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Abstract

The relation of inclusion between types has been suggested by the practice of

programming, as it enriches the polymorphismof functional languages. We propose

a simple (and linear) calculus of sequents for subtyping as logical entailment. This

allows us to derive a complete and coherent approach to subtyping from a few,

logically meaningful, sequents. In particular, transitivity and anti-symmetry will

be derived from elementary logical principles, which stresses the power of sequents

and Gentzen-style proof methods. Proof techniques based on cut-elimination will

be at the core of our results.

1 Introduction

1.1 Motivations, Theories and Models

In recent years, several extensions of core functional languages have been proposed to

deal with the notion of subtyping; see, for example, [CW85, Mit88, BL90, BCGS91,

CMMS91, CG92, PS94, Tiu96, TU96]. These extensions were suggested by the practice

of programming in computer science. In particular, they were inspired by the notion

of inheritance as used in object-oriented programming languages, or by other concrete

implementations of the following form of polymorphism: data living in a type �, which

is a subtype of � , may also be seen as living in type � , in some suitable sense. So, an

integer is also a real, modulo an obvious \almost identical" coercion from integers to

reals.

�

A preliminary version, with no proofs and not dealing with base types, appeared in the proceedings

of the LICS'95 Symposium (San Diego, U.S.A.), July 1995.
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However, subtyping, in the presence of the functional arrow ! (and second order

universal quanti�cation 8) presents some problems. Indeed, in all functional approaches

to subtyping, arrow is formalized as being contravariant or antimonotone in the �rst

argument. More formally:

(!)

� � � � � �

0

� ! � � � ! �

0

where � � � is read \� is a subtype of �". The contravariant behavior of ! (on the

left) intuitively �ts with the categorical notion of (contravariant) Hom functor, but

also with the intuitive understanding of programs as transformations acting on inputs:

if a program M acts on inputs N in � , then it can take as input any element in a

subtype � of � . This poses a �rst well-known mathematical challenge: can we give a

general mathematical meaning of this formal construct and universal quanti�cation, in

the sense, say, of denotational semantics or of logical calculi?

1.1.1 Proof-Theoretic Analyses

In light of the proof-theoretic investigations that the problem of subtyping has stim-

ulated, it is fair to say that \the notion of subtyping is one of the most important

concepts introduced recently into the theory of functional languages" [Tiu96].

Let's quote some relevant papers. [CG92] solves the di�cult problems of coherence

and minimum typing. Clearly, if a term belongs to a type and to any larger type,

then it has no unique type nor does it code a unique proof (or type derivation). Of

course, the contravariant behavior of ! (on the left) and second order quanti�cation

complicate the problem. Yet, in [CG92], it is shown that each proof reduces to a unique

\normal" one, which also yields the minimum type of its coding term. Other extensions

of various lambda-calculi further clari�ed the issue of subtyping at a syntactic level.

The approach in [BCGS91] signi�cantly departs from the \intended" meaning in the

previous papers: the subtyping relation is interpreted by the existence of a certain

de�nable term between type expressions. These terms are called \coercions".

Yet another approach may be found in [CMMS91]. This is directly related to Cardelli's

ideas for the programming language Quest and contains its main features as a basis (the

Top type, bounded quanti�cation, etc.). In short, a type-inference system is proposed

which fully formalizes Quest's rules and investigates conservativity of typing judge-

ments and some categorical properties in a proof-theoretic frame (e.g., the syntactic

isomorphisms between closed terms). Moreover, [CMMS91] suggests a rule for equality

of terms, (eq appl2), a variant of which will be largely used in our approach.

Both [BCGS91] and [CMMS91] are \orthogonal" to this paper, as they contain features

(a Top type, records, variants, bounded quanti�cation, etc.) that were motivated

mostly by the practice of programming and which are not present in our approach.

Our perspective stresses the logical (indeed, the \implicative") nature of subtyping

and, for now, it presents only the \pure logic". It takes care of the introduction and

2



elimination of universal quanti�cation, which are not present in the other approaches

except in that of Mitchell [Mit88]. In a sense, the present paper may be seen as a

proof-theoretic analysis of Mitchell's axiomatic approach (see section 7.1). Further

extensions, besides the addition of base types (section 8), may be a reason for further

work.

The word \coercion" occurs in varying contexts. For example, in programming lan-

guages, coercions are known as \casting functions", whereby variables of one datatype

(e.g., boolean) are \converted" or \cast" to another datatype (e.g., integer). In some

languages, such conversions may actually change the underlying representation (in bits)

of the variable's contents, in which case the conversion must be done at run-time when

the contents are known. More semantic interpretations characterise coercions with re-

spect to identity functions, which do not imply a change to underlying representations.

The conversions implied by such coercions are performed statically at compile-time, for

type-checking, etc. Coercions are used in this sense in [Mit88] for example, where they

are known as \retyping functions".

1.1.2 Models

As regards the key covariance/contravariance issue, the semantic problem should be

clear. In a naive way, one may interpret \� is a subtype of �" as \� is a subset of �"

or \� can be identically injected into �". This set-theoretic understanding is usually

expressed by the following rule, known as subsumption (Cardelli): if N has type � and

� is a subtype of � , then N also has type � . However, in Set Theory, the rule (!)

is not realized, as there is no way to inject � ! � into � ! � when � is a subset of

� . There are, of course, several possible injections (by trivially extending functions)

of � ! � into � ! �, but this is the opposite of what is desired. Even Category

Theory, where Hom functors are contravariant on the left, doesn't help: if \subtype"

is interpreted as \subobject", there is no way to extend a monomorphism m : � ! �

to a monomorphism from C[�; �] to C[�; �] or, in a Cartesian Closed Category, from �

�

to �

�

.

An early solution was proposed in [BL90] by constructing a speci�c categorical interpre-

tation with \set-theoretic features": the model of Partial Equivalence Relations (PER)

accommodates Cartesian Closure as well as subtyping when � � � is interpreted as \�

is a subrelation, a subset of pairs, of �". Indeed, the PER model also provides an in-

terpretation of higher order quanti�cation as closure under indexed products. (Except

for a better understanding of this informal introduction, the reader will need no knowl-

edge of PER models nor of Category Theory in the technical parts of this paper.) The

overall categorical construction of PER, as a model of higher order lambda-calculus, in

particular, Girard's system F [Gir71], works because it is embedded in a constructive

approach to Set Theory (the category of !-Sets [LM91] or the E�ective Topos [Hyl82]).

In spite of the categorical relevance of the E�ective Topos (and of other categories which

interpret higher order lambda-calculi) and the proof-theoretic accounts in [BCGS91,

CMMS91, CG92], up to now, there has been no general categorical or purely logical
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understanding of subtyping (although a recent, and complex, categorical frame has been

proposed in [Jac95] and the axiomatic approach in [Mit88] is also a \complete logic" for

subtyping). In this paper, we propose a sequent calculus of subtyping, as a fragment

of intuitionistic (linear) second order propositional calculus. In particular, we focus

on the introduction and elimination rules for 8, which are at the core of second order

systems, and on a \cut-elimination" theorem. We claim that this is a crucial property

for the partial order of subtyping (the \cut" rule corresponds to \transitivity") as much

as it is fundamental in logic (see also [PS94]).

The idea is that one can give an obvious logical (constructive) understanding of \� is

a subtype of �" as \� implies �", or more precisely, as \� entails �" (� ` �). Note �rst

that, with this interpretation, the usual contra(co)-variance rule for ! makes perfect

sense: if � entails �

0

and �

0

entails � , then �

0

! �

0

entails � ! � . Moreover, if terms in

� may also be in � , then this should be possible using some sort of e�ective transfor-

mation: either the identity or a \suitable" coercion, as an e�ective map from � to � .

Thus, by the Curry-Howard isomorphism, subtyping is a special case of intuitionistic

implication: a computation from � to � is a proof of � ` � . But which special case?

And how to characterize it? Coercions shouldn't be arbitrary maps. Of course, the

simplest idea would be to assume that they are identities. This makes no sense though

in typed frameworks: if � � � but � and � are di�erent, there is no identity from �

to � . This is so both in models and in theories. A way out is suggested by the PER

model. PER models are constructed over an underlying model of the type-free lambda

calculus. Indeed, any model of partial combinatory logic may su�ce, see [Hyl88] say,

and in particular Kleene's (!; :): in this case, n:m stays for the n-th index or Turing

Machine applied to m.

Thus, in the PER model, terms are interpreted as equivalence classes of elements of !.

More precisely, de�ne the erasure of a typed term to be the type-free term obtained

by erasing all type information. Then, a term is interpreted by the equivalence class

of (the interpretation of) its erasure. This allows second order quanti�cation to be

interpreted as intersection, since the intersection is isomorphic to a categorical product

(see [LM91]). In short, in the model in [BL90] (more precisely in the variant of it

in [CL91], sect.4), a coercion c from � to � transforms each fng

�

into fng

�

, where fng

�

denotes the equivalence class of n in � and fng

�

is generally smaller than fng

�

. Thus,

c is computed, in particular, by any index i of the identity function; equivalently, c is

represented by fig

�!�

, since fig

�!�

:fng

�

= fi:ng

�

= fng

�

. Clearly, fig

�!�

contains

many more elements than the indices of the identity function on !, when � or � are

di�erent from !. Using erasures in order to interpret typed terms, then this suggests

that syntactic coercions are typed terms, di�erent, in general, from the identity, but

whose erasure is equal to the identity �x:x. This idea is nicely used in [Mit88]. It will

give a syntactic completeness theorem for our \logic of subtyping" described next.

1.2 Subtyping as restricted Linear Implication

The logical frame we use here is intuitionistic second-order propositional logic. The

intended meaning of � ` � is that � is contained in � . An obvious axiom and the

contra(co)-variance rule for ! are the �rst requests for a logic of subtyping:
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(ax) � ` � (!)

�

0

` � � ` �

0

� ! � ` �

0

! �

0

Consider now a logical interpretation of second order 8. Assume that � contains X

free and that from a speci�c instance of � (with � substituted for X say), one can

deduce � . Then, from 8X:� one can, a fortiori, deduce � . This is the (8 left) rule of

Gentzen's sequent calculus. A semantic understanding of this second order deduction,

can be given in the PER model of subtyping: if a speci�c instance of a family of types

is a subtype of � , then, in the model, the intersection of the entire family is a subtype

of � .

(8 left)

[�=X ]� ` �

8X:� ` �

Moreover, if � entails � , and � does not contain X free, then � also entails 8X:� . This

is Gentzen's (8 right) rule. Semantically, if � is a subtype of � and � does not depend

on X , then � is also a subtype of the intersection of all �s over X :

(8 right)

� ` �

� ` 8X:�

�

for X not

free in �

Recall now that the principal idea here is that the embedding of a type into another

should be very simple: indeed, as close to the identity as possible in a typed language.

Identities are linear maps, to say the least, as our system will be a fragment of the Linear

Sequent Calculus. Even more so: we allow only one premise in a sequent � ` � , as even

the swapping of inputs is forbidden. Thus, in order to deal with nested implications,

we generalize (8 right) to:

(8

n�0

right)

� ` �

1

! : : : (�

n

! �) : : :)

� ` �

1

! : : :(�

n

! 8X:�) : : :)

�

for X not

free in � nor

in �

1

; : : : ; �

n

(8

n

right) is a family of rules indexed by n � 0. Note that, if more than one premise

was allowed, (8

n

right) would be the curried variant of (8 right) with n premises.

These four rules are all we need. The reader may wonder what happened to a fun-

damental property of subtyping, that is, to transitivity. Indeed, we will prove that

` is a partial order, thus, in particular that it is transitive and anti-symmetric. But

transitivity is just a (cut) rule:

(cut)

� ` � � ` �

� ` �

Proving transitivity will thus be the proof of admissibility for the rule (cut), that is,

that each time the premises are derivable, then the consequence is derivable too. Or,
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equivalently, that the system extended with (cut) has the cut-elimination property.

Notice now that the proof one can \eliminate cuts" is non trivial for weak systems

(as we will discuss at length below), as, in general, these results and proofs are not

inherited to subsystems.

Remark that 8 is introduced to the left and to the right of entailment by two separate

rules while! is symmetrically introduced both to the left and to the right of entailment

by a single rule, the familiar (!) rule de�ned previously. This will turn out to be

important in our proof of cut-elimination.

Cut-elimination is a fundamental property in constructive logical systems. It guarantees

consistency as it shows that each derivation can be given a \minimal" structure. In

the various lambda-calculi, it relates deductions to computations as cut-elimination

corresponds to a �-reductions. In those systems, (cut) is a non-primitive rule, as

it corresponds to the sequential application of (!-introduction) and (!-elimination)

rules; moreover, it is usually considered as a (side) consequence of normalization. In

contrast to this, for the purposes of subtyping, (cut) is as basic as transitivity: our

non-obvious result is that transitivity can be derived or, from a logical perspective,

that our system, in the presence of the rules for universal quanti�cation and extended

with (cut), has the cut-elimination property.

The seemingly simple logical system above will be shown to be complete and coherent

as a logic for deriving subtyping relations. By completeness, we mean that � ` � is

derivable i� there is a term of type � ! � that erases to the identity. We de�ne a

coercion to be such a term. By a result in [Mit88] this will also guarantee completeness

with respect to subtyping in all PER models, in the sense of [BL90]. Transitivity will

be essential to this result.

Coherence will mean that derivability of � ` � implies a unique coercion from � to � .

One of its consequences will be anti-symmetry. Coherence will be easily shown in our

system, while it requires cut-elimination if proved in the system extended with (cut).

