
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

Eta Expansions in System F

Neil GHANI

LIENS - 96 - 10

Eta Expansions in System F

Neil GHANI

LIENS - 96 - 10

June 1996

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : ... @dmi.ens.fr

Eta Expansions in System F

Neil Ghani

LIENS-DMI, Ecole Normale Superieure

45, Rue D'Ulm, 75230 Paris Cedex 05

France

e-mail:ghani@dmi.ens.fr

May 17, 1996

Abstract

The use of expansionary �-rewrite rules in various typed �-calculi has

become increasingly common in recent years as their advantages over con-

tractive �-rewrite rules have become apparent. Not only does one obtain

simultaneously the decidability of ��-equality and also a procedure for the

calculation of the long ��-normal form of a term, but rewrite relations

using expansions generalise more easily to other type constructors, retain

key properties when combined with other rewrite rules, and are supported

by a categorical theory of reduction.

In this paper we prove strong normalisation and conuence for a rewrite

relation on the terms of System F consisting of traditional �-reductions

and �-expansions satisfying certain restrictions. In addition, we obtain a

natural characterisation of the second order long ��-normal forms as pre-

cisely the normal forms of our restricted rewrite relation.

These results are an important step towards a new theory of reduction in

type theories which mix algebraic rewrite rules with ��-equality.

1 Introduction

Extensional equality for terms of the simply typed �-calculus requires �-conversion,

whose interpretation as a rewrite rule has traditionally been as a contraction:

�x : T:fx) f (x 62FV(f)) (1)

When combined with the usual �-reduction, the resulting rewrite relation is

strongly normalising and conuent, and thus reduction to normal form provides

a decision procedure for the associated equational theory.

1

However �-contractions behave badly when combined with rewrite rules arising

from either algebraic rewrite systems or from other type constructors. For in-

stance, the presence of the unit type with �-rewrite rule t)� leads to a loss of

conuence [12]. Speci�cally if f is a variable of type 1!1 then the following

divergence cannot be completed.

�x : 1: �(�x : 1:fx) f (2)

Although the combination of a conuent �rst order rewrite system and a type

theory (eg the simply typed �-calculus, System F) equipped with �-reduction

is known to be conuent [], these results cannot be generalised to type theories

equipped with �-contraction as conuence is invariably lost. For example, con-

sider a single sort 1 with constants f : 1!1; � : 1 and rewrite rule fx)�. This

relation is conuent, but when taken together with �-contractions conuence is

lost as equation 2 demonstrates | for a detailed discussion the reader should

consult [3].

These de�ciencies in �-contractions have recently led several authors [1, 4, 6, 12]

to reconsider the old proposal [11, 13, 14] that �-conversion be interpreted as an

expansion

f) �x :T:fx if f : T!T

0

and x 62FV(f)

and the resulting rewrite relation has been shown conuent. In these works

in�nite reduction sequences such as

f) �x :T:fx) �x :T:(�y :T:fy)x) : : :

are avoided by imposing syntactic restrictions to limit the possibilities for ex-

pansion; namely �-abstractions cannot be expanded, nor can terms which are

applied. This restricted expansion relation is strongly normalising, conuent and

generates the same equational theory as the unrestricted expansionary rewrite

relation. Thus ��-equality can be decided by reduction to normal form in this

restricted fragment and, in addition, the normal forms of this restricted rewrite

relation are exactly Huet's long ��-normal forms [11, 14]. More importantly

these properties are maintained when rewrite rules for other type constructors

are added, e.g. the rewrite rule t)� for the unit type mentioned above, and

when ... Cite references to Bobby's results.

This work has been extended to the more di�cult problem of providing a decision

procedure for ��-equality for negative type constructors such as the coproduct

and the tensor of linear logic [7, 8]. The proposed �-rewrite rules for these types

are substantially more complex than those for the product and exponentials |

not only is there a facility for expanding terms of sum type analogous to that for

the product and exponential, but also the ability to permute the order in which

di�erent subterms of sum type are eliminated. The reader should consult the

2

above references for further details.

This paper extends the initial results in a di�erent direction by investigating the

use of expansionary �-rewrite rules in a polymorphic �-calculus called System F

[10, 9]. This calculus was introduced by Girard over twenty years ago and may

be thought of as the simply typed �-calculus enriched with type variables and a

mechanism for forming �-types by universally quantifying over all other types.

