
COVARIANCE AND

CONTRAVARIANCE:CONFLICT

WITHOUT A CAUSE

Giuseppe CASTAGNA

LIENS - 94 - 18

October 1994

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : castagna@dmi.ens.fr

URL: http://www.dmi.ens.fr/~castagna

1

Covariance and contravariance:

con
ict without a cause

A new and revised version of this report can be found in ACM Transactions on Programming Languages and Systems,

17(3):431-447, 1995, and it is available in ftp://ftp.ens.fr/pub/smi/users/castagna/covariance.ps.Z

Giuseppe Castagna

�

LIENS(CNRS)-DMI

45 rue d'Ulm, 75005 Paris. FRANCE

e-mail: castagna@dmi.ens.fr

Abstract

In type theoretic research on object-oriented programming the \covariance versus con-

travariance issue" is a topic of continuing debate. In this short note we argue that covari-

ance and contravariance appropriately characterize two distinct and independent mecha-

nisms. The so-called contravariance rule correctly captures the substitutivity , or subtyping

relation (that establishes which sets of codes can replace in every context another given

set). A covariant relation, instead, characterizes the specialization of code (i.e. the de�ni-

tion of new code that replaces the old one in some particular cases). Therefore, covariance

and contravariance are not opposing views, but distinct concepts that each have their place

in object-oriented systems and that both can (and should) be type safely integrated in an

object-oriented language.

We also show that the independence of the two mechanisms is not characteristic of a

particular model but is valid in general, since covariant specialization is present also in

record-based models, but is hidden by a de�ciency of all calculi that realize this model.

As an aside, we show that the �&-calculus [CGL95] can be taken as the basic calculus

both for an overloading-based and for a record-based model. In that case, one not only

obtains a more uniform vision of object-oriented type theories but, in the case of the

record-based approach, one also gains multiple dispatching, which is not captured by the

existing record-based models.

1 Introduction

In type theoretic research on object-oriented programming the \covariance versus contravari-

ance issue" has been, and still is, the core of a heated debate. The discussion goes back, in our

ken, to at least 1988, when L�ecluse, Richard and V�elez used a \covariant specialization" for the

methods in the O

2

data model [LRV88]. Since then, it has been disputed in object-oriented

languages whether one has to use covariant or contravariant specialization of the methods. The

fact that this debate is still very felt is witnessed by the excellent tutorial on object-oriented

type systems given by Michael Schwartzbach in the last POPL conference [Sch94]: already in

the abstract of his tutorial Schwartzbach �ngers the \covariance versus contravariance issue"

as a key example of the speci�city of object-oriented type systems.

With this short note we argue that the choice between covariance and contravariance is a

false problem. That covariance and contravariance characterize two completely distinct mech-

anisms, subtyping and specialization, whose confusion made appear covariance and contravari-

ance as mutually exclusive. That, therefore, covariance and contravariance are not opposing

views but distinct concepts that can both be integrated in a type safe formalism. That, �nally,

�

This work was upported by grant no. 203.01.56 of the Consiglio Nazionale delle Ricerche, Comitato Nazionale

delle Scienze Matematiche, Italy, to work at LIENS

2

it would even be an error to exclude either of them, since, then, the corresponding mechanism

could not be properly implemented.

This result is patent in the model of object-oriented programming de�ned by Giuseppe

Longo, Giorgio Ghelli and the author in [CGL95], it is already present in Ghelli's seminal

work [Ghe91] and it is somehow hidden in the work on OBJ [GM89, MOM90, JKKM92]. Here,

we want to stress that this result is independent from the particular model of object-oriented

programming one chooses, and that covariance and contravariance already coexist in the record-

based model proposed by Luca Cardelli in [Car88], and further developed by many other authors

(see the collection [GM94] for a wide review on the record-based model).

The paper is organized as follows. In section 2 we recall the terms of the problem and we

hint at its solution. In section 3 we introduce the overloading-based model for object-oriented

programming, we give a precise connotation of subtyping and specialization, and we show how

and why covariance and contravariance can coexist within a type safe calculus. We use this

analysis to determine the precise role of each mechanism and to show that there is no con
ict

between them. Section 4 provides evidence that this analysis is independent from the particular

model, by revealing the (type-safe) covariance of the record-based model. Section 5 contains

our conclusion and the golden rules for type-safe use of covariance and contravariance.

We assume that the reader is familiar with the model of object-oriented programming based

on the analogy \object as records" and aware of the typing issues it implies.

