clause associated with the initial marking.) In the case of a

Petri net with an initial marking containing a tuple of parameters, say q, our aim will be to

characterize the relation y 2 lfp as an arithmetical formula having y and q as free variables.

3.4 example

We illustrate the encoding of Petri-nets with inhibitors and parametric initial markings by

an example.
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Example 1:

We consider here a Petri net implementing a simple readers-writers protocol. (This is in-

spired from [1], p.17.) This Petri net has six places encoded by the variables x

2

; x

3

; x

4

; x

5

; x

6

;

x

7

and six transitions encoded by the recursive clauses r

1

; r

2

; r

3

, r

4

; r

5

; r

6

. (It will be clear

later on why the enumeration of places x

i

starts with i = 2.) Place x

5

represents the number

of idle processes. Place x

6

(resp. x

7

) the number of candidates for reading (resp. writing).

Place x

4

(resp. x

3

) represents the number of current readers (resp. writers). Place x

2

is a

semaphore for guaranteeing mutual exclusion of readers and writers. Only one inhibitor arc

exists in the net, connecting x

4

to r

1

. The Petri net is represented on �gure 1. (The weights

of the arcs are always equal to 1, and do not appear explicitly on the �gure.) Only two

places are initially marked: x

2

and x

5

. The latter contains a parametric number of tokens,

de�ned by the parameter q, while the former contains one token. The program P encoding

x5

x6

x7

x4

x3

x2

r
1

r

r

rr

r
5

2
4

3

6

Figure 1

this Petri-net is the following:

p(x

2

; x

3

; x

4

; x

5

; x

6

; x

7

)  x

2

= 1; x

3

= 0; x

4

= 0;

x

5

= q � 0; x

6

= 0; x

7

= 0:

r

1

: p(x

2

� 1; x

3

+ 1; x

4

; x

5

; x

6

; x

7

� 1)  x

2

> 0; x

7

> 0; x

4

= 0; p(x

2

; : : : ; x

7

):

r

2

: p(x

2

; x

3

; x

4

+ 1; x

5

; x

6

� 1; x

7

)  x

2

> 0; x

6

> 0; p(x

2

; : : : ; x

7

):

r

3

: p(x

2

+ 1; x

3

� 1; x

4

; x

5

+ 1; x

6

; x

7

)  x

3

> 0; p(x

2

; : : : ; x

7

):

r

4

: p(x

2

; x

3

; x

4

� 1; x

5

+ 1; x

6

; x

7

)  x

4

> 0; p(x

2

; : : : ; x

7

):

r

5

: p(x

2

; x

3

; x

4

; x

5

� 1; x

6

+ 1; x

7

)  x

5

> 0; p(x

2

; : : : ; x

7

):

r

6

: p(x

2

; x

3

; x

4

; x

5

� 1; x

6

; x

7

+ 1)  x

5

> 0; p(x

2

; : : : ; x

7

):

To replace the constraint x

4

= 0, we introduce the new variable x

1

and construct a new

program P

0

de�ned in such a way that x

1

= 1 � x

4

, holds in the least model of P

0

, and
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replace x

4

= 0 by x

1

> 0 in clause r

1

. We get:

p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

)  x

1

= 1� x

4

; x

2

= 1; x

3

= 0; x

4

= 0;

x

5

= q � 0; x

6

= 0; x

7

= 0:

r

1

: p

0

(x

1

; x

2

� 1; x

3

+ 1; x

4

; x

5

; x

6

; x

7

� 1)  x

2

> 0; x

7

> 0; x

1

> 0; p

0

(x

1

; : : : ; x

7

):

r

2

: p

0

(x

1

� 1; x

2

; x

3

; x

4

+ 1; x

5

; x

6

� 1; x

7

)  x

2

> 0; x

6

> 0; p

0

(x

1

; : : : ; x

7

):

r

3

: p

0

(x

1

; x

2

+ 1; x

3

� 1; x

4

; x

5

+ 1; x

6

; x

7

)  x

3

> 0; p

0

(x

1

; : : : ; x

7

):

r

4

: p

0

(x

1

+ 1; x

2

; x

3

; x

4

� 1; x

5

+ 1; x

6

; x

7

)  x

4

> 0; p

0

(x

1

; : : : ; x

7

):

r

5

: p

0

(x

1

; x

2

; x

3

; x

4

; x

5

� 1; x

6

+ 1; x

7

)  x

5

> 0; p

0

(x

1

; : : : ; x

7

):

r

6

: p

0

(x

1

; x

2

; x

3

; x

4

; x

5

� 1; x

6

; x

7

+ 1)  x

5

> 0; p

0

(x

1

; : : : ; x

7

):

We have the following equivalence:

p(x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) , 9x

1

: p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

)

We would like to prove that, for this protocol, there is always at most one current writer

(i.e. x

3

= 0 _ x

3

= 1), and that reading and writing can never occur at the same time (i.e.:

x

3

= 0 _ x

4

= 0). Formally, we must prove:

p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) ) (x

3

= 0 _ x

3

= 1)

p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) ) (x

3

= 0 _ x

4

= 0)

The classical methods of veri�cation of Petri nets by invariants (see, e.g., [5]) are able to

prove the �rst implication: by analysing the transitions without taking into account the

guards, they generate a set of invariants among which is the formula x

2

+ x

3

= 1. Since the

variables x

2

and x

3

take only positive or null values, it follows immediately that x

3

must

be 0 or 1. The second property of \mutual exclusion" (x

3

= 0 _ x

4

= 0) is more di�cult

to establish (see however [22] for a recent method extending the classical methods with

invariants for dealing with such mutual exclusion properties.) We will see in this paper how

our method of construction of least �xed-points allows us to solve this problem (see section

8). �

4 Construction of Least Fixed-points

The transformations we are going to present, only concern the recursive clauses. Since these

clauses all have the same form (i.e. no reordering or sharing of variables, and all recursive

calls are exactly the same) we will represent a program by an \incrementation matrix" whose

j:th row is the vector k

j

of coe�cients of the j:th recursive clause of the program, and the

constraints and the name of the clause are written to the right of the corresponding row of

the matrix.
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Example 2:

The program P

0

of example 1 is represented by:

0 �1 1 0 0 0 �1 x

2

> 0; x

7

> 0; x

1

> 0 : r

1

�1 0 0 1 0 �1 0 x

2

> 0; x

6

> 0 : r

2

0 1 �1 0 1 0 0 x

3

> 0 : r

3

1 0 0 �1 1 0 0 x

4

> 0 : r

4

0 0 0 0 �1 1 0 x

5

> 0 : r

5

0 0 0 0 �1 0 1 x

5

> 0 : r

6

x

1

x

2

x

3

x

4

x

5

x

6

x

7

�

Without loss of understanding, we will also call \program" the set � of the labels r

1

; ::; r

n

of the recursive clauses.

4.1 Decomposition rules

As explained before, the method we use to compute the reachability set consists in show-

ing that any path can be reordered into some speci�c \simpler" form. In this paper we

present only a few transformation rules for lack of space. The rules are stated on the form:

x

�

�

!
x

0

, x

L

1

L

2

���L

s

!
x

0

. Each languages L

i

(1 � i � s) denotes here either a �nite

language or a language of the form �

�

i

where �

i

is a label for a new \simpler" program.

Programs �

i

are \simpler" than the original program (labeled by �) by either containing a

fewer number of recursive clauses, or by letting more variables invariant. (From a syntactic

point of view, a variable is invariant when the corresponding column in the incrementation

matrix is null.)

Formally, we de�ne the dimension of a program with Z-counters as a couple (m;n) where n

is the number of clauses of the program, and m is the number of invariant variables of the

program (i.e. the number of null columns in the corresponding incrementation matrix). We

also de�ne an order on these dimensions as follows: The dimension (m

1

; n

1

) is lower than

(m

2

; n

2

) i� m

1

< m

2

, or m

1

= m

2

and n

1

< n

2

. Each transformation rule thus decomposes

the original language �

�

into either �nite languages (for which the reachability problem

is solvable in the existential fragment of Presburger arithmetic, see section 2) or into lan-

guages associated with programs of lower dimension. There are two kinds of \elementary"

programs with a basic dimension. The �rst kind consists in programs of dimension (1; n),

i.e. programs made of n clauses, r

1

; : : : ; r

n

with all but one column being null. As will be

seen later on (see section 4.2, remark 3), the reachability problem for such programs can be

easily solved and expressed in the existential fragment of Presburger arithmetic. The second

kind of elementary programs are programs of dimension (m; 1), i.e., programs made of a

single clause, say r

1

. In this case the expression x

�

�

!
x

0

reduces to x

r

�

1

!

x

0

, which can be

also expressed in the existential fragment of Presburger arithmetic (see section 2). There-

fore the decomposition process must eventually terminate either successfully, thus leading

to a characterization of the reachability relation in Presburger arithmetic, or it terminates
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because no decomposition rule can be applied.

In keeping with a former approach [14], we will consider two types of decomposition rules:

monotonic and cyclic rules. The monotonic decompositions are based on the fact that some

clauses of a program may be applied all at once at some point during a computation, while

the cyclic decompositions exploit that there is some �xed sequences of clause �rings that

can be repeated. We �rst present one monotonic decomposition rule, then one cyclic rule.

4.1.1 monotonic decomposition rule

The �rst decomposition rule is called monotonic clause. This decomposition applies when

there is a clause whose coe�cients in the head are all nonegative or nonpositive. Thus,

the monotonic clause is stated in two versions: one increasing, and one decreasing. For

the purposes of this paper, we only state the increasing version (the decreasing one being

symmetric). This rule applies to a program whose matrix is of the form:

.

.

. #

r

:::

: r

:::

+ : : : + #

r

l

: r

l

.

.

. #

r

:::

: r

:::

x

1

x

m

This means that, in the program, we have 8j : k

l;j

� 0. In such a case, clause r

l

has

\priority" over all the rest of the clauses: given a path w starting at a point x where #

r

l

(x)

holds, one can always reorder w so that all the clauses r

l

are applied �rst. Formally we

have:

Proposition 3:

Let r

l

2 � be a clause such that 8j : k

l;j

� 0. Then:

x

�

�

!
x

0

, x

(��fr

l

g)

�

r

�

l

(��fr

l

g)

�

!

x

0

�

Proof

Since, for all r

j

2 �, the coe�cients k

l;j

is nonnegative, the constraint #

r

j

is invariant under

the application of r

l

(i.e.: #

r

j

(x) ) #

r

j

(xr

l

)). Therefore, if x

0

is reachable from x by some

path w = w

1

r

l

w

2

, and #

r

l

(x) holds, then also the path w

0

= r

l

w

1

w

2

is applicable, so all the

applications of r

l

can be pushed to the beginning, and thus x

0

must be reachable from x by

some path w

00

= r

l

� � �r

l

w

3

where w

3

2 (�� fr

l

g)

�

.

Clearly, if x

0

is reachable from x by any path w 2 �

�

containing r

l

, then r

l

must occur

somewhere for the �rst time. At that point #

r

l

must hold, so, by the above, x

0

is reachable

by some path w

0

2 (�� fr

l

g)

�

r

�

l

(�� fr

l

g)

�

.

Remark 1

As seen in the proof, the requirement that all the coe�cients k

l;j

should be nonnegative
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is unnecessarily strong. It is enough that #

r

j

(x) ) #

r

j

(xr

l

) holds for every clause

r

j

2 �, which means that r

l

preserves all the constraints of �.

Remark 2

It is clear that the languages involved in the right-part of the C-equivalence, viz.

(��fr

l

g)

�

and r

�

l

, are of lower dimension than � provided that � contains more than

one clause. (If � contains only one clause, say r

1

, then the program is elementary

and, as already pointed out, the relation x

r

�

1

!

x

0

is characterizable as an existentially

quanti�ed Presburger formula.)

Remark 3

Consider an elementary program � of dimension (1; n). It means that all the columns

of its incrementation matrix are null except one, say the h-th column. So the l-th

row is monotonic (increasing if k

l;h

� 0, or decreasing if k

l;h

� 0), for any 1 � l � n.

Therefore one can apply the monotonic rule, thus decomposing program � into fr

l

g

and � � fr

l

g. For the same reasons, the monotonic rule applies again to the latter

program � � fr

l

g. By iteratively applying the rule, one can thus decompose the

reachability problem via �

�

into reachability problems via r

�

1

, r

�

2

, ..., r

�

n

. It follows

that one can characterize the reachability problem via �

�

in the existential fragment

of Presburger arithmetic.

Other monotonic decomposition rules are given in appendix A.

4.2 cyclic decomposition rule

The cyclic decomposition rule that we consider applies to matrices of the general form (after

possible reordering among clauses r

1

; :::; r

n

):

� : : : � + � : : : � � � � : r

1

.

.

.

� : : : � + � : : : � � � � : r

l

+ : : : + �1 + : : : + x

j

> 0 : r

l+1

.

.

.

+ : : : + �1 + : : : + x

j

> 0 : r

n

x

j

9

>

>

>

=

>

>

>

;

R

0

9

>

=

>

;

R

where R and R

0

are sets of rules such that � = R ] R

0

, the constraints of all the clauses in

R are exactly x

j

> 0 and x

j

does not occur in the constraints of any rule in R

0

. Formally

this means

1. 8r

i

2 R : k

i;h

� 0 for h 6= j

1

0

. 8r

i

2 R

0

: x

j

does not occur in #

r

i

(x)

2. 8r

i

2 R

0

: k

i;j

� 0

3. 8r

i

2 R : k

i;j

= �1

4. 8r

i

2 R : #

r

i

(x) � x

j

> 0
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Under conditions 1; 1

0

; 2; 3; 4, given a path w starting at a point where x

j

is greater than

0, one can reorder w so that all the R-clauses are applied �rst (similarly to the situation

of the monotonic transformation), but now such a priority of application for the R-clauses

must end at some point: this is because, here, the coe�cients k

i;j

(l + 1 � i � n) are not

positive or null, but equal to �1. So the value of x

j

decreases at each application of an

R-clause until x

j

becomes null. At this stage, no R-clause is applicable, and an R

0

-clause r

i

(1 � i � l) must be applied. The j-th coordinate of the newly generated tuple is then equal

to k

i;j

. If k

i;j

is strictly positive, then any of the \highest priority" R-clauses can be applied

again a number of times equal to k

i;j

until x

j

becomes null again. This shows that any path

w of �

�

can be reordered into a path whose core is made of repeated \cyclic sequences"

of the form r

i

w with w 2 R

k

i;j

. (As usual, the expression R

k

denotes the set of paths in

R

�

of length k.) Note that these \cyclic sequences" let x

j

invariant, and are applied when

x

j

= 0. To summarize, the strategy of application of the clauses here is to apply R-clauses

in priority, whenever they are applicable (i.e., when x

j

> 0), until x

j

becomes null.

Remark 4

Actually, requirements 1 and 1

0

that all the coe�cients k

i;h

should be nonnegative (for

h 6= j), and x

j

should not occur in the R

0

-constraints, are unnecessarily strong. It is

enough that, under condition x

j

> 0, rules of R \commute" with those of R

0

in the

following sense: x

j

> 0 ^ x

R

0

R

!

x

0

) x

RR

0

!

x

0

.

Remark 5

Requirement 4 can be also relaxed: a similar decomposition holds when the constraints

of the R-clauses are not atomic (i.e., not equal to x

j

> 0) but contain other guards

(i.e., when #

r

i

(x) ) x

j

> 0).

Before stating formally the cyclic decomposition rule, we introduce and briey comment on

some notation used in the formal statement of the rule. The expression r

i

R

k

denotes the

set fr

i

w j w 2 R

k

g. The expression R

0<�<k

denotes the set of paths w in R

�

of length

greater than 0 and less than k. If r

i

R

k

represents a set of cyclic sequences, the expression

r

i

R

0<�<k

thus represents the set of pre�xes of such sequences. (The pre�x reduced to r

i

is discarded by the notation, and appears in the rule statement as an element of R

0

.) The

language (

S

r

i

2R

0

r

i

R

k

i;j

)

�

also appears in the rule statement. The program associated with

this language is made of recursive clauses of the form:

p(x+ k

r

i

w

) #

r

i

w

(x); p(x), where w is in R

k

i;j

.

The dimension of such a program is less than the dimension of � because it lets one more

variable, viz. x

j

, invariant (The x

j

column in the corresponding incrementation matrix is

null.)

Proposition 4:

Let R;R

0

� � be sets of (labels of) clauses such that � = R ]R

0

, and let x

j

be a variable

such that:

1. x

j

> 0 ^ x

R

0

R

!

x

0

) x

RR

0

!

x

0

2. 8r

i

2 R

0

: k

i;j

� 0
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3. 8r

i

2 R : k

i;j

= �1

4. 8r

i

2 R : #

r

i

(x) ) x

j

> 0

Then we have

A

x

j

� 0 ^ x

�

�

!
x

0

)

x

R

�

R

0�

!

x

0

_

9x

00

: x

R

�

!
x

00
�

�

!
x

0

^ x

00

j

= 0

B

x

j

= 0 ^ x

�

�

!
x

0

)

x

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

�

"+

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

R

0�

!

x

0

where x

j

is let invariant by all the paths in

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

.

C

x

�

�

!
x

0

,

x

R

0�

R

�

R

0�

!

x

0

_

9x

00

: x

R

0�

R

�

!

x

00

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

�

"+

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

R

0�

!

x

0

^ x

00

j

= 0

where x

j

is let invariant by all the paths in

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

.

�

Before proving this proposition, let us stress that part C of the proposition provides us

with a decomposition rule that reduces the reachability problem via �

�

to several reacha-

bility problems via languages which are of lower dimensions. The sublanguages are R

0�

, R

�

,

("+

S

r

i

2R

0

r

i

R

0<�<k

i;j

) and (

S

r

i

2R

0

r

i

R

k

i;j

)

�

. Languages R

0�

and R

�

have less clauses than

�

�

(and at least as many variables let invariant), so they are of lower dimension. The lan-

guage ("+

S

r

i

2R

0

r

i

R

0<�<k

i;j

) is �nite. As already pointed out, the language (

S

r

i

2R

0

r

i

R

k

i;j

)

�

is of lower dimension than �

�

because it lets a new variable (viz., x

j

) invariant.

Proof:

The �rst statement, A, of the proposition states that any point x

0

reachable from a point
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x such that x

j

� 0, is reachable either by a path consisting of a sequence of applications of

clauses ofR only followed by a sequence of applications of clauses ofR

0

only, or x

0

is reachable

via a point x

00

(with x

00

j

= 0), which is itself reachable from x by a sequence of applications

of clauses of R only. We prove this by induction on the length n of the paths. The case

when n = 0 is trivial. The induction hypothesis is the following implication: For all v 2 �

�

such that jvj < n, (x

j

� 0 ^ x

v

! x

0

) (x

v

0

!

x

0

_ 9x

00

: x

v

00

!

x

00
v

000

!

x

0

^ x

00

j

= 0)),

for some v

0

2 R

�

R

0�

, v

00

2 R

�

, v

000

2 �

�

such that jv

0

j = jv

00

v

000

j = jvj. Suppose now that

x

j

� 0 ^ x

w

! x

0

hold for some x, x

0

and w 2 �

�

such that jwj = n, and let us prove

D: (x

w

0

!

x

0

_ 9x

000

: x

w

00

!

x

000 w

000

!

x

0

^ x

000

j

= 0) for some w

0

2 R

�

R

0�

, w

00

2 R

�

and

w

000

2 �

�

such that jw

0

j = jw

00

w

000

j = jwj. If no R-clause appears in w, then w 2 R

0�

so

clearly w 2 R

�

R

0�

, and D follows by choosing w

0

as w. Otherwise some clause of R must

occur in w for the �rst time. Then w = w

1

r

i

w

2

for some w

1

2 R

0�

, r

i

2 R and w

2

2 �

�

.

