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Abstract

A simple graph G = (V;E) is called l

1

-graph if, for some �,n 2 IN , there

exists a vertex-addressing of each vertex v of G by a vertex a(v) of the n-

cube H

n

preserving, up to the scale �, the graph distance, i.e. �d

G

(v; v

0

) =

d

H

n

(a(v); a(v

0

)) for all v 2 V . We distinguish l

1

-graphs between 1-skeletons

of a variety of well known classes of polytopes: semi-regular, regular-faced,

zonotopes, Delaunay polytopes of dimension � 4 and several generalizations

of prisms and anti-prisms.
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1 Introduction

A connected simple graph G is called an l

1

-graph if its (shortest path) distance

matrix d

G

, seen as a metric space (d;X) on the set X of vertices of G, is embeddable

isometrically into some l

m

1

-space. The l

m

1

-space is IR

m

with l

1

-metric

d

l

1

(x; y) = jjx� yjj

l

1

=

m

X

i=1

jx

i

� y

i

j:

Equivalently, see [AsDe80], G is an l

1

-graph i� d

G

is embedded isometrically into the

restriction of l

n

1

on an n-cube up to a certain scale � . Clearly, � = 1 (respectively,

� = 1; 2) means that G is an isometric subgraph of the n-cube graph (respectively,

of the n-half-cube graph). We denote these embeddings by G ! H

n

(respectively,

G!

1

2

H

n

).

Any metric subspace A of l

m

1

is (see [Dez60]) hypermetric, i.e. it satis�es

X

1�i<j�n

b

i

b

j

d

l

1

(x

i

; x

j

) � 0 (1)

for every distinct x

1

; x

2

; :::; x

n

2 A, b := (b

1

; :::; b

n

) 2 ZZ

n

, and

P

n

i=1

b

i

= 1.

Clearly, in the special case b = (1; 1;�1) the above inequality is the classical tri-

angle inequality. Call the above inequality 5-gonal (2k+1-gonal, respectively) if

b = (1; 1; 1;�1;�1) (

P

i

jb

i

j = 2k + 1, respectively). Call a graph G hypermet-

ric (5-gonal, (2k+1)-gonal), if d

G

is hypermetric (respectively, satis�es 5-gonal, the

(2k + 1)-gonal inequalities). Any (2k + 1)-gonal graph is (2k � 1)-gonal, [Dez60],

but K

2k+1

� C

k+1

is an example of a (2k � 1)-gonal which is not (2k + 1)-gonal for

any k � 2. So, for a graph G the following chain of implications holds

(G! H

n

2

)) (G!

1

2

H

n

1

)) l

1

-graph) hypermetric) (2k + 1)-gonal) 5-gonal

In this paper we systematically study well known polytopal graphs in connec-

tion within the above chain of notions, in particular, looking for l

1

-graphs within

1-skeletons of polytopes with a degree of Euclidean regularity. These polytopes in-

clude: regular-faced polyhedra, semi-regular polytopes, zonotopes, Delaunay poly-

topes of dimension � 4, and some generalizations of prisms and anti-prisms. In

[DeSt96] one can �nd a related study of isometric, up to a scale, embeddings of

1-skeletons of in�nite graphs (of Archimedean and Laves plane tilings) into cubic

lattices.

Here are other instances of embeddings of graphs which are related to our subject:

1) well known cubical graphs (induced subgraphs of hypercubes) and a hypercube

embedding with a small distortion (of distances) used in computer architecture.

2) isometric (or isometric with a small distortion) embeddings of graphs into

other (than l

1

-spaces) normed spaces; see [LLR95] and the huge bibliography there.

The following criterion for a graph G to be an l

1

-graph is known, [Shp93],

[DeGr93]: G is an l

1

-graph i� it is an isometric subgraph of the direct product of

2



half-cubes and Cocktail-Party graphs K

m�2

(1-skeleton of the cross-polytope �

m

).

Even, a good polynomial algorithm for a recognition of l

1

-graphs is known [DeSp96].

So the \raisons d'être" for this paper are the following:

1.{ To classify l

1

-graphs within important classes of graphs. Until now this has

been achieved only for strongly regular graphs ([DeGr93], [Koo90]), and two classes

of planar (mainly non polyhedral) graphs ([PSC90], [DeTu96]).

2.{ To �nd better criteria and algorithms for the recognition of l

1

-graphs within

special classes of graphs.

3.{ Since an l

1

-embedding produces a binary matrix, we want to look for new

codes, having, in particular, symmetries of the original polytopes. Besides, l

1

-

embeddings, for example, of chains of hexagons (= benzenoid chains) and some

fullerenes (see x4.5) give new ways of an encoding of chemically-relevant polyhedra

and counting molecular parameters depending only on graph distances.

4.{ To confront metrics of skeletons of polytopes, distinguished by their Eu-

clidean, l

2

-properties, to a larger l

1

-metric. (We remind that an l

p

-space is a metric

subspace of an l

1

-space for any 1 < p � 2). For example, we shall see below how

strong \l

1

-ness" occurs in zonotopes and interesting 3-polytopes.

The somewhat surprising but easy observation that \interesting" polyhedra have

l

1

-skeletons was one of the origins of this work.

P !

1

2

H

10

if P is one of 5 Platonic solids,

P ! H

6

if P is one of 5 Voronoi polyhedra (see x6.1)

P !

1

2

H

6

if P is one of 5 Delaunay polyhedra (�

3

, �

3

, 


3

, Prism

3

, Pyr

4

),

P !

1

2

H

6

if P is one of 5 chemically important (for main group elements)

coordination polyhedra (�

3

, �

3

, icosahedron, Prism

3

, Pyr

4

),

P ! H

6

if P is one of 5 isozonohedra (i.e. zonohedra with the same rhombic faces,

see x6.1): 


3

, rhombic dodecahedron, second (Bilinski's) rhombic dodecahedron,

rhombic icosahedron and triacontahedron. See [Cox73] for names of those polyhedra.

Also 1-skeletons of 3 regular partitions of a plane are scale 2 isometrically em-

beddable into the cubic lattice ZZ

6

. But in IR

4

, \interesting" non 5-gonal polytopes

appear; for example, the 24-cell which is regular and is a Voronoi polytope and a

coordination polytope (for the root lattice D

4

= D

�

4

).

We are grateful to the SFB 343, University of Bielefeld, for their hospitality while

we carried out much of this work. We would like to thank Walter Deuber for his

kind invitation, interest and support. We are grateful to Andrea Walz for drawing

the computer artwork.

2 Some notation, properties of polytopal graphs

and hypermetrics

Here we give de�nitions and notation of graphs and polytopes that we use below.

A polytope of dimension n is called n-polytope. A 3-polytope is called a polyhe-

dron. The polytope P

�

is dual of the polytope P , and (P

�

)

�

= P . For a polytope

3



P , we denote by G(P ) its 1-skeleton. In other words, G(P ) is a graph on vertices

of P such that two vertices are adjacent in G(P ) i� they are endpoints of an edge

of P .

We use the following usual notation of graphs.

K

n

is the complete graph on n vertices,

K

k

1

;:::;k

n

is the multipartite graph with n parts of sizes k

1

; :::; k

n

. If n = 2 and

k

1

= p; k

2

= q, we have K

p;q

, the bipartite graph.

If k

i

= 2 for all i, then we have K

n�2

, the Cocktail Party graph.

T (n) is the triangular graph on

�

n

2

�

vertices, the line graph of K

n

,

J(n; k), 1 � k < n, is the Johnson graph, in particular J(n; 1) = K

n

, J(n; 2) =

T (n),

C

n

= C

i

1

;:::;i

n

is the cycle on n vertices i

1

; :::; i

n

in this order.

P

m

= P

i

1

;:::;i

m

is the path on the m vertices i

1

; :::; i

m

in this order,

H

n

is the cube-graph,

1

2

H

n

is the half-cube-graph,

G� e is the graph G without its edge e,

rG denotes the suspension of G, i.e. the graph G with a vertex which is not in

G and is adjacent to all vertices of G,

r

m

G = rr:::r

| {z }

m

G.

The �rst 3 of the following notation of polytopes are used in [Cox73].

�

n

is the n-simplex, and G(�

n

) = K

n+1

,

�

n

is the n-cross-polytope, and G(�

n

) = K

n�2

,




n

is the n-cube, and G(


n

) = H

n

,

1

2




n

is the n-half cube, and G(

1

2




n

) =

1

2

H

n

,

ambo-�

n

is the convex hull of the midpoints of all edges of �

n

, and G(ambo-

�

n

) = T (n+ 1).

C

n

is a planar n-gon, and G(C

n

) = C

n

.

Note that �

2

�

=

ambo-�

2

= C

3

,

1

2




3

= �

3

,

1

2




4

= �

4

, ambo-�

3

= �

3

.

If P is an n-polytope, then Pyr(P ) is the (n+1)-pyramid with the base P , and

G(Pyr(P )) = rG(P ). The apex of Pyr(P ) is its vertex which does not lie in the

n-space spanned by P and is adjacent to all vertices of P . An (n + 1)-bipyramid

BPyr(P ) with the n-base P We have

Pyr(Pyr(:::P yr

| {z }

m

(P ):::)) := Pyr

m

(P ), and G(Pyr

m

(P )) = r

m

G(P ).

Pyr

n

:= Pyr(C

n

) is a 3-pyramid, and G(Pyr

n

) = rC

n

.

BPyr(P ) is (n + 1)-bipyramid with the n-base P . It has two apexes which are

opposite with respect to the hyperplane spanned by P . G(BPyr(P )) = r

2

G(P )�e,

where e is the edge connected in r

2

G(P ) the two apexes.

A t-capped polyhedron is one obtained from a polyhedron P as follows. Choose

some t faces of P (usually with a maximal number of vertices). To each chosen face

add a vertex so that this vertex does not lie in the plane spanned by the face and is

connected by an edge to each vertex of the face.
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If P

i

is an n

i

-polytope, i = 1; 2, then the direct product P

1

� P

2

is an (n

1

+ n

2

)-

polytope, and G(P

1

� P

2

) = G(P

1

)�G(P

2

).

Prism(P ) = �

1

� P is the prism with the base P ,

Prism

n

= Prism(C

n

).

APrism

n

is the anti-prism with the base C

n

. It is a polyhedron having two

n-gon faces (1; 2; :::; n), (1

0

; 2

0

; :::; n

0

) and all edges (i; i

0

), (i + 1; i

0

), 1 � i � n with

addition modulo n.

G

1

� G

2

means that the graph G

1

is an isometric subgraph of G

2

.

Remind that

G!

1

2

H

n

means that G is isometrically embeddable into H

n

with the scale 2. Similarly, we

write G!

1

2m

H

n

if G is embeddable into H

n

with the scale 2m. Also

Pyr

m

(�

n

) = �

n+m

, Pyr

m

(�

n

) � �

n+m

, BPyr

m

(�

n

) = �

n+m

, Pyr

m

(Pyr

n

) �

�

m+3

,

�

�

n

= �

n

, 


�

n

= �

n

, Prism

�

n

= BPyr

n

.

We suppose that de�nitions of Voronoi, Delaunay and coordination (= contact)

polytopes are known to the reader; see [CoSl87] for details.

2.1 Vector representations of l

1

-metrics and hypermetrics

All l

1

-metrics d on n points (or l

1

-metric spaces (d;X), jXj = n) form a cone in

�

n

2

�

-dimensional space of all matrices kd(i; j)k, 1 � i < j � n. This cone is called

the cut cone Cut

n

. The extreme rays of Cut

n

are cut metrics �(S) for all S � X

containing a given point of X, where (�(S))(i; j) = 1 if jS \ fijgj = 1, and =0

otherwise. Some of facets of Cut

n

are described by the hypermetric inequalities (1).

Moreover, for n � 6, all facets of Cut

n

are hypermetric. For n � 7, the cut cone has

non hypermetric facets, and not each hypermetric inequality (1) determines a facet.

The cut cone Cut

n

lies inside a hypermetric cone Hyp

n

, the cone of all metrics which

satis�es the hypermetric inequalities (1) for all b 2 Z

n

with

P

n

i=1

b

i

= 1.

It is known [DGL95] that Hyp

n

is polyhedral, i.e. it has a �nite number of facets

(and extreme rays). A hypermetric lying on an extreme ray is called extreme.

Any hypermetric d(i; j) on n points can be represented by a generating n-subset

of the set of vertices of a Delaunay polytope, with d(i; j) equal to the squared Eu-

clidean distance between corresponding vertices. This Delaunay polytope is uniquely

constructed by the hypermetric d, and its dimension is not greater than n� 1.

A Delaunay polytope of a lattice is the convex hull of lattice points on the bound-

ary of a locally maximal empty (from lattice points) sphere in this lattice. Voronoi

proved that there is a �nite number of combinatorial types of Delaunay polytopes

in each dimension.