The presentation is intentionally kept informal: no de�nitions, no theorems. It is not a

matter of de�ning a new system but of explaining and comparing existing ones: indeed, all the

technical results have already been widely published.

2 The controversy

The controversy concerning the use of either covariance or contravariance can be described as

follows. In the record-based model, proposed by Luca Cardelli in 1984 [Car88], an object is

modeled by a record value, whose �elds contain all the methods of the object and whose labels

are the corresponding messages that invoke the methods. An object can be specialized to a

di�erent object in two di�erent ways: either by adding new methods |i.e. new �elds|, or by

rede�ning the existing ones |i.e. overriding the old method.

1

A specialized object can be used

wherever the object it specializes can be used. This implies that method overriding must be

restricted if type safety is wanted. A su�cient condition that assures type safety (at least for

method specialization) is the requirement that a �eld can be specialized only by terms whose

types are \subtypes" of the type of the �eld. The core of the problem concerns methods that

have a functional type. Indeed, the subtyping relation for functional types is de�ned in [Car88]

as follows:

if T

1

� S

1

and S

2

� T

2

then S

1

! S

2

� T

1

! T

2

If we consider the arrow \!" as a type constructor, then |borrowing the terminology of

category theory| \!" is a functor covariant on the right argument (since it preserves the

direction of \�") and contravariant on the left argument (since it inverses the direction of

\�"). The behavior of the left argument having been taken as characteristic, this rule has

been called the contravariant rule.

2

If an arrow \!" is covariant on the left argument (i.e.

if in the rule above the sense of the �rst inequality is inversed), then type safety is lost. In

that case, indeed, it is quite easy to write a statically well-typed term producing a run-time

type error. Despite its unsoudness, covariant specialization has its tenacious defenders, and

not without cause. The O

2

system [BDK92], for example, uses covariant specialization. The

1

It is unimportant in this context whether the specialization is performed at object level (delegation) or at

class level (inheritance).

2

Although co-contravariant rule would be a better name for this rule, we prefer to adopt the name in usage in

the object-oriented community. Therefore, in the rest of the paper we will use \contravariance", \contravariant

rule" and \contravariant specialization" to denote the co-contravariant behavior of the arrow.

3

contravariant rule, besides being less natural than the covariant one, is indeed the source of

many problems. The most surprising one appears with binary methods and can be exempli�ed

as follows. Consider an object o

1

of a given type T which is specialized to another object o

2

of

type S. Imagine that for these objects we have de�ned a method equal , which compares the

object at issue with another object of the same type. Thus, equal has type T � T ! Bool for

the object o

1

and S � S ! Bool for the object o

2

. In the record-based approach the �elds

labeled equal will have the type T ! Bool in o

1

and S ! Bool in o

2

since the method belongs

to the object and thus it already knows its �rst argument, usually denoted by the keyword

self. In any case, if the contravariant rule is used, the type associated with equal for S-objects

is not a subtype of the one of equal for T -objects. Thus, in order to have type safety, one must

not use o

2

as a specialization of o

1

. In other words, S must not be a subtype of T . This is quite

unnatural. Imagine that you have objects for real numbers and for natural numbers. As soon

as a number can respond to a message that asks it whether it is equal to another number, then

a natural number can no longer be used where a real number is expected! Furthermore, the

experience with O

2

(which is the third most sold object-oriented database management system

in the world) shows that the unsoundness of the type-checker does not cause much problem

in practice. Thus, many people prefer to give up type safety and use the covariant subtyping

rule for specialization. And the general conclusion is that one has to use contravariance when

static type safety is really required, since otherwise covariance is more natural,
exible and

expressive.

Both viewpoints seem as much reasonable as incompatible. Though, there is a little
aw

in the comparison made above: covariance in the O

2

's (nearly) overloading-based model is

compared with contravariance in the record-based model. The di�erence between the two

models is the type of the parameter self, which appears in the former model and disappears

in the latter (see the type of equal in the previous example). The conclusion drawn above is

wrong right because, as we will show in the next two sections, it does not take into account

the disappearance of this type from one model to the other. Thus, we will proceed by studying

both covariance and contravariance �rst in the overloading-based model (section 3) and then in

the record-based model (section 4). We will show that both covariance and contravariance can

be used and type safety still granted. To that end one does not need to impose any restriction,

but just to point out what each concept serves for.