If x

j

= 0 we choose x

00

= x, w

00

= " and w

000

= w

1

r

i

w

2

, which again proves D. Therefore

assume x

j

> 0. By precondition 2, all the clauses of R

0

make x

j

increase, so x

j

> 0 is invari-

ant for all the paths in R

0�

. By repeated use of precondition 1, w

1

r

i

may then be replaced

by some r

0

i

w

0

1

such that r

0

i

2 R, w

0

1

2 R

0�

and jw

0

1

j = jw

1

j, so x

r

0

i

!

x

00

w

0

1

w

2

!

x

0

holds for

some x

00

. By precondition 3, all the clauses in R decrease x

j

by one, so either x

00

j

= 0, in

which case we choose w

00

as r

0

i

and w

000

as w

0

1

w

2

for proving D, or x

00

j

> 0 still holds. Since

jw

0

1

w

2

j < jwj, by the induction hypothesis, x

v

0

!

x

0

_ 9x

000

: x

00
v

00

!

x

000
�

�

!
x

0

^ x

000

j

= 0,

holds for some v

0

2 R

�

R

0�

, v

00

2 R

�

, v

000

2 �

�

and jv

0

j = jv

00

v

000

j = jw

0

1

w

2

j, and therefore

x

r

0

i

v

0

!

x

0

_ 9x

000

: x

r

0

i

v

00

!

x

000 v

000

!

x

0

^ x

000

j

= 0. Thus D holds, since r

0

i

v

0

2 R

�

R

0�

,

r

i

v

00

2 R

�

and jr

i

v

0

j = jr

i

v

00

v

000

j = jwj. The slightly stronger result that jw

0

j = jw

00

w

000

j = jwj,

will be used below.

The second statement, B, says that if x

0

is reachable from some point x such that x

j

= 0,

then x

0

is reachable by a sequence of repeated cycles r

i

R

k

i;j

, where r

i

2 R

0

, possibly followed

by a pre�x r

i

R

0<�<k

i;j

of a cycle and �nally by a sequence of applications of clauses of R

0

only. It is obvious that the paths r

i

R

k

i;j

keep x

j

= 0 invariant since r

i

increases x

j

by k

i;j

,

and all clauses of R decreases x

j

by one, so r

i

followed by k

i;j

applications of R-clauses sums

up to zero. The statement is proved by induction. Again the base case when n = 0 is triv-

ial. The induction hypothesis is the following implication: for all v 2 �

�

such that jvj < n,

x

j

= 0 ^ x

v

! x

0

) x

LR

0�

!

x

0

, where L =

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

�

" +

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

.

Suppose that x

j

= 0^x

w

! x

0

hold for some x, x

0

and w 2 �

�

such that jwj = n, and let us

prove x

LR

0�

!

x

0

. Since x

j

= 0, by precondition 4, no clause of R can be applied, so the �rst

clause application must be some r

i

2 R

0

, and therefore w = r

i

w

1

for some w

1

2 �

�

. Thus

x

j

= 0 ^ x

r

i

! x

00

w

1

! x

0

holds for some x

00

. If k

i;j

= 0, then x

00

j

= 0. Since jw

1

j < jwj, by

the induction hypothesis, x

00 LR

0�

!

x

0

holds, so x

r

i

LR

0�

!

x

0

. This proves x

LR

0�

!

x

0

, since

r

i

L � L. Therefore assume k

i;j

> 0, in wich case x

00

j

> 0 must hold. But by the proof of

case A of the proposition, if x

00

j

> 0 ^ x

00

w

1

! x

0

holds, then either E1: x

00

w

0

1

!

x

0

or E2:

9x

000

: x

00

w

00

1

!

x

000

w

000

1

!

x

0

^ x

000

j

= 0 must hold for some w

0

1

2 R

�

R

0�

, w

00

1

2 R

�

and w

000

1

2 �

�

such that jw

0

1

j = jw

00

1

w

000

1

j = jw

1

j. Assume that E2 holds. Then jw

00

1

j = k

i;j

must hold and,

since jw

000

1

j < jwj, by the induction hypothesis, x

000
LR

0�

!

x

0

, so x

r

i

w

00

1

LR

0�

!

x

0

, which proves

x

LR

0�

!

x

0

, since r

i

v

00

L � L. Suppose now that E2 does not hold. By E1, w

0

1

= uu

0

for
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some u 2 R

�

and u

0

2 R

0�

. Furthermore, juj < k

i;j

must hold, since otherwise w

00

1

could be

chosen as u, and E2 would hold. Therefore r

i

uw

00

1

2

�

"+

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

R

0�

� LR

0�

,

and again, x

LR

0�

!

x

0

holds.

The third statement, C, follows by simply combining A and B, and by noting that if x

j

< 0,

by precondition 4, only R

0

-clauses can be applied. Either we reach the end point, or we

reach some point where x

j

� 0, and then cases A and B of the proposition apply.

Remark 6:

In the special case where the constraints of R-clauses are atomic (i.e., all equal to

x

j

> 0), it is easy to show that the application of R-clauses is commutative. Therefore,

we have for all r

i

in R

0

x

r

i

R

k

!

x

0

) x

r

i

S

m

1

+m

2

+:::+m

n�l

=k

r

m

1

l+1

r

m

2

l+2

���r

m

n�l

n

!

x

0

Hence we need not consider all the paths of r

i

R

k

, but only those of the form r

i

r

m

1

l+1

r

m

2

l+2

� � �r

m

n�l

n

, where m

1

+m

2

+ : : :+m

n�l

= k. (Actually, the ordering on r

l+1

, r

l+2

, . . . r

n

is arbitrary.)

Example 3:

Consider the matrix in example 2, representing the program for the protocol of example 1.

Let us in proposition 4 choose R = fr

5

; r

6

g and R

0

= fr

1

; r

2

; r

3

; r

4

g, and let x

j

= x

5

. We

see that this matrix conforms to the special case discussed above where the decomposition

of proposition 4 is applicable. We have: k

1;5

= 0, k

2;5

= 0, k

3;5

= 1 and k

4;5

= 1. Thus,

r

1

R

k

1;5

= r

1

, r

2

R

k

2;5

= r

2

, r

3

R

k

3;5

= r

3

r

5

+ r

3

r

6

and r

4

R

k

4;5

= r

4

r

5

+ r

4

r

6

. Further-

more: " +

S

r

i

2R

0

r

i

R

0<�<k

i;5

= " + r

1

R

0<�<0

+ r

2

R

0<�<0

+ r

3

R

0<�<1

+ r

4

R

0<�<1

= ". By

proposition 4.C, we have:

x

(r

1

+r

2

+r

3

+r

4

+r

5

+r

6

)

�

!

x

0

,

x

(r

1

+r

2

+r

3

+r

4

)

�

(r

5

+r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

_

9x

00

: x

(r

1

+r

2

+r

3

+r

4

)

�

(r

5

+r

6

)

�

!

x

00

^

x

00

(r

1

+r

2

+r

3

r

5

+r

3

r

6

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

^ x

00

5

= 0

and all the paths in (r

1

+ r

2

+ r

3

r

5

+ r

3

r

6

+ r

4

r

5

+ r

4

r

6

)

�

keep x

5

= 0 invariant. The matrix

M

0

of the program corresponding to the set of clauses fr

1

; r

2

; r

3

; r

5

; r

3

r

6

; r

4

r

5

; r

4

r

6

g is shown
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below:

0 �1 1 0 0 0 �1 x

2

> 0; x

7

> 0; x

1

> 0 : r

1

�1 0 0 1 0 �1 0 x

2

> 0; x

6

> 0 : r

2

0 1 �1 0 0 1 0 x

3

> 0; x

5

> �1 : r

3

r

5

0 1 �1 0 0 0 1 x

3

> 0; x

5

> �1 : r

3

r

6

1 0 0 �1 0 1 0 x

4

> 0; x

5

> �1 : r

4

r

5

1 0 0 �1 0 0 1 x

4

> 0; x

5

> �1 : r

4

r

6

x

1

x

2

x

3

x

4

x

5

x

6

x

7

Thus, (r

1

+ r

2

+ r

3

+ r

4

)

�

and (r

5

+ r

6

)

�

involves fewer clauses than the original program,

while (r

1

+ r

2

+ r

3

r

5

+ r

3

r

6

+ r

4

r

5

+ r

4

r

6

)

�

involves the same number of clauses but lets one

more variable, viz. x

5

, invariant. (The corresponding column in the incrementation matrix

is null.)

�

5 Comparison with Berthelot's work

As can be seen in the example, in the matrixM

0

corresponding to the set of cyclic sequences,

the constraint x

5

> �1 is systematically satis�ed since it is applied, by the proposition, to

a point of coordinate x

5

= 0 and x

5

is let invariant. So an obvious optimization, for the

treatment of the matrix, will be to remove the null column as well as the guard x

5

> �1. In

terms of Petri nets, this corresponds to remove the place x

5

and to perform the \fusion" of

transitions r

2

; r

3

; r

4

(which have x

5

as an output place) and transitions r

5

; r

6

(which have

x

5

as an input place). The resulting Petri net is represented in �gure 2. This kind of

x6

x7

x4

x3

x2

r
4
r

5

r
4
r

6

r r
53

r r
3 6r

1

r
2

Figure 2
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optimization can be done generally, under the preconditions of proposition 3. An analogous

transformation of Petri nets is called post-fusion transformation by Berthelot in [3]. Our

version of the cyclic decomposition can thus be seen as a variant of Berthelot's post-fusion

rule. Berthelot also de�ned in [3] some other transformations like pre-fusion. It is possible to

give in our framework a counterpart also for this transformation, although there is no place

here to present it. The point that should be stressed here is that our cyclic decomposition

rules are more general than Berthelot's rules because they apply to general programs with

Z-counters where variables take their values on Z (instead of N as in the case of Petri nets).

This allows us in particular to encode 0-tests as already seen. In a next section we will see

that our cyclic decomposition rule can also, under certain conditions, be generalized one

step further by allowing R-transitions to pick up more than one token from place x

j

. (For

rules r

i

2 R, coe�cients k

i;j

will be allowed to be less than �1.)

6 Application to BPP-nets

Recently an interesting subset of Petri nets has been introduced and investigated: BPP-

nets. A Petri net is a BPP-net if every transition has at most

1

one input place and removes

exactly one token from that one place. BPP stands for Basic Parallel Process: this is a class

of CSS process de�ned by Christensen [7]; the reachability problem for BPP-nets is NP-

complete [13]. When one encodes the reachability problem for BPP-nets, using the method

of section 3, one obtains a program such that, for any clause r

i

2 �, all the coe�cients

of the head are nonnegative except (maybe) one, which is equal to �1. For all clause r

i

,

if such a negative coe�cient, say k

i;h

, exists, then the constraint of r

i

is atomic and equal

to x

h

> 0. Let us show that a sequence of the two decomposition rules presented above is

always applicable to such a program (so that, eventually, we are sure to get a at language).

If there exists a clause r

i

such that all the coe�cients of its head are nonnegative, the

monotonic (increasing) decomposition rule is applied, and the problem is decomposed into

(��fr

i

g)

�

r

�

i

(�� fr

i

g)

�

. If there are still such clauses in �� fr

i

g, we apply the monotonic

rule until every clause contains a negative coe�cient. By assumption, every clause must

then contain exactly one negative coe�cient and it must be equal to �1. Let us show that

the cyclic decomposition rule then applies. We have to determine which sets of rules to take

as for R, R

0

and which variable to take as for x

j

in order to apply proposition 4. As for x

j

we

choose a variable such that column j of the matrix contains an element equal to �1 (which

must exist). As R we take all the clauses r

i

such that k

i;j

= �1, and as R

0

we take �� R.

Thus, for every r

i

2 R

0

we have k

i;j

� 0, and therefore conditions 1 to 4 of the specialized

case on page 11 are satis�ed, so the cyclic decomposition applies. It is easy to see that the

new programs generated are still of the form corresponding to a BPP-net, so one of the two

decompositions (monotonic clause or cyclic \post fusion" rule) is always applicable. Thus,

for this class of programs the decomposition process is guaranteed to terminate successfully

and one obtains an existentially quanti�ed Presburger arithmetic formula having y as a free

variable for characterizing the fact that y belongs to the reachability set.

1

The original de�nition states that every transition has exactly one input place, but it is convenient here

to relax it somehow.
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This yields a new proof of the fact that the reachability set for BPP-nets is a semi linear

set [13]. Note that Esparza's proof makes use of the notion of \siphon", and is completely

di�erent from our method. Note also that our result is actually more general since our

decomposition succeeds for BPP-nets without any assumption on the initial markings: our

decomposition process shows that the relation x

�

�

!
x

0

is an existentially quanti�ed Pres-

burger formula having x and x

0

as free variables (that is, fhx; x

0

i j x

�

�

!
x

0

g is a semilinear

set (see [17]) while the result of Esparza states that fx

0

j a

0 �

�

!
x

0

g is a semilinear set, for

any tuple of constants a

0

).

7 Propositional Logic Programs and BPP Nets

We show here how to simulate linear resolution via a propositional logic program � by �ring

transitions of an associated BPP-net. We also explain how to simulate unfolding of � by

fusing transitions of the BPP-net.

7.1 Linear resolution of clauses as �ring of transitions

Consider the following propositional logic program �



1

: f  a; b



2

: a b; c



3

: a d

Suppose that you want to solve a goal of the form  b; f; b. Then you are going to match

a literal, say f , of the goal with the head of a program clause, viz. 

1

, and replace it by

the clause body, thus yielding the new goal  b; a; b; b. This corresponds to a step of linear

resolution. The process can be iterated and ends when you get the empty goal  , which

means that you have obtained a linear refutation of the initial goal  f . This can be also

interpreted as a proof by backward chaining of the positive literal f .

Let us show that one can encode the propositional program logic � under the form of a

BPP-net, and mimick linear clausal resolution by �ring net transitions. The BPP-net is

constructed by associating a place with each literal (of the Herbrand base) of the program,

and associating a transition with each clause. For example, the net in �gure 3 will be

associated with clauses 

1

; 

2

; 

3

. Transition r

1

(resp. r

2

; r

3

) corresponds to clause 

1

(resp. 

2

; 

3

). Places x

a

; x

b

; x

c

; x

d

; x

f

correspond to literals a; b; c; d; f respectively. The

head of clause 

i

is represented as an input place of the corresponding transition r

i

while

the literals of the body are represented as output places of r

i

. The net is a BPP-net (only

one input place by transition) because the clauses of the original program are de�nite Horn

clause (with a single literal by head). (Note the \structure sharing" among the places of

the net; there is no duplication of place: for example, place x

b

corresponding to literal b,

which appears twice in clauses 

1

and 

2

, is shared as an input place of both transitions r

1

and r

2

.)

The reachability predicate p associated with this net is de�ned by the following program

�

�

:

�

1

: p(x

f

� 1; x

a

+ 1; x

b

+ 1; x

c

; x

d

) p(x

f

; x

a

; x

b

; x

c

; x

d

); x

f

> 0:

�

2

: p(x

f

; x

a

� 1; x

b

+ 1; x

c

+ 1; x

d

) p(x

f

; x

a

; x

b

; x

c

; x

d

); x

a

> 0:
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�

3

: p(x

f

; x

a

� 1; x

b

; x

c

; x

d

+ 1) p(x

f

; x

a

; x

b

; x

c

; x

d

); x

a

> 0:

, which is more concisely represented by the matrix:

�1 1 1 0 0 x

f

> 0 : �

1

0 �1 1 1 0 x

a

> 0 : �

2

0 �1 0 0 1 x

a

> 0 : �

3

x

f

x

a

x

b

x

c

x

d

In this context a marking should be interpreted as a conjunction of literals. For example the

marking h1; 0; 2; 0; 0imeans f ^b^b. With this interpretation in mind, it is easy to simulate

linear resolution. For example consider the resolution of goal  b; f; b via clause 

1

, which

gives the new goal  b; a; b; b. This is simulated by starting with marking h1; 0; 2; 0; 0i on

the above BPP-net, and �ring transition r

1

, which gives marking h0; 1; 3; 0; 0i. Goals thus

correspond to markings, and resolution via program clauses to �ring of net transitions. Re-

futing a goal g via linear resolution corresponds to starting from the marking associated

with g, and reaching the empty marking through a certain sequence of �red transitions.

Given a marking x

0

, the atom p(x

0

), should be interpreted as: \goal  x

0

is refuted", or in

a positive way as: \conjunction x

0

is proved". Program �

�

thus encodes for the provability

via �. Each clause �

i

of program �

�

encodes for backward inference via the corresponding

clause 

i

of program �.

7.2 Unfolding of clauses as postfusion of transitions

Let us now recall the idea of unfolding (we paraphrase here [26], p.147).

Suppose that we use clause 

1

: f  a; b to replace f by a ^ b within a goal. We can only

get an answer to the goal by subsequently eliminating a. This must be done using one of

the clauses



2

: a b; c



3

: a d

so the same result could be achieved in one step using one of the unfolded clauses
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0

1

: f  b; c; b



0

2

: f  d; b

So, the e�ect of unfolding is to short circuit (and hence shorten) the derivation.

We are going to show that such an unfolding step on propositional Horn clauses can be

simulated by a post-fusion step on the program �

�

associated with program �.

Consider the program �

�

associated with program � : f

1

; 

2

; 

3

g. Its incrementation matrix

is:

�1 1 1 0 0 x

f

> 0 : �

1

0 �1 1 1 0 x

a

> 0 : �

2

0 �1 0 0 1 x

a

> 0 : �

3

x

f

x

a

x

b

x

c

x

d

One can apply post-fusion on place x

a

to this matrix. This gives:

�1 0 2 1 0 x

f

> 0 : �

1

:�

2

�1 0 1 0 1 x

f

> 0 : �

1

:�

3

x

f

x

a

x

b

x

c

x

d

The fused net can be represented as in �gure 4.

xf

xc

xb

xd

2

2

3

1

1
r r

r r

Figure 4

(Note that place x

b

is shared here not only among distinct transitions, but also within a

same transition by means of an input arc with weight equal to 2).

Clause �

1

�

2

encodes for (backward inference via) a clause having f as a head, and b; b; c as

a body, i.e.: f  b; b; c. Clause �

1

�

3

encodes for (backward inference via) a clause having f

as a head and b; d as a body, i.e.: f  b; d. One thus retrieves the two clauses 

0

1

and 

0

2

of

the unfolded program.

We have thus shown on this little example that post-fusion on the program �

�

encoding

provability via the propositional logic program �, simulates unfolding of �. More precisely,

let a be some literal of �, and �

0

the result of unfolding clauses of � on to a. Let �

0

be the

program obtained from �

�

by postfusing �

�

on to x

a

, then �

0

coincides, up to the order of

clauses and literals, with the program �

�

0

encoding for provability via �

0

.

23



8 A generalized form of the decomposition cyclic rule

The cyclic decomposition rule presented above, can be given a more general formulation,

which makes it applicable even when the coe�cient k

i;j

of R-rule r

i

is less than �1. We

illustrate this general formulations by considering a 3-clauses program of a typical form and

vizualizing its associated least �xpoint. The program is de�ned by the base case vector

h30; 19;�57i and the incrementation matrix:

�2 �1 3 x

1

> 0 : r

1

�1 �2 4 x

2

> 0 : r

2

4 3 �7 x

3

> 0 : r

3

x

1

x

2

x

3

Its least �xpoint is represented in �gure 5, under the form of the set of all its applicable

paths. All horizontal (resp. vertical, transversal) segment of a path corresponds to the

application of the �rst (resp. second,third) recursive rule. The orientation of the �gures in

terms of r

1

, r

2

and r

3

is:

6

-





�

r

1

r

3

r

2

0 5 10 15 20 25 30 35 40
0
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20

0

5

10

15

20

Figure 5

Let us choose x

j

to be x

3

, R

0

to be fr

1

; r

2

g and R to be fr

3

g. A priori, proposition 4 does

not apply because k

3;3

, viz. �7, is not equal to �1. We are going to explain however that

an analogous decomposition applies, and that, similarly to what part C of proposition 4
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says, we have: h30; 19;�57i

(r

1

+r

2

+r

3

)

�

!

x

0

) h30; 19;�57i

(r

1

+r

2

)

�

r

�

3

L(r

1

+r

2

)

�

!

x

0

where

L is a counterpart of the sequences of cyclic sequences (

S

r

i

R

k

i

)

�

(�+

S

r

i

R

0<�<k

i

).

Compare the language expression (r

1

+ r

2

)

�

r

�

3

L(r

1

+ r

2

)

�

with �gure 5. The lower left part

of the �gure is a planar area where 2 rules only are applicable (one coordinate, viz. x

3

,

remains always less than ot equal to zero), and is therefore included into a fr

1

; r

2

g-plane,

which corresponds to the initial sublanguage (r

1

+ r

2

)

�

. After a while, x

3

> 0 becomes

true, and a number of transversal moves r

3

apply, which is captured by the sublanguage r

�

3

.

As is seen in the �gure, the r

3

-moves soon cease. After the last application of r

3

, it must

hold that 0 � x

3

> �7 (since r

3

is not applicable, but was applicable immediately before,

and the application of r

3

makes x

3

decreased by 7). At this point, only r

1

and r

2

can be

applied. Since r

1

makes x

3

increase by 3, and r

2

by 4, we must have: 4 � x

3

> 0, when

x

3

becomes strictly greater than zero for the �rst time. Now, in keeping with the �ring

strategy of proposition 4, clause r

3

should be �red as soon as it is applicable. In the �gure,

the set of points reached by such a strategy is the \ceiling" of the cone (we move upwards

as soon as we can).