Elements of these �-types are thought of as polymorphic functions and there

are introduction and elimination rules which describe how polymorphic functions

may be de�ned and how such polymorphic functions may be used to construct

other functions. After presenting System F, we de�ne an equational theory called

��-equality on the terms of System F by adding second order �- and �-equations

to their usual �rst order counterparts. Next, the restrictions on the applicability

of the �rst order �-expansions are generalised to the second order �-expansions

and we obtain a rewrite relation which we prove to be strongly normalising, con-

uent, and to have as its reexive, symmetric and transitive closure ��-equality.

Our proof of strong normalisation of the restricted rewrite relation is a cross

between the traditional proof of strong normalisation for the fragment contain-

ing only �-reductions [10], and the proof of strong normalisation for the simply

typed �-calculus with expansionary �-rewrite rules [12, 8]. This requires sev-

eral alterations to the traditional de�nition a reducibility candidate to cope with

the presence of expansions. This reducibility candidate method di�ers from the

modular approach of [5] which investigates rewriting in System F but does not

consider the second order �-rewrite rule. The reader is encouraged to consult [2]

where a similar approach to rewriting in System F to that of this paper is taken.

In summary, we prove that �-expansions are robust enough to be applied to Sys-

tem F and regard this as a crucial �rst step towards a new theory of reduction

in type theories which mix algebraic rewrite rules with ��-equality.

2 System F

The formulation of System F presented here is based on that found in [10] and

takes advantage of the relatively simple type structure of System F to avoid a

context based presentation of the calculus. Of course there are still a few technical

details about which we must be careful, but the overall simpli�cation of notation

is considerable.

Let Var

�

be an in�nite set of type variables. The types of System F are de�ned

as by the grammar

T := X j T!T j �X:T

where X 2Var

�

. The set of all types of System F is denoted �(�) and a type is

called atomic i� it is a member of Var

�

. We use T;U; V; :: to range over types and

X;Y;Z; ::: to range over atomic types. The set of free type variables occurring in

3

a type T is denoted FTV(T) and �-equivalent types are treated as being equal. A

type valued substitution is a �nite partial function � : Var

�

!�(�) and the result

of applying such a substitution to a type T is de�ned as expected and denoted

T�.

There is also an in�nite set of term variables, Var, which is disjoint from Var

�

.

These term variables are used to construct the pre-terms of System F as follows:

t := x

T

j tt j �x

T

:t j tT j �X:t

where x is a term variable, T is a type and X is a type variable. The set of

pre-terms of System F is denoted � and we use t; u; v; :: to range over pre-terms

and x; y; z; :: to range over term variables. The following de�nitions are used

throughout the paper:

� A pre-term is an introduction pre-term i� it is of the form �x

T

:t or �X:t.

� A pre-term is neutral if it is not an introduction term.

� A sub-preterm is said to occur negatively in a term i� it is either applied to

another pre-term or applied to a type.

� In the term x

T

, the type T is called the type annotation of the variable x

The free term variables of a pre-term t are denoted FV(t) and contain their re-

spective type annotations, i.e.

FV(x

T

) = fx

T

g

FV(�x

T

:t

0

) = fy

U

2FV(t

0

) j x 6= yg

FV(tu) = FV(t) [FV(u)

FV(tT) = FV(t)

FV(�X:t) = FV(t)

The free type variables of a term are denoted FTV(t) and, as before, terms di�ering

only in bound variables are treated as being equal.footnote about annotations.

A term-valued substitution is a �nite, partial function � : Var!� and the result

of applying a type or term-valued substitution � to a pre-term t is denoted t�.

Two pre-terms t and u are said to be compatible, written t � u i� whenever

x

T

2FV(T) and x

U

2FV(u), then T = U . This compatibility relation is the price

we pay for avoiding a context-based presentation of System F.

The typing judgements of System F are of the form t : T , where t is a pre-term

and T is a type, and are derived by the inference rules in Table 1. A pre-term

t is said to be a term i� there is a type T and a typing judgement t :T , and in

this case we shall say that t has type T . The set of terms which have type T is

denoted �(T). Terms satisfy special properties which allow us to simplify their

notation further.

4

Table 1: Typing Judgements for System F

x2Var

x

T

:T

t :T

0

x

U

2FV(t) implies T = U

�x

T

:t :T!T

0

t :T!T

0

u :T t � u

tu :T

0

t :�X:T U is a type

tU :T [U=X]

t :T x

U

2FV(t) implies X =2 FTV(U)

�X:t :�X:T

Lemma 2.1 The following are true

� If there is a typing judgement t :T , then t � t.