Let P be the Delaunay polytope vertices of which represent a hypermetric d(i; j),

1 � i < j � n, and let r be the radius of the empty sphere circumscribed P . If we

take the center of P as a new origin, then vertices of P are represented by vectors

5



of the same length r. A subset X of vertices of P is called generating if every vertex

of P is an integer a�ne combination of vertices from X.

Let v

i

represents a vertex i 2 X. Then we have

d(i; j) = (v

i

� v

j

)

2

= 2r

2

� 2v

i

v

j

; (2)

where v

i

v

j

is the inner products of these vectors. If X = f1; :::; ng and v represent

a vertex of P , we have

v =

n

X

i=1

b

i

v

i

; where

n

X

i=1

b

i

= 1 and b

i

2 ZZ:

Every integer combination of v

i

de�nes a point of a lattice whose Delaunay polytope

is P . Since P is inscribed in the empty sphere of radius r, we have

(

n

X

i=1

b

i

v

i

)

2

� r

2

:

This inequality holds as equality if the vector

P

n

i=1

b

i

v

i

represents a vertex of P .

Expanding this inequality and using the equality (2), we obtain the hypermetric

inequality (1). We see that any vertex of P determines an equality which is satis�ed

by the hypermetric d. In particular, if n > k + 1, where k is dimension of P ,

then there is an a�ne integral dependency

P

n

i=1

b

i

v

i

= 0 with

P

n

i=1

b

i

= 0, b

i

2 ZZ,

between vectors v

i

, i 2 X. The expansion of the equality (

P

n

i=1

b

i

v

i

)

2

= 0 determines

a hypermetric equality which is satis�ed by d. This equality is called an m-gonal

equality for even m =

P

n

i=1

jb

i

j.

Now we present a method of an economic recognition of l

1

-embeddable metric

spaces often used in constructions below. If d is an l

1

-metric, then P can be iso-

metrically inscribed into an m-dimensional box such that the set of vertices of P is

a subset of all vertices of the box, and m � n � 1 � k. If d is an integral l

1

-metric

then P can be isometrically inscribed into a cube 


m

, and G(P ) is either ! H

m

or

!

1

2

H

m

. Below, we denote by a(v) � f1; 2; :::; mg the vertex of 


m

corresponding

to v.

When a graph G is embedded into a hypercube with a scale �, then endpoints of

every edge e of G are mapped into opposite vertices of a �-dimensional cube. This

cube is spanned by a �-set N(e) of mutually orthogonal vectors f

i

, i 2 N(e). In

other words, each edge e of G is represented by the vector

P

i2N(e)

f

i

. Conversely,

we can say that each vector f

i

de�nes a zone Z

i

= fe : N(e) 3 ig edges of which

determine a cut of the graph G. Each cut corresponds to a subset S of vertices of G

such that edges of the cut have exactly one vertex in S. Hence the indicator vector

of the zone Z

i

has the form �(S

i

) for some S

i

.

It is shown in [DeSp96] that the amount p(e; e

0

) = jN(e)\N(e

0

)j can be computed

from the distance matrix d. Moreover, p(e; e

0

) takes only 3 values: 0,

�

2

and �. Since

p(e; e

0

) is an integer, it takes only 2 values if � is odd. In the case of odd � the

zones are either disjoint or coincide. Hence any odd � gives, in a sense, the same

6



embedding as an embedding with � = 1, when all zones are disjoint; above we

denoted this embedding by ! H

n

. This is the case of zonotopes (see x6). For � = 1

the zones determine uniquely the expansion d

G

=

P

i

�(S

i

) with 0,1 coe�cients.

Most of the embeddings with an even � are with � = 2. In particular, this is the

case of this paper; we denoted above this embedding by!

1

2

H

n

. For � = 2, the zone

determine the expansion d

G

=

1

2

P

i

�(S

i

) with half-integer coe�cients. In the case

� = 2 the function p(e; e

0

) takes the values 0,1,2. Obviously, p(e; e

0

) = 2 if and only

if N(e) = N(e

0

). Hence the equality p(e; e

0

) = 2 determines an equivalence relation

on all edges of the considered graph. Clearly, if p(e; e

0

) = 2 and p(e; e

00

) = 1, then

p(e

0

; e

00

) = 1. Hence we obtain the following criteria of an l

1

-embedding of a graph G

into

1

2

H

n

: the function p(e; e

0

) (computed from the distance matrix d) should have

the following properties:

(1) p(e; e

0

) is nonnegative and integral,

(2) the equality p(e; e

0

) = 2 determines an equivalence relation,

(3) if p(e; e

0

) = 2, then p(e; e

00

) = p(e

0

; e

00

) for every edge e

00

.

If at least one of this conditions is violated, then G is not l

1

-embeddable. But

it can be hypermetric. We give criteria for a non l

1

-graph to be hypermetric in the

end of this section.

We seek l

1

-embeddings of graphic metric spaces (d;X) of 1-skeletons of polytopes

with the set of vertices X. This means that we seek a representation of points of

X by vertices v

i

, i 2 X, of a Delaunay polytope P . If n > k + 1 (k =dimP ),

then some vectors v

i

can be linearly and integrally expressed through other vectors.

Usually, one can always �nd k + 1 a�nely independent vectors which compose an

a�ne lattice base of P . (This fact is not proved in general, but we do not know any

example of a Delaunay polytope without a lattice base).

So, it is clear that if a metric space (d;X) determines a k-dimensional Delaunay

polytope, then it is su�cient to �nd a representation of k + 1 a�nely independent

points of X. For a graphic metric space (d;X), it is usually not di�cult to �nd

some dependencies of points of X.

We give some con�gurations corresponding to dependencies.

1) The most simple con�guration consists of 4 points forming a square. Four

points of a distance space (d;X) compose a square if we can label the points by the

numbers 1,2,3,4 such that d(1; 2) = d(3; 4), d(1; 4) = d(2; 3) and d(1; 3) = d(2; 4) =

d(1; 2) + d(1; 4). We see that any 3 points of the square satisfy a triangle equality,

and all 4 points satisfy a 4-gonal equality. If d

G

is graphic, and d(i; i + 1) = 1,

1 � i � 4, (addition modulo 4), then the 4 points induce a square = 4-cycle of the

graph G.

2) A hexagon dependency. Six points of (d;X) compose a hexagon if they can

be labeled by numbers i, 1 � i � 6, such that d(i; i + 1) = a (the addition modulo

6), and d(i; j) = 2a for other pairs of these 6 points. Note that any 5 points of the

hexagon satisfy a 5-gonal equality, and all 6 points satisfy a 6-gonal equality.

We formulate the above as the following

7



Lemma 1 Let a hypermetric space (d;X) contains i squares and j hexagons. Then,

deleting i+ j points of X which cuts all squares and hexagons, we obtain a reduced

hypermetric space (d

0

; X

0

) which uniquely determines the original metric on the set

X.

Similarly one can de�ne other con�gurations. If we �nd a con�guration, we can

delete any point of the con�guration and seek a representation of other points. This

method of reducing of an embedding problem works very well if the ground graph

of a graphic metric has many squares.

Note that if d

0

of Lemma 1 is not hypermetric, then d is not hypermetric, too.

But if d is not hypermetric, it can occur that d

0

is hypermetric but d is not. Then

the above reduction does not work.

If d

G

is a non-decomposable path metric of a graph G, which is a hypermetric

but not l

1

-graph, then d

G

is an extreme hypermetric and G is an isometric subgraph

of the Gosset graph G(3

21

) [DeGr93]. The Gosset graph has 56 vertices, its diameter

is 3, and for every its vertex v there is exactly one vertex at distance 3. The vertices

of the Gosset graph can be labeled by the pairs ij and ij

�

, 1 � i < j � 8, such that

the distances between corresponding vertices are as follows:

d(ij; kl) = jfijg�fklgj, d(ij; kl

�

) = 3� d(ij; kl). In particular, d(ij; ij

�

) = 3.

We have the following criterion of a not l

1

-metric d

G

to be hypermetric, and

therefore extreme (see [DGL95]).

Lemma 2 Let a graphic metric d

G

not be l

1

-metric. Then d

G

is a hypermetric if

and only if

(i) the graph G has diameter at most 3,

(ii) G contains 7 vertices such that the restriction of d

G

on these vertices is one

of 26 extreme hypermetrics described by graphs G

i

, 1 � i � 26, of [DGL95],

(iii) if G has diameter 3 then for every vertex v of G there is at most one vertex

at distance 3 from v.

The following result was proved �rst in [CDG96].

Lemma 3 Let G be an `

1

-graph. Then G is an isometric subgraph of a halved cube,

i.e. its scale is � 2 if either

(i) G is planar,

or (ii) G is � 4-partite.

Proof.

If G is hypermetric, then it generates a Delaunay polytope P(G), and contains

an a�ne basis of P(G). If G is an `

1

-graph and its scale > 1, then P(G) is a direct

product of halved cubes and cross-polytopes. An a�ne basis of a direct product

is a union of a�ne bases of the components with one point common. Any a�ne

basis of a cross-polytope �

n

contains an (n-1)-dimensional simplex. The skeleton

of this simplex is the complete graph K

n

. Hence, if G is planar, the corresponding

direct product P(G) can contain cross-polytopes �

n

only for n < 5. The skeletons

8



of �

n

=cocktail party graphs are isometric subgraphs of a halved cube if n < 5. A

direct product of halved cubes

1

2

H

q

i

is an isometric subgraph of the half-cube

1

2

H

n

with n =

P

i

q

i

. The case (1) of lemma 3 follows. The same proof is valid for the

case (ii) since � 4-partite graph does not contain K

5

. 2

We use the opportunity to correct a misprint of the paper [DGL95]. The graph

G

18

belongs to the class q = 11, but not to the class q = 12 as it is shown on Fig.

5.14.

3 Regular-faced polytopes

Convex regular polytopes are de�ned by induction on dimension. In IR

2

, they are

regular polygons. A regular n-polytope (of dimension n), for n � 3, is one having

only regular facets and regular vertex �gures (the convex hull of all midpoints of

edges through a given vertex).

A regular-faced n-polytope is one having only regular facets. A semi-regular n-

polytope is a regular-faced n-polytope with equivalent vertices (i.e. the group of

symmetries of the polytope is transitive on vertices). It is quasi-regular if, moreover,

this group is transitive on edges. All regular-faced polytopes are known.

Regular 3-polytopes (Platonic solids) and semi-regular 3-polytopes (Archime-

dean solids, prisms, anti-prisms) have been known since antiquity. Archimedean

polyhedra (and their dual, Catalan polyhedra) were rediscovered during the Renais-

sance, and Kepler gave them their modern names.

Semi-regular n-polytopes were found in 1900 by T.Gosset; [Mak88] for n = 4

and [BlBl91] for any n proved that the Gosset's list is complete (see [Cox73] and

[Gr�u67] for the historical account).

All 92 regular-faced 3-polytopes was found by the work of many people, es-

pecially, of N.W.Johnson and V.A.Zalgaller (see, for example, [Ber71], [Zal69],

[KoSu92]). Finally, in [BlBl91], the complete list of regular-faced n-polytopes is

given.

Below we report the status of regular-faced n-polytopes (see x4 for 92 not semi-

regular ones in IR

3

) versus l

1

-ness of their skeletons. By abuse of language we often

denote a polytope by its skeleton.

3.1 Regular polytopes

a) for n = 2: C

n

!

1

2

H

n

, and moreover C

2m

! H

m

(including both Delaunay

2-polytopes C

3

, C

4

, and both Voronoi 2-polytopes C

4

, C

6

).

b) for n = 3: icosahedron!

1

2

H

6

, dodecahedron!

1

2

H

10

(this was proved in [Kel75]

in weaker form of the scale 4 embedding).

c) G(


n

) = H

n

, G(�

n

) = K

n+1

!

1

2

H

n+1

, G(�

n

) = K

n�2

!

1

2m

H

4m

i� K

n

!

1

2m

H

4m

.
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In fact, l

1

-embeddings of �

n

and �

n

are not unique for n � 4. In particular,

K

n

!

1

dn=2e

H

2dn=2e�1

for n � 0; 3 (mod 4) and K

n

!

1

2dn=2e

H

4dn=2e�2

for n � 1; 2

(mod 4). Those embeddings give the minimal value 2 �

1

dn=2e

of the ratio

N

2m

for

any l

1

-embedding K

n

!

1

2m

H

N

. Hence G(�

n

) !

2

n+1

H

n

for n � 3 (mod 4). Also

G(�

n

) !

1

dn=2e

H

2dn=2e

for n � 0; 3 (mod 4) and G(�

n

) !

1

2dn=2e

H

4dn=2e

for n � 1; 2

(mod 4).

d) for n = 4: 24-cell is non 5-gonal, 600-cell is not 7-gonal, (see [Ass81]), 120-cell is

not 5-gonal (see [DeGr96]).