2

The coordinate x

3

of a reordered path is thus led to take cyclically 11

values, those between 4 and �6. These values can be considered as states of a deterministic

�nite state automaton de�ning the language L of reordered paths. The transitions of such

an automaton are completely de�ned by our strategy of clause �ring, which gives priority

to clause r

3

whenever it is applicable (i.e., when x

3

> 0). From any state, 4 � x

3

> 0,

there is only one arrow going out, labeled r

3

, and the next state is x

3

� 7. From any state

0 � x

3

> �7, there are two arrows going out, one labeled r

1

for which the next state is

x

3

+ 3, and one labeled r

2

for which the next state is x

3

+ 4. The automaton is shown in

�gure 6. The construction is identical to that by Clausen and Fortenbacher [9] for solving

1 2

4 3
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Figure 6

the linear diophantine equation:

3m

1

+ 4m

2

� 7m

3

= 0

2

This incidentally shows that the set of points in the \ceiling" of the �gure must satisfy 4 � x

3

> �7.
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which expresses the fact that any path consisting of m

1

, m

2

and m

3

applications of r

1

-,r

2

-

and r

3

-clauses, respectively, lets x

3

invariant. It is easy to see that every cycle in the au-

tomaton yields a solution to the equation above.

Let us denote by L

s;t

the language of paths leading from state s to state t. It should be

clear now that one can always reorder paths as follows:

h30; 19;�57i

(r

1

+r

2

+r

3

)

�

!

x

0

) h30; 19;�57i

(r

1

+r

2

)

�

r

�

3

L(r

1

+r

2

)

�

!

x

0

where L is

S

4�s;t>�7

L

s;t

. This is because, �rst, as already seen, we use (r

1

+r

2

)

�

paths or r

�

3

until one reach a state 4 � s > �7 in the automaton (that is, x

3

= s). Then the clauses are

�red according to the strategy de�ned by the automaton until no more r

3

clauses are still

to be �red. From that point on one walks in the (r

1

+ r

2

)

�

-plane, leaving the automaton at

some state 4 � t > �7 (that is, x

3

= t and x

3

r

i

> 4 for i = 1; 2). In �gure 5 this means fol-

lowing the \ceiling" of the cone, and then \�lling it up" with fr

1

; r

2

g-planes. This informal

explanation of the example can be turned into a formal proof of the following generalization

of proposition 4.

Proposition 5:

Let R;R

0

� � be a set of clauses such that � = R]R

0

, and let x

j

be a variable and c some

�xed constant such that:

1. x

j

> c ^ x

R

0

R

!

x

0

) x

RR

0

!

x

0

2. 8r

i

2 R

0

: k

i;j

� 0

3. 8r

i

2 R : k

i;j

< 0

4. 8r

i

2 R : #

r

i

(x) ) x

j

> c

Then there exists a �nite set of languages L

s;t

, with b � s; t > a, where a = minfk

i;j

+c j r

i

2

Rg and b = maxfk

i;j

+ c j r

i

2 R

0

g, such that:

A

x

j

> c ^ x

�

�

!
x

0

)

x

R

�

R

0�

!

p

0

_

9x

00

: x

j

> c ^ x

R

�

!
x

00
�

�

!
x

0

^ b � x

00

j

> c

B

8b � s > a :

0

B

B

B

@

x

j

= s ^ x

�

�

!
x

0

)

x

�

S

b�t>a

L

s;t

�

R

0�

!

x

0

1

C

C

C

A
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C

x

�

�

!
x

0

,

x

R

0�

R

�

�

S

b�s;t>a

L

s;t

�

R

0�

!

p

0

�

As can be seen on �gure 6, the languages L

s;t

are in general not of the form L

1

L

2

� � �L

u

where

L

i

is either �nite or of the form �

�

i

(with �

i

�nite), but may contain nested `*'. For example

the expression (r

1

r

3

(r

1

r

2

r

3

)

�

r

2

)

�

is a subset of the language L

0;0

, while (r

1

r

3

r

2

+ r

1

r

2

r

3

)

�

is not. This means that proposition 5 may not in general be applied iteratively. However,

by applying other decompositions such as monotonic rules, one can sometimes retrieve a

language that can be expressed under such a \at" form (without nesting of `*'). For a

program with 3 recursive clauses and atomic constraints, as the one above, whose matrix

has the general form:

� � + x

1

> 0 : r

1

� � + x

2

> 0 : r

2

+ + � x

3

> 0 : r

3

x

1

x

2

x

3

we have shown that such a decomposition is always possible, which allows to solve the prob-

lem of the arithmetical characterization of the least �xed-point (see [15]).

We can look back at the results stated in proposition 4, and interpret them as a special

case of the above automaton-based construction. Under the conditions of proposition 4, the

constant a = minfk

i;j

+ c j r

i

2 Rg is equal to �1. So the states of the automaton range

here from 0 to b. For each nonnull state, there is one outgoing R-arc and some entering

R

0

-arcs. For the null state s = 0, there is one entering R-arc and some outgoing R

0

-arcs.

The reordered paths, as de�ned by part C of proposition 4, can now be constructed, using

this specialized automaton, as illustrated on �gure 7. Figure 8 gives a geometrical inter-
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Figure 7

pretation of the fact all the cycles closely follow the hyper plane x

j

= 0.
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9 Compilation into Arithmetic

We have an experimental implementation in SICSTUS-PROLOG currently containing nine

decomposition rules, four of which are cyclic. At the moment the implementation does

not include any optimization for avoiding unnecessary decompositions, and no arithmetic

is done. The program simply decomposes the reachability relation and outputs a regular

expression that could be compiled into a linear arithmetic formula. For the readers-writers

protocol of �gure 1, our program successfully constructs a at language L � �

�

such that

x

�

�

!
x

0

, x

L

! x

0

and:

L = r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

r

�

4

(r

2

r

4

)

�

r

�

5

(r

2

r

4

)

�

r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

r

�

3

(r

1

r

3

)

�

r

�

2

r

�

4

(r

1

r

3

)

�

(r

2

r

4

)

�

(r

1

r

3

)

�

r

�

2

r

�

5

r

�

6

(r

1

r

3

r

5

)

�

r

�

2

(r

4

r

6

)

�

(r

4

r

5

)

�

(r

1

r

3

r

5

)

�

(r

2

r

4

r

6

)

�

(r

1

r

3

r

5

)

�

(r

1

r

3

)

�

r

�

2

r

�

4

(r

1

r

3

)

�

(r

2

r

4

)

�

(r

1

r

3

)

�

r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

r

�

4

(r

2

r

4

)

�

r

�

5

(r

2

r

4

)

�

r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

The expression consists of 51 factors and was computed in 15 seconds on a SPARC-10 ma-

chine. The decomposition was achieved by using 10 applications of the strati�cation rule

(see appendix A), 7 applications of the cyclic \post-fusion" decomposition presented above,

and 1 application of monotonic guard (see appendix A).

Let us denote the above language L as w

�

1

w

�

2

� � �w

�

51

. When computing the least �xpoint of

a program, we are interested in the set lfp : fx

0

j 9x : B(x) ^ x

w

�

1

w

�

2

���w

�

51

!

x

0

g.

We are thus led to construct a sequence f�

i

(x)g

i=0;:::;51

of relations de�ned by:

�

0

(x) , B(x)

�

i+1

(x) , 9x

00

: �

i

(x

00

) ^ x

00

w

�

i+1

!

x

When compiling the arithmetic formula, at each step one checks wether the reachability set

has already been generated. That is, for each i (0 � i � 50), one checks wether

8r 2 fr

1

; :::; r

6

g : �

i

(x) ^ #

r

(x) ) �

i

(xr):

If this is true, there is no need to continue, and this may signi�cantly reduce the size of the

�nal expression. In the present case of the 51 strings long expression, it can be shown that
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the least �xed-point is reached after only 4 steps (see appendix B). So, the �xed-point of

the program P

0

thus turned out to be given by

lfp = fx

0

j 9x : B(x) ^ x

r

�

5

r

�

6

r

�

2

r

�

1

!

x

0

g

and out of the 51 factors in the language L, only the �rst 4 are needed. The arithmetical

expression of this least �xed-point is given by:

lfp � �

4

(x) , x

1

= 1� x

4

^

((x

2

= 1 ^ x

3

= 0 ^ x

4

� 0) _ (x

2

= 0 ^ x

3

= 1 ^ x

4

= 0)) ^

x

5

� 0 ^ x

6

� 0 ^ x

7

� 0 ^

x

3

+ x

4

+ x

5

+ x

6

+ x

7

= q

It is immediately seen that the mutual exclusion property, x

3

= 0 _ x

4

= 0, holds.

We are currently working on implementing linear integer constraint solving in order to fully

automate the process. Our preliminary experiences with the reader-writers example as well

as a couple of parametrized protocols [4][8] are very encouraging.

10 Conclusion

We have developed a decompositional approach for computing the least �xed-points of Dat-

alog programs with Z-counters. As an application we have focused on the computation of

reachability sets for Petri nets. We have thus relating together some unconnected topics

such as Berthelot's transformation rules and Esparza's semilinearity result for the reacha-

bility set of BPP-nets. We have also shown how these results can be extended in several

directions (BPP-nets with parametric initial markings, post-fusion rule for Petri nets with

inhibitors and input arcs picking up more than one token). Our system implementation

gives already promising results, as illustrated here on the readers-writers protocol. We plan

to apply also our method in other �elds such as the derivation of interargument relations

for proving the termination of Prolog programs (see [11]) or the automatic generation of

lemmas (see [14] and appendix D).

Acknowledgements. Special thanks are due to Alain Finkel for providing many useful

informations on Petri nets.
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APPENDIX A: two other monotonic decompositions

We present here two other decomposition rules su�cient for the full treatment of the

readers-writers protocol of example 1. The �rst rule is called strati�cation and simply

states that some clauses can be applied before all the others.
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Proposition 6:

Let R;R

0

� � be sets of clauses such that � = R ] R

0

, and such that x

R

0

R

!

x

0

)

x

RR

0

!

x

0

. Then we have: x

�

�

!
x

0

, x

R

�

R

0�

!

x

0

�

Note that the condition x

R

0

R

!

x

0

) x

RR

0

!

x

0

reduces to check a �nite set of

inequalities among constants. The second decomposition rule is called monotonic guard

and comes in two versions: increasing and decreasing. It is essentially \constraint push-

ing" [27] and applies when there is a single-signed column. We present here only the

decreasing version.

Proposition 7:

Let R � � be a set of clauses and let x

j

be a variable such that:

1. 8r

i

2 � : k

i;j

� 0

2. 8r

i

2 R : #

r

i

(x) ) x

j

> c for some �xed constant c.

Then: x

�

�

!
x

0

, (x

(��R)

�

!

x

0

_ 9x

00

: x

�

0�

!

x

00

�(��R)

�

!

x

0

^ x

00

j

> c) where

�

0

is obtained from � by removing all constraints of the form x

j

> c from every clause

in R. �

APPENDIX B

Let us compute the �xpoint of the program P

0

of example 1 from the language L =

r

�

5

r

�

6

r

�

2

r

�

1

: : : of section 9, generated by our program. We get the sequence (making

arithmetic simpli�cations at each step):

�

0

(x) , B(x) , x

1

= 1� x

4

^ x

2

= 1 ^ x

3

= 0 ^

x

4

= 0 ^ x

5

= q � 0 ^ x

6

= 0 ^

x

7

= 0

�

1

(x) , 9x

00

: �

0

(x

00

) ^ x

00

r

�

5

!

x , x

1

= 1� x

4

^ x

2

= 1 ^ x

3

= 0 ^

x

4

= 0 ^ x

5

� 0 ^ x

6

� 0 ^ x

7

= 0^

x

5

+ x

6

= q

�

2

(x) , 9x

00

: �

1

(x

00

) ^ x

00

r

�

6

!

x , x

1

= 1� x

4

^ x

2

= 1 ^ x

3

= 0 ^

x

4

= 0 ^ x

5

� 0 ^ x

6

� 0 ^ x

7

� 0^

x

5

+ x

6

+ x

7

= q

�

3

(x) , 9x

00

: �

2

(x

00

) ^ x

00

r

�

2

!

x , x

1

= 1� x

4

^ x

2

= 1 ^ x

3

= 0 ^

x

4

� 0 ^ x

5

� 0 ^ x

6

� 0 ^ x

7

� 0^

x

4

+ x

5

+ x

6

+ x

7

= q

�

4

(x) , 9x

00

: �

3

(x

00

) ^ x

00

r

�

1

!

x , x

1

= 1� x

4

^

((x

2

= 1 ^ x

3

= 0 ^ x

4

� 0) _

(x

2

= 0 ^ x

3

= 1 ^ x

4

= 0)) ^

x

5

� 0 ^ x

6

� 0 ^ x

7

� 0^

x

3

+ x

4

+ x

5

+ x

6

+ x

7

= q
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One may easily check that 8r

i

2 fr

1

; : : : ; r

6

g : #

r

i

(x) ^ �

4

(x) ) �

4

(xr

i

).
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APPENDIX C

We give here a di�erent decomposition (done by hand) of the readers writers protocol

to illustrate some principles of optimization.

In example 3, by applying proposition 4, the reachability relation was decom-

posed as: x

(r

1

+r

2

+r

3

+r

4

)

�

(r

5

+r

6

)

�

(r

1

+r

2

+r

3

r

5

+r

3

r

6

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

. However,

the ultimate goal is to compute an expression for lfp

P

0

= fx

0

j 9x : B(x) ^

x

(r

1

+r

2

+r

3

+r

4

+r

5

+r

6

)

�

!

x

0

g for the program P

0

of example 1, where:

�

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) , B(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

)

, x

1

= 1� x

4

^ x

2

= 1 ^ x

3

= 0 ^

x

4

= 0 ^ x

5

= q � 0 ^ x

6

= 0 ^ x

7

= 0

Clearly �

0

(x) ) x

5

� 0 holds. But then, by proposition 4.A

combined with B, the least �xpoint is actually described by: �

0

(x) ^

x

(r

5

+r

6

)

�

(r

1

+r

2

+r

3

r

5

+r

3

r

6

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

That is, the leftmost sublan-

guage, (r

1

+ r

2

+ r

3

+ r

4

)

�

, has been dropped. By taking the base clause of the program

into account, the size of the linear arithmetic expression, ultimately computed, may

be signi�cantly reduced. It is easy to see that x

r

6

r

5

! x

0

) x

r

5

r

6

! x

0

, so by strati-

�cation (proposition 6), we have: x

(r

5

+r

6

)

�

!

x

0

, x

r

�

5

r

�

6

!

x

0

. Since r

�

5

r

�

6

is a simple

language, we can apply proposition 1 and de�ne (after some arithmetic simpli�cations):

�

1

(x

0

) , 9x : �

0

(x) ^ x

r

�

5

r

�

6

!

x

0

, x

0

1

= 1 ^ x

0

2

= 1 ^ x

0

3

= 0 ^ x

0

4

= 0 ^ q � 0 ^

9n

5

; n

6

� 0 : x

0

5

= q � n

5

� n

6

^ x

0

6

= n

5

^ x

0

7

= n

6

^

x

0

5

+ 1 > 0

, x

0

1

= 1 ^ x

0

2

= 1 ^ x

0

3

= 0 ^ x

0

4

= 0 ^

x

0

5

� 0 ^ x

0

6

� 0 ^ x

0

7

� 0 ^ x

0

5

+ x

0

6

+ x

0

7

= q

Thus: lfp

P

0

= fx

0

j 9x : �

1

(x) ^ x

(r

1

+r

2

+r

3

r

5

+r

3

r

6

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

g.

Consider the leftmost sublanguage and choose R = fr

3

r

5

; r

3

r

6

g. Since

B

0

(x) ) x

3

= 0, by proposition 4.B, the expression: 9x : �

1

(x) ^

x

(r

1

r

3

r

5

+r

2

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

, describes the reachability set,

and the matrix associated with the leftmost sublanguage is:

0 0 0 0 0 1 �1 x

2

> 0; x

7

> 0; x

1

> 0; x

3

> �1; x

5

> �1 : r

1

r

3

r

5

0 0 0 0 0 0 0 x

2

> 0; x

7

> 0; x

1

> 0; x

3

> �1; x

5

> �1 : r

1

r

3

r

6

�1 0 0 1 0 �1 0 x

2

> 0; x

6

> 0 : r

2

1 0 0 �1 0 1 0 x

4

> 0; x

5

> �1 : r

4

r

5

1 0 0 �1 0 0 1 x

4

> 0; x

5

> �1 : r

4

r

6

x

1

x

2

x

3

x

4

x

5

x

6

x

7

The clause r

1

r

3

r

6

has all coe�cients equal to zero so it may be safely deleted. We also

see that the second column happened to become zero. Next we choose R = fr

4

r

5

; r

4

r

6

g
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and since �

1

(x) ) x

4

= 0 we get, in the same way as above (after deleting the zero

clause r

2

r

4

r

5

):

0 0 0 0 0 1 �1 x

2

> 0; x

7

> 0; x

1

> 0; x

3

> �1; x

5

> �1 : r

1

r

3

r

5

0 0 0 0 0 �1 1 x

2

> 0; x

6

> 0; x

4

> �1; x

5

> �1 : r

2

r

4

r

6

x

1

x

2

x

3

x

4

x

5

x

6

x

7

where 9x : �

1

(x) ^ x

(r

1

r

3

r

5

+r

2

r

4

r

6

)

�

(r

1

r

3

r

5

+r

2

)

�

(r

1

+r

2

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

de-

scribes the reachability set. Now note that #

r

1

r

3

r

5

(x) ^ �

1

(x) ) �

1

(xr

1

r

3

r

5

) and

#

r

2

r

4

r

6

(x)^�

1

(x) ) �

1

(xr

2

r

4

r

6

) hold. This means that the clauses of r

1

r

3

r

5

and r

2

r

4

r

6

does not produce any points not allready in the set computed so far. Therefore the left-

most sublanguage is simply dropped, which saves us the e�ort of decomposing it. Con-

sider the second sublanguage (from the left). It is easy to see that x

r

2

(r

1

r

3

r

5

)

!

x

0

)

x

(r

1

r

3

r

5

)r

2

!

x

0

, so by strati�cation (r

1

r

3

r

5

+r

2

)

�

is subsumed by (r

1

r

3

r

5

)

�

r

�

2

. Further-

more, r

�

2

(r

1

+r

2

+r

4

r

5

+r

4

r

6

)

�

= (r

1

+r

2

+r

4

r

5

+r

4

r

6

)

�

, that is r

�

2

is \swallowed up" by

the next sub language. Finally, we have already seen that r

1

r

3

r

5

does not yield anything

new, so the �xpoint is expressed by: 9x : �

1

(x)^x

(r

1

+r

2

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

.