Once the formal system is fully written down, with proof-terms displayed (see Sec-

tion 3), the next thing to be described is term equality. The notion of equality we use

here may be viewed the \generalized dual" of an early result of Girard's [Gir71]: in

system F, there is no de�nable term that discriminates between types. Namely, there

is no de�nable term J

�

such that J

�

applied to type � is 1 if � = �, and is 0 if � 6= �.

This idea was taken up in [LMS93] by extending system F with the following axiom:

(Axiom C)

M : 8X:�

M�

1

= M�

2

�

for X not

free in �

Intuitively, as there are no type discriminators, (Axiom C) forces terms of universally

quanti�ed type, whose outputs live in the same type, to be constant. System F extended

with (Axiom C) satis�es the Genericity Theorem (see [LMS93]), which states that if

two second-order functions (of the same type) coincide on an input type, then they
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are, in fact, the same function. Equivalently, types are generic inputs to second-order

functions.

(Axiom C) was proposed following [Gir71] and independently of [CMMS91], where the

system F

�

is de�ned which includes the following inference rule. This rule is more

general than (Axiom C) by a crucial use of subsumption:

(eq appl2)

M : 8X:� [�

1

=X ]� � � [�

2

=X ]� � �

M�

1

= M�

2

: �

Observe thatM gives outputs in (possibly) di�erent types [�

1

=X ]� and [�

2

=X ]�. Then,

intuitively, (eq appl2) says that if these two types (of outputs) have a common supertype

�, then the outputs are equal when seen as elements of �. Thus, in particular, if �

does not contain X free, one obtains (Axiom C).

Note that (Axiom C) is valid in all proper models of system F, in particular in all

\parametric models" in the sense of Reynolds ([MR92, ACC93]). Moreover, (eq appl2)

holds in the only semantic models of system F with subtyping, namely in PER models,

of course with the intended coercions. The relevance of (eq appl2) is that it allows one

to prove the (categorical) universality of key de�nable constructs in System F (binary

products, coproducts, existentials, etc.).

However, (eq appl2) relies implicitly on the subsumption rule, i.e., if M : � and � � � ,

then M : � . And, as already pointed out, subsumption has neither type-theoretic nor

categorical meaning, even though it may have solid practical motivations and intuitive

meaning. Subsumption may be avoided in (eq appl2) if coercions are used explicitly as

follows:

M : 8X:� y

1

: [�

1

=X ]� ` N

1

: � y

2

: [�

2

=X ]� ` N

2

: �

[M�

1

=y

1

]N

1

= [M�

2

=y

2

]N

2

This \coercion version" of (eq appl2) will be used in our type-theory as an interplay

between subtyping and equality.

In conclusion then, our logic of subtyping will be based on the simple four-rule sequent

calculus presented previously, and the proof terms will satisfy the usual equational rules

plus a coercion version of (eq appl2).

2 System F

We �rst recall System F [Gir71]. The language has two kinds of expression, types and

terms, de�ned by the following syntax:

(Types) � ::= X j � ! � j 8X:�

(Terms) M ::= x j �x :�:M j MN j �X:M j M�
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We will use:

�; �; �; � for types M;N; P;Q;R for terms

X; Y; Z for type variables x; y; z for term variables

An environment � is a set of term variables with their types. We write �; x :� to extend

� with a new term variable x of type �, where x must not already occur in �.

We use the notation � `

F

M : � for type assignment in system F. This is read \term

M is assigned type � relative to environment �". The following rules de�ne valid type

assignments.

System F

(ax) �; x :� `

F

x : �

(! intro)

�; x :� `

F

M : �

� `

F

�x :�:M : � ! �

(! elim)

� `

F

M : � ! � � `

F

N : �

� `

F

MN : �

(8 intro)

� `

F

M : �

� `

F

�X:M : 8X:�

�

for X not free in the type of

any free term variable in M

(8 elim)

� `

F

M : 8X:�

� `

F

M� : [�=X ]�

Reduction of terms is de�ned as usual by the closure of the following rules:

(�

1

) (�x :�:M)N �!

�1

[N=x]M (�

2

) (�X:M)� �!

�2

[�=X ]M

(�

1

) �x :�:Mx �!

�1

M

�

for x =2 FV (M )

(�

2

) �X:MX �!

�2

M

�

for X =2 FV (M )

Where FV (M) is the collection of free type and term variables in M . We will write

�!

��

for the transitive closure of all four reductions, �!

�

for the closure of just �

1

and

�

2

; and �!

�

for the closure of �

1

and �

2

. We also write \nf" pre�xed by a reduction

relation to indicate normal form with respect to the relation.

Equality of terms is de�ned by the compatible, reexive, transitive closure of �!

��

.

We write M =

��

N for this equality, known as ��-convertibility. We reserve the

notationM � N for syntactic identity of terms up to renaming of bound variables, i.e.,

�-equivalence. For types, equality, � = � , is just syntactic identity up to renaming of

bound variables.
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3 Systems Co

`

and Co

`

+(cut)

3.1 System Co

`

Let us de�ne a sequent calculus of subtyping, referred to as System Co

`

(pronounced

\co", for coercions). We will use `

co

for entailment in this system.

We give two (equivalent) presentations of Co

`

. The �rst presentation gives only the

types involved in each judgment, which are of the form � `

co

� . This presentation

emphasizes the (intended) subtyping relation between types but, of course, the calculus

may be considered independently of this interpretation by referring just to its logical

signi�cance.

System Co

`

(unlabelled)

(ax) � `

co

� (!)

�

0

`

co

� � `

co

�

0

� ! � `

co

�

0

! �

0

(8 left)

[�=X ]� `

co

�

8X:� `

co

�

(8

0�n

right)

� `

co

�

1

! : : : (�

n

! �) : : :)

� `

co

�

1

! : : : (�

n

! 8X:�) : : :)

�

for X not

free in � nor

in �

1

; : : : ; �

n

In the second presentation of the system, we label each type with a term, yielding

judgments of the form x : � `

co

M : � . This presentation makes explicit the coercion

terms involved in each subtyping judgment. We will refer to the �rst presentation as

the \unlabelled" system, to the second as the \labelled" system.
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System Co

`

(labelled)

(ax) x :� `

co

x : �

(!)

x

0

:�

0

`

co

M : � y :� `

co

N : �

0

x :� ! � `

co

�x

0

:�

0

: [xM=y]N : �

0

! �

0

(8 left)

y : [�=X ]� `

co

M : �

x :8X:� `

co

[x�=y]M : �

(8

0�k�n

right)

x :� `

co

�x

1

:�

1

: : :�x

k

:�

k

:M : �

1

! : : : (�

n

! �) : : :)

x :� `

co

�x

1

:�

1

: : :�x

k

:�

k

: : : �x

n

:�

n

:�X:Mx

k+1

: : :x

n

: �

1

! : : :(�

n

! 8X:�) : : :)

�

for X not free in �

nor in �

1

; : : : ; �

n

,

for M not of the form �y:M

0

,

for x

k+1

; : : : ; x

n

fresh

(8

0�n<k

right)

x :� `

co

�x

1

:�

1

: : : �x

k

:�

k

:M : �

1

! : : : (�

n

! �) : : :)

x :� `

co

�x

1

:�

1

: : :�x

n

:�

n

:�X:�x

n+1

:�

n+1

: : : �x

k

:�

k

:M

: �

1

! : : :(�

n

! 8X:�) : : :)

�

for X not free in �

nor in �

1

; : : : ; �

n

,

for M not of the form �y:M

0

for � � �

n+1

! : : : (�

k

! �

0

) : : :)

We shall shortly see that the two cases of (8

n

right) labeled with coercion terms are

disjoint.

1

In the rest of the paper, we shall refer to judgments of either presentation

(with/without coercion terms) of Co

`

as \sequents". We will use S for sequents and

�;  for derivations of sequents.

Many of the proofs in this paper are by induction on the size of a derivation. This

notion of size is de�ned as the total number of applications of rules in a derivation.

In this work, a coercion is de�ned as follows:

De�nition (Coercion) A sequent x : � `

co

M : � is a coercion from � to � i� it is

derivable.

Example. In Co

`

, ? = 8X:X (the empty type) is provably a subtype of all types. The

corresponding coercion is obtained from the following derivation:

y : [�=X ]X `

co

y : �

(8 left)

x :8X:X `

co

x � : �

1

Tiuryn in [Tiu96] presents (8

n

right) in another slightly simpler form.

10



Lemma 1 (Structure of coercions) If x : � `

co

M : � , then the set of free term

variables of M is exactly fxg, and x occurs exactly once and always at the leftmost

position in M . Furthermore, each bound term variable occurs exactly once in M .

Proof: By induction on the size of the derivation of x :� `

co

M : � .

This lemma shows that, in particular, coercions are linear terms (in the usual sense).

Lemma 2 (Coercions are functions) If x :� `

co

M : � then x :� `

F

M : � .

Proof: By induction on the size of the derivation of x :� `

co

M : � .

Lemma 3 (Coercions are in �-nf) If x :� `

co

M : � then M is in �-nf.

Proof: By induction on the size of the derivation of x :� `

co

M : � , as no inference

rule creates a �-redex.

This shows that the coercion terms involved in (8

n

right) are unambiguously de�ned

since M , in the assumption, must be in �-nf. Note too that, though (!) and (8 left)

may introduce �-redexes, the system is easily shown to be closed under �-reduction. It

is also closed under those �-expansions that do not introduce �-redexes.

Lemma 4 For M in �-nf, assume x : � `

F

M : � and M �!

�

M

0

. Then

x :� `

co

M : � i� x :� `

co

M

0

: � .

Clearly, `

co

is strictly weaker than `

F

. Consider, for example:

x :8X:X `

F

x(8X:X ! 8X:X)x : 8X:X

but

x :8X:X 6 `

co

x(8X:X ! 8X:X)x : 8X:X

Even restricting terms to linear ones, and environments to those containing exactly one

variable, is not enough to produce a coercion. For example,

x :� ! (� ! �) `

F

�y :�:�z :�:(x z y) : � ! (� ! �)

is not a coercion. Theorem 16 (completeness) will characterize those System F functions

that are coercions.

By the Curry-Howard isomorphism, Co

`

is thus a proper subsystem of Intuitionistic

(Linear) Second-order Propositional Logic. This is only natural since coercions are

intended to represent \inclusions" of types. Clearly, there is no reason why arbitrary

F-entailment (or even isomorphisms of types) should be interpreted as inclusion.

3.2 System Co

`

+(cut)

We are going to show below that `

co

is a transitive relation. That is, in the unlabelled

system, the rule:

11



(cut)

� `

co

� � `

co

�

� `

co

�

is admissible.

Its labelled version needs some discussion. A \naive" variant would be:

x :� `

co

M : � y :� `

co

N : �

x :� `

co

[M=y]N : �

Note though that [M=y]N does not need to be a coercion; in particular, it does not

need to be in �-nf. However, without making use of Strong Normalization for System

F, we can prove that:

Lemma 5 (Cut-rule coercions) Consider the coercions x :� `

co

M : � and y : � `

co

N : �. Let n be the number of �s in [M=y]N . Then each �-reduction path from [M=y]N

has at most n steps and reduces to a unique term P in �-nf.

Proof: By the linearity of coercions, the term [M=y]N is linear and each �-reduction

decreases the number of �s.

This lemma motivates the following alternative version of labelled (cut)-rule, where

nf([M=y]N) means �-nf of [M=y]N :

(cut)

x :� `

co

M : � y :� `

co

N : �

x :� `

co

nf([M=y]N) : �

Our aim is to show that x : � `

co

nf([M=y]N) : � is actually a coercion, that is, a

derivable term in Co

`

, or in other words, the rule above is admissible.

In section 6, the proof of admissibility of (cut) can be obtained from a cut-elimination

theorem for Co

`

extended with (cut). We will thus work with derivations in the

extended system Co

`

+(cut), where we use `

co+cut

for entailment. Clearly, a \cut-free"

derivation in Co

`

+(cut) is just a derivation in Co

`

. Note, that by this approach to the

cut-rule, the Subject Reduction Theorem trivially holds in Co

`

+(cut).

3.3 Equality in Co

`

and Co

`

+(cut)

Equality of coercions is de�ned, essentially, by �-equality plus a coercion version of the

F

�

rule (eq appl2) given in [CMMS91]. We write x : � `

co

M =

�co

N : � to mean

that M and N are equal coercions from � to � . This relation is de�ned as follows.

De�nition (Equality of terms) =

�co

is the least equivalence relation generated by

�-convertibility plus

12



(eq �)

x :� `

co

M : � x :� `

co

M

0

: � M =

�

M

0

x :� `

co

M =

�co

M

0

: �

(eq appl2 co)

y

1

: [�

1

=X ]� `

co

N

1

: � y

2

: [�

2

=X ]� `

co

N

2

: �

x :8X:� `

co

[x�

1

=y

1

]N

1

=

�co

[x�

2

=y

2

]N

2

: �

plus two rules, (eq !) and (eq 8

n

right), which state, respectively, that (!) and (8

n

right) preserve equality of coercions. These other rules are given in full in the appendix.

Remark that (eq appl2 co) implies (8 left) preserves equality of coercions: given y :

[�=X ]� `

co

M =

�co

N : � , apply (eq appl2 co) with �

1

� �

2

� � and N

1

� M and

N

2

� N to obtain x :8X:� `

co

[x�=y]M =

�co

[x�=y]N : � .

The rules (eq !) and (eq 8

n

right) are derivable in system F using �-convertibility.