� If there is a typing judgement t :T and x

T

2FV(t), then FTV(T) � FTV(t)

� If there are typing judgements t :T and t :T

0

, then T = T

0

.

Proof The proofs are by induction on the typing judgements. �

Thus if t is a term then all free occurences of a term variable x in t have the same

type annotation and henceforth sometimes omit mention of the type annotation

of a free variable. Lemma ?? also allows us to de�ne a function # which maps

a term to its unique type. A term-valued substitution is compatible with a term

t i� whenever x

T

2FV(t) and �(x) is de�ned, then #�(x) = T and �(x) � �x

T

:t.

di�erence between simultaneous and sequential substitution

Lemma 2.2 The following are true

� If � is a type-valued substitution, and there is a judgement t : T , then there

is also a judgement t� : T�

� If � is a term valued substitution, there is a term judgement t : T and � is

compatible with t, then there is also a typing judgement t� : T .

Proof Induction on the typing judgement t : T �

Later on we shall permit the �-expansion of a term providing the term inhabits

a function type or a universally quanti�ed type. Thus type inhabitation will be

crucial in enumerating the reducts of a term. Fortunately in our Church style

formulation of System F typeability and type inhabitation are decidable.

Lemma 2.3 Given a pre-term t it is decidable whether there exists a type T such

that there is a typing judgement t : T . In addition, given a pre-term t and a type

T it is decidable whether there is a typing judgement t : T .

Proof Both parts of the lemma are proved by induction on the structure of t.

�

5

3 ��-equality System F

Equality is usually de�ned in System F as the least congruence on terms contain-

ing the following pair of basic equations

�

!

(�x

T

:t)u = t[u=x]

�

�

(�X:t)V = t[V=X]

(3)

The rewrite relation obtained by orienting these equations from left to right is

denoted)

�

and is well-known to be both strongly normalising, conuent [10]

and hence �-equality is decidable in System F. However this is a rather minimal

equational theory and in the rest of this paper we consider the e�ect of adding

�rst and second order �-equations. The equational theory known as ��-equality

is the least congruence on the terms of System F including the equations of Table

2. We have de�ne ��-equality on the set of all terms. The next lemma shows

Table 2: ��-Equality in System F

�

!

(�x

T

:t)u =

��

t[u=x]

�

!

t =

��

�x

T

:tx

T

x =2 FV(t) and t2�(T!T

0

)

�

�

(�X:t)V =

��

t[V=X]

�

�

t =

��

(�X:tX) X =2 FTV(t) and t2�(�X:T)

that ��-equality is actually a family of equational theories indexed by the types

of System F.

Lemma 3.1 Assume t : T and u : U are terms such that t =

��

u. Then T = U .

Proof Induction I guess? �

Bearing in mind the discussion in the introduction concerning the di�culties

of combining �-contractions with algebraic rewrite systems, we shall investigate

��-equality in System F using �-contractions and �-expansions of the form

t : T!T

0

x 62FV(t)

t)�x

T

:tx

t : �X:T X 62FV(t)

t)�X:tX

As with the �rst order �-rewrite rule, unrestricted use of second order �-expansions

permits in�nite reduction sequences | in particular there are the following re-

duction loops:

�x

T

:t) �y

T

:(�x

T

:t)y

T

) �y

T

:t[y

T

=x] � �x

T

:t

tu) (�x

T

:tx

T

)u) tu

(4)

and the second order equivalent

�X:t) �Y:(�X:t)Y) �Y:t[Y=X] � �X:t

tU) (�X:tX)U) tU

(5)

6

Table 3: The Restricted Rewrite Relation

t)

�

t

0

t)

I

t

0

t is expandable

t)

F

�(t)

t)

I

t

0

t)

F

t

0

t)

I

t

0

tV)

I

t

0

V

t)

F

t

0

�X:t)

I

�X:t

0

t)

I

t

0

tu)

I

t

0

u

u)

F

u

0

tu)

I

tu

0

t)

F

t

0

�x

T

:t)

I

�x

T

:t

0

We follow [7, 8] in de�ning a rewrite relation)

F

by placing restrictions on when

these expansions are permitted. These restrictions are the analogues of those for

the �rst order fragment previously studied, i.e. �-abstractions and �-abstractions

may not be �-expanded and nor may terms which are applied to other terms or to

types. The relation)

F

is proven to be strongly normalising, to have as normal

forms the secong oreder long ��-normal forms, to be conuent and to have as its

reexive, symmetric and transitive closure ��-equality. Thus ��-equality may be

decided by reducing terms to their)

F

-normal forms or equivalently their long

��-normal form.