Choose R = fr

4

r

5

; r

4

r

6

g. Since �

1

(x) ) x

4

= 0, we get(after deleting the zero clause

r

2

r

4

r

6

):

0 �1 1 0 0 0 �1 x

2

> 0; x

7

> 0; x

1

> 0 : r

1

0 0 0 0 0 �1 1 x

2

> 0; x

6

>; x

4

> �1; x

5

> �1 : r

2

r

4

r

6

x

1

x

2

x

3

x

4

x

5

x

6

x

7

and 9x : �

1

(x) ^ x

(r

1

+r

2

r

4

r

6

)

�

(r

1

+r

2

)

�

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

describes the least �xpoint,

where we note that (r

1

+ r

2

)

�

(r

1

+ r

2

+ r

3

+ r

4

)

�

= (r

1

+ r

2

+ r

3

+ r

4

)

�

. We have:

x

r

1

(r

2

r

4

r

6

)

!

x

0

) x

(r

2

r

4

r

6

)r

1

!

x

0

, so strati�cation applies. Since, r

�

1

(r

1

+ r

2

+ r

3

+

r

4

)

�

= (r

1

+r

2

+r

3

+r

4

)

�

, and, as above, r

2

r

4

r

6

does not yield anything to the �xpoint,

we get the expression: 9x : �

1

(x) ^ x

(r

1

+r

2

+r

3

+r

4

)

�

!

x

0

. Choose R = fr

3

g. Since

�

1

(x) ) x

3

= 0, we get:

0 0 0 0 1 0 �1 x

2

> 0; x

7

> 0; x

1

> 0; x

3

> �1 : r

1

r

3

�1 0 0 1 0 �1 0 x

2

> 0; x

6

> 0 : r

2

1 0 0 �1 1 0 0 x

4

> 0 : r

4

x

1

x

2

x

3

x

4

x

5

x

6

x

7

and 9x : �

1

(x) ^ x

(r

1

r

3

+r

2

+r

4

)

�

(r

1

+r

2

+r

4

)

�

!

x

0

describes the least �xpoint. Choose

R = fr

4

g. Since �

1

(x) ) x

4

= 0, we get:

0 0 0 0 1 0 �1 x

2

> 0; x

7

> 0; x

1

> 0; x

3

> �1 : r

1

r

3

0 0 0 0 1 �1 0 x

2

> 0; x

6

> 0; x

4

> �1 : r

2

r

4

x

1

x

2

x

3

x

4

x

5

x

6

x

7

with 9x : �

1

(x) ^ x

(r

1

r

3

+r

2

r

4

)

�

(r

1

r

3

+r

2

)

�

(r

1

+r

2

+r

4

)

�

!

x

0

. Both #

r

1

r

3

(x) ^ B

0

(x) )

B

0

(xr

1

r

3

) and #

r

2

r

4

(x) ^ B

0

(x) ) B

0

(xr

2

r

4

) hold, so the leading language may be
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dropped. Consider (r

1

r

3

+ r

2

)

�

. By strati�cation, this is subsumed by (r

1

r

3

)

�

r

�

2

. As

already seen, r

1

r

3

does not yield anything new, and r

�

2

(r

1

+ r

2

+ r

4

)

�

= (r

1

+ r

2

+ r

4

)

�

,

so the reachability set is described by: 9x : �

1

(x)^x

(r

1

+r

2

+r

4

)

�

!

x

0

. Choose R = fr

4

g.

Since �

1

(x) ) x

4

= 0, we get:

0 �1 1 0 0 0 �1 x

2

> 0; x

7

> 0; x

1

> 0 : r

1

0 0 0 0 1 �1 0 x

2

> 0; x

6

> 0; x

4

> �1 : r

2

r

4

x

1

x

2

x

3

x

4

x

5

x

6

x

7

and 9x : �

1

(x) ^ x

(r

1

+r

2

r

4

)

�

(r

1

+r

2

)

�

!

x

0

. By strati�cation, (r

1

+ r

2

r

4

)

�

is subsumed

by (r

2

r

4

)

�

r

�

1

, and r

�

1

(r

1

+ r

2

)

�

= (r

1

+ r

2

)

�

, and r

2

r

4

does not yield anything new.

We get: 9x : �

1

(x) ^ x

(r

1

+r

2

)

�

!

x

0

. Here, for the �rst time, we must use the de-

composition monotonic guard (decreasing). Let us, arbitrarily, choose x

1

> 0 as guard

and R = fr

1

g. By proposition 7 we have: x

(r

1

+r

2

)

�

!

x

0

, (x

r

�

2

!

x

0

_ 9x

00

:

x

(r

1

+r

2

)

�

!

x

00

(r

1

+r

2

)r

�

2

!

x

0

^ x

00

1

> 0), where x

00

1

> 0 is \backwards invariant"

for (r

1

+ r

2

)

�

. Under the assumption that x

1

> 0, strati�cation applies (that is

x

1

> 0 ^ x

r

1

r

2

! x

0

) x

r

2

r

1

! x

0

, and since x

0

1

> 0 is \backwards invariant" we get

x

(r

1

+r

2

)

�

!

x

0

^ x

0

1

> 0 ) x

r

�

2

r

�

1

!

x

0

). We �nally get: 9x : �

1

(x) ^ x

r

�

2

+r

�

2

r

+

1

r

�

2

!

x

0

,

which consists of a simple language, so by proposition 1 it can directly be compiled

into an arithmetic formula:

x

1

= 1� x

4

^

((x

2

= 1 ^ x

3

= 0 ^ x

4

� 0) _

(x

2

= 0 ^ x

3

= 1 ^ x

4

= 0)) ^

x

5

� 0 ^ x

6

� 0 ^ x

7

� 0^

x

3

+ x

4

+ x

5

+ x

6

+ x

7

= q
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APPENDIX D

Our method does not only apply to Petri nets, but may also be useful for proving

correctness of algorithms. Let us illustrate this by proving the correctness of the Boyer-

More Majority Vote Algorithm (see [23]). This algorithm determines the element v of a

list L that occurs more than half times the size of the list, if such an element exists. Let

y denote the size of the list L and x the number of occurrences of the possible majority

element v. Put into the form of a logic program, this algorithm leads to:

p

1

([]; v; x; y)  x = 0; y = 0:

p

1

([ujL]; v; x+ 1; y + 1)  u = v; p

1

(L; v; x; y):

p

1

([ujL]; v; x; y+ 1)  u 6= v; 2x > y; p

1

(L; v; x; y):

p

1

([ujL]; u; x+ 1; y+ 1)  u 6= v; 2x = y; p

1

(L; v; x; y):

The correctness of the program above can be stated as:

p

1

(L; v; x; y)^ p

2

(L;w; z) ) (v 6= w ) z � y div 2)

where p

2

(L;w; z) means that the number of occurrences of an element w in the list L

is z. The predicate p

2

(L;w; z) is de�ned by:

p

2

([]; w; z)  z = 0:

p

2

([ujL]; w; z+ 1)  u = w; p

2

(L;w; z):

p

2

([ujL]; w; z)  u 6= w; p

2

(L;w; z):

By unfold/fold transformations, one can replace the conjunction p

1

(L; v; x; y) ^

p

2

(L;w; z) by an equivalent atom p

3

(L; v; w; x; y; z) de�ned by:

p

3

([]; v; w; x; y; z)  x = 0; y = 0; z = 0:

p

3

([ujL]; v; w; x+ 1; y + 1; z + 1)  u = v; u = w; p

3

(L; v; w; x; y; z):

p

3

([ujL]; v; w; x; y+ 1; z + 1)  u 6= v; 2x > y; u = w; p

3

(L; v; w; x; y; z):

p

3

([ujL]; u; w; x+ 1; y+ 1; z + 1)  u 6= v; 2x = y; u = w; p

3

(L; v; w; x; y; z):

p

3

([ujL]; v; w; x+ 1; y + 1; z)  u = v; u 6= w; p

3

(L; v; w; x; y; z):

p

3

([ujL]; v; w; x; y+ 1; z)  u 6= v; 2x > y; u 6= w; p

3

(L; v; w; x; y; z):

p

3

([ujL]; u; w; x+ 1; y+ 1; z)  u 6= v; 2x = y; u 6= w; p

3

(L; v; w; x; y; z):

So the correctness of the program is now expressed as:

p

3

(L; v; w; x; y; z) ) (v 6= w ) z � y div 2)

By dropping the list argument and simplifying the arithmetic constraints, we get:

p

4

(v; w; x; y; z)  x = 0; y = 0; z = 0:

p

4

(v; w; x+ 1; y + 1; z + 1)  v = w; p

4

(v; w; x; y; z):

p

4

(v; w; x; y+ 1; z + 1)  v 6= w; 2x > y; p

4

(v; w; x; y; z):

p

4

(w;w; x+ 1; y + 1; z + 1)  v 6= w; 2x = y; p

4

(v; w; x; y; z):

p

4

(v; w; x+ 1; y + 1; z)  v 6= w; p

4

(v; w; x; y; z):

p

4

(v; w; x; y+ 1; z)  2x > y p

4

(v; w; x; y; z):

p

4

(u; w; x+ 1; y + 1; z)  u 6= v; 2x = y; u 6= w; p

4

(v; w; x; y; z):
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It is easy to realize that the equality:

p

4

(v; w; x; y; z) , 9L : p

3

(L; v; w; x; y; z)

holds. Therefore the proof of correctness is reduced to proving the implication:

p

4

(v; w; x; y; z)^ v 6= w ) z � y div 2

Our goal is to construct a formula �(x; y; z) of Presburger arithmetic such that

�(x; y; z) , 9v; w : p

4

(v; w; x; y; z)^ v 6= w

The proof of correctness then is a matter of routine integer constraint solving. The

constraints of the program de�ning the predicate p

4

is not of the form required for

our decompositional method to be applied. Furthermore, the heads of the clauses do

not only involve incrementation by constants. In order to apply our method, we must

model the behaviour of the program P

4

with a program P

5

that falls within the class

we treat. For 2x > y and 2x = y, we introduce the variable x

A

de�ned in such a way

that x

A

= 2x� y holds in the least �xed point of P

4

[ P

5

. Then x

A

> 0 (resp. x

A

= 0)

i� 2x > y (resp. 2x = y). This yields:

p

0

4

(v; w; x; y; z; ; x

A

)  x = 0; y = 0; z = 0; x

A

= 2x� y:

p

0

4

(v; w; x+ 1; y + 1; z + 1; x

A

+ (2 � 1� 1))  v = w;

p

0

4

(v; w; x; y; z; x

A

):

p

0

4

(v; w; x; y+ 1; z + 1; x

A

+ (2 � 0� 1))  v 6= w; x

A

> 0;

p

0

4

(v; w; x; y; z; x

A

):

p

0

4

(w;w; x+ 1; y + 1; z + 1; x

A

+ (2 � 1� 1))  v 6= w; x

A

= 0;

p

0

4

(v; w; x; y; z; x

A

):

p

0

4

(v; w; x+ 1; y + 1; z; x

A

+ (2 � 1� 1))  v 6= w;

p

0

4

(v; w; x; y; z; x

A

):

p

0

4

(v; w; x; y+ 1; z; x

A

+ (2 � 0� 1))  x

A

> 0;

p

0

4

(v; w; x; y; z; x

A

):

p

0

4

(u; w; x+ 1; y + 1; z; x

A

+ (2 � 1� 1))  u 6= v; x

A

= 0; u 6= w;

p

0

4

(v; w; x; y; z; x

A

):

As for Petri nets with inhibitors, x

A

= 0 is modeled by introducing a variable x

B

de�ned

so that x

B

= 1�x

A

holds in the least model of P

0

4

[P

00

4

. The construction is justi�ed by:

x

A

= 0 , x

A

� 0 ^ x

A

� 0 , x

A

> �1 ^ 1�x

A

> 0 , x

A

> �1 ^ x

B

> 0. For

Petri nets, the constraint x

A

= 0, which models an inhibitor arc, occurs only in places
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where x

A

> �1 is an invariant of the program. Here, x

A

may take negative values, why

the constraint x

A

= 0 must be replaced by x

A

> �1 ^ x

B

> 0. We get the program:

p

00

4

(v; w; x; y; z; x

A

)  x = 0; y = 0; z = 0;

x

A

= 2x� y; x

B

= 1� x

A

:

p

00

4

(v; w; x+ 1; y + 1; z + 1; x

A

+ 1; x

B

� 1)  v = w;

p

00

4

(v; w; x; y; z; x

A

; x

B

):

p

00

4

(v; w; x; y+ 1; z + 1; x

A

� 1; x

B

+ 1)  v 6= w; x

A

> 0;

p

00

4

(v; w; x; y; z; x

A

; x

B

):

p

00

4

(w;w; x+ 1; y + 1; z + 1; x

A

+ 1; x

B

� 1)  v 6= w; x

A

> �1; x

B

> 0;

p

00

4

(v; w; x; y; z; x

A

; x

B

):

p

00

4

(v; w; x+ 1; y + 1; z; x

A

+ 1; x

B

� 1)  v 6= w;

p

00

4

(v; w; x; y; z; x

A

; x

B

):

p

00

4

(v; w; x; y+ 1; z; x

A

� 1; x

B

+ 1)  x

A

> 0;

p

00

4

(v; w; x; y; z; x

A

; x

B

):

p

00

4

(u; w; x+ 1; y + 1; z; x

A

+ 1; x

B

� 1)  u 6= v; x

A

> �1; x

B

> 0;

u 6= w;

p

00

4

(v; w; x; y; z; x

A

; x

B

):

It should be clear that the transformation of P

4

into P

00

4

is purely mechanical and does

not require insight. To model the beaviour of u, v and w is actually also mechanical,

but a bit more complicated. The inportant point is that u, v and w do not occur in any

expression involing functions (incrementations) and there is no relations connecting

x, y or z with u, v and w. We introduce the variables x

C

and x

D

de�ned so that

x

C

> 0 , v 6= w and x

D

> 0 , v = w hold. Then we may drop the variables u, v

and w in the heads of the clauses since the correctness statement can be expressed in
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terms of x

C

and x

D

in stead. We get the program:

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

)  x = 0; y = 0; z = 0;

x

A

= 2x� y;

x

B

= 1� x

A

;

((x

C

= 0; x

D

= 1)_

(x

C

= 1; x

D

= 0)):

p

5

(x+ 1; y + 1; z + 1; x

A

+ 1; x

B

� 1; x

C

; x

D

)  x

D

> 0;

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

):

p

5

(x; y+ 1; z + 1; x

A

� 1; x

B

+ 1; x

C

; x

D

)  x

C

> 0; x

A

> 0;

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

):

p

5

(x+ 1; y + 1; z + 1; x

A

+ 1; x

B

� 1; x

C

� 1; x

D

+ 1)  x

C

> 0; x

A

> �1; x

B

> 0;

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

):

p

5

(x+ 1; y + 1; z; x

A

+ 1; x

B

� 1; x

C

; x

D

)  x

C

> 0;

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

):

p

5

(x; y+ 1; z; x

A

� 1; x

B

+ 1; x

C

; x

D

)  x

A

> 0;

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

):

p

5

(x+ 1; y + 1; z; x

A

+ 1; x

B

� 1; x

C

; x

D

)  x

C

> 0; x

A

> �1; x

B

> 0;

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

):

p

5

(x+ 1; y + 1; z; x

A

+ 1; x

B

� 1; x

C

+ 1; x

D

� 1)  x

D

> 0; x

A

> �1; x

B

> 0;

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

):

The correctness statement is now expressed as:

p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

) ^ x

C

> 0 ) z � y div 2

It remains to construct a a Presburger fomula �(x; y; z) such that

�(x; y; z) , 9x

A

; x

B

; x

C

; x

D

: p

5

(x; y; z; x

A

; x

B

; x

C

; x

D

) ^ x

C

> 0

The incrementation matrix of P

5

has the following appearance:

1 1 1 1 �1 0 0 x

D

> 0 : r

1

0 1 1 �1 1 0 0 x

A

> 0; x

C

> 0 : r

2

1 1 1 1 �1 �1 1 x

A

> �1; x

B

> 0; x

C

> 0 : r

3

1 1 0 1 �1 0 0 x

C

> 0 : r

4

0 1 0 �1 1 0 0 x

A

> 0 : r

5

1 1 0 1 �1 0 0 x

A

> �1; x

B

> 0; x

C

> 0 : r

6

1 1 0 1 �1 1 �1 x

A

> �1; x

B

> 0; x

D

> 0 : r

7

x y z x

A

x

B

x

C

x

D
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here we immediately see that r

6

is redundant since the constraint of r

6

implies the

constraint of r

4

, and the heads of the clauses are identical. We get:

1 1 1 1 �1 0 0 x

D

> 0 : r

1

0 1 1 �1 1 0 0 x

A

> 0; x

C

> 0 : r

2

1 1 1 1 �1 �1 1 x

A

> �1; x

B

> 0; x

C

> 0 : r

3

1 1 0 1 �1 0 0 x

C

> 0 : r

4

0 1 0 �1 1 0 0 x

A

> 0 : r

5

1 1 0 1 �1 1 �1 x

A

> �1; x

B

> 0; x

D

> 0 : r

7

x y z x

A

x

B

x

C

x

D

Our task is now to decompose the language (r

1

+ r

2

+ r

3

+ r

4

+ r

5

+ r

7

)

�

in order to

�nd a linear arithmetic expression for

x

(r

1

+r

2

+r

3

+r

4

+r

5

+r

7

)

�

!

x

0

However, it turns out that no decomposition rule applies to this latter matrix. As was

seen in the example of the reader writers protocol, the least �xpoint was generated

with only a subset of the clauses in the program. This suggests the heuristic to simply

drop some clause of the program and hope that the �xpoint is generated any way. We

choose here to remove r

7

. The rationale is that (from the transformation of the original

program) we know that x

C

and x

D

models esentially a two state automaton representing

v = w and v 6= w. The clauses r

3

and r

7

goes from one to the other, and the base case

contains a disjunction of both. From the way P

5

is encoded we know that (x

C

= 1^x

D

=

0)_ (x

C

= 0^x

D

= 1) is an invariant of the program. Secondly, for wariables x; y; z; x

A

and x

B

, the incrementation by r

4

is identical to r

7

, while r

4

keeps x

C

and x

D

invariant.

Therefore there is some chance that r

7

will turn out to be redundant. Note that, since

(r

1

+ r

2

+ r

3

+ r

4

+ r

5

+ r

7

)

�

= (r

1

+ r

2

+ r

3

+ r

4

+ r

5

)

�

(r

1

+ r

2

+ r

3

+ r

4

+ r

5

+ r

7

)

�

,

we have

x

(r

1

+r

2

+r

3

+r

4

+r

5

+r

7

)

�

!

x

0

, x

(r

1

+r

2

+r

3

+r

4

+r

5

)

�

(r

1

+r

2

+r

3

+r

4

+r

5

+r

7

)

�

!

x

0

By decomposing the leftmost language, if we are lucky, the �xpoint is generated. Other-

wise one may continue by selecting some other subset of clauses. Clearly, such a process

can not be guaranteed to succed. It turns out that for this program, the clauses r

1

,

r

2

, r

3

, r

4

and r

5

are su�cient for generating the �xpoint. Our system automatically

decomposes the language (r

1

+ r

2

+ r

3

+ r

4

+ r

5

)

�

into a at language L such that

x

(r

1

+r
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The in the least �xpoint of P
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APPENDIX E: Program Code

In this appendix we give the code for the program we used for the decomposition of

the readers writers protocol and the Boyer-Moore Majority Vote Algorithm.

%===========================================================================

%

% Sets and lists

%

member([E|_],E) :- !.

member([_|L],E) :-

member(L,E).

append([],L2,L2).

append([A|L1],L2,[A|L3]) :-

append(L1,L2,L3).

conc_seq(s(L1),s(L2),s(L3)) :-

append(L1,L2,L3).

%======================================

% nth(N,List,Element).

%

% Returns the N:th Element of List. The first element is number 1.

nth(1,[Element|_],Element) :- !.

nth(N,[_|List],Element) :- !,

N > 1,

N1 is N - 1,

nth(N1,List,Element).

%======================================

% delete_nth(N,List,List2).

%

% Deletes the N:th Element of List. The first element is number 1.

delete_nth(1,[_|L],L) :- !.

delete_nth(N,[E|List],[E|List2]) :- !,

N > 1,

N1 is N - 1,

delete_nth(N1,List,List2).

%======================================

% subset(L1,L2).
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%

subset([],_).

subset([E|L1],L2) :-

member(L2,E),!,

subset(L1,L2).

%======================================

% delete(List,Element,List_delete).

%

% Removes the first occurence of Element in List

%

delete([],_,[]).

delete([Element|List],Element,List) :- !.

delete([X|List],Element,[X|List_delete]) :- !,

delete(List,Element,List_delete).

%=======================================

% union(L1,L2,L_union)

%

union([],L2,L2).

union([E|L1],L2,L_union) :-

member(L2,E),!,

union(L1,L2,L_union).

union([E|L1],L2,[E|L_union]) :-

union(L1,L2,L_union).

%======================================

% member_delete(List,Element,List_delete).

%

% If Element is a member of List, then success and List_delete is

% List with the first occurrence of Element removed.

%

member_delete([Element|List],Element,List) :- !.

member_delete([X|List],Element,[X|List_delete]) :- !,

member_delete(List,Element,List_delete).

%======================================

% insert(List,Element,New_list).

%

% Inserts Element in List if List does not allready contain Element.

%
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insert([],Element,[Element]).

insert([Element|List],Element,[Element|List]) :- !.

insert([X|List],Element,[X|New_list]) :-

insert(List,Element,New_list).

%=======================================

% insert_in_all(List_of_lists,Element,List_of_lists_new)

%

% List_of_lists_new is the result of inserting Element in every

% list in List_of_lists

%

insert_in_all([],_,[]).

insert_in_all([L|L_of_ls],E,[L_new|L_of_ls_new]) :-

insert(L,E,L_new),

insert_in_all(L_of_ls,E,L_of_ls_new).

%=======================================

% diff_list(L1,L2,L_diff).