Rule (eq appl2 co), on the other hand, is not derivable in system F as it equates terms

that are not �-convertible, as shown by the following instance of the rule.

y

1

: [�

1

=X ]Y `

co

y

1

: Y y

2

: [�

2

=X ]Y `

co

y

2

: Y

(eq appl2 co)

x :8X:Y `

co

[x�

1

=y

1

]y

1

=

�co

[x�

2

=y

2

]y

2

: Y

Thus, x�

1

=

�co

x�

2

whereas x�

1

6=

��

x�

2

in general, i.e., they are not equal in system

F. Clearly, though, x�

1

and x�

2

are equal in system F

�

using the corresponding \non-

coercion" rule (eq appl2).

Here are two examples to illustrate =

�co

(reminder: ? = 8X:X). Note that these

equalities are not provable in system F.

Example 1: x :? `

co

x =

�co

x? : ?

y

1

: [X=X ]X `

co

y

1

: X

y : [X=X ]X `

co

y : X

(8 left)

y

2

: [?=X ]X `

co

y

2

X : X

(eq appl2 co)

x :? `

co

xX =

�co

x?X : X

(eq 8

0

right)

x :? `

co

�X:xX =

�co

�X:x?X : ?

(eq �)

x :? `

co

x =

�co

x? : ?

Example 2: x :8X :X ! X `

co

�y :? : �X : xX(yX) =

�co

x? : ? ! ?

y

0

:X `

co

y

0

: X

(8 left)

y :? `

co

yX : X x

0

:X `

co

x

0

: X

(!)

y

1

:X ! X `

co

�y :? : y

1

(yX) : ? ! X

y :? `

co

y : ?

y

0

:X `

co

y

0

: X

(8 left)

x

0

:? `

co

x

0

X : X

(!)

y

2

:? ! ? `

co

�y :? : y

2

yX : ? ! X

(eq appl2 co)

x :8X:X ! X `

co

�y :? : xX(yX) =

�co

�y :? : x?yX : ? ! X

(eq 8

1

right)

x :8X:X ! X `

co

�y :? : �X : xX(yX) =

�co

�y :? : �X : x?yX : ? ! ?
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Besides equality of terms, we shall need equality of derivations. To clarify the relation-

ship between di�erent systems, we introduce here several equality relations.

De�nition (Equality of derivations) Let �

1

be a derivation of x :� `

co

M : � and

�

2

a derivation of x :� `

co

N : � . We write:

� �

1

= �

2

i� M � N

� �

1

=

�

�

2

i� x :� `

co

M =

�

N

� �

1

=

�co

�

2

i� x :� `

co

M =

�co

N .

In the unlabelled system, equality relations are de�ned via equality relations between

corresponding derivations of the labelled system.

Equality of derivations in System Co

`

+(cut) are de�ned likewise. In our cut-elimination

proof, we shall show that, for each derivation � of x : � `

co+cut

M : � , there exists a

derivation �

0

in Co

`

with the same M so only = will actually be needed there.

3.4 Semantics of =

�co

Clearly, the semantics of rules (eq !) and (eq 8

n

right) pose no problems. However,

the semantics, indeed the consistency, of (eq appl2 co) deserves closer attention. The

following remarks are intended for the reader familiar with PER models.

Rule (eq appl2 co) is valid in the PER model of subtyping [BL90]. More precisely, it is

valid in the interpretation of subtyping with explicit coercions, given in [CL91] for the

system Quest

C

. This can be seen as follows. Recall that, under an environment �, the

interpretation of M : � is given by the equivalence class f[[erase(M)

�

]]g

�

, where, by an

abuse of language, we use the same name for both a type � and its meaning as a p.e.r..

(See the introduction and [CL91] on how type-free and typed environments are related;

in short, a type-free environment � \picks out" an element of the equivalence class of

the typed �

0

). Assume now that y

i

: [�

i

=X ]� for i = 1; 2, and x : 8X:�. If both [�

i

=X ]�

for i = 1; 2 are subtypes of �, then the equivalence classes f�(y

i

)g

[�

i

=X]�

are coerced

to the (larger) equivalence classes f�(y

i

)g

�

for i = 1; 2. Note now that, for x : 8X:�,

one has x�

i

: [�

i

=X ]� and erase(x�

i

) = erase(x) = x. Then, by the interpretation of

polymorphic application (see [LM91]), f�(x)g

8X:�

: �

i

= f�(x)g

[�

i

=X]�

, which is also

equal to the interpretation of x�

i

: [�

i

=X ]�.

The validity of the premises of (eq appl2 co) means that, in the model, N

i

coerces the

meaning of any term in [�

i

=X ]� into an equivalence class of �. In particular, both

interpretations f�(x)g

[�

i

=X]�

of x�

i

: [�

i

=X ]�, i = 1; 2, are coerced by N

i

to the same

equivalence class f�(x)g

�

, which does not depend on i. This is exactly the validity of

the consequence of (eq appl2 co).

As recalled in the introduction, the coercions N

1

; N

2

are interpreted by functions com-

puted (also) by indexes of the identity function. In general, though, they are not

themselves identities and f�(y

i

)g

[�

i

=X]�

may be strictly smaller than f�(y

i

)g

�

(and

each of the f�(x)g

[�

i

=X]�

may be strictly smaller than f�(x)g

�

). In [CMMS91], it

14



is said that (eq appl2), which contains no coercions, is valid in PER models. This

is correct but only modulo \forgetting" the coercions in the model (as was suggested

in [BL90]). However, this does not correspond exactly to the structure of PER models,

where coercions are non-identical maps (see [CL91] for a more detailed discussion).

Thus, (eq appl2 co) is a more precise formalisation of \truth", as given in PER models,

than (eq appl2).

4 Some special classes of derivations

4.1 Pure variable derivations

De�nition (Pure variable derivation) A pure variable derivation is a derivation

such that no type variable occurs both free and bound in the same sequent (in the

unlabelled and labelled systems Co

`

and Co

`

+(cut)).

This notion of pure variable derivations is comparable with that of Kleene's (see [Kle67]).

Lemma 6 Every derivation in Co

`

or in Co

`

+(cut) is = to any derivation obtained

by safely renaming bound type variables in types and terms, without capturing free type

variables.

Proof: By induction on the size of the derivation. In the case of (8 left), use the

identity [�=X ]� = [�=X

0

]([X

0

=X ]�) where X

0

does not occur free in � (otherwise

X

0

would be captured), and in the case of (8

n

right), uniformly substitute [X

0

=X ]

in the derivation of the premise and then use (8

n

right) with X

0

instead of X

(the side-condition is used). For (!) and (cut), it is enough to use the induction

hypothesis.

Lemma 7 Every derivation in Co

`

or in Co

`

+(cut) is = to a pure variable derivation.

Proof: By induction, using the previous lemma (always choosing fresh bound

variables).

To illustrate the utility of pure variable derivations, consider the following derivation:

�

l

x

0

:�

0

`

co

M : �

�

r

y :� `

co

N : �

0

(8

0

right)

y :� `

co

�X:N : 8X:�

0

(!)

x :� ! � `

co

�x

0

:�

0

: �X : [xM=y]N : �

0

! 8X:�

0

By the side-condition on (8

0

right), we know that X is not free in � . Our aim now is

to permute the applications of (8

0

right) and (!) as follows:

�

l

x

0

:�

0

`

co

M : �

�

r

y :� `

co

N : �

0

(!)

x :� ! � `

co

�x

0

:�

0

: [xM=y]N : �

0

! �

0

(8

1

right)

x :� ! � `

co

�x

0

:�

0

: �X : [xM=y]N : �

0

! 8X:�

0
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However, this second derivation is only possible if the variable X is not free in � nor

in �

0

, as required by (8

1

right). This is the case if the �rst derivation is a pure variable

one, for then the X bound in 8X:�

0

would be fresh.

From now on, we will work exclusively with pure variable derivations, referring to them

as just \derivations".

4.2 Permutations of rules

The following lemma gives the rule pairs that can be permuted in a derivation of Co

`

,

resulting in an equal derivation.

Lemma 8 (Rule permutations I) The following pairs of derivations are equal in Co

`

,

up to =:

1.

�

(8

n

right)

S

1

(8 left)

S

2

=

�

(8 left)

S

0

1

(8

n

right)

S

2

2.

�

l

�

r

(8

n

right)

S

1

(!)

S

2

=

�

l

�

r

(!)

S

0

1

(8

n+1

right)

S

2

Proof: By simple consideration of the types and terms involved in each sequent.

Case 1 applies to any kind of derivation whereas case 2 requires a pure variable

derivation. Indeed, the proof of case 2, permuting (8

n

right) for n = 0 and (!), is

given by the examples of pure variable derivations above. Remember that, by the

de�nition of = on derivations, the terms labelling the end sequents of both the left

and right derivations above, are identical.

Note that (8

n

right) becomes (8

n+1

right) when it is permuted downwards with (!).

Note also that case 1 applies only when (8

n

right) is permuted downwards with (8 left),

not conversely.

In the next lemma we describe permutability of rules with (cut) (in Co

`

+(cut)).

Lemma 9 (Rule permutations II) The following pairs of derivations are equal, up to

=:

1. (8

n

right) on the right permutes with (cut):

�

l

S

1

�

r

S

2

(8

n

right)

S

3

(cut)

S

4

=

�

l

S

1

�

r

S

2

(cut)

S

0

3

(8

n

right)

S

4
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2. (8 left) on the left permutes with (cut):

�

l

S

1

(8 left)

S

3

�

r

S

2

(cut)

S

4

=

�

l

S

1

�

r

S

2

(cut)

S

0

3

(8 left)

S

4

Recall that equality of derivations = means that the terms labelling the end-sequents

are identical.

Other rule pairs cannot be permuted at all, either because the resulting derivation

would end with a sequent containing totally di�erent types, or because of structural

mismatches in types. In particular, the following derivations ending with (cut) cannot

be permuted in the same way as above because of structural mismatches in types in

the premises:

� (!) on the left does not permute with (cut):

�

l1

�

0

`

co

�

�

l2

� `

co

�

0

(!)

� ! � `

co

�

0

! �

0

�

r

�

0

! �

0

`

co

�

(cut)

� ! � `

co+cut

�

� (!) on the right does not permute with (cut):

�

l

� `

co

� ! �

�

r1

�

0

`

co

�

�

r2

� `

co

�

0

(!)

� ! � `

co

�

0

! �

0

(cut)

� `

co+cut

�

0

! �

0

� (8 left) on the right does not permute with (cut):

�

l

� `

co

8X:�

�

r

[�=X ]� `

co

�

(8 left)

8X:� `

co

�

(cut)

� `

co+cut

�

� (8

n

right) on the left does not permute with (cut):

�

l

� `

co

�

1

! : : :(�

n

! �) : : :)

(8

n

right)

� `

co

�

1

! : : :(�

n

! 8X:�) : : :)

�

r

�

1

! : : : (�

n

! 8X:�) : : :) `

co

�

(cut)

� `

co+cut

�
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4.3 Atomic derivations

The following notion of \atomic" derivations is de�ned for System Co

`

only.

De�nition (Atomic derivation) An atomic derivation is one in which all axioms

are of the form x :X `

co

x : X.

Lemma 10 Every derivation is =

�

to an atomic derivation.

Proof: Let � be a derivation of x :� `

co

M : � . If � is not atomic then an axiom of

the form x :� `

co

x : � where � is not a type variable, is used at a leaf. It su�ces

to prove the thesis for such axioms. Proceed by case analysis of the structure of �.

Case: � = 8X:�

0

. Construct then the following atomic derivation:

y : [X=X ]�

0

`

co

y : �

0

(8 left)

x :8X:�

0

`

co

xX : �

0

(8

0

right)

x :8X:�

0

`

co

�X:xX : 8X:�

0

where �X:xX =

�

x.

Case: � = �

1

! �

2

. Construct the following atomic derivation:

y :�

1

`

co

y : �

1

y

0

:�

2

`

co

y

0

: �

2

(!)

x :�

1

! �

2

`

co

�y :�

1

:xy : �

1

! �

2

where �y :�

1

:xy =

�

x.

Atomic derivations simplify matters in the rest of this section by allowing us to work

up to = with atomic derivations, instead of up to =

�

with general derivations.

In the following lemma, we \transform" atomic derivations to a useful form (for later

purposes) by permuting rules as appropriate.

Lemma 11 (Transforming atomic derivations) Let � be an atomic derivation of x :

� `

co

M : �

1

! (: : :(�

n

! 8X:�) : : :). Then, there exists an atomic derivation �

0

= �,

with � and �

0

of equal size, and where (8

n

right) is the last rule used in �

0

.

Proof: Proceed by induction on the derivation of �. Clearly, (ax) cannot have been

used, and if (8

n

right) was used last in �, then we are done. In the other two cases,

use Lemma 8 to permute rules as follows:

Case: (8 left) used last. Apply the induction hypothesis to the premise then

permute (8 left) with (8

n

right) (Lemma 8, case 1).

Case: (!) used last. Apply the induction hypothesis to the left premise then

permute (!) with (8

n�1

right), the latter becoming (8

n

right) in the �nal

derivation (Lemma 8, case 2).

Lemma 12 Let �

1

and �

2

be two atomic derivations of x :� `

co

M :� and x :� `

co

N :�

respectively. Then, there exist atomic derivations �

0

1

= �

1

and �

0

2

= �

2

such that �

0

1

and �

0

2

end with the same rule.
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Proof: If �

1

and �

2

end with the same rule, then, trivially, we are done. Otherwise,

based on the structure of � and � , it is su�cient to consider two cases: either �

1

ends with (8

n

right) and �

2

with (!), or �

1

ends with (8

n

right) and �

2

with (8

left).