The context sensitive restrictions on expansion are enforced by simultaneously

de�ning a further subrelation)

I

of)

F

which is guaranteed not to include top-

level expansions, i.e. rewrites of the form t)�x

T

:tx

T

and t)�X:tX. Thus

a negatively occurring subterm may be safely)

I

-rewritten without the risk of

creating reduction loops as in equations 4 and 5. De�ne a function mapping

terms to terms

�(t) =

8

>

<

>

:

t if t is of atomic type

�x

T

:tx

T

if t :T!T

0

; x 62FV(t)

�X:tX if t :�X:T; X 62FTV(t)

A term is expandable i� it is neutral and of non-atomic type. The inference

rules in Table 3 simultaneously de�ne a relation)

F

, called the restricted rewrite

relation, and another relation)

I

which is the `internal' counterpart of)

F

. Note

that by lemma 2.3, the)

I

and)

F

-reducts of a term are enumerable.

Lemma 3.2 The restricted rewrite relation and its internal counterpart are re-

lated as follows:

t)

F

t

0

i� t)

I

t

0

or t

0

= �(t) and t is expandable

In addition the least equivalence relation containing)

F

is precisely ��-equality.

7

Proof The �rst part of the lemma is proved by induction on the rewrite in

question. For the second part of the lemma, note that)

F

is clearly a subre-

lation of). In addition, if t)t

0

but t 6)

F

t

0

, then t

0

must be obtained from

t by a looping expansion as in equations 4 and 5. As these equations show, in

such circumstances there is a �-, and hence an)

F

-rewrite t

0

)

F

t. Thus the

expansionary rewrite relation and its restricted subrelation generate the same

equational theory. �

When proving strong normalisation we shall require the following lemmas. Note

that, although usually trivial, the fact that)

F

is not a congruence means that

a proof is required.

Lemma 3.3 Let tx

T

and uX be terms. If x

T

62 FV(t) and tx

T

is)

F

-strongly

normalising, then t is also)

F

-strongly normalising. Similarly, if X 62FTV(t) and

uX is)

F

-strongly normalising, then u is also)

F

-strongly normalising.

Proof We prove by induction on the normalisation rank of tx

T

that all the one-

step reducts of t are)

F

-strongly normalising. This implies that t is)

F

-strongly

normalising. The one-step reducts are

� t)

F

�x

T

:tx

T

. The term �x

T

:tx

T

is)

F

-strongly normalising because all

reduction sequences of this term are induced by reduction sequences of the

term tx

T

which by assumption is)

F

-strongly normalising.

� t)

I

t

0

. In this case there is a reduction tx

T

)

I

t

0

x

T

and so t

0

x

T

is

)

F

-strongly normalising. By induction, this means that t

0

is)

F

-strongly

normalising.

A similar argument holds for the second half of the lemma. �

The restrictions imposed on the applicability of �-expansions prevent the trian-

gular expansions state explicitly and de�ne this term appearing in equations

?? and ??. However it is possible to create \fake" triangular expansions as the

following reduction sequence shows:

(�x

T!U

:x)(�y

T

:y))

I

(�x

T!U

:�(x))(�y

T

:y))

I

�(�y

T

:y)

and

(�x

T!U

:xy)z)

I

(�x

T!U

:xy)�(z))

I

�(z)y

Even though we seem to have \smuggled in" an expansion of a �-abstraction or a

negatively occuring subterm, this does not introduce in�nite reduction sequences

as each of these fake triangular expansions has required a �-reduction. Formalis-

ing this idea amounts to an analysis of the interaction between substitution and

�-expansion. A relation is substitutive if whenever there are reductions t)t

0

and

u)u

0

then there is also a reduction sequence t[u=x])

�

t

0

[u

0

=x]. Of course the

rewrite relation)

F

is not a congruence and so)

F

-reduction is not substitutive.

The next lemma characterises when substitutivity fails and, in these instances,

exhibits alternative reduction sequences which su�ce for our needs:

8

Lemma 3.4 Let V be a type and t; t

0

; u; u

0

be terms such that t)

R

t

0

and u)

R

u

0

, where R2fI;Fg. Then

� There is a rewrite t[u=x])

R

t

0

[u=x] unless u is an introduction term and

t

0

is obtained by expanding an occurrence of x in t. In this case there are

reduction sequences t[�(u)=x])

�

�

t

0

[u=x])

�

�

t[u=x].