%

% L_diff is all elements in L1 not occurring in L2

%

diff_list([],_,[]).

diff_list([E|L1],L2,L_diff) :-

member(L2,E), !,

diff_list(L1,L2,L_diff).

diff_list([E|L1],L2,[E|L_diff]) :-

diff_list(L1,L2,L_diff).

%=======================================

% cons_to_all(List_of_list,Element,List_of_lists_e).

%

% Puts Element at the beginning of every list in List_of_lists

%

cons_to_all([],_,[]).

cons_to_all([L|L_of_ls],E,[[E|L]|L_of_ls_e]) :-

cons_to_all(L_of_ls,E,L_of_ls_e).

%=======================================

% power_set(L,Pow)

%

% Returns the power set of L, except the empty list.
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%

power_set(L,Pow) :-

length(L,N),

(N =:= 0 -> Pow = [] ;

power_set(1,N,L,Pow)).

power_set(N,N,L,[L]) :- !.

power_set(M,N,L,Pow) :-

M1 is M + 1,

power_set(M1,N,L,Pow1),

all_of_lnth(M,L,Pow2),

append(Pow2,Pow1,Pow).

%=======================================

% all_of_lnth(N,List,Sub_n).

%

% Succeeds if N is less than or equal to the length of List.

% Sub_n is all sublists of length N.

%

all_of_lnth(0,_,[[]]).

all_of_lnth(N,L,[L]) :-

length(L,N), !.

all_of_lnth(N,[E|L],Sub_n) :-

N >= 0,

N1 is N - 1,

all_of_lnth(N1,L,Sub_n1),

all_of_lnth(N,L,Sub_n2),

cons_to_all(Sub_n1,E,Sub_n1_e),

append(Sub_n1_e,Sub_n2,Sub_n).

nth_subset(L1,0,[],L1) :- !.

nth_subset([E|L1],N,[E|L2],CL2) :-

(N mod 2) =:= 1,!,

N1 is N // 2,

nth_subset(L1,N1,L2,CL2).

nth_subset([E|L1],N,L2,[E|CL2]) :-

N1 is N // 2,

nth_subset(L1,N1,L2,CL2).

max_no_subsets(List,N) :-

length(List,L),

N is exp(2,L) - 1.
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max_triple(L1,L2,L3,[Max1,Max2,Max3]) :-

max_no_subsets(L1,Max1),!,

max_no_subsets(L2,Max2),!,

max_no_subsets(L3,Max3),!.

triples_of_subsets(L1,L2,L3,[N1,N2,N3],Sub1,CSub1,Sub2,Sub3) :-

nth_subset(L1,N1,Sub1,CSub1),!,

nth_subset(L2,N2,Sub2,_),!,

nth_subset(L3,N3,Sub3,_),!.

num_triples_enum([Max1,Max2,Max3],[N1,N2,N3],[N1_next,N2_next,N3_next]) :-

(N3 < Max3 -> (N1 =< Max1, N2 =< Max2,

N1_next is N1, N2_next is N2, N3_next is N3 +1) ;

(N2 < Max2 -> (N1 =< Max1, N3 =< Max3,

N1_next is N1, N2_next is N2 + 1, N3_next is 0) ;

(N1 < Max1, N2 =< Max2, N3 =< Max3,

N1_next is N1 + 1, N2_next is 0, N3_next is 0))).

next_subset_triple(L1,L2,L3,Max,Triple,Next_triple,Sub1,Csub1,Sub2,Sub3) :-

num_triples_enum(Max,Triple,Next_triple),!,

triples_of_subsets(L1,L2,L3,Next_triple,Sub1,Csub1,Sub2,Sub3),!.

%===========================================================================

%

% Arithmetic

%

plus(X,Y,Z) :-

number(X),

number(Y),

Z is X + Y.

plus('infty',Y,'infty') :-

Y \== '-infty'.

plus(X,'infty','infty') :-

X \== '-infty'.

plus('-infty',Y,'-infty') :-

Y \== 'infty'.

plus(X,'-infty','-infty') :-

X \== 'infty'.

minus(X,Y,Z) :-

number(X),

number(Y),
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Z is X - Y.

minus('infty',Y,'infty') :-

Y \== 'infty'.

minus(X,'infty','-infty') :-

X \== 'infty'.

minus('-infty',Y,'-infty') :-

Y \== '-infty'.

minus(X,'-infty','infty') :-

X \== '-infty'.

geq('infty',_).

geq(_,'-infty').

geq(X,Y) :-

number(X),

number(Y),

X >= Y.

maximum(X,Y,Max) :-

(geq(X,Y) -> Max = X ; Max = Y).

minimum(X,Y,Min) :-

(geq(X,Y) -> Min = Y ; Min = X).

vec_add([],[],[]).

vec_add([A|V1],[B|V2],[C|V3]) :-

plus(A,B,C),

vec_add(V1,V2,V3).

vec_subtr([],[],[]).

vec_subtr([A|V1],[B|V2],[C|V3]) :-

minus(A,B,C),

vec_subtr(V1,V2,V3).

vec_eq([],[]).

vec_eq([V|V1],[V|V2]) :-

vec_eq(V1,V2).

vec_geq([],[]).

vec_geq([A|V1],[B|V2]) :-

geq(A,B),!,

vec_geq(V1,V2).

minimal([],_).
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minimal([Vec1|Vec_set],Vec) :-

(vec_geq(Vec,Vec1) -> vec_eq(Vec,Vec1) ; true),!,

minimal(Vec_set,Vec).

maximal([],_).

maximal([Vec1|Vec_set],Vec) :-

(vec_geq(Vec1,Vec) -> vec_eq(Vec,Vec1) ; true),!,

maximal(Vec_set,Vec).

get_first_minimal([Vec],Vec) :- !.

get_first_minimal([Vec|Vecs],Vec) :-

minimal(Vecs,Vec),!.

get_first_minimal([_|Vecs],Vec) :-

get_first_minimal(Vecs,Vec).

get_first_maximal([Vec],Vec) :- !.

get_first_maximal([Vec|Vecs],Vec) :-

maximal(Vecs,Vec),!.

get_first_maximal([_|Vecs],Vec) :-

get_first_maximal(Vecs,Vec).

delete_all_greater_than([],_,[]).

delete_all_greater_than([Vec|Vecs],Vec1,Vecs2) :-

vec_geq(Vec1,Vec),!,

delete_all_greater_than(Vecs,Vec1,Vecs2).

delete_all_greater_than([Vec|Vecs],Vec1,[Vec|Vecs2]) :-

delete_all_greater_than(Vecs,Vec1,Vecs2).

delete_all_less_than([],_,[]).

delete_all_less_than([Vec|Vecs],Vec1,Vecs2) :-

vec_geq(Vec,Vec1),!,

delete_all_less_than(Vecs,Vec1,Vecs2).

delete_all_less_than([Vec|Vecs],Vec1,[Vec|Vecs2]) :-

delete_all_less_than(Vecs,Vec1,Vecs2).

lub([],[],[]).

lub([A|V1],[B|V2],[C|V3]) :-

maximum(A,B,C),

lub(V1,V2,V3).

big_lub([V],V) :- !.

big_lub([V|Vecs],Vlub) :-

big_lub(Vecs,Vlub1),

lub(V,Vlub1,Vlub),!.
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all_the_same([],_).

all_the_same([C|Vec],C) :-

all_the_same(Vec,C).

make_all_the_same([],_,[]).

make_all_the_same([_|Vec1],C,[C|Vec2]) :-

make_all_the_same(Vec1,C,Vec2).

null_vec(Vec) :-

all_the_same(Vec,0).

infty_vec(Vec) :-

all_the_same(Vec,'-infty').

%=======================================

% all_possible_sums(N,Coeff,0,Sum_list)

%

all_possible_sums(1,C,_,[[C]]).

all_possible_sums(N,C,C_av,Sum_list) :-

C > 0,

N > 1,!,

N1 is N - 1,

all_possible_sums(N1,C_av,0,Sums1),

cons_to_all(Sums1,C,Sums2),

C1 is C - 1,

C_av1 is C_av + 1,

all_possible_sums(N,C1,C_av1,Sums3),

append(Sums2,Sums3,Sum_list).

all_possible_sums(N,0,C_av,Sum_list) :-

N > 1,!,

N1 is N - 1,

all_possible_sums(N1,C_av,0,Sums1),

cons_to_all(Sums1,0,Sum_list).

%==================================================================

imply(A,B) :-

vec_geq(A,B).

%==================================================================

%

% Primitives

%
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create_guard(N,Nmax,_,[]) :-

N > Nmax, !.

create_guard(N,Nmax,Guard_vars,[0|Guard_vec]) :-

variable_argument(G_var,N),

member(Guard_vars,G_var),

N1 is N + 1,

create_guard(N1,Nmax,Guard_vars,Guard_vec).

create_guard(N,Nmax,Guard_vars,['-infty'|Guard_vec]) :-

N1 is N + 1,

create_guard(N1,Nmax,Guard_vars,Guard_vec).

create_rule(Number_of_arguments,Name,Coefficients,Guard_variables,Rule) :-

create_guard(1,Number_of_arguments,Guard_variables,Guard),

Rule = [s([Name]),Coefficients,Guard].

create_rules([],[],_).

create_rules([[Rn,Coeffs|Guards]|Rules_to_be],[Rule|Rules],N_of_args) :-

length(Coeffs,N_of_args),

create_rule(N_of_args,Rn,Coeffs,Guards,Rule),!,

create_rules(Rules_to_be,Rules,N_of_args).

get_rulename([R_name|_],R_name).

get_coefficients([_,Coeffs|_],Coeffs).

get_guard([_,_,Guard],Guard).

conc_paths([S1,Coeff1,Guard1],[S2,Coeff2,Guard2],

[S,Coeff,Guard]) :-

conc_seq(S1,S2,S),

vec_add(Coeff1,Coeff2,Coeff),

vec_subtr(Guard2,Coeff1,C),

lub(Guard1,C,Guard).

delete_guards_from_rule([Rn,Coeffs,Guard_vec],Guard_pos,[Rn,Coeffs,Guard2]) :-

mask_guard(Guard_vec,Guard_pos,Guard2).

mask_guard(Guard,Guard_pos,Guard2):-

mask_guard(Guard,Guard_pos,Guard2,1).

mask_guard([],_,[],_).

mask_guard([_|Guard],Guard_pos,['-infty'|Guard2],N) :-

member(Guard_pos,N),!,

N1 is N + 1,

mask_guard(Guard,Guard_pos,Guard2,N1).
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mask_guard([G|Guard],Guard_pos,[G|Guard2],N) :-

N1 is N + 1,

mask_guard(Guard,Guard_pos,Guard2,N1).

get_guards_of_rules([],[]).

get_guards_of_rules([[_,_,Guard]|Rules],Guards) :-

get_guards_of_rules(Rules,Guards1),

insert(Guards1,Guard,Guards).

first_non_infty([],[],[]).

first_non_infty(['-infty'|Guard],['-infty'|Atomic_guard],['-infty'|Guard2]) :-

!,

first_non_infty(Guard,Atomic_guard,Guard2).

first_non_infty([G|Guard],[G|Atomic_guard],['-infty'|Guard]) :-

make_all_the_same(Guard,'-infty',Atomic_guard).

split_into_atomics(Guard,[]) :-

infty_vec(Guard),!.

split_into_atomics(Guard,[Atomic_guard|Atomic_guards]) :-

first_non_infty(Guard,Atomic_guard,Guard1),

split_into_atomics(Guard1,Atomic_guards).

split_all_into_atomics([],[]).

split_all_into_atomics([Guard|Guards],Atomic_guards) :-

split_all_into_atomics(Guards,Atomic_guards1),

split_into_atomics(Guard,Atomic_guards2),

union(Atomic_guards1,Atomic_guards2,Atomic_guards).

subsumed_by([_,Coeff1,Guard1],[_,Coeff2,Guard2]) :-

vec_eq(Coeff1,Coeff2),

vec_geq(Guard2,Guard1).

perm_both([_,Coeff1,Guard1],[_,Coeff2,Guard2]) :-

vec_subtr(Guard2,Coeff1,Hyp1),!,

lub(Hyp1,Guard1,Hyp),!,

vec_geq(Hyp,Guard2),!,

vec_subtr(Guard1,Coeff2,Concl),!,

vec_geq(Hyp,Concl).

i_perm_both(I,[_,Coeff1,Guard1],[_,Coeff2,Guard2]) :-

vec_subtr(Guard2,Coeff1,Hyp1),!,

lub(Hyp1,Guard1,Hyp2),!,

lub(Hyp2,I,Hyp),!,

vec_geq(Hyp,Guard2),!,

vec_subtr(Guard1,Coeff2,Concl),!,
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vec_geq(Hyp,Concl).

i_pos_inv(I,[_,Coeff|_]) :-

vec_subtr(I,Coeff,Concl),!,

vec_geq(I,Concl),!.

i_neg_inv(I,[_,Coeff|_]) :-

vec_subtr(I,Coeff,Hyp),!,

vec_geq(Hyp,I),!.

guard_assume_i([],[],[]).

guard_assume_i([G|Guard],[C|I],[G1|Guard1]) :-

(geq(C,G) -> G1 = '-infty' ; G1 = G),!,

guard_assume_i(Guard,I,Guard1).

reduce_rule_by_i([Rn,Coeffs,Guard],I,[Rn,Coeffs,Guard1]) :-

guard_assume_i(Guard,I,Guard1).

%==================================================================

delete_guard_from_rule_n(1,[Rule|Rules],G,[Rule2|Rules]) :- !,

variable_argument(G,G_pos),

delete_guards_from_rule(Rule,[G_pos],Rule2).

delete_guard_from_rule_n(N,[Rule|Rules],G,[Rule|Rules2]) :-

N > 1,

N1 is N -1,

delete_guard_from_rule_n(N1,Rules,G,Rules2).

permboth_all([],_).

permboth_all([Rule1|Rules1],Rules2) :-

permboth_all_1(Rules2,Rule1),!,

permboth_all(Rules1,Rules2).

permboth_all_1([],_).

permboth_all_1([Rule2|Rules2],Rule1) :-

perm_both(Rule1,Rule2),!,

permboth_all_1(Rules2,Rule1).

i_permboth_all([],_,_) :- !.

i_permboth_all([Rule1|Rules1],Rules2,I) :-

i_permboth_all_1(Rules2,Rule1,I),!,

i_permboth_all(Rules1,Rules2,I),!.

i_permboth_all_1([],_,_) :- !.

i_permboth_all_1([Rule2|Rules2],Rule1,I) :-
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i_perm_both(I,Rule1,Rule2),!,

i_permboth_all_1(Rules2,Rule1,I),!.

monotonic_i([Rule],I,Sign) :- !,

((Sign = pos, i_pos_inv(I,Rule)) ;

(Sign = neg, i_neg_inv(I,Rule))).

monotonic_i([Rule|Rules],I,Sign) :-

((Sign = pos, i_pos_inv(I,Rule)) ;

(Sign = neg, i_neg_inv(I,Rule))),

monotonic_i(Rules,I,Sign).

rule_makes_all_i_inv(_,[],_).

rule_makes_all_i_inv(Rule,[I|Is],Sign) :-

((Sign = pos, i_pos_inv(I,Rule)) ;

(Sign = neg, i_neg_inv(I,Rule))),

rule_makes_all_i_inv(Rule,Is,Sign).

all_rules_i_pos_inv([],_).

all_rules_i_pos_inv([Rule|Rules],I) :-

i_pos_inv(I,Rule),!,

all_rules_i_pos_inv(Rules,I).

all_rules_i_neg_inv([],_).

all_rules_i_neg_inv([Rule|Rules],I) :-

i_neg_inv(I,Rule),!,

all_rules_i_neg_inv(Rules,I).

i_in_rule(I,Rule) :-

get_guard(Rule,Guard),!,

imply(Guard,I).

get_rules_of_i([],_,[]).

get_rules_of_i([Rule|Rules],I,[Rule|Rules1]) :-

i_in_rule(I,Rule),!,

get_rules_of_i(Rules,I,Rules1).

get_rules_of_i([_|Rules],I,Rules1) :-

get_rules_of_i(Rules,I,Rules1).

remove_rules_of_i([],_,[]).

remove_rules_of_i([Rule|Rules],I,Rules1) :-

i_in_rule(I,Rule),!,

remove_rules_of_i(Rules,I,Rules1).

remove_rules_of_i([Rule|Rules],I,[Rule|Rules1]) :-

remove_rules_of_i(Rules,I,Rules1).
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reduce_rules_by_i([],_,[]).

reduce_rules_by_i([Rule|Rules],I,[Rule1|Rules1]) :-

reduce_rule_by_i(Rule,I,Rule1),

reduce_rules_by_i(Rules,I,Rules1).

realy_all_coeff_null(Rule) :-

get_coefficients(Rule,Coeff_vec),

null_vec(Coeff_vec).

remove_null_rules([],[],[]).

remove_null_rules([Rule|Rules],Rules_no_null,[Rule|Rules_null]) :-

realy_all_coeff_null(Rule),!,

remove_null_rules(Rules,Rules_no_null,Rules_null).

remove_null_rules([Rule|Rules],[Rule|Rules_no_null],Rules_null) :-

remove_null_rules(Rules,Rules_no_null,Rules_null).

%==================================================================

%=======================================

stratifyable(Rules,Rules1,Rules2) :-

length(Rules,Nrules),!,

Nrules >= 2,!,

Nrules =< 15,!,

Max is Nrules // 2,!,

stratifyable(1,Max,Rules,Rules1,Rules2).

stratifyable(N,Max,Rules,Rules1,Rules2) :-

N =< Max,

all_of_lnth(N,Rules,List_of_rules),

find_perm(Rules,List_of_rules,Rules1,Rules2),!.

stratifyable(N,Max,Rules,Rules1,Rules2) :-

N < Max,

N2 is N + 1,

stratifyable(N2,Max,Rules,Rules1,Rules2).

find_perm(Rules,[Rules_test1|_],Rules1,Rules2):-

(diff_list(Rules,Rules_test1,Rules_test2) ->

(permboth_all(Rules_test2,Rules_test1) ->

(Rules1 = Rules_test1,

Rules2 = Rules_test2) ;

(permboth_all(Rules_test1,Rules_test2),

Rules1 = Rules_test2,

Rules2 = Rules_test1))).

find_perm(Rules,[_|List_of_rules],Rules1,Rules2):-
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find_perm(Rules,List_of_rules,Rules1,Rules2).

%=======================================

monotonic_guard(Rules,I,Rules1,Rules2,Sign) :-

get_guards_of_rules(Rules,Guards),!,

split_all_into_atomics(Guards,Atomic_guards),!,

find_monotonic_guard(Rules,Atomic_guards,I,Sign),!,

remove_rules_of_i(Rules,I,Rules31),

reduce_rules_by_i(Rules,I,Rules32),

(Sign = pos -> (Rules1 = Rules31, Rules2 = Rules32) ;

(Rules1 = Rules32, Rules2 = Rules31)).

find_monotonic_guard(Rules,Atomic_guards,I,Sign) :-

get_first_minimal(Atomic_guards,I1),!,

delete_all_greater_than(Atomic_guards,I1,Atomic_guards1),!,

(monotonic_i(Rules,I1,Sign) ->

I = I1 ;

find_monotonic_guard(Rules,Atomic_guards1,I,Sign)).

%=======================================

monotonic_rule(Rules,Rules1,Rule) :-

get_guards_of_rules(Rules,Guards),!,

find_monotonic_rule(Rules,Guards,Rule),!,

delete(Rules,Rule,Rules1).

find_monotonic_rule([Rule|_],Guards,Rule) :-

rule_makes_all_i_inv(Rule,Guards,_),!.

find_monotonic_rule([_|Rules],Guards,Rule) :-

find_monotonic_rule(Rules,Guards,Rule).