In the �rst case, the end sequent in both derivations must be of the form x :� `

co

M : �

1

! 8X:�

2

. Apply then Lemma 11 to �

2

yielding a derivation �

0

2

= �

2

ending

with (8

n

right), and take �

0

1

� �

1

. The second case is treated likewise. If �

1

ends

with (8

n

right), apply Lemma 11 to �

2

yielding a derivation �

0

2

= �

2

ending with

(8

n

right). Take �

0

1

� �

1

.

5 Coherence of Co

`

By coherence, we mean that a coercion from type � to type � should be independent

of its derivation in Co

`

, in the sense that if a coercion from � to � exists, then it is

unique, up to =

�co

.

We are now in a position to prove the coherence of Co

`

derivations. Note that this is

where =

�co

and thus the rule (eq appl2 co) is used.

Theorem 13 (Coherence of Co

`

derivations) Let �

1

and �

2

be two derivations

of x :� `

co

M :� and x :� `

co

N :� respectively. Then, �

1

=

�co

�

2

.

Proof: By Lemmas 10 and 12, there exist atomic derivations �

0

1

=

�

�

1

and �

0

2

=

�

�

2

such that �

0

1

and �

0

2

both end with the same rule. The proof is easy now. However,

it uses induction in a peculiar way (which stresses the strength of (eq appl2 co)).

Consider the obvious syntactic length of a type. Then the induction is on the length

of � , when x :� `

co

M :� is the �nal sequent.

Case: (!) applied last.

Use induction and (eq !).

Case: (8

n

right) applied last.

Use induction and (eq 8

n

right).

Case: (8 left) applied last. In this case, the length of � is not changed, but we do

not need the inductive hypothesis, here, in view of (eq appl2 co)

Indeed, the �nal steps in �

0

1

and �

0

2

are respectively:

�

l

y

1

: [�

1

=X ]� `

co

N

1

:�

(8 left)

x :8X:� `

co

[x�

1

=y

1

]N

1

:�

�

r

y

2

: [�

2

=X ]� `

co

N

2

:�

(8 left)

x :8X:� `

co

[x�

2

=y

2

]N

2

:�

Now, use (eq appl2 co) on both premises:

�

l

y

1

: [�

1

=X ]� `

co

N

1

:�

�

r

y

2

: [�

2

=X ]� `

co

N

2

:�

(eq appl2 co)

x :8X:� `

co

[x�

1

=y

1

]N

1

=

�co

[x�

2

=y

2

]N

2
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Hence, by de�nition, �

0

1

=

�co

�

0

2

.

It will be an easy corollary of coherence and the admissibility of (cut) in the next

section that x :� `

co

M : � and x : � `

co

N : � implies that � is isomorphic to � . In

other words, `

co

is anti-symmetric up to isomorphism.

6 Admissibility of Cut

In this section, we show that `

co

is a transitive relation.

The reader may wonder why a full section is needed to prove \cut-elimination" for a

subsystem of System F. The point is that normalization and cut-elimination results are

not inherited by subsystems; we will discuss the issue more closely after the proof of

the main theorem.

Theorem 14 (Cut-elimination) Every derivation in Co

`

+(cut) is equal (=) to a

cut-free derivation, i.e., a derivation in Co

`

.

Proof: By induction on the size of the derivation. Note that derivations here are

not atomic. We prove the theorem for derivations with one application of (cut) in

the end. Cut-elimination then holds for derivations with arbitrary numbers of cuts

by simply eliminating the cuts one by one beginning with uppermost cuts.

Consider then the �rst application of (cut) in a derivation:

�

l

S

L

�

r

S

R

(cut)

S

The derivations of S

L

and S

R

are cut-free, i.e., �

l

and �

r

are `

co

derivations, whereas

S is a `

co+cut

sequent. We proceed by case analysis of the last rule used in these

derivations.

Case: S

R

derived by (ax). The derivation of S looks like:

�

l

x :� `

co

M : � y :� `

co

y : �

(cut)

x :� `

co+cut

[M=y]y : �

Clearly, this derivation is = to the derivation of the left premise, which is cut-

free.

Case: S

L

derived by (ax). The derivation of S looks like:

x :� `

co

x : �

�

r

y :� `

co

N : �

(cut)

x :� `

co+cut

[x=y]N : �
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Take the derivation �

r

of the right premise S

R

� y : � `

co

N : �. Everywhere

that y occurs, replace it by x. This can be done without fear of wrong variable

capture because the derivation of S is a pure variable one: since x occurs free

in S

L

, it does not occur bound in S

R

. The \renamed" derivation of S

R

, which

is cut-free, is then = to the derivation of S.

Case: S

R

derived by (8

n

right).

First, permute (8

n

right) on the right with (cut) by Lemma 9, case 1:

�

l

S

L

�

r

S

2

(8

n

right)

S

R

(cut)

S

=

�

l

S

L

�

r

S

2

(cut)

S

0

R

(8

n

right)

S

By induction, there exists an equal cut-free derivation of S

0

R

, which replaces the

one with (cut).

Case: S

L

derived by (8 left).

First, permute (8 left) on the left with (cut) by Lemma 9, case 2:

�

l

S

1

(8 left)

S

L

�

r

S

R

(cut)

S

=

�

l

S

1

�

r

S

R

(cut)

S

0

L

(8 left)

S

Case: S

L

derived by (!).

The cut formula is a! type so S

R

was derived either by (8

n

right) or (!). The

�rst of these subcases has been treated already, by permuting the (cut).

Subcase: S

R

derived by (!).

This is a situation where (cut) cannot be permuted \as such" (see page 17).

The derivation of S looks like:

�

l1

x

0

:�

0

`

co

M :�

�

l2

y :� `

co

N :�

0

(!)

x :� ! � `

co

P

1

: �

0

! �

0

�

r1

x

00

:�

00

`

co

M

0

:�

0

�

r2

y

0

:�

0

`

co

N

0

:�

00

(!)

z :�

0

! �

0

`

co

P

2

: �

00

! �

00

(cut)

x :� ! � `

co+cut

P : �

00

! �

00

where P

1

� �x

0

:�

0

: [xM=y]N

P

2

� �x

00

:�

00

: [zM

0

=y

0

]N

0

P � nf([P

1

=z]P

2

)

� nf(�x

00

:�

00

: [(�x

0

:�

0

:[xM=y]N)=z][zM

0

=y

0

]N

0

)

First, rearrange the derivations of the premises to apply (cut) earlier and

(!) last:

�

r1

x

00

:�

00

`

co

M

0

:�

0

�

l1

x

0

:�

0

`

co

M :�

(cut)

x

00

:�

00

`

co+cut

nf([M

0

=x

0

]M) : �

�

l2

y :� `

co

N :�

0

�

r2

y

0

:�

0

`

co

N

0

:�

00

(cut)

y :� `

co+cut

nf([N=y

0

]N

0

) : �

00

(!)

x :� ! � `

co+cut

Q : �

00

! �

00
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where Q � �x

00

:�

00

: [x(nf([M

0

=x

0

]M))=y] nf([N=y

0

]N

0

).

By induction, there exist equal cut-free derivations of the premises to re-

place the ones with (cut). The labels of these cut-free derivations are the

same coercions nf([M

0

=x

0

]M) and nf([N=y

0

]N

0

). Since the (!) rule pre-

serves coercions, the term Q is a coercion and is in �-nf, i.e., nf(Q) � Q.

Finally, we prove P � Q as follows. Note that we make use of Lemma 1, that

coercions contain at most one free term variable, given by their environment.

P � nf(�x

00

:�

00

: [(�x

0

:�

0

:[xM=y]N)=z][zM

0

=y

0

]N

0

)

� nf(�x

00

:�

00

: [(�x

0

:�

0

:[xM=y]N)M

0

=y

0

]N

0

) z not free in M

0

; N

0

� nf(�x

00

:�

00

: [[M

0

=x

0

]([xM=y]N)=y

0

]N

0

)

�-reduction inside nf preserves �-nf

� nf(�x

00

:�

00

: [([x([M

0

=x

0

]M)=y]N)=y

0

]N

0

) x

0

not free in N

� nf(�x

00

:�

00

: [x([M

0

=x

0

]M)=y]([N=y

0

]N

0

)) y not free in N

0

� nf(�x

00

:�

00

: [x(nf([M

0

=x

0

]M))=y] nf([N=y

0

]N

0

))

Strong Normalization

� nf(Q)

� Q

Case: S

L

derived by (8

n

right).

This is another situation where (cut) cannot be permuted \as such" (see page 17).

The derivation of S looks like:

2

�

l

x :� `

co

P

0

: �

1

! : : : �

n

! �

(8

n

right)

x :� `

co

P : �

1

! : : : �

n

! 8X:�

�

r

z :�

1

! : : : �

n

! 8X:� `

co

Q : �

(cut)

x :� `

co+cut

R : �

where

P

0

� �x

1

:�

1

: : :x

k

:�

k

:M where M does not start with �y

P �

(

�x

1

:�

1

: : : �x

k

:�

k

: : : �x

n

:�

n

:�X:Mx

k+1

: : : x

n

for 0 � k � n

�x

1

:�

1

: : : �x

n

:�

n

:�X:�x

n+1

:�

n+1

: : : �x

k

:�

k

:M for 0 � n < k

R � nf([P=z]Q)

and X not free in � nor in �

1

; : : : ; �

n

. Moreover, by the de�nition of pure vari-

able derivation, X is also not free in �.

Proceed now by analysis of the cut-free right derivation:

�

r

z :�

1

! : : : �

n

! 8X:� `

co

Q : �

Observe that � will have the following general form:

� � �

1

! : : :�

m

! �

0

2

In the proof of this case, we will minimise the number of brackets () by employing the standard

convention that ! associates to the right. Thus, for example, instead of writing �

1

! (: : : ! (�

n

!

�) : : :) we will write �

1

! : : : �

n

! � .
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for some 0 � m and some types �

1

; : : : ; �

m

; �

0

. It can be proven, by induction

on n, that the derivation �

r

satis�es at least one of the following cases:

Subcase 1: �

0

� 8Y:�

00

, and the \8Y " can be traced back to an application of

(8

m�j

right) for some 0 � j � m. The derivation �

r

looks like:



1

y

1

:�

1

`

co

M

1

:�

1



j

y

j

:�

j

`

co

M

j

:�

j



0

z

j

:�

j+1

! : : : �

n

! 8X:�

`

co

Q

0

j

:�

j+1

! : : : �

m

! �

00

(8

m�j

right)

z

j

:�

j+1

! : : : �

n

! 8X:�

`

co

Q

j

:�

j+1

! : : :�

m

! 8Y:�

00

(!)

�

�

�

�

(!)

z

1

:�

2

! : : : �

n

! 8X:�

`

co

Q

1

:�

2

! : : : �

j

! �

j+1

! : : :�

m

! 8Y:�

00

(!)

z :�

1

! : : : �

n

! 8X:� `

co

Q :�

1

! : : :�

j

! �

j+1

! : : : �

m

! 8Y:�

00

Subcase 2: m = n and, for some 0 � j � m; �

j+1

� �

j+1

; : : : ; �

n

� �

n

; �

0

�

8X:� , and the \8X" in 8X:� can be traced back to an occurrence of an

axiom. The derivation �

r

looks like:



1

y

1

:�

1

`

co

M

1

:�

1



j

y

j

:�

j

`

co

M

j

:�

j

z

j

:�

j+1

! : : : �

n

! 8X:�

`

co

z

j

:�

j+1

! : : : �

n

! 8X:�

(!)

z

j�1

:�

j

! : : : �

n

! 8X:�

`

co

Q

j�1

:�

j

! �

j+1

! : : : �

n

! 8X:�

�

�

�

�

(!)

z

1

:�

2

! : : : �

n

! 8X:�

`

co

Q

1

:�

2

! : : : �

j

! �

j+1

! : : : �

n

! 8X:�

(!)

z :�

1

! : : : �

n

! 8X:� `

co

Q :�

1

! : : : �

j

! �

j+1

! : : : �

n

! 8X:�

where Q

j�1

� �y

j

:�

j

: [(z

j�1

M

j

)=z

j

]z

j

� �y

j

:�

j

: z

j�1

M

j

.

.

.

Q

1

� �y

2

:�

2

: [(z

1

M

2

)=z

2

]Q

2

Q � �y

1

:�

1

: [(z M

1

)=z

1

]Q

1

� �y

1

:�

1

: : : �y

j

:�

j

: z M

1

: : : M

j

The fact that each term variable z

1

; : : : ; z

j

occurs in a coercion term only

once (Lemma 1) has been used.

Subcase 3: n � m, and the \8X" in 8X:� can be traced back to an application

of (8 left). The derivation �

r

looks like:
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1

y

1

:�

1

`

co

M

1

:�

1



n

y

n

:�

n

`

co

M

n

:�

n



0

z

0

n

: [�=X ]� `

co

Q

0

n

:�

n+1

! : : :�

m

! �

0

(8 left)

z

n

:8X:� `

co

Q

n

:�

n+1

! : : :�

m

! �

0

(!)

�

�

�

�

(!)

z

1

:�

2

! : : : �

n

! 8X:�

`

co

Q

1

:�

2

! : : : �

n

! �

n+1

! : : :�

m

! �

0

(!)

z :�

1

! : : : �

n

! 8X:� `

co

Q :�

1

! : : :�

n

! �

n+1

! : : :�

m

! �

0

where Q

n

� [(z

n

�)=z

0

n

]Q

0

n

Q

n�1

� �y

n

:�

n

: [(z

n�1

M

n

)=z

n

]Q

n

.