3.2 Semi-regular (not regular) polytopes

They belong to the following Gosset's list (see, for example, [BlBl91]; we use notation

of [Cox73]).

a) In dimension 4: 0

21

with the skeleton T (5) !

1

2

H

5

, snub 24-cell (tetricosa-

hedric) and octicosahedric polytope (last two are undecided),

In dimension 5: 1

21

with the skeleton

1

2

H

5

.

In dimension 6: 2

21

with hypermetric, but not l

1

skeleton.

In dimension 7: 3

21

with hypermetric, but not l

1

skeleton.

In dimension 8: 4

21

, skeleton of which is the root graph of all 240 roots of the

root system E

8

. It is not l

1

-graph, since it contains the skeleton of 2

21

as an induced

subgraph of diameter 2, and therefore as an isometric subgraph.

b) In dimension 3:

Prism

n

!

1

2

H

n+2

, and, for even n, ! H

n

2

+1

,

BPyr

n

= Prism

�

n

(

!

1

2

H

4

for n = 3; 4;

non 5-gonal for n � 5;

APrism

n

!

1

2

H

n+1

,

In fact, remember that the vertices of APrism

n

are i; i

0

, 1 � i; i

0

� n with edges

(i; i + 1) (i; i

0

), (i + 1; i

0

) (i

0

; i

0

+ 1) (here and below the addition is modulo n). We

give embeddings APrism

n

!

1

2

H

n+1

(addressing the vertex v to a subset a(v) of

f1; 2; :::; n; n+ 1g) for 3 cases (below 1 � i � n).

1) n = 2k + 1 is odd:

a(i) = fi; i+ 1; :::; i+ k � 1g, a(i

0

) = fn+ 1g [ fi + kg [ a(i),

2) n = 2k + 2 is even:

a(i) = fi; i+ 1; :::; i+ kg,

a(i

0

) =

(

(fn+ 1g [ a(i))� fig if i is odd,

fn+ 1g [ a(i)) [ fi+ k + 1g if i is even;

3) n = 4k is even:

a(i) = fi; i+ 1; :::; i+ 2k � 1g,

a(i

0

) =

8

>

<

>

:

(fn + 1g [ a(i))� fig if either 1 � i � 2k and i is odd,

or 2k < i � 4k and i is even,

fn + 1g [ a(i)) [ fi+ k + 1g otherwise.
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APrism

�

n

(

= H

3

for n = 3;

non 5-gonal for n � 4:

We give in Table 2 the results on l

1

-ness of Archimedean polyhedra and their

duals from [DeSt96].

Remark 1. \The 14th Archimedean solid" (twisted rhombicuboctahedron,

unique new polyhedron if we weaken the vertex transitivity to the uniqueness of

the vertex �gure) and its dual are non 5-gonal.

Remark 2. [PSC90] gives P !

1

2

H

m

for any 3-polytope without triangular

faces and without vertices of degree 3. The truncated icosahedron above provides

an example of a 3-polytope without triangular faces (but with all vertices of degree

3) which is non 5-gonal. Also, non 5-gonal polyhedra 6

�

, (6

0

)

�

, APrism

�

4

, M

�

20

(see

x5 below) have only square faces.

Table 2

# polyhedron P emb. of P D(P) emb. of P

�

D(P

�

)

1 truncated tetrahedron non 5-gonal 3

1

2

H

7

2

2 truncated octahedron H

6

6 non 5-gonal 3

3 truncated cube non 5-gonal 6

1

2

H

12

3

4 cuboctahedron non 5-gonal 3 H

4

4

5 truncated cuboctahedron H

9

9 non 5-gonal 4

6 rhombicuboctahedron

1

2

H

10

5 non 5-gonal 5

7 snub cube

1

2

H

9

4 non 5-gonal 7

2

0

truncated icosahedron non 5-gonal 9

1

2

H

10

5

3

0

truncated dodecahedron non 5-gonal 10

1

2

H

26

4

4

0

icosidodecahedron non 5-gonal 5 H

6

6

5

0

truncated icosidodecahedron H

15

15 non 5-gonal 6

6

0

rhombicosidodecahedron

1

2

H

16

8 non 5-gonal 8

7

0

snub dodecahedron

1

2

H

15

7 non 5-gonal 15

3.3 Regular-faced (not semi-regular) n-polytopes for n � 4

Going through the list of those polytopes given in [BlBl91], we obtain

G(Pyr(�

n�1

)) = K

1;2;:::;2

� K

n�2

and G(BPyr(�

n�1

)) = K

n+2

� e = K

2;1;:::;1

�

K

(n+1)�2

;

so, both these graphs are l

1

-graphs. Besides, for the following two 4-polytopes

we have

Pyr(icosahedron) is not 7-gonal (Fig.1f), BPyr(icosahedron) is non 5-gonal (its

skeleton contains K

5

� P

2

� P

3

).

The union of 0

21

and Pyr(�

3

) (where �

3

is a facet of 0

21

) !

1

2

H

5

.

Finally, the set of polytopes arising from the 600-cell by special cuts of vertices,

is undecided.
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4 Prismatic graphs

In this section we group observations on l

1

-status of some generalizations and rela-

tives of prisms and anti-prisms.

4.1 Moscow and Globe graphs

Call M

m

n

:= P

m

� C

n

(m � 2; n � 3) Moscow graph, since its path-metric is called

(in computer geometry) Moscow metric. This graph is sometimes called annular

city street graph, and this metric also appears under the name radar-discrimination

distance. Prism

n

is the case m = 2 of Moscow graph.

Clearly, P

m

� C

n

!

1

2

H

n+2m�2

, since P

m

! H

m�1

(so P

m

!

1

2

H

2m�2

) and

C

n

!

1

2

H

n

. Also P

m

� C

2k

! H

k+m�1

, since C

2k

! H

k

.

The Moscow graph is polyhedral, since it is planar and 3-connected. This poly-

hedron can be seen as a tower of m� 1 copies of Prism

n

put consecutively one on

the top of other.

Call the skeleton of the dual M

m

n

the Globe graph and denote it 2-M

m�1

n

. It can

be seen as a 2-capped Moscow graph M

m�1

n

= P

m�1

� C

n

and as (m-1)-elongated

bipyramid. For m = 1, it is the usual BPyr

n

and, for m = 2, it is the usual

elongated bipyramid; # #34,35,36 of the list of 112 regular-faced polyhedra are the

cases n = 3; 4; 5 of 2-M

2

n

.

Proposition 1

2-M

m

n

(

!

1

2

H

2m+2

if n = 3; 4

is non 5-gonal if n � 5:

Proof. Let 0, ij (1 � i � m, 1 � j � n), m be the mn + 2 vertices of the Globe

graph 2-M

m

n

such that all its edges are either on meridian paths P

0;1j;:::;(m�1;j);m

(1 � j � n) or on parallel cycles C

i1;:::;in

(1 � i � m� 1). For n = 3, an embedding

in

1

2

H

2m+2

is given by

a(0) = ;, a(m) = f1; :::; 2m+ 2g, a(ij) = f1; j + 1g [ ft 2 ZZ : 5 � t � 2i+ 2g.

For n = 4 such an embedding is given by

a(0) = ;, a(m) = f1; :::; 2m+ 2g, a(ij) = fj; j + 1 (mod 4)g [ ft 2 ZZ : 5 � t �

2i+ 2g.

We show non 5-gonality of the Globe graph by exhibiting 5 vertices [x; y; a; b; c]

such that

(i) d(x; y) + (d(a; b) + d(a; c) + d(b; c)) > (d(x; a) + d(x; b) + d(x; c)) + (d(y; a) +

d(y; b) + d(y; c)).

They are

[0,2;11,12,14] for m = 2, [0,3;11,22,24] for m = 3,

[0; m; 11; dm=2e3; (m� 1)5] for m � 4.

(i) above take the form:

12



for m = 2: 2+ (1+ 2+2) > 3+ 3, for m = 3: 3+ (2+ 3+2) > 5+ 4, for m � 4:

m+((1+dm=2e)+(m�2+1)+(m+1�dm=2e) = 3m+1 > (1+dm=2e+(m�1))+((m�

1)+(m�dm=2e)+1) = 3m if n = 5,m+((1+dm=2e)+(m�2+2)+(m+1�dm=2e) =

3m+ 2 > (1 + dm=2e+ (m� 1)) + ((m� 1) + (m� dm=2e) + 1) = 3m if n � 6. 2

Finally, we consider the graph 1-M

m

n

:=2-M

m

n

with the deleted vertex m, i.e.1-

capped Moscow graph. It is the usual pyramid for m = 1. Clearly, it is the skeleton

of a self-dual polyhedron.

Corollary 1 1-M

m

n

(

!

1

2

H

2m+n�2

if n = 3; 4; 5

is non 5-gonal for n � 6

Proof. In fact, 1-M

m

n

is an isometric subgraph of 2-M

m

n

if n � 5. But, the cycle

C

(m�1)1;:::;(m�1)n

is not an isometric subgraph (the polar way via 0 is shorter than

within this cycle) i� bn=2c > 2(m � 1). So, embeddings for n = 3; 4 come by

deleting the vertex m. For n = 5, an embedding is given by a(0) = ;, a(ij) =

fj; j + 1((mod 5)g [ ft 2 ZZ : 6 � t � 2i+ 3g, for 1 � i � m, 1 � j � 5. For n � 6,

one can �nd (see Fig.4a for n = 6) 5 points violating 5-gonal inequality. 2

Another (than Moscow graph) generalization of Prism

n

= C

2

� C

n

is the Lee

graph

Q

t

i=1

C

n

i

; its path metric is the Lee distance

d

Lee

(x; y) =

P

t

i=1

min(jx

i

� y

i

j; n

i

� jx

i

� y

i

j).

used in the coding theory (a discrete analog of elliptic metric). Remind that H

4

=

C

4

� C

4

, since C

4

= H

2

.

Clearly,

Q

t

i=1

C

n

i

!

1

2

H

n

(and moreover, ! H

n

2

if all n

i

are even), where n =

P

t

i=1

n

i

.

Q

t

i=1

P

n

i

! H

n�t

; it is a grid graph with usual grid distance, i.e. l

1

-distance

P

t

i=1

jx

i

� y

i

j.

Q

t

i=1

K

n

i

!

1

2

H

n�t

; it is the Hamming graph with Hamming metric

jf1 � i � t : x

i

6= y

i

gj.

4.2 Stellated k-gons

Stellated k-gon Stel

k

is the 2k-cycle C

1;1

0

;2;2

0

;:::;k;k

0

with the additional edges of the k-

cycle C

1;2;:::;k

. So, Stel

k

is C

k

with a triangle on each edge. Besides Stel

k

is APrism

k

without the edges of the k-cycle C

1

0

;2

0

;:::;k

0

. Also it is an isometric subgraph of skele-

tons of many important polyhedra, for example, of icosahedron and 3 others (with

8,9,10 vertices) convex deltahedrons for k = 3, of cuboctahedron and snub cube for

k = 4 of icosidodecahedron and snub dodecahedron for k = 5, of Archimedean tiling

(3,6,3,6) for k = 6. For n = 5; 6; 8 it is used as a well known symbol (Red Star, Star

of David, Muslim Star, respectively).

Denote by Sun

2k

the isometric subgraph of Stel

2k

obtained by deleting vertices

(2i� 1)

0

, 1 � i � k. It is an isometric subgraph, for example, of truncated tetrahe-

dron, truncated cube, of Archimedean tiling (3; 12

2

) for k = 3; 4; 6, respectively.

Proposition 2 (i) Stel

k

!

1

2

H

2k

,

(ii) Sun

2k

!

1

2

H

3k

.
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Proof. In fact, let i; i

0

, 1 � i � k, denote vertices. For odd k = 2m + 1, an

embedding is given by a(i) = fi; i+1; :::; i+m� 1g, a(i

0

) = fi; i+1; :::; i+m; 2m+

1 + ig, for 1 � i � k (addition is modulo k, except for 2m+ i + 1).

For even k = 2m we de�ne a(i) inductively. We take a(m+1) = f1; :::; kg. Then

a(i) = a(i+ 1) with two largest elements deleted if 1 � i � m,

a(i) = a(i� 1) with two smallest elements deleted if m+ 2 � i � k.

a(m

0

) = f1; :::; k � 1; k +mg, a((m+ 1)

0

) = f2; :::; k; k +m+ 1g,

a(i

0

) = fk + ig [ (a((i + 1)

0

)� fk + i + 1g with two largest elements deleted) if

1 � i < m,

a(i

0

) = fk+ ig [ (a((i+ 1)

0

)� fk+ i� 1g with two smallest elements deleted) if

m+ 1 � i � k,

4.3 Cupolas

Denote by Cup

n

the graph with vertices i, i

0

, i

00

(1 � i � n) and edges on the

inner cycle C

1;:::;n

, on the outer cycles C

1

0

;1

00

;:::;n

0

;n

00

, and on the paths P

i

0

;i;i

00

for all

1 � i � n. So Cup

n

is the skeleton of a polyhedron; for n = 3; 4; 5 they are

triangular, square and pentagonal cupolas: the polyhedra ##23,24,25 in the list of

112 regular faced polyhedra.