Before hinting at the solution let us �x some terminology. Recall that each object has

associated a set of private operations, called methods in Smalltalk [GR83], Objective-C [PW92]

and CLOS [DG87] and member functions in C++ [Str86]. These operations can be executed

by applying a special operator to the object itself: the object is the left argument of a dot

selection in C++, the argument of a generic function in CLOS and the receiver of a message

in Objective-C and Smalltalk. In order to simplify conceptually the exposition we can refer to

all these di�erent ways of selecting a method, as operations of \message sending", where the

message is the name of the generic function in CLOS or the right argument of the dot selection

in C++. Last but not least, a message may have some parameters. They are introduced by

keywords in Smalltalk and Objective-C, they are enclosed between parenthesis in C++, they

are the arguments of an n-ary generic function in CLOS

3

. Now, and here we enter the core

of the discussion, the type (class) of the actual parameters of a message may or may not be

taken into account to select, at run-time, the right method. For example in CLOS the type

of all arguments of a generic function is taken into account for the selection of the method.

In C++, Smalltalk and Objective-C, instead, no argument is considered: only the type of the

receiver drives the selection.

4

What we formally show in the sequel is that, given a method

3

Strictly speaking, in that case in CLOS it is not possible to identify a privileged \receiver" for the generic

function.

4

The use of overloading in C++ imposes a brief remark; overloading in C++ is resolved by the compiler,

therefore the dynamic look-up for the methods does not concern the selection of the code of an overloaded

member function: at that moment its code has already been expanded. At run-time only the class of the

receiver will discriminate between the di�erent methods. For that reason the overloading of C++ is quite

di�erent from the one we describe in section 3.

4

selected by a message with parameters, when this method is overridden, then the parameters

that determine the selection must be covariantly overridden (i.e. the corresponding parameters

in the overriding method must have a lesser type). Those parameters that are not taken into

account for the selection must be contravariantly overridden (i.e. the corresponding parameters

in the overriding method must have a greater type).

3 The formal statement

In this section we give a formal framework in which to state precisely the elements of the problem

intuitively explained in the section before. We �rst analyze the problem in the overloading-

based model [CGL95] since in this model the covariance-contravariance issue has a clearer

formalization. In section 4 we will also deal with the record-based model.

The idea of the overloading-based model is to type messages rather than objects. More

precisely, we assume that messages are special functions composed of several (ordinary) func-

tions: the methods. When a message is passed to an object of a given class, then the method

de�ned for objects of that class is selected from among those composing the message. The

object is then passed to the selected method which is executed. This model is quite natural for

programmers used to languages with generic functions such as CLOS or Dylan [Dyl92] (generic

functions of CLOS conincide with our special functions). It needs some work of abstraction

for programmers used to other object-oriented languages, for which the methods are grouped

inside the objects|as formalized in the record-based model|rather than inside the messages.

However, if we abstract from e�ective implementation of a language, the two visions are

equivalent since they constitute two di�erent perspectives of the same scenery. This is also true

from the type theoretic point of view, as suggested by section 4.

Class de�nitions are used to describe objects: a class is generally characterized by a name,

a set of instance variables and a set of methods associated to their messages. Another assump-

tion that we make to de�ne the overloading-based model is that the class is used to type its

instances

5

. Under this assumption, messages are special functions composed of several codes;

when these functions are applied to an argument, the code to execute is chosen according to

the class, i.e. the type, of the argument. In other words, messages are overloaded functions . In

this case the selection of the code is not performed as usual at compile time but, instead, must

be done at run-time using a late binding or late selection strategy. The reason for this can be

shown by an example. Suppose that a graphical editor is coded using an object-oriented style;

it uses the classes Line and Square which are subclasses (subtypes) of Picture; suppose also

that a method draw is de�ned on all three classes. If the selection of the methods is performed

at compile time, then the following message draw :

�x

Picture

:(: : : x (draw : : :)

is always executed using the draw code for pictures, since the compile time type of x is Picture.

Using late binding, the code for draw is chosen only when the x parameter has been bound and

evaluated, on the basis of the run-time type of x, i.e. according to whether x is bound to an

instance of Line or Square or Picture.

Overloaded functions with late binding are the fundamental feature of the overloading-based

model, in the same way as records are the fundamental feature of the record-based model. To

study the latter, Cardelli extended the simply typed lambda calculus by subtyping and records.

To study the former we extended the simply typed lambda calculus by subtyping and overloaded

functions; this led to the de�nition of the �&-calculus, whose intuitive idea can be described

as follows (for a detailed presentation see [CGL95, Cas94]).