.

.

Q

1

� �y

2

:�

2

: [(z

1

M

2

)=z

2

]Q

2

Q � �y

1

:�

1

: [(z M

1

)=z

1

]Q

1

� �y

1

:�

1

: : :�y

n

:�

n

:[(z M

1

: : : M

n

)=z

n

]Q

n

� �y

1

:�

1

: : :�y

n

:�

n

: [(z M

1

: : : M

n

�)=z

0

n

]Q

0

n

Again, the fact that each term variable z

1

; : : : ; z

n

occurs in a coercion term

only once (Lemma 1) has been used.

Now, return to the main derivation with cut and proceed by case analysis ac-

cording to the three subcases above for the right derivation.

Subcase 1: Apply Lemma 8, case 2, to the right derivation, permuting the

(8

m�j

right) downwards with (!) j times, so that it becomes (8

m

right)

just before the (cut). By this same lemma, the terms labelling the end se-

quents in the two derivations are identical, i.e., Q. The modi�ed derivation

is then a case (S

R

derived by (8 right)) that has been treated before: just

permute the (8

m

right) with (cut) by Lemma 9, case 1 then apply the in-

duction hypothesis to the upper derivation ending with (cut).

Subcase 2: In this case, we will transform both the left and right derivations

�

l

and �

r

of the main derivation so as to apply (cut) in a derivation of lesser

size.

First, in the right derivation �

r

, replace the axiom:

z

j

:�

j+1

! : : : �

n

! 8X:� `

co

z

j

:�

j+1

! : : : �

n

! 8X:�

by:

z

0

j

:�

j+1

! : : : �

n

! � `

co

z

0

j

:�

j+1

! : : : �

n

! �

Keeping all other derivations the same, apply the same rules in the same

order so that all occurrences of 8X:� are ultimately replaced by � . The
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result is the derivation:

�

0

r

z

0

:�

1

! : : : �

n

! � `

co

Q

0

:�

1

! : : : �

j

! �

j+1

! : : : �

n

! �

where Q

0

� �y

1

:�

1

: : : �y

j

:�

j

: z

0

M

1

: : : M

j

.

Second, in the left derivation �

l

, omit the last (8

n

right) thus obtaining the

subderivation:

�

l

x :� `

co

P

0

: �

1

! : : : �

n

! �

where P

0

� �x

1

:�

1

: : :�x

k

:�

k

:M for some M not starting with �y.

Now, apply (cut) to these two derivations followed by (8

n

right):

�

l

x :� `

co

P

0

:�

1

! : : : �

n

! �

�

0

r

z

0

:�

1

! : : : �

n

! �

`

co

Q

0

:�

1

! : : : �

j

! �

j+1

! : : : �

n

! �

(cut)

x :� `

co+cut

R

0

:�

1

! : : : �

j

! �

j+1

! : : : �

n

! �

(8

n

right)

x :� `

co+cut

R

00

:�

1

! : : : �

j

! �

j+1

! : : : �

n

! 8X:�

where R

0

� nf([P

0

=z

0

]Q

0

).

Note that the side-conditions on applying (8

n

right) are satis�ed since X is

not free in � nor in �

j+1

; : : : ; �

n

by the application of (8

n

right) in the original

derivation with cut, and X is not free in � � �

1

! : : :�

j

! : : :�

n

! 8X:�

since the original derivation is a pure variable one.

Observe that the (cut) above occurs in a derivation of lesser size than in the

original derivation. Hence, we can eliminate the cut by induction, obtaining

a cut-free derivation with the same label R

0

, which is thus a coercion. Since

(8

n

right) preserves coercions, R

00

is likewise a coercion.

We must now show that R

00

� R where R is the term labelling the original

derivation with (cut). Recall that R is given by:

R � nf([P=z]Q)

P �

(

�x

1

:�

1

: : : �x

k

:�

k

: : : �x

n

:�

n

:�X :Mx

k+1

: : :x

n

for k � n

�x

1

:�

1

: : : �x

n

:�

n

:�X:�x

n+1

:�

n+1

: : : �x

k

:�

k

:M for n < k

and that Q is given by:

Q � �y

1

:�

1

: : : �y

j

:�

j

: z M

1

: : : M

j

Recall also that, for i = 1 : : : j,

y

i

:�

i

`

co

M

i

:�

i

Taking into account that j � n, we proceed now by the three cases j � k � n,

k < j � n and j � n < k. To save on space, we will not write the types of

bound term variables, nor multiple term �s (thus writing, for example, just

�x

1

: : : x

n

:M instead of �x

1

:�

1

: : :�x

n

:�

n

:M).
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� For j � k � n

R � nf([P=z]Q)

� nf(�y

1

: : :y

j

: ((�x

1

: : :x

k

: : : x

n

:�X:Mx

k+1

: : :x

n

) M

1

: : : M

j

))

de�nition of Q;P

� nf(�y

1

: : :y

j

: ([M

j

=x

j

] : : : [M

1

=x

1

](�x

j+1

: : :x

n

:�X:M x

k+1

: : :x

n

)))

�-reduction inside nf

� nf(�y

1

: : :y

j

:x

j+1

: : : x

n

: �X:[M

j

=x

j

] : : : [M

1

=x

1

](M x

k+1

: : :x

n

))

� nf(�y

1

: : :y

j

:x

j+1

: : : x

n

: �X:([M

j

=x

j

] : : : [M

1

=x

1

]M) x

k+1

: : : x

n

)

term substitution where x

k+1

; : : : ; x

n

were fresh

� �y

1

: : : y

j

:x

j+1

: : :x

n

: �X:nf(([M

j

=x

j

] : : : [M

1

=x

1

]M) x

k+1

: : : x

n

)

and

R

0

� nf([P

0

=z

0

]Q

0

)

� nf(�y

1

: : : y

j

: ((�x

1

: : : x

k

:M) M

1

: : : M

j

)) de�nition of Q

0

; P

0

� nf(�y

1

: : : y

j

: x

j+1

: : : x

k

: [M

j

=x

j

] : : : [M

1

=x

1

]M)

�-reduction inside nf

� �y

1

: : :y

j

: x

j+1

: : : x

k

: nf([M

j

=x

j

] : : : [M

1

=x

1

]M)

Recall that M does not begin with �y and, by Lemma 1, the free variable

x is its leftmost variable. Thus, the inner nf term of R

0

does not begin with

a �y. The application of (8

n

right) to R

0

is thus allowed and yields R

00

as

follows, which is equal to R:

R

00

� �y

1

: : : y

j

: x

j+1

: : : x

k

: : : x

n

:�X:

(nf([M

j

=x

j

] : : : [M

1

=x

1

]M)) x

k+1

: : : x

n

(8

n

right) applied to R

0

� �y

1

: : : y

j

: x

j+1

: : : x

k

: : : x

n

:�X:

nf(([M

j

=x

j

] : : : [M

1

=x

1

]M) x

k+1

: : : x

n

)

nf does not begin with �y

� R

� For k < j � n

R � nf([P=z]Q)

� nf(�y

1

: : :y

j

: ((�x

1

: : :x

k

: : : x

n

:�X:Mx

k+1

: : :x

n

) M

1

: : : M

j

))

de�nition of Q;P

� nf(�y

1

: : :y

j

: ([M

j

=x

j

] : : : [M

1

=x

1

](�x

j+1

: : :x

n

:�X:M x

k+1

: : :x

n

)))

�-reduction inside nf

� nf(�y

1

: : :y

j

:x

j+1

: : : x

n

: �X:[M

j

=x

j

] : : : [M

1

=x

1

](M x

k+1

: : :x

n

))

� nf(�y

1

: : :y

j

:x

j+1

: : : x

n

: �X:([M

j

=x

j

] : : : [M

1

=x

1

]M)M

k+1

: : :M

j

x

j+1

: : : x

n

)

term substitution and by Lemma 1,

y

i

is only free term variable in M

i

, i = 1 : : : j

� nf(�y

1

: : :y

j

:x

j+1

: : : x

n

: �X:([M

k

=x

k

] : : : [M

1

=x

1

]M)M

k+1

: : :M

j

x

j+1

: : :x

n

)

FV (M) = x; x

1

: : : ; x

k

� �y

1

: : : y

j

:x

j+1

: : :x

n

: �X:nf(([M

k

=x

k

] : : : [M

1

=x

1

]M)M

k+1

: : :M

j

x

j+1

: : :x

n

)

and

R

0

� nf([P

0

=z

0

]Q

0

)

� nf(�y

1

: : : y

j

: ((�x

1

: : : x

k

:M) M

1

: : : M

j

)) de�nition of Q

0

; P

0

� nf(�y

1

: : : y

j

: ([M

k

=x

k

] : : : [M

1

=x

1

]M) M

k+1

: : :M

j

)

�-reduction inside nf

� �y

1

: : :y

j

: nf(([M

k

=x

k

] : : : [M

1

=x

1

]M) M

k+1

: : :M

j

)
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As before, the inner nf term of R

0

does not begin with a �y. The application

of (8

n

right) to R

0

is thus possible yielding R

00

, which is equal to R:

R

00

� �y

1

: : : y

j

: x

j+1

: : : x

n

:�X:

nf(([M

k

=x

k

] : : : [M

1

=x

1

]M) M

k+1

: : :M

j

) x

j+1

: : : x

n

� R

� For 0 � j � n < k

R � nf([P=z]Q)

� nf(�y

1

: : :y

j

: ((�x

1

: : :x

n

:�X:�x

n+1

: : : x

k

:M) M

1

: : : M

j

))

de�nition of Q;P

� nf(�y

1

: : :y

j

: ([M

j

=x

j

] : : : [M

1

=x

1

](�x

j+1

: : :x

n

:�X:�x

n+1

: : :x

k

:M)))

�-reduction inside nf

� nf(�y

1

: : :y

j

:x

j+1

: : : x

n

:�X:�x

n+1

: : :x

k

: [M

j

=x

j

] : : : [M

1

=x

1

]M)

� �y

1

: : : y

j

:x

j+1

: : :x

n

:�X:�x

n+1

: : :x

k

: nf([M

j

=x

j

] : : : [M

1

=x

1

]M)

and

R

0

� nf(�y

1

: : : y

j

: P

0

M

1

: : : M

j

)

� nf(�y

1

: : : y

j

: ((�x

1

: : : x

k

:M) M

1

: : : M

j

)) de�nition of P

0

� nf(�y

1

: : : y

j

: ([M

j

=x

j

] : : : [M

1

=x

1

](�x

j+1

: : : x

k

:M)))

�-reduction inside nf

� nf(�y

1

: : : y

j

:x

j+1

: : : x

k

: ([M

j

=x

j

] : : : [M

1

=x

1

]M))

� �y

1

: : :y

j

:x

j+1

: : : x

k

: nf([M

j

=x

j

] : : : [M

1

=x

1

]M)

As before, the inner nf term in R

0

does not begin with a �y. The application

of (8

n

right) to R

0

is thus possible, and yields R

00

as follows which is equal

to R:

R

00

� �y

1

: : : y

j

:x

j+1

: : :x

n

:�X:�x

n+1

: : : x

k

: nf([M

j

=x

j

] : : : [M

1

=x

1

]M)

(8

n

right) applied to R

0

� R

Subcase 3: As in the previous case, we will transform both the left and the

right derivations of the main derivation so as to apply (cut) in a derivation

of lesser size.

First, in the right derivation �

r

, omit (8 left) but keep all subsequent rule

applications the same. This results in the derivation:

�

0

r

z

0

:�

1

! : : : �

n

! [�=X ]� `

co

Q

0

:�

where Q

0

� �y

1

:�

1

: : : �y

n

:�

n

: [(z

0

M

1

: : : M

n

)=z

0

n

]Q

0

n

.

Second, in the left derivation �

l

, omit the last (8

n

right) thus obtaining the

subderivation:

�

l

x :� `

co

P

0

:�

1

! : : : �

n

! �

where P

0

� �x

1

: �

1

: : :�x

k

: �

k

:M for some M not starting with �y. In this

subderivation, uniformly substitute � for X to obtain:

�

0

l

x :� `

co

[�=X ]P

0

:�

1

! : : : �

n

! [�=X ]�
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Remember that X is not free in � nor in �

1

; : : : ; �

n

.

Now, apply (cut) to these two derivations:

�

0

l

x :� `

co

[�=X ]P

0

:�

1

! : : : �

n

! [�=X ]�

�

0

r

z

0

:�

1

! : : : �

n

! [�=X ]� `

co

Q

0

:�

(cut)

x :� `

co+cut

R

0

:�

where R

0

� nf([([�=X ]P

0

)=z

0

]Q

0

).

Observe that the cut occurs in a derivation of lesser size than in the original

derivation. Hence, eliminate the (cut) by induction, obtaining a cut-free

derivation with the same label R

0

which is thus a coercion.

We must now show that R

0

� R where R is the term labelling the original

derivation with (cut). Recall that R is given by:

R � nf([P=z]Q)

P �

(

�x

1

:�

1

: : : �x

k

:�

k

: : :�x

n

:�

n

:�X:Mx

k+1

: : : x

n

for 0 � k � n

�x

1

:�

1

: : : �x

n

:�

n

:�X:�x

n+1

:�

n+1

: : :�x

k

:�

k

:M for 0 � n < k

and that Q is given by:

Q � �y

1

:�

1

: : :�y

n

:�

n

: [(z M

1

: : : M

n

�)=z

0

n

]Q

0

n

Recall also that, for i = 1 : : :n,

y

i

:�

i

`

co

M

i

:�

i

We proceed now by the two cases k � n and n < k. And, as before, we

save on space by not writing the types of bound term variables, nor multiple

term �s.