Proposition 3 (i) Cup

n

!

1

2

H

2n

for n � 4,

(ii) Cup

3

and Cup

�

n

, n � 3, are non 5-gonal.

Proof. In fact, Cup

3

contains a non 5-gonal isometric subgraph v(3; 4; 3; 4) (see

de�nitions in x5) on 7 points.

We give the following explicit embedding of Cup

n

!

1

2

H

2n

. We take an embed-

ding of the inner cycle C

1;:::;n

!

1

2

H

n

. Let the vertex i is mapped in this embedding

into an subset a(i) of an n-set V . Let a(1) = ;, and V \ f1; 2; :::; ng = ;. Then

we map the vertices i

0

and i

00

into the sets a(i) [ fi; i+ 1g and a(i) [ fi + 1; i+ 2g,

respectively (the addition is by mod n). Note that the shortest path between non-

adjacent vertices of the outer cycle goes through the inner cycle. Hence, it is not

di�cult to verify that the obtained embedding is isometric for n � 4.

Cup

�

n

contains K

2;3

as an isometric subgraph for n � 3. 2

4.4 Antiwebs

An antiweb AW

k

n

, for 1 � k � b

n

2

c, is the graph with the vertices 0; 1; :::; n� 1 and

i � i + 1; i + 2; :::; i + k (mod n). (Here i � j denotes that the vertex i is adjacent

to the vertex j.) It is a common generalization of the following polyhedral graphs:

AW

1

n

= C

n

!

1

2

H

n

(and ! H

n

2

if n is even),

AW

2

n

= G(APrism

n

2

)!

1

2

H

n

if n is even,

AW

bn=2c

n

= K

n

= G(�

n�1

)!

1

2

H

n

,

AW

n

2

�1

n

= K

n

2

�2

= G(�

n

2

)!

1

2m

H

4m

(for some m) if n is even.
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In the next proposition we show that all other antiwebs are not l

1

-graphs. It is

easy to check that AW

k

n

has diameter 2 i� b

n+2

4

c � k � b

n

2

c � 1.

Proposition 4 (i) AW

2

n

is non 5-gonal for odd n � 13, AW

2

11

is not 7-gonal.

(ii) AW

k

n

is non 5-gonal in the following cases:

(a) if d

n+1

4

e � k <

n

2

� 1,

(b) if n = 4k + 3 for k � 3, and if n = 4k + 4 for k � 4.

(iii) AW

k

n

is not l

1

-embeddable if either k = 3 and n � 10 or 4 � k �

n�3

2

(and

therefore n � 11). In particular, AW

3

13

and AW

4

16

are not 7-gonal.

(iv) AW

2

9

, AW

3

12

and AW

3

14

are extreme hypermetrics.

Proof. (i) We show explicitly 5 points (a; b; c; x; y) of AW

2

n

, where the 5-gonal

inequality (1) with b

a

= b

b

= b

c

= �b

x

= �b

y

= 1 is violated.

If n = 4t� 1 � 15, take the points (0; 2t� 1; 2t; 2t� 4; 2t+ 3).

If n = 4t+ 1 � 13, take the points (0; 2t� 1; 2t+ 2; 2t� 2; 2t+ 3).

Similarly, for AW

2

11

we have the following 7 points (0,5,6,11;3,4,9) violating a

7-gonal inequality.

(ii) a) In fact, any A

k

n

with k as in Proposition 4 is of diameter 2, so any its

induced subgraph of diameter 2 is isometric. Only connected graphs on 5 vertices

which are non 5-gonal are K

2;3

, K

5

� K

3

and K

5

� P

2

� P

3

(with P

2

\ P

3

= ;).

Hence the only way for AW

k

n

of diameter 2 to be non 5-gonal is to contain one of

these 3 graphs on 5 vertices. But any antiweb is K

1;3

-free graph. Hence the �rst 2

above subgraphs, K

2;3

and K

5

�K

3

, are excluded. On the other hand, we will give

subgraph K

5

� P

2

� P

3

, namely, the complement of

P

1;2k�i;4k�2i�1

+ P

k�i;n+1�k

, for any i with n + 1 + i � 4k � n + 1 + 2i and

0 � i � k � 2.

So, it will cover all cases n + 1 � 4k � n � 3 + 2k, i.e. d

n+1

4

e � k � b

n�3

2

c

considered in Proposition 4.

Now, P

1;2k�i;4k�2i�1

� AW

k

n

, since 1 + k < 2k � i, (2k � i) + k < 4k � 2i � 1

(because i � k + 2) and 4k � 2i� 1 � n, (4k � 2i� 1) + k � n � 1.

P

k�i;n+1�k

� AW

k

n

, since 1 � k�i, (k�i)+k < n+1�k � n. But k�i; n+1�k �

1; 2k � i; 4k � 2i� 1 in AW

k

n

.

(ii) b) If n = 4k + 3, take the 5 points (0; 2k + 1; 2k + 2; k + 2; 3k + 3), and if

n = 4k + 4, take the 5 points (0; 2k + 1; 2k + 2; k + 2; 3k + 4).

(iii) For k = 3, consider the subgraph of AW

3

n

induced by the points i, 0 � i � 6.

Here the point 3 is adjacent to all other 6 points. Since n � 10, the point 6 is

not adjacent to the points 0,1,2. Finally we have that the induced subgraph is

rB

8

. For k � 4, consider the subgraph of AW

k

n

induced by the following 7 points:

2; 3; 4; k; k + 2; k + 3; k + 4. Since k �

n�3

2

, this graph is r(K

6

� P

4

) = rH

2

,

where P

4

= P

3;11;2;9

. The graphs B

8

and H

2

are the graphs on Figs. 6.3 and 6.7

of [DGL95]. Since rB

8

= G

4

and rH

2

= G

2

are graphs from the list of the 26

extreme hypermetrics on 7 points, we have that AW

k

n

is not l

1

-embeddable.

The following 7 points violate a 7-gonal inequality: (0,4,5,6;2,3,7) for AW

3

13

and

(0,2,5,7;3,4,9) for AW

4

16

.
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(iv) The graph AW

2

9

has 3 hexagons (0,2,3,5,6,8), (0,1,3,4,6,7) and (1,2,4,5,7,8)

determining 3 6-gonal equalities. Any two of them are linearly independent. Hence

representations of two vertices, say, 7 and 8, are determined by representations of

other vertices. If we delete the vertices 7 and 8, we obtain the extreme hypermetric

G

19

from Fig.5.14 of [DGL95]. Since AW

2

9

has diameter 2, it is a subgraph of the

Shl�a
i graph. For example, the following labelings the vertices 0,1,...,8 by the pairs

13, 12, 14, 24, 45, 17

�

, 56, 36, 48

�

gives an embedding. A propos, AW

2

9

� e is a

polyhedral graph (see Fig.11c).

Similarly, we �nd that the vertices i, 0 � i � 6, of the graph AW

3

12

induce the

extreme hypermetric graph G

4

= rB

8

. The following labeling shows that AW

3

12

is

an extreme hypermetric graph: 0 ! 12, 1 ! 13, 2 ! 14, 3 ! 15, 4 ! 26

�

, 5! 45,

6 ! 57, and 7! 16

�

, 8 ! 18

�

, 9 ! 27, 10 ! 23, 11 ! 58

�

.

The graph AW

3

14

has diameter 3 and the set of its vertices consists of 7 pairs of

vertices at distance 3. The 7 vertices i, 0 � i � 6, induce the extreme hypermetric

graphs G

4

= rB

8

. Hence AW

3

14

is not l

1

-graph. But the following labeling � shows

that it is extreme hypermetric: 0 ! 12, 1 ! 13, 2 ! 14, 3 ! 15, 4 ! 26

�

, 5 !

23

�

, 6 ! 57, and i+ 7! �(i)

�

. 2

4.5 Capped anti-prisms, towers and fullerenes

We consider here an anti-prism analog of capped prisms (1-M

2

n

, 2-M

2

n

of x4.1). Take

at �rst APrism

3

= �

3

. The i-capped �

3

!

1

2

H

i+4

, (0 � i � 8). In fact, they are

isometric subgraphs of omni(8)-capped �

3

(= dual truncated 


3

). Denote the vertices

of �

3

by i; i

0

, where 1 � i � 3 and all (i; i

0

) are not edges, and the caps of faces

(1; 2

0

; 3

0

), (1

0

; 2; 3

0

), (1

0

; 2

0

; 3), (1,2,3) by t and the caps of respectively opposite faces

by t

0

, 1 � t � 4. Put then all a(i) = fi; 4g, a(i

0

) = f1; 2; 3; 4g�a(i), a(t) = ft; t+4g,

a(t

0

) = (f1; 2; 3; 4g � ftg) [ f8 + tg. The dual i-capped �

3

!

1

2

H

i+6

for 0 � i � 2,

but it is non 5-gonal for i = 8.

From now on we consider i-capped APrism

n

, n � 4, only for i = 1; 2 (i.e. only

n-cycles are capped). Denote by i-APrism

n

i-capped APrism

n

for i = 1; 2. Remind

(x3.2) that APrism

n

!

1

2

H

n+1

for n � 3 and dual APrism

n

is non 5-gonal if n � 4.

The next case is APrism

4

= AW

2

8

; it can be seen as a half of the Shrikhande

graph. i-APrism

4

is an extreme hypermetric for i = 1; 2 (see x8 and Fig.2); they

are ##30,37 of the list of 92 regular-faced polyhedra. see their duals on Fig.3 a),

b).

i-APrism

5

!

1

2

H

6

for 0 � i � 2. Its dual (dodecahedron)!

1

2

H

10

for i = 2, but

it is non 5-gonal for i = 0; 1 (Fig. 4c).

1-APrism

n

!

1

2

H

n+1

for n = 5; 6; 7, but non 5-gonal for n � 8. In fact, remind

that vertices of APrism

n

are i; i

0

for 1 � i; i

0

� n and edges are pairs (i; i

0

), (i+1; i

0

),

(i; i+1), (i

0

; i

0

+1). Let 0 be the cap of C

1;:::;n

. Put then a(0) = ;, a(i) = fi; i+ 1g,

a(i

0

) = fi; i + 1; i + 2; n+ 1g. Clearly, for n = 5; 6; 7 it will give a scale 2 isometric

embedding into (n + 1)-cube. For n � 6 dual 1-APrism

n

, 2-APrism

n

and their

duals are not 5-gonal (see Fig.4d,e for case n = 6).
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Consider now towers, generalizing gyroelongation of anti-prisms in a way similar

to how the Moscow graph in x4.1 generalizes elongation of prisms. Denote by Tow

k

n

the polyhedron de�ned by adjoining consecutively k copies of APrism

n

one on the

top of another. It is easy to check that Tow

2

n

is non 5-gonal for n � 3: see Fig. 4f,g

for Tow

2

3

(i.e. gyroelongated �

3

, it appears also on Fig.16.1.1 in [Gr�u67]) and its

dual. It implies that Tow

k

n

and 2-capped Tow

k

5

are non 5-gonal for k � 2. Remark

similarity of 2-Tow

k

5

with polar zonotopes PZ

m

mentioned in x6. See also Fig.3e for

non 5-gonal Koester's graph, [Koe85], similar to APrism

5

+APrism

5

and to PZ

�

5

;

it is 4-regular planar 4-critical graph, i.e. its chromatic number is 4, but every its

proper subgraph has a 3-coloring.

Dual 2-Tow

k

5

is a fullerene, i.e. a simple polyhedron with 20 + 2m vertices, 12

pentagonal and m hexagonal faces) F

20+2m

for m = 5(k � 1). Let us call it strained

(most \antiaromatic", least stable, in chemical terms), since it has (as opposite to

preferable fullerenes) the maximum number of abutting pairs of pentagonal faces.

Except the case k = 1 (dodecahedron) the strained fullerene F

10(k+1)

is non 5-gonal:

for k � 3 it contains the graph in Fig. 10b, for the case k = 2 see Fig. 10c. Its dual

also non 5-gonal since it contains 1-Tow

2

5

depicted on Fig. 10a.

We give below some observations on l

1

-status of several fullerenes. In particular,

small fullerenes F

24

, F

26

, F

28

are of special interest for chemistry: besides being

carbon cages, they are used ([Wel84], p.74 and pp.660{662 on \ice-like" clathrate

hydrates) as space co-�lling polyhedra. There are [Bal95] 1, 0, 1, 1, 2, 3, 40, 271,

1812 fullerenes F

20+2m

for m = 0, 1, 2, 3, 4, 5, 10, 15, 20, respectively. F

20

is the

dodecahedron; the unique F

24

is the dual of 2-APrism

6

(it and F

�

24

are on Fig.