%=======================================

post_fusion_gen(Rules,Rules1,Rules2,Rules3,Rules4,I1,I2) :-

get_guards_of_rules(Rules,Guards),!,

split_all_into_atomics(Guards,Ato_guards),!,

find_post_fusion_gen(Rules,Ato_guards,

Rules1,Rules2,Rules3,Rules4,I1,I2).

find_post_fusion_gen(Rules,[Ato_guard|Ato_guards],

Rules1,Rules2,Rules3,Rules4,I1,I2) :-

get_rules_of_i(Rules,Ato_guard,Rules_i),!,

diff_list(Rules,Rules_i,Rules_noti),!,

(try_postfusion(Rules_noti,Rules_i,
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Rules1,Rules2,Rules3,Rules4,I1,I2) -> true ;

find_post_fusion_gen(Rules,Ato_guards,

Rules1,Rules2,Rules3,Rules4,I1,I2)).

try_postfusion(Rules_noti,Rules_i,

Rules1,Rules2,Rules3,Rules4,I1,I2) :-

get_guards_of_rules(Rules_i,Guards_i),!,

split_all_into_atomics(Guards_i,Ato_i),!,

max_triple(Rules_i,Ato_i,Ato_i,Max),!,

try_all_possibilities([0,1,0],Max,Ato_i,Rules_i,Rules_noti,

Rules1,Rules2,Rules3,Rules4,I1,I2),!.

try_all_possibilities(Triple,Max,Ato_i,Rules_i,

Rules_noti,Rules1,Rules2,Rules3,Rules4,I1,I2) :-

next_subset_triple(Rules_i,Ato_i,Ato_i,Max,Triple,Next_triple,

Rules33,Rules22,Ato_i1,Ato_i2),!,

((big_lub(Ato_i1,I11),

big_lub(Ato_i2,I22),

post_fusable(Rules22,Rules33,Rules_i,Rules_noti,I11,I22,

Rules1,Rules2,Rules3,Rules4,I1,I2)) -> true ;

try_all_possibilities(Next_triple,Max,Ato_i,Rules_i,Rules_noti,

Rules1,Rules2,Rules3,Rules4,I1,I2)),!.

post_fusable(Rules22,Rules33,Rules_i,Rules_noti,I11,I22,

Rules1,Rules2,Rules3,Rules4,I1,I2) :-

Rules22 \== [],!,

imply(I22,I11),!, % condition 8

i_permboth_all(Rules_noti,Rules22,I11),!, % condition 1

i_permboth_all(Rules33,Rules22,I11),!, % condition 1

i_permboth_all(Rules_noti,Rules33,I22),!, % condition 5

guards_imply_i(Rules22,I11),!, % condition 4

guards_imply_i(Rules33,I22),!, % condition 7

conditions_2_3(Rules_noti,Rules_i,I11,Rules_ki),!, % conditions 2 and 3

condition_6(Rules_ki,Rules33,I22),!, % condition 6

I1 = I11,

I2 = I22,

append(Rules_noti,Rules33,Rules1),

Rules2 = Rules22,

Rules3 = Rules33,

make_motifs(Rules_ki,Rules_i,I11,Rules4).

guards_imply_i([],_).

guards_imply_i([Rule|Rules],I) :-

get_guard(Rule,Guard),!,

imply(Guard,I),!,
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guards_imply_i(Rules,I).

condition_6([],_,_).

condition_6([[Rule_noti,Ki]|Rules_ki],Rules_i,I2) :-

condition_6_r(Rules_i,Rule_noti,Ki,I2),!,

condition_6(Rules_ki,Rules_i,I2).

condition_6_r([],_,_,_).

condition_6_r([Rule_i|Rules_i],Rule_noti,Ki,I2) :-

get_coefficients(Rule_i,Coeffs_i),!,

vec_mult(Coeffs_i,Ki,Coeffs_ki),!,

get_coefficients(Rule_noti,Coeffs_noti),!,

vec_add(Coeffs_noti,Coeffs_ki,Cmotif),!,

vec_subtr(I2,Cmotif,I2c),!,

vec_geq(I2c,I2),!,

condition_6_r(Rules_i,Rule_noti,Ki,I2).

conditions_2_3([],_,_,[]).

conditions_2_3([Rule_noti|Rules_noti],Rules_i,I1,

[[Rule_noti,Ki]|Rules_ki]) :-

conditions_2_3_r(Rule_noti,Rules_i,I1,Ki),!,

conditions_2_3(Rules_noti,Rules_i,I1,Rules_ki).

conditions_2_3_r(Rule_noti,Rules_i,I1,Ki) :-

i_pos_inv(I1,Rule_noti),!,

(i_neg_inv(I1,Rule_noti) -> Ki = 0 ;

condition_3_r(Rules_i,Rule_noti,I1,Ki)),!.

condition_3_r([],_,_,_).

condition_3_r([Rule_i|Rules_i],Rule_noti,I1,Ki) :-

multiple_i_equiv(Rule_i,Rule_noti,I1,Ki),!,

condition_3_r(Rules_i,Rule_noti,I1,Ki).

multiple_i_equiv([_,Coeff_i|_],[_,Coeff_noti|_],I1,Ki) :-

vec_subtr(I1,Coeff_noti,C_diff),!,

i_is_multiple(C_diff,Coeff_i,Ki),!.

i_is_multiple([],[],_).

i_is_multiple(['-infty'|I],[_|Vec],M) :- !,

i_is_multiple(I,Vec,M),!.

i_is_multiple([C|I],[V|Vec],M) :- !,

(V =\= 0 -> M is C // V ; C =:= 0),!,

i_is_multiple(I,Vec,M),!.

vec_mult([],_,[]).
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vec_mult(['-infty'|Vec1],C,['-infty'|Vec2]) :- !,

vec_mult(Vec1,C,Vec2),!.

vec_mult([V1|Vec1],C,[V2|Vec2]) :- !,

V2 is C * V1,!,

vec_mult(Vec1,C,Vec2),!.

%=======================================

pre_fusion_simp(Rules,Rules1,Rules2,Rules3,Rules4,I) :-

find_prefusion_simp(Rules,1,Rules1,Rules2,Rules3,Rules4,I).

find_prefusion_simp(Rules,N,Rules1,Rules2,Rules3,Rules4,I) :-

nth_subset(Rules,N,Rules_noti,Rules_i_0),!,

get_guards_of_rules(Rules_i_0,Guards_i),!,

split_all_into_atomics(Guards_i,Ato_i),!,

(try_all_possibl_prefus_simp(Ato_i,Rules_noti,Rules_i_0,1,

Rules1,Rules2,Rules3,Rules4,I) -> true ;

N1 is N +1,!,

find_prefusion_simp(Rules,N1,Rules1,Rules2,Rules3,Rules4,I)).

try_all_possibl_prefus_simp(Ato_i,Rules_noti,Rules_i_0,N,

Rules1,Rules2,Rules3,Rules4,I) :-

nth_subset(Ato_i,N,Ato_i1,_),!,

big_lub(Ato_i1,I1),!, % ------ What if Ato_i is empty ?????

get_rules_of_i(Rules_i_0,I1,Rules_i),!, % Condition 6

diff_list(Rules_i_0,Rules_i,Rules_0),!,

(conditions_prefus_simp(I1,Rules_noti,Rules_i_0,Rules_i,Rules_0,

Rules1,Rules2,Rules3,Rules4,I) -> true ;

N1 is N + 1,!,

try_all_possibl_prefus_simp(Ato_i,Rules_noti,Rules_i_0,N1,

Rules1,Rules2,Rules3,Rules4,I)).

conditions_prefus_simp(I1,Rules_noti,Rules_i_0,Rules_i,Rules_0,

Rules1,Rules2,Rules3,Rules4,I) :-

permboth_all(Rules_noti,Rules_0),!, % Condition 1

all_rules_i_pos_inv(Rules_0,I1),!, %

all_rules_i_neg_inv(Rules_0,I1),!, % Condition 2

i_permboth_all(Rules_noti,Rules_i,I1),!, % Condition 3

all_rules_i_pos_inv(Rules_noti,I1),!, % Condition 4

fuse_all(Rules_i,Rules_noti,Rules_m),!,

all_rules_i_pos_inv(Rules_m,I1),!, %

all_rules_i_neg_inv(Rules_m,I1),!, % Condition 5

reduce_rules_by_i(Rules_m,I1,Rules_mr),!,

I = I1,

59



Rules1 = Rules_0,

Rules2 = Rules_noti,

Rules3 = Rules_i_0,

append(Rules_0,Rules_mr,Rules4),!.

%=======================================

new_fusion1(Rules,Rules1,Rules2,Rules3,I1,I2) :-

get_guards_of_rules(Rules,Guards),!,

split_all_into_atomics(Guards,Ato_guards),!,

find_newfusion1(Rules,Ato_guards,Rules1,Rules2,Rules3,I1,I2).

find_newfusion1(Rules,[Ato_guard|Ato_guards],

Rules1,Rules2,Rules3,I1,I2) :-

get_rules_of_i(Rules,Ato_guard,Rules_i),!, % condition 6

diff_list(Rules,Rules_i,Rules_noti),!,

((find_nullrules_check_perm(Ato_guard,Rules_noti,Rules_i,

Rules0_noti,Rules_not0i,Ato_i),

try_all_possibl_newfus1(Ato_guard,Ato_i,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,1,

Rules1,Rules2,Rules3,I1,I2)) -> true ;

find_newfusion1(Rules,Ato_guards,Rules1,Rules2,Rules3,I1,I2)).

try_all_possibl_newfus1(I11,Ato_i,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,N,

Rules1,Rules2,Rules3,I1,I2) :-

nth_subset(Ato_i,N,Ato_i2,_),!,

(conditions_newfuse1(I11,Ato_i2,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,

Rules1,Rules2,Rules3,I1,I2) -> true ;

( N1 is N + 1,!,

try_all_possibl_newfus1(I11,Ato_i,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,N1,

Rules1,Rules2,Rules3,I1,I2))),!.

conditions_newfuse1(I11,Ato_i2,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,

Rules1,Rules2,Rules3,I1,I2) :-

big_lub(Ato_i2,I22),!,

all_rules_i_pos_inv(Rules_noti,I22),!, % condition 3

lub(I11,I22,I12),!,

i_permboth_all(Rules_not0i,Rules_i,I12),!, % condition 2

get_rules_of_i(Rules_i,I22,Rules_i2),!, % condition 7

diff_list(Rules_i,Rules_i2,Rules_i1),!,

all_rules_i_pos_inv(Rules_i1,I22),!, % condition 4
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fuse_all(Rules_i,Rules_not0i,Rules_m),!,

all_rules_i_pos_inv(Rules_m,I22),!, %

all_rules_i_pos_inv(Rules_m,I11),!, %

all_rules_i_neg_inv(Rules_m,I11),!, % condition 5

I1 = I11,

I2 = I22,

append(Rules_noti,Rules_i1,Rules1),

append(Rules_m,Rules0_noti,Rules22),

append(Rules22,Rules_i,Rules2),

Rules3 = Rules_not0i,!.

find_nullrules_check_perm(I,Rules_noti,Rules_i,Rules0_noti,Rules_not0i,

Ato_i) :-

all_rules_i_pos_inv(Rules_noti,I),!, % condition 3

get_i_equiv_rules(Rules_noti,I,Rules0_noti, Rules_not0i),!,

permboth_all(Rules_not0i,Rules0_noti),!, % condition 1

get_guards_of_rules(Rules_i,Guards_i),!,

split_all_into_atomics(Guards_i,Ato_i),!.

get_i_equiv_rules([],_,[],[]).

get_i_equiv_rules([Rule|Rules],I,Rules0, Rules_not0) :-

(i_pos_inv(I,Rule) ->

(i_neg_inv(I,Rule) -> (Rules0 = [Rule|Rules0_1],

Rules_not0 = Rules_not0_1) ;

(Rules0 = Rules0_1,

Rules_not0 = [Rule|Rules_not0_1])) ;

(Rules0 = Rules0_1,

Rules_not0 = [Rule|Rules_not0_1])),!,

get_i_equiv_rules(Rules,I,Rules0_1, Rules_not0_1),!.

%=======================================

pre_fusion_gen(Rules,Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2) :-

get_guards_of_rules(Rules,Guards),!,

split_all_into_atomics(Guards,Ato_guards),!,

find_prefusiongen(Rules,Ato_guards,

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2).

find_prefusiongen(Rules,[Ato_guard|Ato_guards],

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2) :-

get_rules_of_i(Rules,Ato_guard,Rules_i),!, % condition 8

diff_list(Rules,Rules_i,Rules_noti),!,

((find_nullrules_check_perm(Ato_guard,Rules_noti,Rules_i,

Rules0_noti,Rules_not0i,Ato_i),

try_all_possibl_prefusegen(Ato_guard,Ato_i,Rules0_noti,Rules_not0i,
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Rules_noti,Rules_i,1,Rules1,Rules2,Rules3,

Rules4,Rules5,I1,I2)) -> true ;

find_prefusiongen(Rules,Ato_guards,

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2)).

try_all_possibl_prefusegen(I11,Ato_i,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,N,

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2) :-

nth_subset(Ato_i,N,Ato_i2,_),!,

(conditions_prefusegen(I11,Ato_i2,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2) -> true ;

( N1 is N + 1,!,

try_all_possibl_prefusegen(I11,Ato_i,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,N1,

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2))),!.

conditions_prefusegen(I11,Ato_i2,Rules0_noti,Rules_not0i,

Rules_noti,Rules_i,

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2) :-

big_lub(Ato_i2,I22),!,

all_rules_i_pos_inv(Rules_noti,I22),!, % condition 11

all_rules_i_neg_inv(Rules0_noti,I22),!, % condition 9 (part of)

get_rules_of_i(Rules_i,I22,Rules12_i),!, % condition 13

diff_list(Rules_i,Rules12_i,Rules1_i),!,

all_rules_i_pos_inv(Rules1_i,I22),!, %

all_rules_i_neg_inv(Rules1_i,I22),!, % condition 9 (part of)

get_i_equiv_rules(Rules_not0i,I22,

Rules1_noti,Rules12_noti),!, % condition 9

permboth_all(Rules1_noti,Rules12_noti),!, % condition 2

i_permboth_all(Rules1_noti,Rules_i,I11),!, % condition 4

i_permboth_all(Rules12_noti,Rules1_i,I11),!, % condition 5

lub(I11,I22,I12),!,

i_permboth_all(Rules12_noti,Rules12_i,I12),!, % condition 10

fuse_all(Rules_i,Rules_not0i,Rules_m),!,

all_rules_i_pos_inv(Rules_m,I11),!, %

all_rules_i_neg_inv(Rules_m,I11),!, % condition 7

fuse_all(Rules12_i,Rules12_noti,Rules12_m),!,

all_rules_i_pos_inv(Rules12_m,I22),!, %

all_rules_i_neg_inv(Rules12_m,I22),!, % condition 12

reduce_rules_by_i(Rules_m,I11,Rules_mr),!,

I1 = I11,

I2 = I22,

append(Rules_noti,Rules1_i,Rules1),

append(Rules0_noti,Rules_i,Rules2),

62



append(Rules0_noti,Rules12_m,Rules_temp),

append(Rules_temp,Rules1_i,Rules3),

append(Rules0_noti,Rules_mr,Rules4),

Rules5 = Rules_not0i,!.

%=======================================

redundant_rule(Rules,Rule_red,Rules_nored) :-

(redundant1_1(Rules,Rule_red,Rules_nored) -> true ;

length(Rules,N),!,

N > 2,!,

redundant2_1(Rules,Rules,Rule_red,Rules_nored)),!.

redundant1_1([Rule|Rules],Rule_red,Rules_nored) :-

(redundant1_2(Rules,Rule,Rules_r,Rule_r) ->

(Rules_nored = Rules_r,

Rule_red = Rule_r) ;

(Rules_nored = [Rule|Rules_nored1],!,

redundant1_1(Rules,Rule_red,Rules_nored1))),!.

redundant1_2([Rule1|Rules],Rule,Rules_r,Rule_r) :-

(subsumed_by(Rule1,Rule) ->

Rules_r = [Rule1|Rules],

Rule_r = Rule ;

(subsumed_by(Rule,Rule1) ->

Rules_r = [Rule|Rules],

Rule_r = Rule1 ;

Rules_r = [Rule1|Rules_r1],

Rule_r = Rule_r1,!,

redundant1_2(Rules,Rule,Rules_r1,Rule_r1))),!.

redundant2_1([Rule|Rules1],Rules,Rule_red,Rules_nored) :-

delete(Rules,Rule,Rules1),!,

(redundant2_2(Rules1,Rule) ->

Rules_nored = Rules1,

Rule_red = Rule ;

redundant2_1(Rules1,Rules,Rule_red,Rules_nored)),!.

redundant2_2(Rules,Rule) :-

all_of_lnth(2,Rules,Rule_pairs),!,

redundant2_3(Rule_pairs,Rule),!.

redundant2_3([[Rule1,Rule2]|Rule_pairs],Rule) :-

conc_paths(Rule1,Rule2,Rule_c1),!,

(subsumed_by(Rule_c1,Rule) -> true ;
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conc_paths(Rule2,Rule1,Rule_c2),!,

(subsumed_by(Rule_c2,Rule) -> true ;

redundant2_3(Rule_pairs,Rule))),!.

%=======================================

post_fusion_adv(Rules,Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I) :-

get_guards_of_rules(Rules,Guards),!,

split_all_into_atomics(Guards,Ato_guards),!,

find_postfusionadv(Rules,Ato_guards,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I).

find_postfusionadv(Rules,[Ato_guard|Ato_guards],

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I) :-

get_rules_of_i(Rules,Ato_guard,Rules_i),!, % condition 5

diff_list(Rules,Rules_i,Rules_noti),!,

((try_all_possib_postfuseadv(Ato_guard,Rules_i,Rules_noti,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I)) -> true ;

find_postfusionadv(Rules,Ato_guards,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I)).

try_all_possib_postfuseadv(I1,Rules_i,Rules_noti,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I) :-

i_permboth_all(Rules_noti,Rules_i,I1),!, % condition 1

find_i_inv_rules(Rules_i,I1,Rules_i0,Rules_inot0),!,

% conditions 4,2 ...

permpos_all(Rules_noti,Rules_i0),!, %

permpos_all(Rules_inot0,Rules_i0),!, % condition 7

all_rules_i_pos_inv(Rules_noti,I1),!, % condition 4

find_i_inv_rules(Rules_noti,I1,Rules_noti0,Rules_notinot0),!,

% condition 3 and 2...

all_rules_all_guards_neg_inv(Rules_i0,Rules_noti0),!,

% condition 8

try_all_possib_postfuseadv1(I1,Rules_i,Rules_noti,Rules_i0,Rules_inot0,

Rules_noti0,Rules_notinot0,1,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I),!.

try_all_possib_postfuseadv1(I1,Rules_i,Rules_noti,Rules_i0,Rules_inot0,
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Rules_noti0,Rules_notinot0,N,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I) :-

nth_subset(Rules_notinot0,N,Rules_s4,Rules_s5),!,

(conditions_postfuseadv(I1,Rules_i0,Rules_inot0,Rules_noti0,

Rules_i,Rules_noti,Rules_notinot0,

Rules_s4,Rules_s5,

Rules1,Rules2,Rules3,Rules4,Rules5,

Rules6,Rules7,Rules8,I) -> true ;

N1 is N + 1,!,

try_all_possib_postfuseadv1(I1,Rules_i,Rules_noti,

Rules_i0,Rules_inot0,

Rules_noti0,Rules_notinot0,N1,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I)),!.

conditions_postfuseadv(I1,Rules_i0,Rules_inot0,Rules_noti0,

Rules_i,Rules_noti,Rules_notinot0,Rules_s4,Rules_s5,

Rules1,Rules2,Rules3,Rules4,Rules5,

Rules6,Rules7,Rules8,I) :-

fuse_all(Rules_s4,Rules_inot0,Rules_s2s4),!,

permboth_all(Rules_s2s4,Rules_i0),!, % condition 6...

all_rules_i_pos_inv(Rules_s2s4,I1),!, %

all_rules_i_neg_inv(Rules_s2s4,I1),!, % condition 2...

fuse_all(Rules_s5,Rules_inot0,Rules_s2s5),!,

fuse_all(Rules_i0,Rules_s2s5,Rules_s2s5s1),!,

permboth_all(Rules_s2s5s1,Rules_i0),!, % condition 6...

all_rules_i_pos_inv(Rules_s2s5s1,I1),!, %

all_rules_i_neg_inv(Rules_s2s5s1,I1),!, % condition 2...

fuse_all(Rules_noti0,Rules_inot0,Rules_s2s3),!,

fuse_all(Rules_s5,Rules_s2s3,Rules_s2s3s5),!,

permboth_all(Rules_s2s3s5,Rules_i0),!, % condition 6...

all_rules_i_pos_inv(Rules_s2s3s5,I1),!, %

all_rules_i_neg_inv(Rules_s2s3s5,I1),!, % condition 2...