� For 0 � k � n

R � nf([P=z]Q)

� nf(�y

1

: : :y

n

:

[((�x

1

: : :x

k

: : : x

n

:�X:Mx

k+1

: : : x

n

) M

1

: : :M

n

�)=z

0

n

]Q

0

n

)

de�nition of Q;P

� nf(�y

1

: : :y

n

:

[([�=X ][M

n

=x

n

] : : : [M

k

=x

k

] : : : [M

1

=x

1

](M x

k+1

: : : x

n

))=z

0

n

]Q

0

n

)

�-reduction inside nf

� nf(�y

1

: : :y

n

: [([�=X ](([M

n

=x

n

] : : : [M

1

=x

1

]M) M

k+1

: : :M

n

))=z

0

n

]Q

0

n

)

term substitution and by Lemma 1,

y

i

is only free term variable in M

i

, i = 1 : : :n

� nf(�y

1

: : :y

n

: [([�=X ](([M

k

=x

k

] : : : [M

1

=x

1

]M) M

k+1

: : :M

n

))=z

0

n

]Q

0

n

)

FV (M) = x; x

1

: : :x

k

� nf(�y

1

: : :y

n

: [(([M

k

=x

k

] : : : [M

1

=x

1

][�=X ]M) M

k+1

: : :M

n

)=z

0

n

]Q

0

n

)

X not free in M

1

; : : : ;M

n

because ???

and

[�=X ]P

0

� [�=X ](�x

1

:�

1

: : : �x

k

:�

k

:M)

� �x

1

:�

1

: : :�x

k

:�

k

: [�=X ]M X not free in �

1

; : : : ; �

n
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and

R

0

� nf([([�=X ]P

0

)=z

0

]Q

0

)

� nf(�y

1

: : : y

n

: [((�x

1

: : : x

k

:[�=X ]M) M

1

: : : M

n

)=z

0

n

]Q

0

n

)

de�nition of Q

0

; [�=X ]P

0

� nf(�y

1

: : : y

n

: [(([M

k

=x

k

] : : : [M

1

=x

1

][�=X ]M) M

k+1

: : : M

n

)=z

0

n

]Q

0

n

)

�-reduction inside nf

� R

� For 0 � n < k

R � nf([P=z]Q)

� nf(�y

1

: : :y

n

:

[((�x

1

:�

1

: : : �x

n

:�

n

:�X:�x

n+1

:�

n+1

: : : �x

k

:�

k

:M)

M

1

: : :M

n

�)=z

0

n

]Q

0

n

) de�nition of Q;P

� nf(�y

1

: : :y

n

:

[([�=X ][M

n

=x

n

] : : : [M

1

=x

1

](�x

n+1

:�

n+1

: : : �x

k

:�

k

:M))=z

0

n

]Q

0

n

)

�-reduction inside nf

� nf(�y

1

: : :y

n

:

[(�x

n+1

: [�=X ]�

n+1

: : :�x

k

: [�=X ]�

k

:

[M

n

=x

n

] : : : [M

1

=x

1

][�=X ]M)=z

0

n

]Q

0

n

)

X not free in M

1

; : : :M

n

because ???

and

[�=X ]P

0

� [�=X ](�x

1

:�

1

: : : �x

n

:�

n

: : : �x

k

:�

k

:M)

� �x

1

:�

1

: : :�x

n

:�

n

:�x

n+1

: [�=X ]�

n+1

: : : �x

k

: [�=X ]�

k

: [�=X ]M

X not free in �

1

; : : : ; �

n

and

R

0

� nf([([�=X ]P

0

)=z

0

]Q

0

)

� nf(�y

1

: : : y

n

:

[((�x

1

:�

1

: : :�x

n

:�

n

:�x

n+1

: [�=X ]�

n+1

: : :�x

k

: [�=X ]�

k

:

[�=X ]M) M

1

: : :M

n

)=z

0

n

]Q

0

n

) de�nition of Q

0

; [�=X ]P

00

� nf(�y

1

: : : y

n

:

[([M

n

=x

n

] : : : [M

1

=x

1

](�x

n+1

: [�=X ]�

n+1

: : :�x

k

: [�=X ]�

k

:

[�=X ]M))=z

0

n

]Q

0

n

) �-reduction inside nf

� nf(�y

1

: : : y

n

:

[(�x

n+1

: [�=X ]�

n+1

: : : �x

k

: [�=X ]�

k

:

[M

n

=x

n

] : : : [M

1

=x

1

][�=X ]M)=z

0

n

]Q

0

n

)

� R

6.1 Remarks on the proof of cut-elimination

We have thus proven the admissibility of (cut) for the system Co

`

by proving a

cut-elimination theorem for the extended system Co

`

+(cut). As pointed out in the

introduction, if we had taken (cut) as a primitive of the system, then we would have

had to eliminate it in any case in order to prove coherence. Moreover, (cut) as primitive

would imply that coercions could \compute on themselves" (even without inputs),

whereas the coercions provided by Co

`

are guaranteed to be in �-nf. Thus, they only
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transform an element of a type to a supertype without any other kind of computation.

The reader may wonder why such a simple inductive proof, on the size of derivations,

is possible for a system which contains higher-order types and/or why we couldn't

just derive it from the proofs of more expressive systems. It is known that impredica-

tive second-order logic require powerful tools to yield cut-elimination or normalization

proofs ([Gir71, GLT89]). For the reader interested in this issue, let's analyse closely

some analogies and di�erences with respect to other calculi. We use [GLT89] as a

reference.

First, for a �rst-order system, the proof of cut-elimination considered in Chapter 13

of [GLT89] is divided into two main parts. The �rst part is the base for an induction

on the size of derivations, like ours: `cuts" are swapped with other rules (and, when

possible, they are moved up). Among the \key cases" there are two crucial ones: cases

6 and 7 (or 8). The �rst, case 6, is concerned with implication, as cut-formula. The

point there is that, if one \swaps" the cut-rule with the two right and left-arrow rules,

the cut-rule is NOT moved up, as in all the preceding cases, and a straightforward

induction would then fail. This is the reason for introducing, in the second main

part (sect. 13.2), the notion of \degree" for a formula and use a combined induction

on derivations AND degrees: in case 6, sect. 13.1, the degree of cut-formulae does

decrease (not the size of the derivation).

Fortunately, in the �rst-order case, the notion of degree for a formula doesn't present

any problem (sect. 13.2): it is preserved under instantiation of a variable by a term

(e.g., d(A[t/x]) = d(A)). By this, the degree of the cut formulae in case 7 (and 8) of

sect. 13.1 does not change, when moving up the cut-rule. And the combined induction

goes through.

However, this form of combined induction cannot be used in the presence of higher-order

formulae: no degree or measure on formulae is preserved by instantiation, in general.

Girard and Tait's proof by \candidates of reducibility" employs a powerful technique to

overcome this crucial di�culty of impredicative systems. The heavy inductive loading

used (conditions CR.1-2.3 of chapters 6 and 14) requires the intended set of terms

(candidates of reducibility) to be closed under reductions and expansions. In our case,

the di�culties of case 6 (sect. 13.1 of [GLT89]) are rather easily handled: that case

corresponds to our case of (!) occurring simultaneously on the left and on the right,

where an arrow formula is eliminated, by cut. This gives a symmetric situation and

allows one to move up the last cut-rule, in contrast to case 6 in [GLT89]. Thus, we

do not need to introduce an induction on degrees of formulae, which would, in turn,

cause problems in an impredicative system, like ours. Moreover, we couldn't even refer

to nor use the candidates of reducibility, even though Co

`

is a subsystem of System

F: the terms of our system with the cut-rule are not closed under �-expansions (CR3),

as pointed out before Lemma 5 (cut-rule coercions). Similarly, cut-elimination cannot

automatically be applied to subsystems.
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6.2 Bi-coercibility

Consider now the term model of j Co

`

j of Co

`

, i.e., the structure whose objects are

types and arrows are coercions. jCo

`

j is a category. Indeed, by (ax), it contains all

identities. By the admissibility of (cut), arrows compose: just observe that if

x :� `

co

M : � and y :� `

co

N : �

then there exists P such that x : � `

co

P : � and P is unique by coherence. As for

associativity, this is again given by coherence.

j Co

`

j is even a partial order: by the corollary below, anti-symmetry of `

co

is a

consequence of coherence and cut-elimination. De�ne �rst the following relation of

bi-coercibility between types:

De�nition (Bi-coercibility) Two types � and � are de�ned to be bi-coercible, written

�

�

=

b

� , i� � `

co

� and � `

co

�.

For example, �

�

=

b

8X:� forX not free in � . Now, recall that, in a category, two objects

A and B are isomorphic, A

�

=

B, if there are maps f :A! B and g :B ! A such that

g � f = id and f � g = id. Thus, one can prove the following:

Corollary (Anti-symmetry) If �

�

=

b

� then �

�

=

� in jCo

`

j.

Proof: By assumption, x : � `

co

M : � and y : � `

co

N : �. By (cut), we

obtain x : � `

co

nf([M=y]N) : � and y : � `

co

nf([N=x]M) : � , then, by coherence,

nf([M=y]N) =

�co

x and nf([N=x]M) =

�co

y.

Note that bi-coercibility is strictly stronger than isomorphism: the type � ! (� ! �) is

isomorphic to � ! (� ! �) (see [Sol83, BDL92] for a characterisation) but it is clearly

not a subtype, and so not bi-coercible.

As pointed out, j Co

`

j is a category and a partial order. This allows a preliminary

observation on adding base types (int, real, etc.) with axioms introducing `

co

between

these types (e.g., int `

co

real). In short, one obtains the freely generated partial order,

from these base types, by our axioms and rules. A proof-theoretic analysis of this fact

will be given in Section 8.

7 Completeness of Co

`

The standard notion of erasure, de�ned as follows, will serve to characterize coercions.

De�nition (Erasure) The erasure of a polymorphic term to a type-free term is de�ned

by:

erase(x) � x

erase(�x :�:M) � �x:erase(M) erase(MN) � erase(M)erase(N)

erase(�X:M) � erase(M) erase(M�) � erase(M)
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It is simple to show that the erasure of a coercion �-reduces to the identity (in the type-

free �-calculus). This will be a key step in relating our system to that of Mitchell [Mit88]

in the next section.

Lemma 15 (Coercions erase to identity) If x :� `

co

M :� then erase(M)�!

�

x

Conversely, any linear map in ��-nf whose erasure �-reduces to a term variable is a

coercion. This gives a complete characterization of coercions. The proof proceeds by

syntactic analysis of the normal form.

Theorem 16 (Completeness) Let M be a term in ��-nf such that x :� `

F

M : �

and erase(M) �!

�

x. Then, x :� `

co

M : � .

Proof: By induction on the structure of M and by Lemma 1 on the structure of

coercions. The �rst step consists of identifying those subterms of M satisfying the

same assumptions, i.e., linear maps in ��-nf and �-reducing to a term variable.

First, by the assumption that M is in ��-nf, M must have the following structure:

M � �

~

Y

1

: �y

1

:�

1

: : : : �

~

Y

k

: �y

k

:�

k

: �

~

Y

k+1

: x~�

1

M

1

: : : ~�

n

M

n

~�

n+1

with each subterm M

i

, for 1 � i � n, in ��-nf. Furthermore, the assumption

erase(M) �!

�

x implies that k = n and erase(M

i

) �!

�

y

i

for 1 � i � n.

Consider now the assumption x : � `

F

M : � . In the body of M , x occurs as

x~�

1

M

1

: : : ~�

n

M

n

so the type � of x must have the following structure:

� = 8

~

X

1

:(�

1

! : : : 8

~

X

n

:(�

n

! 8

~

X

n+1

:�

0

) : : :)

where, for 1 � i � n + 1, the vectors

~

X

i

and ~�

i

are equal in length (j

~

X

i

j = j~�

i

j).

Moreover, the type of each subterm M

i

, 1 � i � n, must then be given by:

x :�; y

1

:�

1

; : : : ; y

n

:�

n

`

F

M

i

: [~�

1

=

~

X

1

; : : : ; ~�

i

=

~

X

i

]�

i

However, the fact that erase(M

i

) �!

�

y

i

means that y

i

is the only free term

variable in M

i

. So, by strengthening of F environments (cf. [CMMS91, section

2.3]), we obtain:

y

i

:�

i

`

F

M

i

: [~�

1

=

~

X

1

; : : : ; ~�

i

=

~

X

i

]�

i

Thus, we have shown that the subterms M

i

, 1 � i � n, are in ��-nf with

erase(M

i

) �!