4e,d); the unique F

26

and its dual are on Fig. 10g,e; F

28

(T

d

) (T

d

is its group of

symmetry) and its dual are on Fig. 10d,h; F

30

(D

5h

) is on Fig. 10c. The strained

fullerenes F

20+2m

for m � 25 are F

30

(D

5h

), F

40

(D

5d

), F

50

(D

5h

), F

60

(D

5d

), F

70

(D

5h

);

with this symmetry it is unique for m = 5; 20 and one of two for m = 10; 15; 25,

respectively. The truncated icosahedron with its icosahedral symmetry is de�ned as

F

60

(I

h

). As we checked, all above fullerenes and their duals are non 5-gonal, except

F

20

!

1

2

H

10

, F

26

!

1

2

H

12

, F

�

20

!

1

2

H

6

, F

�

28

(T

d

) !

1

2

H

7

, F

�

60

(I

h

) !

1

2

H

10

. F

60

(I

h

)

admits 7-embedding in

1

2

H

20

(see [DeSp96] and x8 here).

Using also the algorithm of [DeSp96], one can see that the unique preferable (i.e.

without abutting pairs of pentagons) F

70

is not l

1

-graph. This F

70

is second one

with the symmetry D

5h

and contains 20-bowl, i.e. the graph consisting of a pentagon

surrounded by 5 hexagons; 20-bowl!

1

2

H

15

(see Fig.10f). Also the graph consisting

of a pentagon surrounded by 5 pentagons (or by 3 pentagons and 2 non-adjacent

hexagons) is embeddable into

1

2

H

10

(!

1

2

H

12

, respectively); a hexagon surrounded

by 6 pentagons (resp. 6 hexagons) embeds into

1

2

H

12

, see Fig. 10g (resp. into H

9

).
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5 92 regular-faced (not semi-regular) polyhedra

We use names and numbers of those polyhedra from [Ber71], where they are given as

# #21{112 of the list of all 112 regular-faced polyhedra; in [Zal69] they numbered

by 1{92. In both references they are given as same appropriate joins of 28 basic

polyhedra M

1

�M

28

. See also [KoSu92] with nice pictures of those polyhedra. 28

basic regular-faced polyhedra (all butM

22

are given on Fig.8,9) include regular ones

M

1

, M

15

; pyramids M

2

, M

3

, cupolas M

4

�M

6

, The 9 Archimedean polyhedra M

i

denoted as 1; 3; 3

0

; 2; 5; 5

0

; 2

0

; 7; 7

0

in Table 2 of x3.2 for i 2 f10� 12; 16� 19; 26; 27g,

respectively; M

13

, M

14

which are tridiminished, parabidiminished RIDo, M

7

which

is tridiminished Ico; pentagonal rotunda M

9

and 8 others whose complicate names

re
ect their high individuality. In this section we denote icosahedron, dodecahedron

and rhombicosidodecahedron by Ico, Do and RIDo, respectively. Remark that

remaining 4 Archimedean polyhedra of Table 2 are in this notation 4=Cup

3

+Cup

3

,

4

0

=M

9

+M

9

, 6

0

= RIDo =M

14

+ 2Cup

5

, 6 = Cup

4

+ Prism

8

+ Cup

4

.

Lemma 4 (i) M

n

is non 5-gonal for n = 4; 8; 10� 13; 19� 21; 23� 25,

(ii) M

28

(= #105, snub square anti-prism) is not 7-gonal,

(iii) M

22

(= #106, sphenocorona) is extreme hypermetric,

(iv) Remaining 14 polyhedra M

n

have l

1

-skeletons.

(v) M

�

n

has l

1

-skeleton for n = 1 � 3, 10{12, 15, 16, 19, 23, 25 and it is non

5-gonal for remaining 17 polyhedra M

n

.

Proof. (i),(ii) are clear from Fig.9; (iii) is proved in the proof of the next lemma. 14

l

1

-polyhedra areM

1

,M

15

(see x3.1);M

16

�M

18

andM

26

,M

27

(see x3.2);M

2

!

1

2

H

4

,

M

3

!

1

2

H

5

and M

5

!

1

2

H

8

, M

6

!

1

2

H

10

(see xx4.1,4.3); the skeleton of M

7

is an

isometric subgraph of l

1

-skeleton of Ico, M

7

!

1

2

H

6

. Finally, M

9

= #26 !

1

2

H

11

,

where M

9

� #41!

1

2

H

13

. 2

Lemma 5 Skeletons of the following 4 polyhedra are extreme hypermetrics:

#30=APrism

4

+ Pyr

4

(gyroelongated Pyr

4

= 1-capped APrism

4

),

#37=Pyr

4

+ APrism

4

+ Pyr

4

(gyroelongated BPyr

4

= 2-capped APrism

4

),

#71=Prism

3

+ 3Pyr

4

(triaugmented Prism

3

),

#106=M

22

(sphenocorona),

#107=M

22

+ Pyr

4

(augmented sphenocorona).

Proof. The skeletons of the polyhedra #30 and #71 have each 9 vertices and

diameter 2. The skeleton of #37 has 10 vertices, diameter 3 and contains the

skeleton of #30 as an isometric subgraph. These 3 graphs contain the induced

extreme hypermetrics G

24

and G

25

of [DGL95] Fig.5.15. This implies that these

skeletons are not l

1

-graphs.

We give explicit embeddings of skeletons of #30 and #71 into the Schl�a
i graph

G(2

21

), and the skeleton of #37 into the Gosset graph G(3

21

); it will show that these

skeletons are extreme hypermetrics.
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Recall that the vertices of APrism

4

are i; i

0

, 1 � i; i

0

� 4, with the edges (i; i+1),

(i

0

; (i + 1)

0

), (i; i

0

) and (i + 1; i

0

) (here and below additions are mod 4). Let 0 be

the new vertex of the cap of the capped anti-prism #30, and 0' be the second cap

of the 2-capped anti-prism #37. Then the labels of vertices by pairs are as follows:

a(i) = i; i+ 1, 1 � i � 4, a(1

0

) = 15, a(2

0

) = 47

�

, a(3

0

) = 36, a(4

0

) = 28

�

, a(0) = 24,

a(0

0

) = 24

�

.

Similarly, let i; i

0

, 1 � i; i

0

� 3 be the vertices of the prism of #71 with edges

(i:i

0

), and let i

00

be the apex of the Pyr

4

on the square face of Prism

3

opposite to the

edge (i; i

0

). Then the labels are: a(i) = i7, a(i

0

) = i8, a(i

00

) = (i; i + 3)

�

, 1 � i � 3.

The skeleton of #107 has 10 vertices and diameter 3; it contains the induced

extreme hypermetric G

25

. It is 1-capped APrism

5

with an additional edge between

two nonadjacent vertices of the noncapped cycle C

5

. Let, as above, the vertices of

APrism

5

are i; i

0

, 1 � i � 5, such that all vertices i are adjacent to the apex 0 of the

cap, and the vertices 1

0

and 4

0

are adjacent. We label the vertices by pairs as follows:

a(i) = i; i + 1, 1 � i � 5. Since the vertices 2

0

, 3

0

and 5

0

are at distance 3 from the

vertices 4, 5 and 2, respectively, we have a(2

0

) = 45

�

, a(3

0

) = 15

�

and a(5

0

) = 23

�

.

The other two adjacent vertices obtain the labels a(1

0

) = 16 and a(4

0

) = 46.

The skeleton of #106 is G(#107) without the vertex 5

0

, which is the apex of the

cap Pyr

4

. The labeling of G(#106) is induced by the above labeling of G(#107),

since G(#106) is an isometric subgraph of G(#107). 2

Proposition 5 Besides non 7-gonal #105 and above 5 hypermetrics ##30, 37,

71, 106, 107, remaining 86 polyhedra consist of 50 non 5-gonal ones and 36 with

l

1

-skeletons: ##21{35 (except 23,30,33), 39, 40, 41, 44, 48, 69{84 (except 71, 77),

92{95, 100.

Corollary 2 l

1

-status of 8 convex deltahedra is as follows:

(i) �

3

!

1

2

H

3

, #32=BPyr

3

!

1

2

H

5

, �

3

!

1

2

H

4

, Icosahedron !

1

2

H

6

,

(ii) #33=BPyr

5

and #104=M

25

(snub dispensoid) are non 5-gonal,

(iii) #37, #71 are extreme hypermetrics.

Remark that all 5 dual truncated P , where P is a Platonic solid, are simplicial and

have l

1

-skeletons. They !

1

2

H

n

with n = 7; 6; 12; 10; 16 for P being �

3

, �

3

, 


3

,

Ico, Do, respectively. Between other simplicial Catalan polyhedra, namely Prism

�

n

and dual truncated Q (Q being cuboctahedron or icosidodecahedron), only Prism

�

n

(n = 3; 4) are 5-gonal; between remaining 9 Catalan polyhedra (including APrism

�

n

,

n � 4) only dual Q are 5-gonal.

Sketch of the proof of Proposition 5.

a) 12 polyhedra ##92{103

They are all possible adjoinings of Cup

5

=M

6

to 10-gonal faces of two of them:

M

13

= #103 andM

14

= #100 (see Fig. 8). Also Archimedean RIDo =M

14

+2M

6

=

M

13

+ 3M

6

!

1

2

H

16

. One can check that slight modi�cations of this embedding

produce an embedding into the same

1

2

H

16

of M

14

and all 4 polyhedra without 10-

faces: ##92{95=M

14

+M

6

+M

6

, M

14

+ 2M

6

, M

13

+M

6

+ 2M

6

, M

13

+ 3M

6

. The
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7 remaining polyhedra are non 5-gonal: see Fig.8 for M

13

. Slight modi�cations of

these 5 points give, due to symmetries, forbidden 5-points con�gurations for others.

b) non 5-gonality

For 22 polyhedra (# # 43, 45, 49{54, 57{63, 66, 77, 108{112) 5 vertices violating

5-gonality were found ad hoc. ##108{112=M

i

for i = 23; 21; 24; 8; 20 (see Fig.9);

see Fig.5b for #49.

Denote by v(3; 2k; 3; 2m) (respectively, by e(3; 2k; 3; 2m)) the graph consisting

of a vertex (respectively, of an edge) surrounded by cycles C

3

, C

2k

, C

3

, C

2m

(for

positive integers k, m) in this order; each two consecutive cycles intersect exactly

in the edge incident (adjacent) to the original vertex (respectively, to the original

edge). It is easy to check that both the families of the above graphs are not 5-gonal.

Now v(3; 4; 3; 4) � #23 =M

4

� ##38; 42; 47(\anticuboctahedron

00

); 55; 56; 64; 85;

v(3; 4; 3; 4) � #46;

e(3; 8; 3; 8) � #10 =M

11

� ##86; 87;

e(3; 10; 3; 10) � #12 =M

12

� ##88� 91;

#43 � #65; #45 � ##67; 68;

K

5

� P

2

� P

3

� ##33; 104 =M

25

; #36 = 2-M

2

5

(so, non 5-gonal, see x4.1).

#77 is easy to check. Remaining 15 polyhedra have many vertices; they are too

cumbersome for to present them on �gures. So we leave them to the reader and give

here only a helpful clari�cation of them in terms given in Remark 1 below.

##50, 54 are orthobi-Cup

5

, -M

9

; #51 is gyrobi-Cup

5

;

##58, 62 are elongated orthobi-Cup

5

, -M

9

;

##57, 59, 63 are elongated gyrobi-Cup

4

, -Cup

5

, -M

9

;

##43, 45 are gyroelongated Cup

4

, M

9

; #66 is gyroelongated bi-Cup

5

;

#52=Cup

5

+M

9

, #53=Cup

5

+M

9

and #60=Cup

5

+ P

10

+M

9

, #61=Cup

5

+

P

9

+M

9

.

c) l

1

-embeddings

For 9 polyhedra (##39{41, 44, 48, 70, 73, 75, 76) l

1

-embeddings were found ad

hoc. Now

#24 =M

5

= Cup

4

� #39; #25 =M

6

= Cup

5

� #40; #26 =M

9

� #41;

#69 � #70; #72 � #73; #74 � #75; ##31; 82; 83 � Ico;

#84 � dual truncated Do !

1

2

H

16

; #84!

1

2

H

7

:

##78� 81 � dual truncated Ico!

1

2

H

10

.

More precisely,

�) ##31; 82!

1

2

H

6

, since

APrism

5

� #31 = APrism

5

+ Pyr

5

� Pyr

5

+ APrism

5

+ Pyr

5

= Ico;

#83 = M

7

� #82 =M

7

+ Pyr

5

� M

7

+ 3Pyr

5

= Ico and M

7

; APrism

5

; Ico!