An overloaded function is constituted by a collection of ordinary functions (i.e. �-abstractions),

each one forming a di�erent branch. To glue together these functions in an overloaded one, we

5

We prefer to be a little vague, for the moment, about the precise de�nition of the typing of the objects:

in the case of name subtyping, the name of the class is used as type, in the case of structural subtyping, the

functionality of the object is used

5

have chosen the symbol & (whence the name of the calculus); thus we add to the simply typed

lambda calculus the term

(M&N)

which intuitively denotes an overloaded function of two branches, M and N , one of which will

be selected according to the type of the argument. We must distinguish ordinary application

from the application of an overloaded function since they constitute di�erent mechanisms

6

.

Thus we use \

�

" to denote overloaded application and \�" for the usual one.

We build overloaded functions as lists, starting with an empty overloaded function, that we

denote ", and concatenating new branches by means of &. Thus, an overloaded function will

be a list of ordinary functions, and in the term above, M is an overloaded function while N is

an ordinary function, that we call a branch of the resulting overloaded function. Therefore, an

overloaded function with n branches M

1

;M

2

; : : :M

n

can be written as

((: : : (("&M

1

)&M

2

) : : :)&M

n

)

The type of an overloaded function is the set of the types of its branches. Thus if M

i

:U

i

! V

i

then the overloaded function above has type

fU

1

! V

1

; U

2

! V

2

; : : : ; U

n

! V

n

g

and if we pass to this function an argument N of type U

j

then the selected branch will be M

j

.

That is:

("&M

1

& : : :&M

n

)

�

N >

�

M

j

�N (1)

where >

�

means \rewrites in zero or more steps into".

In short, we add to the atomic types and the arrow types of the simply typed lambda

calculus, sets of arrow types. And we add to the terms of the simply typed lambda calculus

the terms ", (M&N) and (M

�

N).

We also have a subtyping relation on types. Its intuitive meaning is that if U � V then any

expression of U can be \safely" (w.r.t. types) used wherever an expression of V is expected;

thus a calculus will not produce run time type errors as long as it maintains or reduces the

types of terms. The subtyping relation for arrow types is the one of [Car88]: covariance on

the right and contravariance on the left. The subtyping relation for overloaded types can be

deduced from the observation that an overloaded function can be used in the place of another

overloaded one when, for each branch of the latter, there is one branch in the former that can

replace it; thus, an overloaded type U is smaller than another overloaded type V if and only if,

for any arrow type in V , there is at least one smaller arrow type in U . This is translated into

the following rules:

U

2

� U

1

V

1

� V

2

U

1

! V

1

� U

2

! V

2

8i 2 I; 9j 2 J U

0

j

! V

0

j

� U

00

i

! V

00

i

fU

0

j

! V

0

j

g

j2J

� fU

00

i

! V

00

i

g

i2I

Due to subtyping, the type of N in (1) may match none of the U

i

but it may be a subtype of

one of them. In this case, we choose the branch whose U

i

\best approximates" the type, say

U , of N ; i.e. we select the branch h such that U

h

= minfU

i

jU � U

i

g.

In our system, not every set of arrow types can be considered an overloaded type. A set of

arrow types fU

i

! V

i

g

i2I

is an overloaded type if and only if for all i; j in I it satis�es these

two conditions:

U maximal in LB(U

i

; U

j

)) there exists a unique h 2 I such that U

h

= U (2)

U

i

� U

j

) V

i

� V

j

(3)

where LB(U

i

; U

j

) denotes the set of common lower bounds of U

i

and U

j

6

The former is implemented by substitution while the latter is implemented by selection.

6

Condition (2) concerns the selection of the correct branch: we said before that if we apply

an overloaded function of type fU

i

! V

i

g

i2I

to a term of type U , then the selected branch has

type U

j

! V

j

such that U

j

= min

i2I

fU

i

jU � U

i

g; condition (2) guarantees the existence and

uniqueness of this branch (it is a necessary and su�cient condition for the existence, as proved

in [Cas94]).

Much more interesting for the purposes of this paper is the other condition which is called

the covariance condition. Condition (3) guarantees that during computation the type of a term

may only decrease. More speci�cally, if we have a two-branch overloaded function M of type

fU

1

! V

1

; U

2

! V

2

g with U

2

< U

1

and we pass to it a term N which at compile-time has type

U

1

, then the compile-time type of M

�

N will be V

1

; but if the normal form of N has type U

2

(which is possible, since U

2

< U

1

) then the run-time type of M

�

N will be V

2

and therefore

V

2

� V

1

must hold.

Up to now, we have shown how to include overloading and subtyping in the calculus. Late

binding still remains. A simple way to obtain it is to impose the condition that a reduction

like (1) can be performed only if N is a closed normal form.