�

y

i

and y

i

: �

i

`

F

M

i

: [~�

1

=

~

X

1

; : : : ; ~�

i

=

~

X

i

]�

i

. These are therefore

the subterms satisfying the same assumptions as M so, by induction:

y

i

:�

i

`

co

M

i

: [~�

1

=

~

X

1

; : : : ; ~�

i

=

~

X

i

]�

i

(1)

In other words, each subterm M

i

, 1 � i � n, is a coercion.
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To show thatM is a coercion requires two further facts derivable from the assump-

tions and the structure of M :

M � �

~

Y

1

: �y

1

:�

1

: : : : �

~

Y

n

: �y

n

:�

n

: �

~

Y

n+1

: x~�

1

M

1

: : : ~�

n

M

n

~�

n+1

First, since M is well-typed in F by the assumption x : � `

F

M : � , then for

1 � i � n + 1, each

~

Y

i

is not free in the type of preceding bound term variables

y

1

; : : : ; y

i�1

nor in the type of x. In other words,

~

Y

i

not free in � nor in �

1

; : : : ; �

i�1

; for 1 � i � n+ 1 (2)

Second, given the structure of M , then the type � of M must have the following

form:

� = 8

~

Y

1

:(�

1

! : : : 8

~

Y

n

:(�

n

! 8

~

Y

n+1

:�

0

) : : :)

where �

0

is the type of the body of M , i.e., the type of x~�

1

M

1

: : : ~�

n

M

n

~�

n+1

. How-

ever, since � is the type of x, the body of M has the type:

[~�

1

=

~

X

1

; : : : ; ~�

n+1

=

~

X

n+1

]�

0

Since a well-typed term has a unique type in F, we thus obtain the following:

�

0

= [~�

1

=

~

X

1

; : : : ; ~�

n+1

=

~

X

n+1

]�

0

(3)

We now construct a Co

`

derivation showing that x : � `

co

M : � . To improve

readability of complex derivations, we will denote by �

i

the substitution

[~�

1

=

~

X

1

; : : : ; ~�

i

=

~

X

i

]

Thus, (1) becomes y

i

:�

i

`

co

M

i

: �

i

�

i

and (3) becomes �

0

= �

n+1

�

0

.

Basically, the leaves of the derivation are the sequents (1) plus an axiom that uses

(3). Rules (!) and (8 left) are then applied alternately to introduce � on the left

and the underlying ! structure of � on the right. Finally, (8 right) is used repeat-

edly to introduce 8

~

Y

i

on the right. Note that the non-freeness side-conditions for

these applications of (8 right) are satis�ed by (2).
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(ax) by (3)

z :�

n+1

�

0

`

co

z :�

0

(8 left)

(1) y

n

:�

n

`

co

M

n

: �

n

�

n

x

n+1

:�

n

(8

~

X

n+1

:�

0

)

`

co

x

n+1

~�

n+1

: �

0

(!)

z

n

:�

n

(�

n

! 8

~

X

n+1

:�

0

)

`

co

�y

n

:�

n

: z

n

M

n

~�

n+1

: �

n

! �

0

(8 left)

(1) y

n�1

:�

n�1

`

co

M

n�1

: �

n�1

�

n�1

x

n

:�

n�1

(8

~

X

n

:(�

n

! 8

~

X

n+1

:�

0

))

`

co

�y

n

:�

n

: x

n

~�

n

M

n

~�

n+1

: �

n

! �

0

.

.

.

(!)

.

.

.

.

.

.

.

.

. (8 left)

z

1

:�

1

(�

1

! : : :8

~

X

n

:(�

n

! 8

~

X

n+1

:�

0

) : : :)

`

co

�y

1

:�

1

: : :�y

n

:�

n

: z

1

M

1

: : : ~�

n

M

n

~�

n+1

: �

1

! : : : �

n

! �

0

(!)

x :8

~

X

1

:(�

1

! : : :8

~

X

n

:(�

n

! 8

~

X

n+1

:�

0

) : : :)

`

co

�y

1

:�

1

: : : �y

n

:�

n

: x~�

1

M

1

: : : ~�

n

M

n

~�

n+1

: �

1

! : : : �

n

! �

0

(8 left)

x :� `

co

�y

1

:�

1

: : : �y

n

:�

n

�

~

Y

n+1

: x~�

1

M

1

: : : ~�

n

M

n

~�

n+1

: �

1

! : : : �

n

! 8

~

Y

n+1

:�

0

(8

n+1

right) due to (2)

.

.

.

(8

n

right) due to (2)

.

.

.

.

.

.

x :� `

co

�

~

Y

1

: �y

1

:�

1

: : : �

~

Y

n

: �y

n

:�

n

: �

~

Y

n+1

: x~�

1

M

1

: : : ~�

n

M

n

~�

n+1

: 8

~

Y

1

:(�

1

! : : :8

~

Y

n

:(�

n

! 8

~

Y

n+1

:�

0

) : : :)

(8

0

right) due to (2)

Thus, x :� `

co

M : � so M is a coercion.

7.1 Mitchell's System for Subtyping

In [Mit88], a \retyping function" is de�ned as a typed term in System F whose erasure

�-reduces to the identity. In [Mit88, Lemma 9], it is then shown that � is a subtype of

� in all \simple inference models" (as de�ned in [Mit88, section 4.2]) if and only if there

is a retyping function from � to � . Thus, our Theorems 13 and 14 also give a semantic

completeness theorem, in the sense of Mitchell, for Co

`

. We conclude this section with

a direct comparison of Co

`

to Mitchell's axiomatic approach to subtyping, which is

given here in a revised (but clearly equivalent) way.
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Mitchell's System for Subtyping

(ax) � � � (trans)

� � � � � �

� � �

(!)

�

0

� � � � �

0

(�! �) � (�

0

! �

0

)

(8 subst)

� � �

8X:� � 8X:�

(8 intro) � � 8X:� (8 elim) 8X:� � [�=X ]�

�

for X not

free in �

(8! distr) 8X:(�! �) � (8X:�)! (8X:�)

It is not hard to show that Co

`

and Mitchell's system are equivalent.

Theorem 17 � � � i� � `

co

� .

Proof: Clearly, rules (ax) and (!) are identical in the two systems (with `

co

for �).

For the implication from left to right, the rule (trans) above corresponds to (cut),

which, by Theorem 14, is admissible for Co

`

; the other cases in this direction are

proven as follows:

Case: (8 intro) is derivable in Co

`

since X is not free in �

� `

co

�

� `

co

8X:�

(8

0

right)

Case: (8 elim) is derivable in Co

`

[�=X ]� `

co

[�=X ]�

8X:� `

co

[�=X ]�

(8 left)

Case: (8 subst) is derivable in Co

`

[X=X ]� `

co

�

8X:� `

co

�

(8 left)

8X:� `

co

8X:�

(8

0

right)

Case: (8! distr) is derivable in Co

`

+(cut)

8X:� `

co

� � `

co

�

(!)

8X:(�! �) `

co

� ! � � ! � `

co

(8X:�)! �

8X:(�! �) `

co+cut

(8X:�)! �

(cut)

8X:(�! �) `

co+cut

(8X:�)! (8X:�)

(8

1

right)

Conversely, the remaining cases of the implication from right to left are proven as

follows:
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Case: (8 left) is derivable in Mitchell's system by

8X:� � [�=X ]� � �

using (trans) on (8 elim) and the premise of (8 left), i.e., [�=X ]� � � .

Case: (8

n

right) is derivable in Mitchell's system as follows:

� � 8X:� by (8 intro) and (8

n

right) side-condition X not free in �

� 8X:(�

1

! : : :(�

n

! �) : : :) by (8 subst) on (8

n

right) premise

� (8X:�

1

)! 8X:(�

2

! : : : (�

n

! �) : : :) by (8! distr)

� (8X:�

1

)! ((8X:�

2

)! 8X:(�

3

! : : : (�

n

! �) : : :)by (8! distr) and (!)

.

.

.

.

.

.

� (8X:�

1

)! ((8X:�

2

)! : : : ((8X:�

n

)! (8X:�) : : :)

by (8! distr) and (!)

� �

1

! (8X:�

2

)! : : :(8X:�

n

)! (8X:�) : : :)

by (!); (8 intro) and (8

n

right) side-condition X not free in �

1

.

.

.

.

.

.

� �

1

! (�

2

! : : :(�

n

! 8X:�) : : :)

by (!); (8 intro) and (8

n

right) side-condition X not free in �

n

8 Adding base types to Co

`

Consider now extending the language of Co

`

with fresh type constants �

1

; �

2

; �

3

;

: : : For example, these could be base types such as bool, int, real. To assert that

a subtyping relation holds between some of these base types, between �

i

and �

j

say,

add a fresh term constant c to the language and add the following Gentzen-style rule

formalizing that �

i

is a subtype of �

j

via coercion c:

(�

i

� �

j

)

x :� `M : �

i

x :� ` cM : �

j

Let Co

`

+B denote the system Co

`

extended with such base constants and rules,

and let `

co+B

denote entailment in the extended system. What happens then to the

subtyping partial order and the coherence and cut-elimination properties of the \pure"

calculus Co

`

?

First, observe that the expected subtyping judgment x : �

i

`

co

c x : �

j

is easy to

derive: just take � = �

i

and M � x in the above rule. Indeed, as we now show, the

new constants and rules introduce no new subtyping judgments beyond those expected.

In a sense, constant coercions act like variables; they do not compute.

Lemma 18 (Conservativity of Co

`

+B) Assume that types � and � do not contain

occurrences of base types. If � `

co+B

� then � `

co

� .
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Proof: First, let � be a Co

`

+B derivation of a sequent S, where S may contain base

types. Observe that by uniformly substituting a fresh variable X for all base types

�

1

; : : :�

n

in �, we obtain a Co

`

derivation of [X=�

1

; : : : ; X=�

n

]S. This is easily

shown by induction on Co

`

+B derivations. Then, the fact follows as a corollary of

this observation, for the case when S does not contain base types.

We now prove some properties of `

co+B

derivations. For this, we require notions of

equality on Co

`

+B derivations, de�ned similarly to the equalities on Co

`

derivations

(see section 5), and for which we will use the same symbols: =, =

�

, =

�co

. As a particular

reminder, two derivations are = when the proof terms labelling their end-sequents are

syntactically identical.

Lemma 19 A (�

i

� �

j

) rule cannot be applied at any point after an application of

either (8

n

right) or (!).

Lemma 20 (Rule permutations III) A (�

i

� �

j

) rule can be permuted with (8 left) in

both directions:

S

1

S

2

(�

i

� �

j

)

S

3

(8 left)

=

S

1

S

0

2

(8 left)

S

3

(�

i

� �

j

)

Proof: Easy. Note that the coercions are identical in the �nal sequents.

Lemma 21 Assume � `

co+B

� with derivation �.

1. If � does not contain either \!" or \8", then � contains applications of only

(ax), (�

i

� �

j

), and (8 left).

2. If � does not contain either \!" or \8", then � contains applications of only

(ax), (�

i

� �

j

), and (8

0

right).

Proof: By induction on the size of � in both cases. Note that, in both cases, the

derivations are linear, not trees.

Theorem 22

1. Let � `

co+B

�. Then, � = 8X

l

: : :8X

1

:�

0

, for some l � 0 and where �

0

is either

a base type �

0

or a variable X

i

for i 2 1 : : : l.

2. Let � `

co+B

� . Then, � = 8X

m

: : :8X

1

:�

0

for some base type �

0

and somem � 0.

Proof of 1. By Lemma 21 case 1, the derivation of � `

co+B

� consists of

applications of only (ax), (�

i

� �

j

), and (8 left). The derivation is linear, not

a tree. The applications of (�

i

� �

j

) can be permuted by Lemma 20 with the

applications of (8 left), if any. Furthermore, (ax) must be instantiated with �

0

.

Thus, an equal derivation of � `

co+B

� may be constructed with the following

structure:
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�

0

`

co+B

�

0

(ax)

(8 left)

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

0

(8 left)

8X

l

: : :8X

1

:�

0

`

co+B

�

p

(�

0

� �

p

)

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

q

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

(�

q

� �)

where k � 0 is the number of applications of (�

i

� �

j

) rules, i.e., (�

0

� �

p

), : : : ,

(�

q

� �), and l

0

� 0 is the number of applications of (8 left). Note that l � l

0

.

Proof of 2. By Lemma 21 case 2, the derivation of � `

co+B

� can contain applica-

tions of only (ax), (�

i

� �

j

), and (8

0

right). By Lemma 19, all the applications

of the (�

i

� �

j

) rules must appear before those of (8

0

right). Furthermore,

(ax) must be instantiated with the base type �. Hence, the derivation has the

following structure:

� `

co+B

� (ax)

� `

co+B

�

p

(� � �

p

)

.

.

.

.

.

.

.

.

.

� `

co+B

�

q

.

.

.

� `

co+B

�

0

(�

q

� �

0

)

� `

co+B

8X

1

:�

0

(8

0

right)

.

.

.

.

.

.

.

.

.

� `

co+B

8X

m

: : :8X

1

:�

0

(8

0

right)

where k � 0 is the number of applications of (�

i

� �

j

) rules, i.e., (� � �

p

), : : : ,

(�

q

� �

0

), and m � 0 is the number of applications of (8

0

right).

Corollary

1. Let x :� `

co+B

M :�. Then, M � c

k

(: : : c

1

(x�

l

0

: : :�

1

) : : :)

2. Let x :� `

co+B

M :� . Then, M � �X

m

: : : �X

1

: c

k

(: : : c

1

x) : : :)

Theorem 22 shows that adding extra base types and base coercions changes the sub-

typing partial order in a reasonable way: each base type has only itself, the empty

type, or other base types, given by the extra subtyping rules, as subtypes of it (up to

bi-coercibility, of course). Indeed, for case 1 of Theorem 22, �

�

=

b

�

0

or �

�

=

b

8X:X ,

while for case 2, �

�

=

b

�

0

.
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8.1 Admissibility of Cut for Co

`

+B

Let Co

`

+B + (cut) denote Co

`

+B extended with (cut). Following the paradigm used

for the pure system Co

`

, we will show that (cut) is admissible for the extended system

Co

`

+B by proving cut-elimination for Co

`

+B + (cut).