1

2

H

6

;

�) ##78� 81!

1

2

H

10

, since Do, dual truncated Ico!

1

2

H

10

,

Do � #78 = Do+ Pyr

5

� #79 = Pyr

5

+Do+ Pyr

5

� dual truncated Ico,

#78 � #80 = Do+ 2Pyr

5

� #81 = Do+ 3Pyr

5

� dual truncated Ico.
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We have

#21 =M

2

= Pyr

4

!

1

2

H

4

; #22 =M

3

= Pyr

5

!

1

2

H

5

; #32 = BPyr

3

!

1

2

H

4

;

#27 = 1-M

2

3

!

1

2

H

5

; #28 = 1-M

2

4

!

1

2

H

6

; #29 = 1-M

2

5

!

1

2

H

7

;

#34 = 2-M

2

3

!

1

2

H

6

; #35 = 2-M

2

4

!

1

2

H

6

:

(See x4.1 for those embeddings.)

Now we present 9 embeddings ad hoc. Between them:

#39 = Cup

4

+ Prism

8

!

1

2

H

10

; #40 = Cup

5

+ Prism

10

!

1

2

H

12

;

#44 = Cup

5

+ APrism

10

!

1

2

H

11

; #48 = 2Cup

4

!

1

2

H

8

;

#41 =M

9

+ Prism

10

!

1

2

H

13

:

An embedding #48!

1

2

H

8

is given on Fig.5a.

4 others are obtained by capping:

#70=biaugmented Prism

3

(i.e. capped on 2 square faces)!

1

2

H

5

, #73=bi-

augmented Prism

5

(on two non-adjacent square faces)!

1

2

H

7

; ##75,76=parabi-

augmented, metabiaugmented Prism

6

(on 2 opposite or non-opposite non-adjacent

square faces) !

1

2

H

8

. (If we relax de�nitions of ##73, 74, 76, 77 by permitting to

cap adjacent square faces, then we get non-convex polyhedra having same l

1

-status

of the skeletons as original ones.) Elongated polyhedra ##39, 40, 41 are easy (see

Remark 1). We leave #44 and above 4 capped polyhedra to the reader. 2

Remark 1. For a polyhedron P (following, for example, pp.349{351 of [Ber71])

call P + P , P + P , P + Prism, P + APrism, P + Prism + P , P + Prism + P ,

P +APrism+P , respectively: orthobi-P , gyrobi-P , elongated-P , gyroelongated-P ,

elongated orthobi-P , elongated gyrobi-P , gyroelongated bi-P . Here ortho (gyro,

respectively) means that two solids are joined together such that one of two bases is

the orthogonal projection of (is turned relative to, respectively) the other. Prisms

and anti-prisms above have an appropriate base and are adjoined by it. List of

92 regular-faced polyhedra contains orthobi-P and elongated orthobi-P for exactly

P = M

i

(i = 1 � 6; 9); it turns out that both have l

1

-skeletons if i = 1; 2; 5 and

both are non 5-gonal otherwise. All gyrobi-P , gyroelongated bi-P and elongated

gyrobi-P in the list are non 5-gonal. Between gyroelongated polyhedra of the list,

two (#31=Pyr

5

+APrism

5

and #44=Cup

5

+APrism

10

) have l

1

-skeletons and two

(#30=Pyr

4

+ APrism

4

and #37=Pyr

4

+ APrism

4

+ Pyr

4

) are extreme hyper-

metrics. Clearly, elongated P has l

1

-skeleton i� P has. We have (see Fig.5) that

#49 = Cup

4

+ Cup

4

is non 5-gonal, while #48 = 2Cup

4

!

1

2

H

8

and elongated

#49 = Cup

4

+Prism

8

+Cup

4

is not 5-gonal (see Remark 1 in x3.2) while elongated

#48 (rhombicuboctahedron) !

1

2

H

10

.

Remark 2: duals of regular-faced polyhedra.

Examples of non 5-gonal ones are duals of ##23-25 (cupolas M

4

�M

6

), #46

(gyrobifastigium); ##26, 83, 100, 103, 105, 109{112= M

i

, (i = 9, 7, 14, 13, 28, 21,

24, 8, 20). M

�

20

is even strongly non 5-gonal: its skeleton, as well as K

2;3

, contains 5

vertices x; y; a; b; c with each of x; y being on the same shortest path between vertices
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of the pairs (a; b), (a; c), (b; c); both M

�

20

and K

2;3

have only square faces. M

�

28

has

only (16) pentagonal faces. Other above M

�

i

have more than one type of faces; for

example, M

�

24

, dual disphenocingulum, has only square and pentagonal faces.

Examples of l

1

-graphs are duals of l

1

-graphs ##21{22, 27{29, 32{35 and non

5-gonal ##36, 104 = M

25

; 108 = M

23

. M

�

23

!

1

2

H

10

, M

�

25

!

1

2

H

8

; see Fig. 3g,h,

M

�

25

([Wel84], p.75) together with a 17-hedron �lls IR

3

. Duals of ##34{36 are M

2

n

for n = 3; 4; 5; see x4.1.

Also, the duals of the extreme hypermetrics ##30; 37!

1

2

H

8

;

1

2

H

9

, respectively

(see Fig.3), while duals of ##71, 106=M

22

, 107 are non 5-gonal.

It is interesting to characterize pairs (P; P

�

) of dual polytopes having both l

1

-

skeletons. Examples: (�

n

; �

n

), (�

n

; 


n

), (1-M

m

n

,1-M

m

n

) for n 2 f3; 4; 5g, (icosahe-

dron, dodecahedron), (i-capped �

3

, its dual) for i 6= 4, (i-capped �

3

, its dual) for

i � 2, (P

m

� C

n

, 2-M

m�1

n

) for n 2 f3; 4g (notation are from x4.1).

Remark 3. Besides fullerenes F

20+2m

(see x4.5) majority of chemically rele-

vant polyhedra (i.e. most frequent ones as arrangement of nearest neighbours in

crystals, molecules or ions) are regular-faced. They include 8 deltahedra (see Fig.1

in [SHDC95] and Corollary 2 above), Prism

3

(also its dual and its augmentations

##69{71), �

3

, Pyr

4

, cuboctahedron, #104

�

and capped (see x4.5) anti-prisms (i-

capped APrism

n

for n = 3; 4 and 0 � i � 2; 2-capped APrism

5

= icosahedron;

2-capped APrism

6

, dual of the fullerene F

24

, see x4.5. Regular-faced polyhedra are

also used in large chemical literature on metal clusters; see, for example, [DDMP93]

considering ##25, 35, 37, 47, 49 (see it on Fig. 5b), 55, 56, 58.

6 Zonotopes

Let e

i

, 1 � i � n, be n mutually orthogonal vectors of a same length. Let e(S) =

P

i2S

e

i

for S � N = f1; 2; :::; ng. Then the convex hull of the vectors e(S) for all

S � N is the n-cube 


n

. The 2

n

points e(S) are vertices of 


n

. If we project 


n

onto

a k-dimensional space for k � n, we obtain a zonotope Z

n

. The zonotope Z

n

has

the following three equivalent characterizations: it is 1) a projection of an n-cube,

2) a Minkowski sum of line segments, 3) a polytope having only centrally symmetric

faces.

Let v

i

be the projection of e

i

. Without loss of generality we may assume that

v

i

6= 0 for all i 2 N . Denote the zonotope Z

n

also by Z(v

1

; v

2

; :::; v

n

) = Z(v

i

: i 2 N)

The point v(S) =

P

i2S

v

i

is the projection of the vertex e(S). Let all the vectors v

i

go out from an origin. Then the origin is the point v(;). We can take any point v(S)

as a new origin. This is equivalent to a change of signs of the vectors v

i

for i 2 S.

With the origin in v(S) the zonotope Z

n

takes the form Z(�v

i

: i 2 S; v

i

: i 2 N�S),

and the point v(T ) is transformed into the point v(S�T ).

The point v(S) is a vertex of Z

n

not for every S. There is the following simple

criterion when a set S determines a vertex of Z

n

. Since every vertex is an extreme

point, for every vertex v(S) of Z

n

there is a k-vector c such that cv(S) > cx for all
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x 2 Z

n

, x 6= v(S). (Here cx is the inner product of vectors c and x). In particular,

this implies that cv

i

> 0 for all i 2 S, and cv

i

< 0 for all i 2 N �S. In other words,

the k-dimensional hyperplane fx : cx = 0g supporting the vertex v(S) separates all

vectors v

i

for i 2 S from all other vectors.

It is easy to see that two vectors v and v

0

are separated by a hyperplane if and

only if they have distinct directions, i.e. v

0

6= �v for some real � � 0. If v

k

and

v

j

have a same direction, then Z(v

i

: i 2 N) = Z(v

0

k

; v

i

: i 2 N � fj; kg), where

v

0

k

= v

k

+ v

j

. Hence without loss of generality we may suppose that all vectors v

i

have distinct directions.

We denote the family of all subsets S determining the vertices of Z

n

by S

n

. If

the origin is the vertex v(;), then all vectors lie in a halfspace determined by the

hyperplane supporting v(;). Without loss of generality, we can suppose that the

origin is a vertex of Z

n

, i.e. ; 2 S

n

. Let V � N be such that v(fig) = v

i

is a vertex

for all i 2 V . Then Z

n

lies in the conic hull of v

i

for i 2 V .

Lemma 6 S \ V 6= ;, for every S 2 S

n

.

Proof. Let S 2 S

n

, and let c be a vector such that cv

k

> 0 for k 2 S, and cv

i

< 0

for i 2 N�S. Every v

k

lies in the cone generated by v

i

, i 2 V , i.e. v

k

=

P

i2V

�

i

(k)v

i

with �

i

(k) � 0. If S \ V = ;, then the inequality cv

i

< 0 for all i 2 V implies the

inequality cv

k

< 0 for k 2 S, a contradiction. 2

Proposition 6 The skeleton G(Z

n

) of any zonotope Z

n

is isometrically embeddable

into the skeleton H

n

of 


n

of whose projection Z

n

is; n is the diameter of G(Z

n

).

Proof. We prove that the natural map v(S) ! e(S) for S 2 S

n

determines an

l

1

-embedding of the skeleton of Z

n

into H

n

. For this end, it is su�cient to prove

that the distance between vertices v(S) and v(T ) is equal to the symmetric di�erence

jS�T j. We proceed by induction on m = jS�T j.

The assertion is trivially true for m = 0. By the construction of Z

n

, each its

edge which connects the vertex v(S) with another vertex is parallel to the vector v

i

for some i 2 N .

Suppose there is an edge which connects v(S) with v(S

0

) and is parallel to v

i

for i 2 S�T . Then either S

0

= S [ fig or S

0

= S � fig, depending on i 2 T or

i 2 S, respectively. Clearly, in both the cases jS

0

�T j = m�1, and we can apply the

induction step. Hence, for to prove the proposition, it is su�cient to prove that v(S)

is incident to an edge parallel to v

i

for i 2 S�T . But this is implied by Lemma 6 if

we take v(S) as a new origin. 2

Komei Fukuda kindly permitted to us to see and to refer preliminary version

of [Fuk95] containing (within his treatment of oriented matroid) a nice example

of a centrally symmetric but non zonohedral polyhedron F with G(F ) ! H

9

. The

Fukuda's polyhedron contains 54 vertices, 16 hexagonal and 20 square faces. Fukuda

constructed it in the dual form as a nonlinear (non-Pappus) extension of an oriented

rank 3 matroid on 8 points. As a linear extension of the same matroid he obtain
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a dual zonohedron Z

9

. (Z

9

has 52 vertices, 18 hexagonal and 14 square faces.)

Comparing Fukuda's picture for (duals of) Z

9

and F , we realize that F comes from

Z

9

by the following general construction.

Let C=C

1;:::;6

and C

0

=C

1

0

;:::;6

0

be two opposite hexagonal faces of a centrally

symmetric polyhedron P , and (1; 1

0

); :::; (6; 6

0

) are 6 pairs of antipodal vertices of

P . Denote by Q(P ) the polyhedron obtained from P by adding two new vertices v,

v

0

and edges (v; 1), (v; 3), (v; 5), (v

0

; 1

0

), (v

0

; 3

0

), (v

0

; 5

0

). Clearly, G(P ) is centrally

symmetric (v and v

0

are antipodal) and G(P ) � G(Q(P )), i.e. the skeleton of P is an

isometric subgraph of the skeleton of Q(P ). If P ! H

n

(it is so if P is a zonotope),

then Q(P ) ! H

n

also. (In fact, let a(1) = ;, a(3) = fijg, a(5) = fikg. Then

a(v) = fig is uniquely determined. No other edge (v; u) is possible, since otherwise

a(u) = fitg for t 6= j; k, and we get a contradiction with C being a hexagonal face.)