� There is a rewrite t[u=x])

�

I

t[u

0

=x] unless u

0

= �(u) and either t = x or

there are negative occurrences of x in t . In this case t[u

0

=x] and t[u=x]

have a common)

�

I

-reduct.

� There is a rewrite t[V=X])

R

t

0

[V=X].

Proof The three parts of the lemma are proved separately by induction on the

rewrite in question. The �rst part follows because if u is an introduction term,

then �(u))

�

�

u, while the reduct mentioned in the second part of the lemma is

constructed from t[u=x] by expanding those instances of u in t[u=x] which do not

occur negatively. The �nal part of the lemma holds as type substitutions preserve

the neutrality of a term and also the non-atomicity of the type of the term. �

The obvious next step would be to hypothesise that both)

I

and)

F

are lo-

cally conuent. Unfortunately this is not the case, e.g. there are the following

counterexamples:

(�x

T

:t)u

I

-

(�x

T

:�(t))u (�X:t)V

I

-

(�X:�(t))V

t[u=x]

I

?

F

-

�(t)[u=x]

?

I

t[V=X]

I

?

F

-

�(t)[V=X]

?

I

In these examples the bottom arrow is)

�

F

, but not)

�

I

, and so)

I

is not locally

conuent. However local conuence of)

F

can be proved in conjunction with a

slight variant for)

I

.

Lemma 3.5 The relation)

F

is locally conuent and given any divergence t)

I

t

i

(where i = 1; 2), there is a term t

0

such that t

1

)

�

I

t

0

or t

1

)

F

t

0

and similarly

for t

2

.

Proof The proof is by simultaneous induction on the term t, with the tricky

cases handled by lemma 3.4. �

4 A proof of Strong Normalisation for)

F

Our proof of strong normalisation of the relation)

F

is a cross between the

traditional proof of strong normalisation for)

�

[10], and the proof of strong

9

normalisation for the simply typed �-calculus with expansionary �-rewrite rules

[12, 8]. Thus, for every type we shall de�ne a predicate, called a reducibility

candidate, on sets of terms of that type. The set of)

F

-strongly normalising

terms of an atomic type form a reducibility candidate of that type and are used

to construct canonical reducibility candidates of higher types. We prove that

these canonical reducibility candidates contain all terms of that type and, as a

corollary, conclude that all terms are)

F

-strongly normalising.

As with the �rst order case, the de�nition of reducibility candidate must be

altered from that used to prove strong normalisation of)

�

-reduction so as to

cope with the presence of expansionary rewrites. These alterations come in two

parts: (i) the predicate (CR3) is weakened so that the �-expansion of a neutral

term need not be considered and; (ii) a new predicate is introduced to ensure

that reducibility candidates are closed under �-expansion. Formally, a reducibility

candidate of type U is a set P of terms of type U which satisfy the following four

reducibility predicates:

CR1 If t2P then t is)

F

-strongly normalising.

CR2 If t2P and t)

I

t

0

then t

0

2P .

CR3 If t is a neutral term and all)

I

-reducts of t are members of P , then t2P .

CR4 If t2P then �(t)2P .

The set of reducibility candidates of type U is denoted RC(U) and we also de�ne

RC to be the set of all reducibility candidates. Let j j : RC!�(�) be the function

which maps a reducibility candidate to the unique type of the terms which belong

to it. If t 2 S for some reducibility candidate S, then the term t is called S-

reducible | when S is clear from the context we simply say t is reducible. Note

that the alteration to the traditional reducibility predicate (CR3) and the use of

a new predicate (CR4) are exactly as for the �rst order fragment. De�ne

SN(T) = ft2�(T) j t is)

F

-strongly normalising g

Lemma 4.1 If X is an atomic type, then SN(X)2RC(X), while if S 2RC(T) and

x a term variable, then x

T

2S.

Proof We must establish that the set of terms SN(X) satis�es the four re-

ducibility predicates. CR1 is a tautology, while if t is)

F

-strongly normalising

and t)

I

t

0

then, because by lemma 3.2)

I

is a subrelation of)

F

, t

0

is also

)

F

-strongly normalising. CR3 holds because all)

I

-reducts of a term t are

)

F

-strongly normalising by assumption and, because t is a term of atomic type,

t has no �-expansion and so no other reducts. Finally, CR4 also holds because

terms of atomic type have no �-expansion.