Lemma 23 (Rule permutations IV) A (�

i

� �

j

) rule can be permuted on the right

with (cut). That is, the following derivation:

y :� `

co+B

N : �

i

(�

i

� �

j

)

x :� `

co+B

M : � y :� `

co+B

cN : �

j

x :� `

co+B

P : �

j

(cut)

where P is the �-nf of [M=y](cN), is = to:

x :� `

co+B

M : � y :� `

co+B

N : �

i

x :� `

co+B

Q : �

i

(cut)

x :� `

co+B

cQ : �

j

(�

i

� �

j

)

where Q is the �-nf of [M=y]N .

Proof: Easy. Observe that P � cQ.

Theorem 24 (Cut-elimination for Co

`

+B + (cut)) Every derivation in Co

`

+B +

(cut) is = to a derivation in Co

`

+B.

Proof: By induction on the size of cut-free derivations (i.e., Co

`

+B derivations).

The proof is identical to the proof of Theorem 14 but with two extra cases. Consider

thus the �rst application of (cut) in a derivation:

S

L

S

R

S

(cut)

where the derivations of S

L

and S

R

are cut-free. The two extra cases to consider

are as follows:

Case: S

R

derived by a (�

i

� �

j

) rule. Apply Lemma 23 to permute (�

i

� �

j

) on

the right with (cut) so that the (cut) moves upwards. Then, by induction, there

exists an equal cut-free derivation, replacing the one with (cut).

Case: S

L

derived by a (�

i

� �

j

) rule. The derivation looks like:

.

.

.

� `

co+B

�

q

(�

q

� �)

� `

co+B

�

.

.

.

� `

co+B

�

(cut)

� `

co+B

�

Apply Theorem 22, case 1 to S

L

� � `

co+B

�, and case 2 to S

R

� � `

co+B

� .

This yields the following equal derivation, still with (cut).
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(ax) �

0

`

co+B

�

0

(8 left)

.

.

.

.

.

.

(8 left)

8X

l

: : :8X

1

:�

0

`

co+B

�

0

(�

0

� �

p

)

8X

l

: : :8X

1

:�

0

`

co+B

�

p
.

.

.

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

q

(�

q

� �)

8X

l

: : :8X

1

:�

0

`

co+B

�

� `

co+B

� (ax)

� `

co+B

�

p

0

(� � �

p

0

)

.

.

.

.

.

.

.

.

.

� `

co+B

�

q

0

.

.

.

� `

co+B

�

00

(�

q

0

� �

00

)

� `

co+B

8X

1

:�

00

(8

0

right)

.

.

.

.

.

.

.

.

.

� `

co+B

8X

m

: : :8X

1

:�

00

(8

0

right)

(cut)

8X

l

: : :8X

1

:�

0

`

co+B

8X

m

: : :8X

1

:�

00

Thus, � = 8X

m

: : :8X

1

:�

00

for m the number of applications of (8

0

right), and

� = 8X

l

: : :8X

1

:�

0

where �

0

is either the base type �

0

or a variable X

i

for

i 2 1 : : : l, with l � l

0

for l

0

the number of applications of (8 left).

Obtain now the following equal cut-free derivation by applying the rules in the

derivation of S

R

immediately after those of S

L

:

�

0

`

co+B

�

0

(ax)

(8 left)

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

0

(8 left)

8X

l

: : :8X

1

:�

0

`

co+B

�

p

(�

0

� �

p

)

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

q

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

(�

q

� �)

8X

l

: : :8X

1

:�

0

`

co+B

�

p

0

(� � �

p

0

)

.

.

.

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

q

0

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

00

(�

q

0

� �

00

)

8X

l

: : :8X

1

:�

0

`

co+B

8X

1

:�

00

(8

0

right)

.

.

.

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

8X

m

: : :8X

1

:�

00

(8

0

right)

We have thus shown that, in the extended system Co

`

+B, (cut) is admissible. In other

words, adding extra base types and coercions preserves the transitivity of entailment,

i.e., of subtyping.
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Note that, if we had used axioms of the form �

i

`

co+B

�

j

to assert subtyping rela-

tions between base types instead of Gentzen-style rules (�

i

� �

j

), it would have been

impossible to eliminate cuts. Remark also that, usually, in Gentzen-style systems such

as ours, \right" rules are balanced by symmetric \left" rules. In the system Co

`

+B,

though, only the rules

(�

i

� �

j

)

x :� `

co+B

M : �

i

x :� `

co+B

cM : �

j

are added to assert subtyping between base types. However, from the admissibility

of (cut) (Theorem 24), we can deduce the admissibility of the \left" analogue of the

(�

i

� �

j

) rules, although only up to �-convertibility in the labelled system:

(�

i

� �

j

left)

x :�

j

`

co+B

M : �

y :�

i

`

co+B

P : �

�

for P the �-nf

of [c y=x]M

To see this, assume that x :�

j

`

co+B

M : � has been proved. Construct the following

derivation with (cut):

(�

i

� �

j

)

y :�

i

`

co+B

y : �

i

y :�

i

`

co+B

c y : �

j

x :�

j

`

co+B

M : �

(cut)

y :�

i

`

co+B

P : �

where P is the �-nf of [c y=x]M . Since (cut) is admissible, we are done.

What happens now to coherence of the system in the presence of base types?

8.2 Coherence of Co

`

+B

Suppose that base types �

1

; �

2

; �

3

; : : : are given together with some (�

i

� �

j

) rules, as

described previously, but that no other conditions are added; for example, no compo-

sitionality, no unicity (coherence), no associativity of these base coercions.

Yet, we know, by Lemma 18 (conservativity), that extending the pure calculus Co

`

with new base types and rules yields no new coercions between \pure" types (i.e.,

types not containing base types). As regards compositionality, Theorem 24 guarantees

that, once embedded in our Gentzen-style system, base coercions compose. Moreover,

as pointed out previously, only types bi-coercible to 8X:X and to the new base types

may be freshly related to the base types by subtyping in the extended system Co

`

+B.

Thus, the questions of unicity (coherence) and associativity remain unsettled for the

new base types (and their bi-coercible images) in the extended system.
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As a weak form of coherence, here is what (eq appl2 co) allows us to prove, without

any further conditions or assumptions on base types and rules:

Theorem 25 Assume that both c and d are constant coercions between base types �

i

and �

j

. If y :� `

co+B

M :�

i

, then x :8X:� `

co+B

c ([xX=y]M) =

�co

d ([xX=y]M) : �

j

Proof: The assumption means that the following two rules have been added:

x :� `

co+B

M : �

i

x :� `

co+B

c M : �

j

x :� `

co+B

M : �

i

x :� `

co+B

d M : �

j

Construct then the following derivation:

y :� `

co+B

M : �

i

y :� `

co+B

cM : �

j

y :� `

co+B

M : �

i

y :� `

co+B

dM : �

j

x :8X:� `

co+B

c ([xX=y]M) =

�co

d ([xX=y]M) : �

j

(eq appl2 co)

In particular, since x :8X:�

i

`

co+B

xX :�

i

, Theorem 25 implies equality of the compo-

sition of c and d with the coercion xX : just take � = �

i

and M � y. Clearly though,

the Theorem does not imply the equality of c and d.

In order to prove full coherence for Co

`

+B, we need to force unicity of coercions

(coherence) on base types. This may be done by adding a rule for equality on base

types as follows.

De�nition =

�coB

is the least equivalence relation generated by =

�co

plus the following

rule:

(eq base co)

x :�

i

`

co+B

c

i

(: : : (c

1

x) : : :) : �

j

x :�

i

`

co+B

c

0

j

(: : :(c

0

1

x) : : :) : �

j

x :�

i

`

co+B

c

i

(: : : (c

1

x) : : :) =

�coB

c

0

j

(: : : (c

0

1

x) : : :) : �

j

Note that, by the corollary to Theorem 22, the terms c

i

(: : :(c

1

x) : : :) and c

0

j

(: : :(c

0

1

x) : : :)

are the only ones possible.

Theorem 26 (Coherence of Co

`

+B derivations) Let �

1

and �

2

be two derivations

of x :� `

co+B

M :� and x :� `

co+B

N :� respectively. Then, M =

�coB

N .

Proof: The proof is similar to the proof of coherence for the pure system Co

`

(Theorem 13) but with an extra case. Assume that one of �

1

, �

2

ends with a

(�

i

� �

j

) rule. Then, � = � for some base type �. By Lemma 21 case 1, both �

1

and �

2

may contain applications of only (ax), (�

i

� �

j

), and (8 left) rules. Apply

Lemma 20 to both derivations, permuting all applications of (�

i

� �

j

) rules before

those of (8 left), thus obtaining the following two derivations:
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�

0

`

co+B

�

0

(ax)

�

0

`

co+B

�

p

(�

0

� �

p

)

.

.

.

.

.

.

�

0

`

co+B

�

q

.

.

.

x :�

0

`

co+B

M : �

(�

q

� �)

(8 left)

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

(8 left)

�

0

`

co+B

�

0

(ax)

�

0

`

co+B

�

p

0

(�

0

� �

p

0

)

.

.

.

.

.

.

�

0

`

co+B

�

q

0

.

.

.

x :�

0

`

co+B

N : �

(�

q

0

� �)

(8 left)

.

.

.

.

.

.

8X

l

: : :8X

1

:�

0

`

co+B

�

(8 left)

Note that the applications of (8 left) are the same in both derivations, but the

applications of (�

i

� �

j

) rules, and their number, may di�er.

Ignore now the applications of (8 left) and consider the (sub)derivations of x :

�

0

`

co+B

M : � and x : �

0

`

co+B

N : � in each derivation. By simple application

of the equality rule (eq base co) above, obtain x : �

0

`

co+B

M =

�coB

N : �. Then,

since (8 left) preserves equality of coercions (implied by (eq appl2 co); see remark

section 3.3), we are done.

Corollary Each (�

i

� �

j

) rule preserves equality of coercions.

Proof: Assume that a rule (� � �

0

) has been added to the system, and assume that

the equality x :� `

co+B

M =

�coB

N : � has been derived.

The equality implies that x :� `

co+B

M : � and x :� `

co+B

N : �. By application of

the rule (� � �

0

), we obtain both x :� `

co+B

cM : �

0

and x :� `

co+B

cN : �

0

where

c is the base coercion given by the rule.

Use now the same proof technique as in Theorem 26 to derive x :� `

co+B

cM =

�coB

cN : �

0

.

Coherence guarantees unicity of coercions on all types. As in the pure system Co

`

, it

implies that bi-coercible types are isomorphic. And, as in Co

`

, coherence implies the

associativity of coercion composition, as given by cut-elimination.

9 Conclusions

The purpose of the calculus Co

`

presented in this paper is to give a coherent logical

meaning to the notion of subtyping. The main advantage of our approach is that

Co

`

has a sound logical \status", independently of its intended meaning for subtyping.

This allowed us to (state and) prove relevant properties such as coherence and the

admissibility of (cut), which is equivalent to a cut-elimination theorem. And, since

Gentzen, cut-elimination theorems are at the core of (constructive) Proof Theory.

It should be clear why we do not take the (cut) rule as part of the de�nition of our \Logic

of Subtyping", in spite of it being as fundamental as transitivity and it being required

to prove completeness. In order to obtain coherence, we would need to eliminate it,
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anyway. And coherence is used to prove anti-symmetry. Moreover, without (cut),

all our proof-terms (de�nable coercions) are in normal form, as only (cut) introduces

redexes, exactly as in the lambda-calculus.

In view of its formal relation to (cut), it may be fair to say that this \Logic for Sub-

typing" is the least meaningful system for implication that also handles second order

universal quanti�cation. Indeed, what weaker but still meaningful computation is there

than \take an input and transform it into an element of a larger type"? And, intu-

itionistically, logical implications are computations. By our system, we characterized

the logical implications which are coercions and explicitly used this characterization in

the main results.
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Appendix

The following rules complete the de�nition of =

�co

(De�nition 3.3); they just say that

rules (!) and (8

n

right) preserve equality of coercions:
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(eq !)

x

0

:�

0

`

co

M =

�co

M

0

: � y :� `

co

N =

�co

N

0

: �

0

x :� ! � `

co

�x

0

:�

0

: [xM=y]N =

�co

�x

0

:�

0

: [xM

0

=y]N

0

: �

0

! �

0

(eq 8

0�k�n

right)

x :� `

co

�x

1

:�

1

: : :�x

k

:�

k

:M =

�co

�x

1

:�

1

: : :�x

k

:�

k

:N

: �

1

! : : : (�

n

! �) : : :)

x :� `

co

�x

1

:�

1

: : :�x

k

:�

k

: : :�x

n

:�

n

:�X:Mx

k+1

: : : x

n

=

�co

�x

1

:�

1

: : : �x

k

:�

k

: : : �x

n

:�

n

:�X:Nx

k+1

: : : x

n

: �

1

! : : : (�

n

! 8X:�) : : :)

�

for X not free in �

nor in �

1

; : : : ; �

n

,

for M not of the form �y:M

0

,

for x

k+1

; : : : ; x

n

fresh

(eq 8

0�n<k

right)

x :� `

co

�x

1

:�

1

: : :�x

k

:�

k

:M =

�co

�x

1

:�

1

: : : �x

k

:�

k

:N

: �

1

! : : : (�

n

! �) : : :)

x :� `

co

�x

1

:�

1

: : :�x

n

:�

n

:�X:�x

n+1

:�

n+1

: : :�x

k

:�

k

:M

=

�co

�x

1

:�

1

: : : �x

n

:�

n

�X:�x

n+1

:�

n+1

: : :�x

k

:�

k

:N

: �

1

! : : : (�

n

! 8X:�) : : :)

�

for X not free in �

nor in �

1

; : : : ; �

n

,

for M not of the form �y:M

0

for � � �

n+1

! : : : (�

k

! �

0

) : : :)
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