I = I1,

Rules1 = Rules_i,

Rules2 = Rules_noti,

Rules3 = Rules_noti0,

Rules4 = Rules_notinot0,

Rules5 = Rules_i0,

Rules6 = Rules_inot0,

fuse_all(Rules_inot0,Rules_s4,Rules_s4s2),

fuse_all(Rules_i0,Rules_s5,Rules_s5s1),

fuse_all(Rules_inot0,Rules_s5s1,Rules_s5s1s2),

fuse_all(Rules_inot0,Rules_s5,Rules_s5s2),
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append(Rules_s4s2,Rules_s5s1s2,Rules7_m1),

append(Rules_s5s2,Rules7_m1,Rules7_m2),

append(Rules_noti0,Rules7_m2,Rules7),

append(Rules_i0,Rules_noti,Rules8),!.

find_i_inv_rules([],_,[],[]) :- !.

find_i_inv_rules([Rule|Rules],I,Rules_inv,Rules_notinv) :-

(i_pos_inv(I,Rule) ->

(i_neg_inv(I,Rule) ->

(Rules_inv = [Rule|Rules_inv1],

Rules_notinv = Rules_notinv1) ;

(Rules_inv = Rules_inv1,

Rules_notinv = [Rule|Rules_notinv1])) ;

(Rules_inv = Rules_inv1,

Rules_notinv = [Rule|Rules_notinv1])),!,

find_i_inv_rules(Rules,I,Rules_inv1,Rules_notinv1),!.

all_rules_all_guards_neg_inv([],_) :- !.

all_rules_all_guards_neg_inv([Rule|Rules],Rules_neginv) :-

get_guard(Rule,Guard),!,

all_rules_i_neg_inv(Rules_neginv,Guard),!,

all_rules_all_guards_neg_inv(Rules,Rules_neginv),!.

permpos_all([],_) :- !.

permpos_all([Rule|Rules],Rules1) :-

permpos_all1(Rules1,Rule),!,

permpos_all(Rules,Rules1),!.

permpos_all1([],_) :- !.

permpos_all1([Rule1|Rules1],Rule) :-

permpos(Rule,Rule1),!,

permpos_all1(Rules1,Rule),!.

permpos([_,Coeff1,Guard1],[_,Coeff2,Guard2]) :-

vec_subtr(Guard2,Coeff1,C1),!,

lub(C1,Guard1,C2),!,

vec_subtr(Guard1,Coeff2,C3),!,

vec_geq(C2,C3),!.

%=======================================

post_fusion_4(Rules,Rules1,Rules2,Rules3,Rules4,I) :-

get_guards_of_rules(Rules,Guards),!,

split_all_into_atomics(Guards,Ato_guards),!,

find_postfusion_4(Rules,Ato_guards,
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Rules1,Rules2,Rules3,Rules4,I).

find_postfusion_4(Rules,[Ato_guard|Ato_guards],

Rules1,Rules2,Rules3,Rules4,I) :-

get_rules_of_i(Rules,Ato_guard,R34),!, % condition 7

diff_list(Rules,R34,R12),!,

((try_all_possib_postfuse_4(Ato_guard,1,R34,R12,

Rules1,Rules2,Rules3,Rules4,I)) -> true ;

find_postfusion_4(Rules,Ato_guards,

Rules1,Rules2,Rules3,Rules4,I)).

try_all_possib_postfuse_4(I1,N,R34,R12,

Rules1,Rules2,Rules3,Rules4,I) :-

nth_subset(R34,N,R4,R3),!,

(try_all_possib_postfuse_4_1(I1,1,R4,R3,R12,

Rules1,Rules2,Rules3,Rules4,I) -> true;

N1 is N+1,!,

try_all_possib_postfuse_4(I1,N1,R34,R12,

Rules1,Rules2,Rules3,Rules4,I)),!.

try_all_possib_postfuse_4_1(I1,N,R4,R3,R12,

Rules1,Rules2,Rules3,Rules4,I) :-

nth_subset(R12,N,R1,R2),!,

(conditions_postfuse_4(I1,1,R4,R3,R1,R2,

Rules1,Rules2,Rules3,Rules4,I) -> true;

N1 is N+1,!,

try_all_possib_postfuse_4_1(I1,N1,R4,R3,R12,

Rules1,Rules2,Rules3,Rules4,I)),!.

conditions_postfuse_4(I1,1,R4,R3,R1,R2,

Rules1,Rules2,Rules3,Rules4,I) :-

subsumed_regexpr(seq(R1,seq(R2,R2)),seq(R2,seq(R1,R2))),!, % cond 1

subsumed_regexpr(seq(R1,seq(sum(R2,epsilon),seq(R3,R3))),

seq(R3,seq(R1,seq(sum(R2,epsilon),R3)))),!, % cond 2

subsumed_regexpr(seq(R3,R2),seq(R2,R3)),!, % cond 3

i_subsumed_regexpr(

I1,

seq(R1,seq(sum(R2,epsilon),seq(sum(R3,epsilon),R4))),

seq(R4,seq(R1,seq(sum(R2,epsilon),sum(R3,epsilon))))),!,

% cond 4

i_invariant_regexpr(

I1,

seq(R1,seq(sum(R2,epsilon),sum(R3,epsilon)))),!, % cond 5

i_equiv_regexpr(

I1,
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sum(R2,seq(R1,sum(R3,R4)))),!, % cond 6

construct_language(sum(R1,R2),Rules1),!,

construct_language(sum(sum(R2,R3),R4),Rules2),!,

construct_language(sum(R2,seq(R1,seq(sum(R2,epsilon),sum(R3,R4)))),

Rules_temp),!,

reduce_rules_by_i(Rules_temp,I1,Rules3),!,

construct_language(sum(R1,sum(R2,R3)),Rules4),!,

I = I1,!.

subsumed_regexpr(Regexpr1,Regexpr2) :-

construct_language(Regexpr1,Lang1),!,

construct_language(Regexpr2,Lang2),!,

subsumed_lang(Lang1,Lang2),!.

i_subsumed_regexpr(I,Regexpr1,Regexpr2) :-

construct_language(Regexpr1,Lang1),!,

construct_language(Regexpr2,Lang2),!,

i_subsumed_lang(Lang1,Lang2,I),!.

i_invariant_regexpr(I,Regexpr) :-

construct_language(Regexpr,Lang),!,

i_invariant_lang(Lang,I),!.

i_equiv_regexpr(I,Regexpr) :-

construct_language(Regexpr,Lang),!,

i_equiv_lang(Lang,I),!.

%==================================================================

reachability(Rules,Table,Table,_) :-

length(Rules,N),

N =< 1,!.

reachability(Rules,Table,Table,Node) :-

length(Rules,Lnth),

already_treated(Rules,Lnth,Table,Node1),!,

explain_alreadytreated(Node,Node1).

%

%

% Redundant rule

%

reachability(Rules,Table,[[Lnth,Rules,Node]|Table1],Node) :-

print_header(Rules,Node),

% write('Trying: redundant rule : '),

redundant_rule(Rules,Rule_red,Rules_nored),!,

length(Rules,Lnth),

explain_redundantrule(Rules,Node,Rule_red,Rules_nored),
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tree_address(Node,red,Node1),

remove_null_rules(Rules_nored,Rules_nored1,_),

reachability(Rules_nored1,Table,Table1,Node1).

%

%

% Stratify

%

reachability(Rules,Table,[[Lnth,Rules,Node]|Table2],Node) :-

% write('stratify : '),

stratifyable(Rules,Rules1,Rules2), !,

length(Rules,Lnth),

explain_stratify(Rules,Node,Rules1,Rules2),

tree_address(Node,str1,Node1),

reachability(Rules1,Table,Table1,Node1),

tree_address(Node,str2,Node2),

reachability(Rules2,Table1,Table2,Node2).

%

%

% Post fusion generalized

%

reachability(Rules,Table,[[Lnth,Rules,Node]|Table4],Node) :-

% write('post-fusion : '),

length(Rules,Lnth), Lnth=< 20,

post_fusion_gen(Rules,Rules1,Rules2,Rules3,Rules4,I1,I2),Rules1\==[],!,

% length(Rules,Lnth),

explain_postfusiongen(Rules,Node,Rules1,Rules2,Rules3,Rules4,I1,I2),

tree_address(Node,psf1,Node1),

remove_null_rules(Rules1,Rules1nn,_),

reachability(Rules1nn,Table,Table1,Node1),

tree_address(Node,psf2,Node2),

remove_null_rules(Rules2,Rules2nn,_),

reachability(Rules2nn,Table1,Table2,Node2),

tree_address(Node,psf3,Node3),

remove_null_rules(Rules3,Rules3nn,_),

reachability(Rules3nn,Table2,Table3,Node3),

tree_address(Node,psm,Node4),

remove_null_rules(Rules4,Rules4nn,_),

reachability(Rules4nn,Table3,Table4,Node4).

%

%

% Monotonic rule

%

reachability(Rules,Table,[[Lnth,Rules,Node]|Table2],Node) :-

monotonic_rule(Rules,Rules1,Rule),!,

length(Rules,Lnth),
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explain_monotonicrule(Rules,Node,Rules1,Rule),

tree_address(Node,mr,Node1),

reachability(Rules1,Table,Table2,Node1).

%

%

% Monotonic guard

%

reachability(Rules,Table,[[Lnth,Rules,Node]|Table2],Node) :-

monotonic_guard(Rules,Guard,Rules1,Rules2,Sign), !,

length(Rules,Lnth),

explain_monotonicguard(Rules,Node,Guard,Sign,Rules1,Rules2),

tree_address(Node,mg1,Node1),

reachability(Rules1,Table,Table1,Node1),

tree_address(Node,mg2,Node2),

reachability(Rules2,Table1,Table2,Node2).

%

%

% Pre fusion simple

%

reachability(Rules,Table,[[Lnth,Rules,Node]|Table4],Node) :-

% write('pre-fusion (simple) : '),

pre_fusion_simp(Rules,Rules1,Rules2,Rules3,Rules4,I),!,

length(Rules,Lnth),

explain_prefusion(Rules,Node,Rules1,Rules2,Rules3,Rules4,I),

tree_address(Node,prf1,Node1),

reachability(Rules1,Table,Table1,Node1),

tree_address(Node,prf2,Node2),

reachability(Rules2,Table1,Table2,Node2),

tree_address(Node,prf3,Node3),

reachability(Rules3,Table2,Table3,Node3),

tree_address(Node,prm,Node4),

reachability(Rules4,Table3,Table4,Node4).

%

%

% Pre fusion generalized

%

creachability(Rules,Table,[[Lnth,Rules,Node]|Table5],Node) :-

% write('pre-fusion (generalized) : '),

pre_fusion_gen(Rules,Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2),!,

length(Rules,Lnth),

explain_prefusiongen(Rules,Node,

Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2),

tree_address(Node,prfg1,Node1),

reachability(Rules1,Table,Table1,Node1),

tree_address(Node,prfg2,Node2),
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reachability(Rules2,Table1,Table2,Node2),

tree_address(Node,prmg1,Node3),

reachability(Rules3,Table2,Table3,Node3),

tree_address(Node,prmg2,Node4),

reachability(Rules4,Table3,Table4,Node4),

tree_address(Node,prfg3,Node5),

reachability(Rules5,Table4,Table5,Node5).

%

%

% Post fusion advanced

%

creachability(Rules,Table,[[Lnth,Rules,Node]|Table8],Node) :-

% write('post-fusion (advanced): '),

post_fusion_adv(Rules,Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I),!,

length(Rules,Lnth),

explain_postfusionadv(Rules,Node,

Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I),

tree_address(Node,psfa1,Node1),

reachability(Rules1,Table,Table1,Node1),

tree_address(Node,psfa2,Node2),

reachability(Rules2,Table1,Table2,Node2),

tree_address(Node,psfa3,Node3),

reachability(Rules3,Table2,Table3,Node3),

tree_address(Node,psfa4,Node4),

reachability(Rules4,Table3,Table4,Node4),

tree_address(Node,psfa5,Node5),

reachability(Rules5,Table4,Table5,Node5),

tree_address(Node,psma,Node7),

reachability(Rules7,Table5,Table7,Node7),

tree_address(Node,psfa7,Node8),

reachability(Rules8,Table7,Table8,Node8).

%

%

% Post fusion 4

%

creachability(Rules,Table,[[Lnth,Rules,Node]|Table4],Node) :-

% write('post-fusion 4: '),

post_fusion_4(Rules,Rules1,Rules2,Rules3,Rules4,I),!,

length(Rules,Lnth),

explain_postfusion_4(Rules,Node,

Rules1,Rules2,Rules3,Rules4,I),

tree_address(Node,pf4R1R2,Node1),

reachability(Rules1,Table,Table1,Node1),
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tree_address(Node,pf4R2R3R4,Node2),

reachability(Rules2,Table1,Table2,Node2),

tree_address(Node,pf4m,Node3),

reachability(Rules3,Table2,Table3,Node3),

tree_address(Node,pf4R1R2R3,Node4),

reachability(Rules4,Table3,Table4,Node4).

%

%

% New fusion 1

%

creachability(Rules,Table,[[Lnth,Rules,Node]|Table3],Node) :-

% write('new-fusion : '),

new_fusion1(Rules,Rules1,Rules2,Rules3,I1,I2),!,

length(Rules,Lnth),

explain_newfusion1(Rules,Node,Rules1,Rules2,Rules3,I1,I2),

tree_address(Node,nf1,Node1),

reachability(Rules1,Table,Table1,Node1),

tree_address(Node,nf2,Node2),

reachability(Rules2,Table1,Table2,Node2),

tree_address(Node,nf3,Node3),

reachability(Rules3,Table2,Table3,Node3).

%

% Failed to treat the matrix

%

reachability(Rules,Table,Table2,Node) :-

explain_failure(Rules,Node,S,Rules2,only_rel_columns),

(S == c -> Table2 = Table ;

(tree_address(Node,ntr,Node1),

reachability(Rules2,Table,Table2,Node1))).

%==================================================================

tree_address(Path,Node_name,Next_child) :-

append(Path,[Node_name],Next_child).

already_treated(Rules,Lnth,[[Lnth,Rls_tab,Node]|_],Node) :-

same_rules(Rules,Rls_tab),!.

already_treated(Rules,Lnth,[_|Table],Node) :-

already_treated(Rules,Lnth,Table,Node).

rule_member_delete(Rule,[Rl|Rls],Rls) :-

same_rule(Rl,Rule), !.

rule_member_delete(Rule,[Rl|Rls],[Rl|Rls_del]) :-

rule_member_delete(Rule,Rls,Rls_del).
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same_rule([_,Coeff1,Guard1],[_,Coeff2,Guard2]) :-

vec_eq(Coeff1,Coeff2),!,

vec_eq(Guard1,Guard2).

same_rules([],[]).

same_rules([Rule|Rules],Rls) :-

rule_member_delete(Rule,Rls,Rls_del),

same_rules(Rules,Rls_del).

reach :-

program(Matrix),

create_rules(Matrix,Rules,_),

reachability(Rules,[],_,[top]).

reach_general :-

program(Matrix_general),

create_rules_general(Matrix_general,Rules,_),

reachability(Rules,[],_,[top]).

create_guard_general(N,Nmax,_,[]) :-

N > Nmax, !.

create_guard_general(N,Nmax,Guard_vars,[Gnum|Guard_vec]) :-

variable_argument(G_var,N),

get_assoc(Guard_vars,G_var,Gnum),

N1 is N + 1,

create_guard_general(N1,Nmax,Guard_vars,Guard_vec).

create_guard_general(N,Nmax,Guard_vars,['-infty'|Guard_vec]) :-

N1 is N + 1,

create_guard_general(N1,Nmax,Guard_vars,Guard_vec).

create_rule_general(Number_of_arguments,Name,

Coefficients,Guard_variables,Rule) :-

create_guard_general(1,Number_of_arguments,Guard_variables,Guard),

Rule = [s([Name]),Coefficients,Guard].

create_rules_general([],[],_).

create_rules_general([[Rn,Coeffs|Guards]|Rules_to_be],

[Rule|Rules],N_of_args) :-

length(Coeffs,N_of_args),

create_rule_general(N_of_args,Rn,Coeffs,Guards,Rule),!,

create_rules_general(Rules_to_be,Rules,N_of_args).

get_assoc([[Key,Item]|_],Key,Item) :- !.

get_assoc([_|Alist],Key,Item) :-
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get_assoc(Alist,Key,Item),!.

%==================================================================

explain_stratify(Rules,Node,Rules1,Rules2) :-

% print_header(Rules,Node),

write('

'),

write('Stratify:

'),

print_kleene_closure(Rules),

write(' ==> str1.str2

'),

write('str1 = '),

print_kleene_closure(Rules1),

write('

str2 = '),

print_kleene_closure(Rules2),

write('

').

explain_monotonicguard(Rules,Node,Guard,Sign,Rules1,Rules2) :-

% print_header(Rules,Node),

write('

'),

write('Monotonic guard, '),

(Sign == pos -> write('increasing: ') ; write('decreasing: ')),

print_guard(Guard),

write('

'),

print_kleene_closure(Rules),

write(' ==> mg1.mg2

'),

write('mg1 = '),

print_kleene_closure(Rules1),

write('

mg2 = '),

print_kleene_closure(Rules2),
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write('

').

explain_monotonicrule(Rules,Node,Rules1,Rule) :-

% print_header(Rules,Node),

write('

'),

write('Monotonic rule: '),

print_rule(Rule),

write('

'),

print_kleene_closure(Rules),

write(' ==> mr.('),

print_rule(Rule),

write(')*.mr

'),

write('mr = '),

print_kleene_closure(Rules1),

write('

').

explain_prefusion(Rules,Node,Rules1,Rules2,Rules3,Rules4,I) :-

% print_header(Rules,Node),

write('

'),

write('Simple pre-fusion: I = '),

print_guard(I),

write('

'),

print_kleene_closure(Rules),

write(' ==> (prf1.prf2 + prf3).prm.prf2

'),

write('prf1 = '),

print_kleene_closure(Rules1),

write('

'),

write('prf2 = '),

75



print_kleene_closure(Rules2),

write('

'),

write('prf3 = '),

print_kleene_closure(Rules3),

write('

'),

write('prm = '),

print_kleene_closure(Rules4),

write('

').

explain_redundantrule(Rules,Node,Rule_red,Rules_red) :-

% print_header(Rules,Node),

write('

'),

write('Redundant rule: '),

print_rule(Rule_red),

write('

'),

print_kleene_closure(Rules),

write(' ==> red

'),

write('red = '),

print_kleene_closure(Rules_red),

write('

').

explain_prefusiongen(Rules,Node,Rules1,Rules2,Rules3,Rules4,Rules5,I1,I2) :-

% print_header(Rules,Node),

write('

'),

write('Generalized pre-fusion: I1 = '),

print_guard(I1),

write(' I2 = '),

print_guard(I2),

write('

'),
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print_kleene_closure(Rules),

write(' ==> prfg1.prfg2.prmg1.prmg2.prfg3

'),

write('prfg1 = '),

print_kleene_closure(Rules1),

write('

'),

write('prfg2 = '),

print_kleene_closure(Rules2),

write('

'),

write('prmg1 = '),

print_kleene_closure(Rules3),

write('

'),

write('prmg2 = '),

print_kleene_closure(Rules4),

write('

'),

write('prfg3 = '),

print_kleene_closure(Rules5),

write('

').

explain_postfusionadv(Rules,Node,Rules1,Rules2,Rules3,Rules4,

Rules5,Rules6,Rules7,Rules8,I) :-

% print_header(Rules,Node),

write('

'),

write('Advanced post-fusion: I = '),

print_guard(I),

write('

'),

print_kleene_closure(Rules),

write(' ==> (psfa1 + psfa2).psfa3.psfa4.psfa5.psfa6.psma.psfa7

'),

write('psfa1 = '),

print_kleene_closure(Rules1),

write('

'),
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write('psfa2 = '),

print_kleene_closure(Rules2),

write('

'),

write('psfa3 = '),

print_kleene_closure(Rules3),

write('

'),

write('psfa4 = '),

print_kleene_closure(Rules4),

write('

'),

write('psfa5 = '),

print_kleene_closure(Rules5),

write('

'),

write('psfa6 = '),

print_rule_sum(Rules6),

write('

'),

write('psma = '),

print_kleene_closure(Rules7),

write('

'),

write('psfa7 = '),

print_kleene_closure(Rules8),

write('

').

explain_postfusiongen(Rules,Node,Rules1,Rules2,Rules3,Rules4,I1,I2) :-

% print_header(Rules,Node),

write('

'),

((Rules3 == []) -> (

write('Simple post-fusion: I1 = '),

print_guard(I1),

write('

'),

print_kleene_closure(Rules),

write(' ==> psf1.psf2.psm.mu''.psf1
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'),

write('psf1 = '),

print_kleene_closure(Rules1),

write('

'),

write('psf2 = '),

print_kleene_closure(Rules2),

write('

'),

write('psm = '),

print_kleene_closure(Rules4),

write('

')) ; (

write('Generalized post fusion: I1 = '),

print_guard(I1),

write(' I2 = '),

print_guard(I2),

write('

'),

print_kleene_closure(Rules),

write(' ==> psf1.psf2.psf3.psm.mu''.psf1

'),

write('psf1 = '),

print_kleene_closure(Rules1),

write('

'),

write('psf2 = '),

print_kleene_closure(Rules2),

write('

'),

write('psf3 = '),

print_kleene_closure(Rules3),

write('

'),

write('psm = '),

print_kleene_closure(Rules4),

write('

'))).

explain_postfusion_4(Rules,Node,Rules1,Rules2,Rules3,Rules4,I) :-

% print_header(Rules,Node),
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write('

'),

write('Post fusion 4: I = '),

print_guard(I),

write('

'),

print_kleene_closure(Rules),

write(' ==> pf4R1R2.pf4R2R3R4.pf4m.pf4R1R2R3''

'),

write('pf4R1R2 = '),

print_kleene_closure(Rules1),

write('

'),

write('pfR2R3R4 = '),

print_kleene_closure(Rules2),

write('

'),

write('pf4m = '),

print_kleene_closure(Rules3),

write('

'),

write('pf4R1R2R3 = '),

print_kleene_closure(Rules4),

write('

').

explain_newfusion1(Rules,Node,Rules1,Rules2,Rules3,I1,I2) :-

% print_header(Rules,Node),

write('

'),

write('New-fusion: I1 = '),

print_guard(I1),

write(' I2 = '),

print_guard(I2),

write('

'),

print_kleene_closure(Rules),

write(' ==> nf1.nf2.nf3
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'),

write('nf1 = '),

print_kleene_closure(Rules1),

write('

'),

write('nf2 = '),

print_kleene_closure(Rules2),

write('

'),

write('nf3 = '),

print_kleene_closure(Rules3),

write('

').

explain_alreadytreated(Node,Node1) :-

write('----------------------------------------------------------

'),

write('node: '),

write(Node),

write('

Already treated at: '),

write(Node1),

write('

').

explain_failure(Rules,Node,S,Rules2,Print_mode) :-

% print_header(Rules,Node),

(Print_mode == whole_matrix -> print_header_whole(Rules,Node) ; true),

write('

'),

write('Couldn''t treat this matrix.