The second part of the lemma follows from the reducibility predicate CR3 be-

cause variables are neutral terms and have no)

I

-reducts. Hence any reducibility

candidate must contain all variables of that type. �

10

By lemma 4.1 we know that for atomic types X, RC(X) 6= ;. These reducibility

candidates are now used to construct reducibility candidates of higher type.

4.1 Exponentials

Let R2RC(U) and S2RC(V) be reducibility candidates. De�ne the set of terms

R!S = ft2�(U!V) j 8u2R: if t � u then tu2Sg

Before proving that R!S is a reducibility candidate, we give an alternate char-

acterisation of which �-abstractions are members of R!S:

Lemma 4.2 Let R2 RC(U) and S 2 RC(V) be reducibility candidates. If for all

u2R, the term t[u=x]2S, then �x

U

:t2 (R!S).

Proof First note that by lemma 4.1 if x is a term variable, then x

U

2 R

and hence by assumption t[x=x] 2 S. Thus by CR2 for S, t is)

F

-strongly

normalising. We must prove that if u 2 R, then (�x

U

:t)u 2 S and, by CR3

and the above remark, this may be done by using induction on the sum of the

)

F

-normalisation ranks of t and u to show that all)

I

-reducts of (�x

U

:t)u are

reducible. The one-step)

I

-reducts of (�x

U

:t)u induced by)

F

-rewrites of u are

S-reducible by induction, while given a rewrite t)

F

t

0

and any R-reducible term

v, by lemma 3.4 there is a reduction of at least one of the following forms

t[v=x])

�

F

t

0

[v=x] or t[�(v)=x])

�

F

t

0

[v=x]

Thus t

0

[v=x]2S and so �x

U

:t

0

satis�es the induction hypothesis. Thus, by induc-

tion, (�x

U

:t

0

)u is S-reducible and, as the only other)

I

-reduct is t[u=x] which is

reducible by assumption, the lemma is proved. �

We can now prove that R!S is a reducibility candidate.

Lemma 4.3 If R 2 RC(U) and S 2 RC(V), then the set of terms R!S is a

reducibility candidate.

Proof We shall establish the four properties.

CR1 By lemma 4.1, if x is a term variable, then x

U

2R. Thus if t2R!S, then

tx

U

2 S and so tx

U

is)

F

-strongly normalising. Thus t is)

F

-strongly

normalising | the proof, which can be found in [8, 12], is delicate as not

every reduction sequence from t lifts to one from tx

U

.

CR2 Let t2R!S and t)

I

t

0

. Then for any u2R, tu2S and tu)

I

t

0

u. Thus

t

0

u2S and hence t

0

2R!S.

CR3 Induction on the)

F

-normalisation rank of u is used to prove that if u2R

then tu2S. Because t is neutral, the one-step)

I

-reducts of tu are either

of the form t

0

u where t)

I

t

0

or tu

0

where u)

F

u

0

. The �rst class of terms

are S-reducible because by assumption t

0

2R!S, while terms of the latter

form are S-reducible by induction.

11

CR4 Let t2 (R!S). By lemma4.2 wemust prove that if u2R then (tx

U

)[u=x] =

tu is S-reducible. But this is exactly the de�nition of R!S.

�

4.2 Universally Quanti�ed types

Let T be a type. A reducibility parameter for T consists of a partial function � :

Var

�

!RC such that the free type variables of T are contained in the domain of �,

denoted dom(�). Every reducibility has an underlying type-valued substitution

j�j : Var

�

!�(�) which maps a variable X 2 dom(�) to the type underling the

reducibility candidate �(X). Given a reducibility parameter � for T , de�ne the set

of terms T� as (i) if T = X then T� = �(X), (ii) if T = U!V then T� = U�!V �,

(iii) if T = �Y:W then

T� =

\

V2�(�) S2RC(V)

ft2T j�j j tV 2W�[Y 7! S]g

where �[Y 7! S] is the function �, except that Y is mapped to S. Before showing

that T� is a reducibility candidate, we prove the analogue of lemma 4.2 for

universal types.

Lemma 4.4 Let � be a reducibility parameter for �Y:W such that for every

reducibility candidate S 2 RC(V), W�[Y 7! S] is a reducibility candidate and

w[V=Y]2W�[Y 7! S]. Then �Y:w2 (�Y:W)�.