De�ne by induction Q

m

(P ) = Q(Q

m�1

(P )). Let ElDo denote the elongated do-

decahedron. Using Remark 2 below one can check that (combinatorially)Q(Prism

6

) =

rhombic dodecahedron, Q

2

(Prism

6

) = 


4

, Q

2

(ElDo) = rhombic icosahedron, Q

4

(truncated �

3

)= triacontahedron. It will be interesting to see whether Fukuda's

polyhedron is minimal for parameters of non-zonohedralQ(P ) obtained from a zono-

hedron P .

Another similar operation is as follows. Select two opposite 2m-faces C = C

1;:::;2m

and C

0

= C

1

0

;:::;(2m)

0

. Take a path P

1;i

1

;:::;i

m�2

;m+2

of length m � 1 connecting the

vertices 1 and m + 2 of C. Add new edges (i

k

; k + 2), 1 � k � m � 2. Make the

same operation with the face C

0

.

Let P denote the rhombic dodecahedron with a deleted vertex of degree 3, i.e.

P is Prism

6

with a new vertex connected to 3 nonadjacent vertices of a 6-cycle.

Clearly, P is nonzonohedral polyhedron and G(P )! H

n

(for n = 4); probably, P is

minimal for this property. Also G(P ) is (one of the four) smallest non-Hamiltonian

polyhedral graphs realizable as Delaunay tesselations, [Dil96], Fig. 10 and 11. A

propos, graphs of Fig. 5{12 of [Dil96] are non 5-gonal, except, 5c!

1

2

H

8

, 8a!

1

2

H

6

,

8b !

1

2

H

7

, 10b ! H

4

.

Remark 1. Examples of embeddings of zonotopes into hypercubes are

1) 5 of Archimedean and their dual (Catalan) polyhedra are zonohedra:

truncated �

3

! H

6

, truncated cuboctahedron ! H

9

, truncated icosidodecahedron

! H

15

, dual cuboctahedron (= rhombic dodecahedron) ! H

4

, dual icosidodecahe-

dron (= triacontahedron) ! H

6

. Between their duals only the dual of the �rst one

has l

1

-skeleton.

2) All 5 (combinatorially) Voronoi polyhedra are zonohedra:

3-cube=H

3

, rhombic dodecahedron ! H

4

, Prism

6

! H

4

, elongated dodecahe-

dron ! H

5

, truncated �

3

! H

6

.

3) All 5 \golden isozonohedra" of Coxeter (zonohedra with all faces being rhombic

with the diagonals in golden proportion) are:

2 types of hexahedrons (equivalent to 


3

) ! H

3

, rhombic dodecahedron ! H

4

,

rhombic icosahedron ! H

5

, triacontahedron ! H

6

.

4) Some in�nite families of zonotopes are:
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Prism

2m

! H

m+1

, 


m

= H

m

,

polar zonohedra PZ

m

! H

m

(


3

, rhombic dodecahedron, rhombic icosahedron

for m = 3; 4; 5, respectively, see [Cox73]); PZ

�

m

is non 5-gonal for m � 4 (see Fig.1e

for m = 5).

An m-dimensional permutahedron (the Voronoi polytope of the lattice A

�

m

) !

H

(

m+1

2

)

. It is C

6

, truncated �

3

for m = 2; 3, respectively.

Remark 2. For an isometric m-vertex subgraph G of an n-cube (which is not

an isometric subgraph of H

n�1

) denote by

~

G the subgraph of H

n

induced by 2

n

�m

remaining vertices. If G is the skeleton of a zonotope Z ! H

n

, then

~

G can be :

a)

�

=

G if m = 2

n�1

(examples are 


n�1

and triacontahedron);

b) an isometric subgraph of H

n

(for example,

~

G = C

10

for rhombic icosahedron

and

~

G = C

1;:::;10

+ P

1;11;3;12;5

+ P

6;13;8;14;10

for elongated dodecahedron (see Fig 11a);

c) or not isometric subgraph of a hypercube (for example,

~

G = 2K

1

for rhombic

dodecahedron,

~

G = 2K

2

for Prism

6

and

~

G is a 40-vertex non isometric subgraph of

H

6

for truncated �

3

).

Remark 3. See [DeSt96] for similar isometric embeddings of skeletons of in�-

nite zonohedra (plane tilings) into cubic lattices ZZ

n

. For example, regular hexagonal

tiling and dual Archimedean tiling [3,6,3,6] are embeddable into ZZ

3

, Archimedean

tiling (4,6,12) is embeddable into ZZ

6

, Penrose aperiodic rhombic tiling is embed-

dable into ZZ

5

.

7 Delaunay polytopes

Here we consider Delaunay polytopes of dimension at most 4 and some operations

on Delaunay polytopes (see a de�nition of a Delaunay polytope in x2.1).

For n = 2, Delaunay polytopes have the skeletons C

3

!

1

2

H

3

and C

4

= H

2

.

For n = 3, skeletons of all 5 Delaunay polytopes are also l

1

-graphs:




3

= H

3

, �

3

=

1

2

H

3

, �

3

!

1

2

H

4

, Pyr

4

!

1

2

H

4

, Prism

3

!

1

2

H

5

.

All 19 types of Delaunay 4-polytopes are given in [ErRy87]. The # i, 1 � i �

16, and the letters A,B,C below are the notation from [ErRy87]. (Elsewhere than

this section, # means the number of a polyhedron in the list of 92 regular-faced

polyhedra.) We get the following proposition by direct check.

Proposition 7 1) #16=


4

= �

1

� 


3

= H

4

,

2) P !

1

2

H

4

for the following P :

#2=Pyr(Pyr

4

) with G(#2) = K

2;2;1;1

, B=Pyr(�

3

) with G(B) = K

2;2;2;1

,

C=BPyr(�

3

) = �

4

=

1

2

H

4

;

3) P !

1

2

H

5

for the following P :

#1=Pyr(�

3

) = �

4

, #3=Pyr(Prism

3

), #5, #7=�

1

��

3

= Prism(�

3

), #9, #13

with G(#13) = T (5),

4) P !

1

2

H

6

for the following P :

#10= �

2

� �

2

, #11=�

1

� Pyr

4

= Prism(Pyr

4

), #15= �

1

� �

3

= Prism(�

3

),
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A with G(A) = K

6

(the cyclic 4-polytope);

5) P !

1

2

H

7

for P = #14 = �

1

� Prism

3

= Prism(Prism

3

);

6) the following P are non 5-gonal:

#4, #6= BPyr(Prism

3

), #8= Pyr(


3

), #12=BPyr(


3

).

Proof. Recall that a graph G is non 5-gonal if K

5

�K

3

� G or K

5

� P

2

� P

3

� G

with P

2

\ P

3

= ;. Hence 5) above is implied by that the skeletons of #8=Pyr(


3

)

and #12=BPyr(


3

) each contains the isometric subgraph K

5

�K

3

. The skeletons

of #4 and #6=BPyr(Prism

3

) contain the isometric subgraph K

5

� P

2

� P

3

. All

embeddings in 1)-4) above, except # #3,5,9, either are trivial or come from the

direct product construction below. The skeleton G(#k) of the four polytopes #k

in 3) for k = 3; 5; 9; 13 are isometric subgraphs of the triangular graph T (5). In fact

G(#3) = T (5)�K

3

, G(#5) = T (5)�(v; v

0

), G(#9) = T (5)�v, and G(#13) = T (5).

Here T (5)�K

3

is the graph T (5), where any 3 mutually adjacent vertices are deleted,

T (5)� (v; v

0

) is T (5), where any two nonadjacent vertices are deleted, and T (5)� v

is T (5) where a vertex is deleted (vertices are deleted with incident edges). In other

words, the vertices of the polytopes #k, k = 3; 5; 9; 13, are labeled by pairs ij, 1 �

i < j � 5. For example, #3=Pyr(Prism

3

) has the labels #45 and i4; i5, i = 1; 2; 3.

From this embedding of Pyr(Prism

3

) we obtain an embedding of Pyr

2

(Prism

3

) if

we label the new apex by the set ;. Remark, that #13 is combinatorially equivalent

to a semi-regular 4-polytope ambo-�

4

(0

21

in the Coxeter's notation). 2

Also #8=Pyr(


3

) is the graph of the unit cell of the body-centered orthorhombic

crystal system; the graph of all other systems are also not 5-gonal, except simple

one (


3

! H

3

) and end-face centered (Pyr

4

+ 


3

+ Pyr

4

!

1

2

H

6

). See [DeDeGr96]

for more detail on it and other chemical applications.

It is well known that the direct product P �P

0

of Delaunay polytopes P and P

0

is a Delaunay polytope, and G(P � P

0

) = G(P )�G(P

0

).

Also, for every Delaunay polytope P there is a pyramid Pyr(P ) and (if P is

centrally symmetric) a bipyramid BPyr(P ) which are Delaunay polytopes (see

[DeGr93]). The direct product construction preserves l

1

-ness of Delaunay poly-

topes. For example, G(P � P

0

) !

1

2

H

m+m

0

if G(P ) !

1

2

H

m

, G(P

0

) !

1

2

H

m

0

. But,

the pyramid and bipyramid constructions can produce non 5-gonal Delaunay poly-

topes from those with l

1

-skeletons. Consider, for example, the following Delaunay

polytopes:

�

n

, �

n

, 


n

,

1

2




n

(n � 5), ambo-�

n

(n � 4), the Johnson n-polytope P

J

with

G(P

J

) = J(n+1; k) (3 � k � b(n+ 1)=2c), �

n�1

� �

n�1

for n � 3; Prism

3

; P yr

4

�

IR

3

.

All of them have l

1

-skeletons: see x3.1 for regular ones, also ambo-�

n

!

1

2

H

n+1

,

P

J

!

1

2

H

n+1

, Prism

3

!

1

2

H

5

, Pyr

4

!

1

2

H

4

. The pyramid and bipyramid construc-

tions produce from them l

1

-polytopes in the following cases:

Pyr

m

(�

n

), Pyr

m

(�

n

), BPyr

m

(�

n

), Pyr

m

(Pyr

4

) (see x2).

Additionally we have the following l

1

-embeddings:

Pyr

2

(Prism

3

)!

1

2

H

5

, Pyr(ambo-�

n

)!

1

2

H

n+1

, Pyr(�

n�1

� �

n�1

)!

1

2

H

2n

.
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The inclusions (i), (ii) below show that the skeletons of the mentioned there

polytopes are non 5-gonal, and therefore they are not l

1

-graphs:

(i) K

5

�K

3

� Pyr(


n

), BPyr(


n

), Pyr

2

(ambo-�

n

; n � 6),

Pyr(P

J

) (since K

1;k

� J(n+ 1; k)), Pyr(

1

2

H

n

; n � 6), Pyr

2

(�

n�1

� �

n�1

),

BPyr(ambo-�

n

; n � 6; even), BPyr(

1

2

H

n

; n � 6 even);

(ii) K

5

� P

2

� P

3

� BPyr

3

(Prism

3

).

Finally, the following skeletons are (extreme) hypermetrics (see Proposition 4.4 of

[DeGr93]): Pyr(

1

2




5

), Pyr

2

(

1

2




5

), Pyr

2

(ambo-�

4

), Pyr

3

(ambo-�

4

), Pyr

3

(Prism

3

),

Pyr

4

(Prism

3

).

8 Small l

1

-polyhedra and examples of polytopal

hypermetrics

Combinatorial types of d-polytopes were enumerated for small values of v�d, where

v is the number of vertices; see, for example, x3.16 and Tables 1,2 on p.424 of

[Gr�u67]. The two propositions below give l

1

-status for polyhedra of the �rst two

simple classes.

Proposition 8 (i) For all 10 combinatorial types of polyhedra with � 6 vertices,

we have

a) 4 skeletons:

G(�

3

) = K

4

, G(Pyr

4

) = rC

4

, G(BPyr

3

= 1-capped �

3

) = K

5

� e, G(�

3

) =

K

3�2

!

1

2

H

4

;

b) 4 skeletons:

G(Prism

3

) = K

6

�C

6

, G(Pyr

5

) = rC

5

, K

6

�P

5

, G(2-capped �

3

) = K

6

�P

4

!

1

2

H

5

;

c) 2 skeletons, K

6

�P

6

and K

3�2

�e, are non 5-gonal (each contains K

5

�P

2

�P

3

).

(ii) For all 10 combinatorial types of polyhedra with � 6 faces (duals of above),

we have:

a) �

3

, Pyr

4

, Pyr

5

and one with the skeleton K

6

� P

6

are self-dual, Prism

3

=

BPyr

�

3

and 


3

= �

�

3

;

b) P

�

!

1

2

H

6

if G(P ) = K

6

� P

4

;

c) P

�

is non 5-gonal if G(P ) = K

6

� P

5

, K

3�2

� e (Fig.6).