'),

write('c: continue r: remove rule g: remove guard '),

write('a: show whole matrix s: save rules '),

read(S1),

(S1 == c -> (Rules2 = Rules, S = S1, write('

')) ;

S1 == r -> (length(Rules,N),

write('
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rule no. 1 - '),

write(N),

write(': '),

read(Sn),

delete_nth(Sn,Rules,Rules2),

S = S1,

write('

')) ;

S1 == g ->

(write('guard: '),

read(G),

length(Rules,N),

write('

rule no. 1 - '),

write(N),

write(': '),

read(Sn),

delete_guard_from_rule_n(Sn,Rules,G,Rules2),

S = S1,

write('

')) ;

S1 == a ->

explain_failure(Rules,Node,S,Rules2,whole_matrix) ;

write('name: '),

read(Name),

retractall(saved_rules(Name,_)),

assert(saved_rules(Name,Rules)),

explain_failure(Rules,Node,S,Rules2,not_whole_matrix)).

%==================================================================

size_as_string(Term,Size) :-

name(Term,Charlist),

length(Charlist,Size).

coeff_sizes_as_strings([],[]).

coeff_sizes_as_strings([Term|List],[Size|Sizes]) :-

size_as_string(Term,Size),

coeff_sizes_as_strings(List,Sizes).

max_coeff_sizes_as_strings([],[],[]).

max_coeff_sizes_as_strings([Term|List],[Msf|Max_so_far],[Size|Sizes]) :-

size_as_string(Term,S),
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Size is max(Msf,S),

max_coeff_sizes_as_strings(List,Max_so_far,Sizes).

guard_sizes_as_strings([],0,_).

guard_sizes_as_strings(['-infty'|List],Size,N) :- !,

N1 is N + 1,

guard_sizes_as_strings(List,Size,N1).

guard_sizes_as_strings([Term|List],Size,N) :-

size_as_string(Term,St),

variable_argument(Variable,N),

size_as_string(Variable,Sv),

N1 is N + 1,

guard_sizes_as_strings(List,Size1,N1),

Size is Size1 + St + Sv + 3.

var_row_cols([],[],_).

var_row_cols([_|List],[Size|Sizes],N) :-

variable_argument(Variable,N),

size_as_string(Variable,Size),

N1 is N + 1,

var_row_cols(List,Sizes,N1).

column_sizes([[_,Coeffs,Guard]],Coeff_cols,Guard_col,Guard) :-

coeff_sizes_as_strings(Coeffs,Coeff_cols1),

guard_sizes_as_strings(Guard,Guard_col,1),

var_row_cols(Guard,Var_col_sizes,1),

lub(Coeff_cols1,Var_col_sizes,Coeff_cols).

column_sizes([[_,Coeffs,Guard]|Rules],Coeff_cols,Guard_col,Relevant_cols) :-

column_sizes(Rules,Coeff_cols1,Guard_col1,Relev_cols1),

max_coeff_sizes_as_strings(Coeffs,Coeff_cols1,Coeff_cols),

guard_sizes_as_strings(Guard,Guard_col2,1),

Guard_col is max(Guard_col1,Guard_col2),

lub(Relev_cols1,Guard,Relevant_cols).

spaces(0) :- !,

write(' ').

spaces(N) :-

N > 0, !,

write(' '),

N1 is N - 1,

spaces(N1).

print_rule([s(Rname)|_]) :-

print_rule_name(Rname).
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print_rule_name([Rn]) :- !,

write(Rn).

print_rule_name([Rn|Rns]) :-

write(Rn),

write('.'),

print_rule_name(Rns).

print_coeffs([],[],[]).

print_coeffs([_|Coeffs],[_|Col_sizes],['-infty'|Guards]) :- !,

print_coeffs(Coeffs,Col_sizes,Guards).

print_coeffs([C|Coeffs],[Col_size|Col_sizes],[_|Guards]) :-

size_as_string(C,S),

Space is Col_size - S + 1,

spaces(Space),

write(C),

print_coeffs(Coeffs,Col_sizes,Guards).

print_guard(Guard) :-

print_guard(Guard,1,no_comma).

print_guard([],_,_).

print_guard(['-infty'|Guard],N,F) :- !,

N1 is N + 1,

print_guard(Guard,N1,F).

print_guard([G|Guard],N,F) :-

variable_argument(Variable,N),

(F == comma -> write(', ') ; true),

write(Variable),

write('>'),

write(G),

N1 is N + 1,

print_guard(Guard,N1,comma).

print_guards([],Col_size,_,_) :-

spaces(Col_size).

print_guards(['-infty'|Guards],Col_size,N,F) :- !,

N1 is N + 1,

print_guards(Guards,Col_size,N1,F).

print_guards([G|Guards],Col_size,N,F) :-

variable_argument(Variable,N),

(F == no_comma -> write(' ') ; write(', ')),

write(Variable),

write('>'),

write(G),

N1 is N + 1,
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size_as_string(G,Sg),

size_as_string(Variable,Sv),

Col_size1 is Col_size - Sg - Sv - 3,

print_guards(Guards,Col_size1,N1,comma).

print_variables([],[],_).

print_variables([_|Col_sizes],['-infty'|Guards],N) :- !,

N1 is N + 1,

print_variables(Col_sizes,Guards,N1).

print_variables([Col_size|Col_sizes],[_|Guards],N) :-

variable_argument(Variable,N),

size_as_string(Variable,S),

Space is Col_size - S + 1,

spaces(Space),

write(Variable),

N1 is N + 1,

print_variables(Col_sizes,Guards,N1).

print_rule([s(Rn),Coeffs,Guards],Coeff_col_sizes,

Guard_col_size,Relevant_cols) :-

print_coeffs(Coeffs,Coeff_col_sizes,Relevant_cols),

write(' '),

print_guards(Guards,Guard_col_size,1,no_comma),

write(' : '),

print_rule_name(Rn).

print_rules([],_,_,_).

print_rules([Rule|Rules],Coeff_col_sizes,

Guard_col_size,Relevant_cols) :-

print_rule(Rule,Coeff_col_sizes,Guard_col_size,Relevant_cols),

write('

'),

print_rules(Rules,Coeff_col_sizes,Guard_col_size,Relevant_cols).

print_rules(Rules) :-

column_sizes(Rules,Coeff_cols,Guard_col,Relevant_cols),

print_rules(Rules,Coeff_cols,Guard_col,Relevant_cols),

write('

'),

print_variables(Coeff_cols,Relevant_cols,1),

write('

').

print_rules_whole(Rules) :-
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column_sizes(Rules,Coeff_cols,Guard_col,Relevant_cols),

all_cols_rel(Relevant_cols,All_cols_rel),

print_rules(Rules,Coeff_cols,Guard_col,All_cols_rel),

write('

'),

print_variables(Coeff_cols,All_cols_rel,1),

write('

').

all_cols_rel([],[]).

all_cols_rel([_|Relevant_cols],[0|All_cols_rel]) :-

all_cols_rel(Relevant_cols,All_cols_rel).

print_header(Rules,Node) :-

write('----------------------------------------------------------

'),

write('node: '),

write(Node),

write('

'),

print_rules(Rules),!.

print_header_whole(Rules,Node) :-

write('----------------------------------------------------------

'),

write('node: '),

write(Node),

write('

'),

print_rules_whole(Rules),!.

print_kleene_closure([]) :- !,

write('e').

print_kleene_closure(Rules) :-

write('('),

print_kleene_closure_1(Rules),

write(')*').

print_kleene_closure_1([[s(Rn)|_]]) :- !,

print_rule_name(Rn).

print_kleene_closure_1([[s(Rn)|_]|Rules]) :-

print_rule_name(Rn),
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write(' + '),

print_kleene_closure_1(Rules).

print_rule_sum([]) :- !,

write('e').

print_rule_sum([[s(Rn)|_]]) :-

print_rule_name(Rn).

print_rule_sum(Rules) :-

write('('),

print_kleene_closure_1(Rules),

write(')').

%===========================================================================

make_motifs([],_,_,[]).

make_motifs([[Rule,0]|Rules_ki],Rules_i,I1,Rules) :- !,

make_motifs(Rules_ki,Rules_i,I1,Rules2),!,

path_set_union([Rule],Rules2,Rules).

make_motifs([[Rule,Ki]|Rules_ki],Rules_i,I1,Rules) :-

all_paths(Rules_i,Rule,Ki,Rules1),!,

reduce_guards_ki(Rules_i,I1,Rules1,Rules11),

make_motifs(Rules_ki,Rules_i,I1,Rules2),!,

path_set_union(Rules11,Rules2,Rules).

all_paths(_,Rule,0,[Rule]) :- !.

all_paths(Rules_i,Rule,Ki,Rules) :-

Ki>0,!,

Ki1 is Ki - 1,

all_paths(Rules_i,Rule,Ki1,Rules1),!,

fuse_all(Rules_i,Rules1,Rules).

fuse_all([],_,[]).

fuse_all([Rule_i|Rules_i],Rules1,Rules) :-

fuse_all(Rules_i,Rules1,Rules2),

fuse_all_1(Rules1,Rule_i,Rules3),

append(Rules3,Rules2,Rules).

fuse_all_1([],_,[]).

fuse_all_1([Rule1|Rules1],Rule_i,[Rule2|Rules2]) :-

conc_paths(Rule1,Rule_i,Rule2),!,

fuse_all_1(Rules1,Rule_i,Rules2).

path_set_union([],Paths1,Paths1).

path_set_union([Path|Paths],Paths2,Paths3) :-

insert_path(Paths2,Path,Paths4),
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path_set_union(Paths,Paths4,Paths3).

insert_path([],Path,[Path]).

insert_path([Path1|Paths1],Path,[Path1|Paths1]) :-

subsumed_by(Path,Path1),!. % <----------- Fel !!!!

insert_path([Path1|Paths1],Path,Paths2) :-

subsumed_by(Path1,Path),!, % <----------- Fel !!!!

insert_path(Paths1,Path,Paths2).

insert_path([Path1|Paths1],Path,[Path1|Paths2]) :-

insert_path(Paths1,Path,Paths2).

reduce_guards_ki([Rule_i|_],I1,Rules1,Rules11) :-

get_coefficients(Rule_i,Coeffs_i),!,

vec_add(I1,Coeffs_i,I1c),!,

reduce_rules_by_i(Rules1,I1c,Rules11).

%===========================================================================

perm1(Path1,Path2,P1,P2) :-

program(Matrix),!,

create_rules(Matrix,Rules,_),!,

construct_path(Path1,Rules,P1),!,

construct_path(Path2,Rules,P2),!,

perm_both(P1,P2),!.

perm2(Path1,Path2,Name,P1,P2) :-

saved_rules(Name,Rules),!,

construct_path(Path1,Rules,P1),!,

construct_path(Path2,Rules,P2),!,

perm_both(P1,P2),!.

construct_path([Rn],Rules,P) :- !,

get_rule_with_name(Rules,Rn,P),!.

construct_path([Rn|Path],Rules,P) :- !,

construct_path(Path,Rules,P1),!,

get_rule_with_name(Rules,Rn,P2),!,

conc_paths(P2,P1,P),!.

get_rule_with_name([Rule|_],Rn,Rule) :-

get_rulename(Rule,s(Rn)),!.

get_rule_with_name([_|Rules],Rn,Rule) :-

get_rule_with_name(Rules,Rn,Rule),!.

subsumed_path(Path1,Path2,P1,P2) :-
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program(Matrix),!,

create_rules(Matrix,Rules,_),!,

construct_path(Path1,Rules,P1),!,

construct_path(Path2,Rules,P2),!,

subsumed_by(P2,P1),!.

test1_reach(Paths) :-

program(Matrix),!,

create_rules(Matrix,Rules,_),!,

construct_paths(Paths,Rules,P_rules),!,

reachability(P_rules,[],_,[top]).

construct_paths([],_,[]).

construct_paths([Path|Paths],Rules,[Rule|P_rules]) :-

construct_path(Path,Rules,Rule),!,

construct_paths(Paths,Rules,P_rules).

test2_reach(Paths,Name) :-

saved_rules(Name,Rules),!,

construct_paths(Paths,Rules,P_rules),!,

reachability(P_rules,[],_,[top]).

saved_reach(Name) :-

saved_rules(Name,Rules),!,

reachability(Rules,[],_,[top]).

construct_language(epsilon,[epsilon]).

construct_language(sum(Reg1,Reg2),Lang) :-

construct_language(Reg1,Lang1),

construct_language(Reg2,Lang2),

union(Lang1,Lang2,Lang).

construct_language(seq(Reg1,Reg2),Lang) :-

construct_language(Reg1,Lang1),

construct_language(Reg2,Lang2),

concatenate_lang(Lang1,Lang2,Lang).

construct_language(Lang,Lang) :-

lang(Lang).

lang([_|_]).

concatenate_lang([],_,[]).

concatenate_lang([Seq1|Lang1],Lang2,Lang) :-

concatenate_lang1(Seq1,Lang2,Lang3),

concatenate_lang(Lang1,Lang2,Lang4),

89



union(Lang3,Lang4,Lang).

concatenate_lang1(_,[],[]).

concatenate_lang1(Seq1,[Seq2|Lang2],[Seq|Lang]) :-

conc_lang_paths(Seq1,Seq2,Seq),

concatenate_lang1(Seq1,Lang2,Lang).

conc_lang_paths(epsilon,Seq2,Seq2).

conc_lang_paths(Seq1,epsilon,Seq1).

conc_lang_paths(Seq1,Seq2,Seq) :-

conc_paths(Seq1,Seq2,Seq).

subsumed_lang([],_) :- !.

subsumed_lang([Seq1|Lang1],Lang2) :-

subsumed_lang1(Seq1,Lang2),!,

subsumed_lang(Lang1,Lang2),!.

subsumed_lang1(Seq1,[Seq2|_]) :-

subsumed_seq(Seq1,Seq2),!.

subsumed_lang1(Seq1,[_|Lang2]) :-

subsumed_lang1(Seq1,Lang2),!.

subsumed_seq(epsilon,epsilon) :- !.

subsumed_seq([_,Coeff1,_],epsilon) :- !,

null_veq(Coeff1),!.

subsumed_seq([_,Coeff1,Guard1],[_,Coeff2,Guard2]) :- !,

vec_eq(Coeff1,Coeff2),!,

vec_geq(Guard1,Guard2),!.

construct_language_names(epsilon,[epsilon]).

construct_language_names(sum(Reg1,Reg2),Lang) :-

construct_language_names(Reg1,Lang1),

construct_language_names(Reg2,Lang2),

union(Lang1,Lang2,Lang).

construct_language_names(seq(Reg1,Reg2),Lang) :-

construct_language_names(Reg1,Lang1),

construct_language_names(Reg2,Lang2),

concatenate_lang(Lang1,Lang2,Lang).

construct_language_names(Lang,[Rule]) :-

name_of_rule(Lang,Rule).

name_of_rule(Name,Rule) :-

rule_set(Rules),!,

get_rule_with_name(Rules,Name,Rule),!.
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subsumed_regexpr_names(Regexpr1,Regexpr2) :-

program(Matrix),!,

create_rules(Matrix,Rules,_),!,

assert(rule_set(Rules)),!,

construct_language_names(Regexpr1,Lang1),!,

construct_language_names(Regexpr2,Lang2),!,

subsumed_lang(Lang1,Lang2),!,

retractall(rule_set(_)).

i_subsumed_regexpr_names(I,Regexpr1,Regexpr2) :-

program(Matrix),!,

create_rules(Matrix,Rules,_),!,

assert(rule_set(Rules)),!,

construct_language_names(Regexpr1,Lang1),!,

construct_language_names(Regexpr2,Lang2),!,

[[_,Coeff,_]|_] = Rules,!,

length(Coeff,N),!,

create_guard(1,N,I,I1),!,

i_subsumed_lang(Lang1,Lang2,I1),!,

retractall(rule_set(_)).

i_subsumed_lang([],_,_) :- !.

i_subsumed_lang([Seq1|Lang1],Lang2,I) :-

i_subsumed_lang1(Seq1,Lang2,I),!,

i_subsumed_lang(Lang1,Lang2,I),!.

i_subsumed_lang1(Seq1,[Seq2|_],I) :-

i_subsumed_seq(Seq1,Seq2,I),!.

i_subsumed_lang1(Seq1,[_|Lang2],I) :-

i_subsumed_lang1(Seq1,Lang2,I),!.

i_subsumed_seq(epsilon,epsilon,_) :- !.

i_subsumed_seq([_,Coeff1,_],epsilon,_) :- !,

null_veq(Coeff1),!.

i_subsumed_seq([_,Coeff1,Guard1],[_,Coeff2,Guard2],I) :- !,

vec_eq(Coeff1,Coeff2),!,

lub(I,Guard1,C),!,

vec_geq(C,Guard2),!.

i_invariant_regexpr_names(I,Regexpr) :-

program(Matrix),!,

create_rules(Matrix,Rules,_),!,

assert(rule_set(Rules)),!,

construct_language_names(Regexpr,Lang),!,
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[[_,Coeff,_]|_] = Rules,!,

length(Coeff,N),!,

create_guard(1,N,I,I1),!,

i_invariant_lang(Lang,I1),!,

retractall(rule_set(_)).

i_invariant_lang([],_) :- !.

i_invariant_lang([Seq|Lang],I) :-

i_invariant_seq(Seq,I),!,

i_invariant_lang(Lang,I),!.

i_invariant_seq([_,Coeff,_],I) :-

vec_subtr(I,Coeff,Ic),!,

vec_geq(I,Ic),!.

i_equiv_regexpr_names(I,Regexpr) :-

program(Matrix),!,

create_rules(Matrix,Rules,_),!,

assert(rule_set(Rules)),!,

construct_language_names(Regexpr,Lang),!,

[[_,Coeff,_]|_] = Rules,!,

length(Coeff,N),!,

create_guard(1,N,I,I1),!,

i_equiv_lang(Lang,I1),!,

retractall(rule_set(_)).

i_equiv_lang([],_) :- !.

i_equiv_lang([Seq|Lang],I) :-

i_equiv_seq(Seq,I),!,

i_equiv_lang(Lang,I),!.

i_equiv_seq([_,Coeff,_],I) :-

vec_subtr(I,Coeff,Ic),!,

vec_geq(I,Ic),!,

vec_geq(Ic,I),!.

92