Proof We have to show that (�Y:w)V 2W�[Y 7! S] for every type V and

reducibility candidate S. By lemma 4.1, SN(Y) 2 RC(Y) and so w 2W�[Y 7!

SN(Y)]. Thus w is)

F

-strongly normalising and the lemma may be proved using

the reducibility predicate CR3 and by induction on the)

F

-normalisation rank

of w. The one-step)

I

-reducts of (�Y:w)V are w[V=Y] and terms of the form

(�Y:w

0

)V where w)

F

w

0

. The �rst term is reducible by assumption while by

lemma 3.4 w

0

satis�es the induction hypothesis and so �Y:w

0

is a member of

(�Y:W)�. Hence �Y:w2 (�Y:W)�. �

Lemma 4.5 If � is a reducibility parameter for T , then T�2RC(T j�j).

Proof The proof is by induction on the type T . If T is a type variable the

lemma is trivial, while if T is an exponential the lemma follows by induction and

lemma 4.3. The only case left is where T = �Y:W .

CR1 Let t 2 T�. As SN(Y) 2 RC(Y), tY 2W�[Y 7! SN(Y)]. Hence tY is)

F

-

strongly normalising and thus so is t.

CR2 If t 2 T� and t)

I

t

0

, then for all reducibility candidates S 2 RC(V),

tV)

I

t

0

V and so, by CR2, t

0

V 2W�[Y 7! S].

12

CR3 Let t be a neutral term, all of whose)

I

-reducts are T�-reducible. The

one step)

I

-reducts of tV are of the form t

0

V where t)

I

t

0

and so, for

any reducibility candidate S 2 RC(V), t

0

V 2W�[Y 7! S]. Thus tV is also

W�[Y 7! S]-reducible and hence t2T�.

CR4 Let t be a member of (�Y:W)�. By lemma 4.4, if we can prove that for

all reducibility candidates S 2 RC(V), (tY)[V=Y] = tY is W�[Y 7! S]-

reducible, then (�Y:tY) 2 (�Y:W)�. But this follows as we assume t 2

(�Y:W)�.

�

In proving strong normalisation we shall need the following lemma relating the

these constructions of reducibility candidates from reducibility parameters to

type-valued substitutions.

Lemma 4.6 Let � be a reducibility parameter for T and V . Then the reducibility

candidates

(T [V=Y])� and T�[Y 7! V �]

are equal.

Proof The proof is by induction on the type T . �

Before proving that all terms are strongly normalising we �nd alternate criteria

for proving a term is a member of a given reducibility candidate.

Lemma 4.7 If t 2 (�Y:W)�, then if � is a reducibility parameter for V , tV 2

(W [V=Y])�.

Proof By hypothesis tV 2W�[Y 7! S] for every reducibility candidate S 2

RC(V). The lemma follows by taking S to be V � and using lemma 4.6. �

Strong normalisation is a corollary to proving that the substitution of reducible

terms into a term produces a reducible term. As there are two types of variable

quanti�ed over in System F this substitution must be de�ned on two levels.

Theorem 4.8 Let t be a term of type T . Suppose the free term variables of t

are amongst ~x which have types

~

U and that � is a reducibility parameter for T .

If u

1

; : : : ; u

n

are U

1

�; : : : ; U

n

�-reducible, then tj�j[~u=~x]2 T�. Thus all terms are

)

F

-strongly normalising.

Proof The proof of the �rst part of the lemma is by induction over the struc-

ture of t and follows the standard procedure. The second part is proved by

instantiating the �rst part with �(X) = SN(X) and u

i

= x

i

so as to obtain t is

reducible and hence by CR1)

F

-strongly normalising. �

13

5 Further Results

We collect here some further results which are of potential use to anyone wishing

to use �-expansions in System F. The �rst states that one can calculate the)

F

-

normal form of a term by contracting all �-redexes and then performing any

remaining �-expansions

Lemma 5.1 If t is a �-normal form and t)

F

t

0

then t

0

is a �-normal form.