One can check that i-capped �

3

, dual (i� 1)-capped �

3

!

1

2

H

i+3

for 1 � i � 4,

but dual 4-capped �

3

(truncated �

3

) is non 5-gonal. Also i-capped �

3

!

1

2

H

i+4

,

0 � i � 8, and dual i-capped �

3

!

1

2

H

i+6

for 0 � i � 2. Compare with i-capped




3

!

1

2

H

6

, 0 � i � 2 and for i = 3 if no 2 opposite faces are capped; it is not 5-gonal

otherwise.

Remark that extreme hypermetrics graphs G

1

and G

2

are skeletons of 4-pyramids

with bases Pyr

5

and 2-capped �

3

, see (i) b) above.
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Proposition 9 (i) For all 5 combinatorial types of simplicial polyhedra with 7 ver-

tices, we have:

a) 1-capped �

3

!

1

2

H

5

, 3-capped �

3

!

1

2

H

6

;

b) skeletons G(BPyr

5

), r

2

P

5

are non 5-gonal (they contain K

5

�P

2

�P

3

, K

5

�

K

3

, respectively);

c) skeleton rB

8

of Pyr(B

8

) is the extreme hypermetric G

4

.

(ii) For all 5 combinatorial types of simple polyhedra with 10 vertices (dual of

above), we have:

a) P

�

!

1

2

H

7

if P is a 1-capped �

3

, 3-capped �

3

or BPyr

5

(Fig.7);

b) P

�

is non 5-gonal if G(P ) = r

2

P

5

, rB

8

(Fig.6).

There are 34 combinatorial types of polyhedra with 7 vertices: 2,8,11,8,5 having

6,7,8,9,10 faces, respectively. The last 5 are simplicial ones. The �rst two are both

non 5-gonal (Proposition 8 (ii) c)).

One can enumerate isometric subgraphs (and polytopal ones between them) of

given

1

2

H

n

which are not isometric subgraphs of a facet of it. For example, the

following graphs are such isometric polytopal subgraphs of the Clebsh graph

1

2

H

5

:

1) C

5

, K

5

= G(�

4

) (together with 2) below they are only such subgraphs of

1

2

H

5

on m � 6 vertices);

2)K

6

� C

6

= G(Prism

3

), K

6

� P

5

(polyhedral, see Fig. 6.2), K

6

� P

4

=

G(2-capped �

3

), rC

5

= G(Pyr

5

) (between all 10 6-vertex isometric subgraphs of

1

2

H

5

);

3) � 7-vertex polyhedral; #27 (1-capped Prism

3

), #60 (augmented Prism

3

),

#70 (biaugmented Prism

3

), 1-capped �

3

, APrism

4

;

4) 4-polytopal: Pyr(Prism

3

), �

1

� �

3

, T (5), T (5) � K

1

, T (5) � K

2

, 1-capped

(on a facet �

3

) T (5);

5) 5-polytopal: Pyr

2

(Prism

3

), rT (5) = G(Pyr(ambo-�

4

)).

On the other hand, all hypermetric but not l

1

-graphs with 7 vertices are known

(see x7 of [DGL95]); they are 12 graphic metrics between 26 extreme hypermetrics.

Proposition 10 Between all the 12 hypermetric graphs on 7 vertices, the polytopal

ones are only 3-polytopal G

4

= rB

8

and 4-polytopal G

1

= r

2

C

5

= K

7

� C

5

, G

2

=

rH

2

= K

7

� P

4

.

Proof. In fact, G

6

= rH

4

, G

8

= rB

5

, G

16

, G

24

, G

26

have minimal degree 2.

G

5

= rB

7

, G

7

= rH

3

and H

1

= K

6

�P

3

have minimal degree 3 and are not planar;

so G

3

= rH

1

is not polytopal also. Finally, G

18

is planar and has minimal degree 3,

but it can be disconnected by deleting 2 vertices. It is the skeleton of a skew (with

a non-planar face) 3-polytope. 2

Metric of a graph which is hypermetric but not l

1

-graph is necessarily an extreme

hypermetric. The number of vertices of any extreme hypermetric graph is within

[7,56]. Any polytope such that its skeleton is extreme hypermetric, has dimension

within [3,7]. Call an extreme hypermetric graph of type I (of type II) if it generates

the root lattice E

6

(E

7

, respectively). A graph G of type I has diameter 2, since
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it is an induced subgraph of the Schl�a
i graph G(2

21

) of diameter 2, and rG is an

extreme hypermetric of type II.

Clearly, G(Pyr(P )) = rG(P ), dim(Pyr(P ))=dimP+1. (Remark that Pyr

k

(C

5

)

!

1

2

H

5

for k 2 f0; 1g, it is extreme hypermetric for k 2 f2; 3g, and it is 7- but not

9-gonal for k = 4.) Examples of polytopal graphs G which are extreme hypermetric

but are not represented as rG

0

for an extreme hypermetric graph G

0

are (see x5):

of type I: the polyhedra ## 30, 71, 106 =M

22

and one with skeleton G

4

(see

Fig.2);

the 4-polytopes with skeletons G

1

, G

2

; the 6-polytopes with skeletons K

9

� C

6

=

G(Pyr

3

(Prism

3

)), r

2

T (5)= G(Pyr

2

(ambo- �

4

)), r

1

2

H

5

, the Shl�a
i polytope 2

21

having 9,9,7; 7,7; 9,12,17,27 vertices, respectively.

of type II: the polyhedra #37, #107= M

21

+ Pyr

4

and the 7-polytope 3

21

with

10, 11 and 56 vertices, respectively.

Some examples of extreme hypermetrics which are not polytopal, but are close

to polytopal in some sense:

a) 7-vertex graph G

18

of type I is a planar graph of a skew polyhedron.

b) The skeleton of the stella octangula (the section of 


3

by �

3

with vertices in

the centers of faces of 


3

) which is a non-convex polyhedron; it is 14-vertex graph.

It contains the induced extreme hypermetric G

x

. It is an isometric subgraph of the

Goseet graph, and since it has diameter 3 it is of type II.

c) Antiwebs AW

2

9

, AW

3

12

, are of type I, and AW

3

13

is of type II (see x4.4(iv)).

9 t-embeddings in l

1

A t-embedding of a distance kd

ij

k is an embedding of the distance kd

0

ij

k = kmin(t; d

ij

k

in an l

n

1

-space.

In what follows, describing a t-embedding of a polyhedron P , we associate to

every its vertex v a subset a(v) of a set N . Usually we take as N the set of all

k-gonal faces. We say that a face F is reachable by an m-path from a vertex v if

there is an m-path of length m from the vertex v to a vertex of the face F .

Truncated icosahedron (of diameter 9) has unique ([DeSp96]) 7-embedding into

1

2

H

20

: associate each vertex to 2+2+3 hexagons (from all 20) reachable by 0-,1-,2-

paths, respectively. It is also the unique 3-embedding, but not unique 2-embedding:

for example, associate every vertex to 2 its hexagons.

Icosidodecahedron (of diameter 5) has unique ([DeSp96]) 4-embedding in

1

2

H

12

:

associate every vertex to 1+1+2 pentagons (from all 12) reachable by 0-,1-,2-paths.

It is also a unique 3-embedding, but there is another 2-embedding: associate every

vertex to 2 its triangular faces.

Cuboctahedron (of diameter 3) has at least two following 2-embeddings:

in

1

2

H

6

: associate every vertex to its two square faces,

in

1

2

H

8

: associate every vertex to its two triangular faces; this one, as well as two

above ones are t-embeddings into

1

2

H

2D(P )+2

.
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Any simple polyhedron has a 2-embedding in the tetrahedral graph J(n; 3) (so

in

1

2

H

n

): associate every vertex to its 3 faces. If the diameter of a simple polyhedron

is at least 3, then it is 3-embeddable i� sizes of its faces are from f3; 4; 5g. Examples

of this procedure are:

1) dodecahedron (of diameter 5) has a 3-embedding into J(12; 3); also it has a

5-embedding into

1

2

H

10

,

2) �

3

! J(4; 3)!

1

2

H

4

(not unique), M

�

25

! J(8; 3)!

1

2

H

8

(see Fig. 3g),

3) it gives a 2-embedding of Prism

n

which turns out to be Prism

n

!

1

2

H

n+2

(! H

n+2

2

for even n).

Another procedure: �x a 5-wheel rC

5

in the skeleton of an icosahedron and

associate every vertex v to the set of all vertices of the 5-wheel at distances 0 and 1

from v; we get a (unique) 3-embedding of the icosahedron.

Another interesting relaxation of our embeddings will be to consider scale-isometric

embedding into hypercubes of 1-skeletons of simplicial and cubical complexes more

general than the boundary complexes of polytopes. For example, the simplicial

complex on f1; 2; 3; 4; 5g with the facets f1; 2; 3g, f1; 2; 4g, f1; 2; 5g has the skele-

ton K

5

� K

3

; the cubical complex on f1; 2; 3; 4; 5; 6g with the facets f1; 2; 3; 4g,

f2; 3; 5; 6g, f1; 4; 5; 6g has the skeleton K

3;3

. So, both are non 5-gonal.
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APPENDIX

Here we give �gures of skeletons of polyhedra (except the 4-polytope on Fig1f).

For non hypermetric graphs we indicate on the skeleton points violating a (2k+1)-

gonal inequality. Actually, it is always 5-gonal, except Fig.1c,1f). When �gures

show l

1

-polyhedra, the embeddings are into

1

2

H

n

(except the embedding in H

5

on

Fig.11a). They are shown as follows: we label a vertex by the sequence i

1

; :::; i

m

(or

i

1

; :::; i

m

) if this vertex is addressed to the set fi

1

; :::; i

m

g (or fi

1

; :::; i

m

g, respectively.

Since m � 15 on our �gures, we use 1,...,9,0,a,...,e as addresses.
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Figure 1: Non hypermetric polytopes: a) M

20

= #112, triangular hebesphenoro-

tunda, b)M

8

= #111, bilunabirotunda, c)M

28

= #105, snub APrism

4

, d) #71

�

; e)

PZ

�

5

; dual rhombic icosahedron, f) Koester's graph, g) 4-polytope Pyr(icosahedron)

Figure 2: Hypermetric non l

1

- polyhedra: a) #30 = 1�APrism

4

, b) #71, triaug-

mented Prism

3

, c) M

22

= #106; sphenocorona,

34
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Figure 3: a) Dual 1�APrism

4

!

1

2

H

8

, b) dual 2�APrism

4

, c) M

�

7

; dual tridi-

minished icosahedron, d) M

�

21

; dual hebesphenomegacorona, e) M

�

22

; dual spheno-

corona, f)M

�

28

; dual snub APrism

4

, g)M

�

25

; dual snub dispensoid!

1

2

H

8

, h)M

�

23

;dual

sphenomegacorona!

1

2

H

10
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Figure 4: Prismatic non-l

1

graphs with minimal n: a) 1�M

2

6

, b) 1�APrism

8

, c) dual

1�APrism

5

, d) 2�APrism

6

, e) dual 2�APrism

6

= F

24

, f) Tow

2

3

= �

3

+ �

3

; g) dual

Tow

2

3

57

121256

561256

34

12
1268

1234

56

57

123434

1268

Figure 5: Square ortho- and gyro-bicupolas: #48 = Cup

4

+ Cup

4

!

1

2

H

8

and

#49 = Cup

4

+ Cup

4

; non 5-gonal.
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Figure 6: Dual small non 5-gonal polyhedra P with G(P

�

) = K

3�2

� e; K

6

�

P

5

; r

2

P

5

; rB

8

457

234

167126123237

156

234 345

135123

247

267

126
156

456
467

2356

23

7

345 456

12

34561256 15 45

34

346

236

137

456

156

14578

34578

123

126

157

45678

347

Figure 7: Dual l

1

-polyhedra: dual 1-, 2-capped �

3

, dual 2-, 3-capped �

3

!

1

2

H

7

;

1

2

H

8

;

1

2

H

6

;

1

2

H

7

resp.
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Figure 8: All l

1

-skeletons of basic regular-faced polyhedra M

i

; 1 � i � 28:

38



Figure 9: All not hypermetric skeletons of basic regular-faced polyhedraM

i

; l � i �

28:
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Figure 10: Fullerens: a) 1�Tow

2

5

, b) dual 2�Tow

3

5

, c) strained F

30

(D

5h

), d) F

28

(T

d

),

e) dual F

26

, f) 20-bowl!

1

2

H

15

; g) F

26

!

1

2

H

12

, h) dual F

28

(T

d

)!

1

2

H

7
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Figure 11: a) ElDo (elongated dodecahedron)!H

5

, b) the graph on H

5

nElDo, c)

AW

2

9

� (6; 8); antiweb AW

2

9

(a hypermetric, non-l

1

graph)
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