Proof The proof is by induction on the rewrite t)

F

t

0

and uses the fact that

if t)

I

t

0

then t and t

0

have the same outer term constructor. �

Infact one can go further and give an explicit function which de�nes the �-normal

form of a term. The �rst step is to characterise the reducts of a variable and this

is done by the function �

�(z

X

) = fzg

�(z

T!U

) = fzg [f�x

T

:v[zu=y] j u2�(x

T

) and v2�(y

U

)g

�(z

�X:T

) = fzg [f�X:v[zX=y] j v2�(y

T

)g

Lemma 5.2 If z is a term variable, then z

T

)

�

F

� i� �2�(z

T

)

Proof lkjsfd �

Now let �

m

(z

T

) be the largest member of �(z). By lemma ?? �

m

(z

T

) is the

long ��-normal form of z

T

. De�ne functions �

I

and �

F

which map terms to terms

as follows

Table 4: De�nition of The Eta-long Form Of A Term

�

I

(x

T

) = x

T

�

I

(tu) = �

I

(t)�

F

(u)

�

I

(tU) = �

I

(t)U

�

I

(�x : A:t) = �x : A:�

F

(t)

�

I

(�X:t) = �X:�

F

(t)

and

�

F

(t) = �(z

T

)[�

I

(t)=z] if t : T

Lemma 5.3 There are reduction sequences t)

�

I

�

I

(t) and t)

�

F

�

F

(t). In

addition �

I

(t) is an)

I

-normal form while �

F

(t) is an)

F

-normal form.

Proof Induction I suppose �

All reduction sequences on a term are essentailly internal reductions followed by

envelopes. A reduction sequence t)

�

F

t

0

is called an envelope if there is a term

�2�(z

T

) (where T is the type of t and z 62FV(t)) such that t

0

= �[t=Z].

14

Lemma 5.4 Every reduction sequence t)

�

F

u factorises into a)

I

-reduction

sequence followed by an envelope.

t)

�

I

t

0

)

�

F

u

Finally we can prove the rather strange fact that all reduction sequences of a

term to another term are of the same length.

Lemma 5.5 If t)

�

F

and t)

�

F

t

0

are reduction sequences between the same

term, then they are of the same length.

Proof Consider the function S : �!N which gives the size of a pre-term

S(x

T

) = 1 S(�x : A:t) = 1 + S(t) S(�X:t) = 1 + S(t)

S(tu) = 1 + S(t) + S(u) S(tU) = 1 + S(t)

Then clearly if t)

F

t

0

, then S(t

0

) = S(t)+ 3. Hence the length of any reduction

sequence t)

�

F

t

0

must be (S(t

0

) � S(t))=3 and this is independant of the order

in which di�erent expansions are applied. �

References

[1] Y. Akama. On Mints' reduction for ccc-calculus. In Typed �-Calculus and

Applications, volume 664 of Lecture Notes in Computer Science, pages 1{12.

Springer Verlag, 1993.

[2] R. Di Cosmo and D. Kesner. Rewriting with polymorphic extensional �-

calculus. Submitted.

[3] R. Di Cosmo and D. Kesner. Combining �rst order algebraic rewrite systems,

recursion and extensional �-calculi. In ICALP, volume 820 of Lecture Notes

in Computer Science, pages 462{472. Springer Verlag, 1994.

[4] R. Di Cosmo and D. Kesner. Simulating expansions without expansions.

Mathematical Structures in Computer Science, 4:1{48, 1994.

[5] R. Di Cosmo and A. Piperno. Expanding extensional polymorphism. In

Typed �-calculus and Applications, volume 902 of Lecture Notes in Computer

Science, pages 139{153. Springer Verlag, 1995.

[6] D. Dougherty. Some �-calculi with categorical sums and products. In Rewrit-

ing Techniques and Applications, volume 690 of Lecture Notes in Computer

Science, pages 137{151. Springer Verlag, 1993.

[7] N. Ghani. ��-equality for coproducts. In Typed �-calculus and Applications,

number 902 in Lecture Notes in Computer Science, pages 171{185. Springer

Verlag, 1995.

15

[8] N. Ghani. Adjoint Rewriting. PhD thesis, University of Edinburgh, Depart-

ment of Computer Science, submitted.

[9] J. Y. Girard. The system F of variable types - 15 years later. Theoretical

Computer Science, 45:159{192, 1986.

[10] J. Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types, volume 7 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, 1989.

[11] G. Huet. R�esolution d'�equations dans des langages d'ordre 1; 2; : : : ; !. Th�ese

d'Etat, Universit�e de Paris VII, 1976.

[12] C. B. Jay and N. Ghani. The virtues of eta-expansion. Journal of Functional

Programming, to appear.

[13] G. E. Mints. Teorija categorii i teoria dokazatelstv.i. Aktualnye problemy

logiki i metodologii nauky, pages 252{278, 1979.

[14] D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proc.

2nd Scandinavian Logic Symposium, pages 235{307. North Holland, 1971.

16