At this point we can intuitively show how to use this calculus to model object-oriented

languages. First of all, note that, in �&, it is possible to encode surjective pairings, simple

records (those of [Car88]) |as described in section 4| and extensible records (see [Wan87,

R�em89, CM91]). These encodings can be found in [Cas94].

Conditions (2) and (3) have a very natural interpretation in object-oriented languages:

suppose that mesg is the identi�er of an overloaded function with the following type:

mesg : fC

1

! T

1

; C

2

! T

2

g

In object-oriented jargon, mesg is then a message denoting two methods, one de�ned in the

class C

1

and returning a result of type T

1

, the other in the class C

2

and returning a result of

type T

2

. If C

1

is a subclass of C

2

(more precisely a subtype: C

1

� C

2

) then the method of C

1

overrides the one of C

2

. Condition (3) imposes that T

1

� T

2

. That is to say, covariance simply

expresses the requirement that a method that overrides another one must return a smaller type.

If instead C

1

and C

2

are unrelated but there exists a subclass C

3

of both of them (C

3

� C

1

; C

2

)

then C

3

has been de�ned by multiple inheritance from C

1

and C

2

. Condition (2) imposes that

a branch must be de�ned for C

3

in mesg , i.e. in case of multiple inheritance, methods de�ned

for the same message in more than one ancestor must be explicitly rede�ned.

Let us show how this all �ts together by an example. Consider the class 2DPoint with

two integer instance variables x and y, and with subclass 3DPoint, which has, in addition, the

instance variable z. This can be expressed by the following de�nitions:

class 2DPoint class 3DPoint is 2DPoint

{ {

x:Int; x:Int;

y:Int; y:Int;

} z:Int

: }

: :

:

where in place of the dots are the de�nitions of the methods. As a �rst approximation, this can

be modeled in �& by two atomic types 2DPoint and 3DPoint with 3DPoint�2DPoint , whose

respective representation types are the records hhx: Int ; y: Intii and hhx: Int ; y: Int ; z: Int ii.

Note that 3DPoint�2DPoint is \compatible" with the subtyping relation on the corresponding

representation types.

A �rst method that we can include in the de�nition of 2DPoint is

norm = sqrt(self.x^2 + self.y^2)

overridden in 3DPoint by the following method

7

norm = sqrt(self.x^2 + self.y^2 + self.z^2)

In �&, this is obtained by a two-branch overloaded function

norm � (�self

2DPoint

:

p

self:x

2

+ self:y

2

& �self

3DPoint

:

p

self:x

2

+ self:y

2

+ self:z

2

)

whose type is f2DPoint ! Real ; 3DPoint ! Realg. Note that self, which denotes in the body

of a method the receiver of the message, becomes in �& the �rst parameter of the overloaded

function, i.e. the one whose class determines the selection.

Covariance appears when, for example, we de�ne a method that modi�es the instance

variables. For example, a method initializing the instance variables will have the following type

initialize : f2DPoint ! 2DPoint ; 3DPoint ! 3DPointg

In this framework, the inheritance mechanism is given by subtyping plus the branch selection

rule. If we send a message of type fC

i

! T

i

g

i2I

to an object of class C, then the method

de�ned in the class min

i=1::n

fC

i

jC � C

i

g will be executed. If this minimum is exactly C, this

means that the receiver uses the method de�ned in its own class; if this minimum is strictly

greater than C, then the receiver uses the method that its class, C, has inherited from that

minimum. Note that the search for the minimum exactly corresponds to Smalltalk's \method

look-up" where one searches for the least super-class (of the receiver's class) for which a given

method has been de�ned.

Modeling messages by overloaded functions has some advantages. For example, since these

functions are �rst class values, then so are messages. It then becomes possible to write functions

(even overloaded) that take a message as argument or return one as result. Another interesting

characteristic of this model is that it allows methods to be added to an already existing class

C without modifying the type of its objects. Indeed, if the method concerned is associated

with the message m, it su�ces to add a new branch for the type C to the overloaded function

denoted by m.

7

But, in the context of this paper, the most notable advantage of using overloaded functions

is that it allows multiple dispatch

8

. As we hinted in the previous section, one of the major

problems of the model with records is that it is impossible to combine, in a satisfactory way,

subtyping and binary methods, i.e. methods with a parameter of the same class as the class

of the receiver. This problem gave rise to the proposal of using a covariant subtyping rule for

specialization. Let us recast the example for points with the method equal . In the record-based

models, two-dimensional and three-dimensional points are modeled by the following recursive

records:

2EqPoint � hhx: Int; y: Int; equal: 2EqPoint! Boolii

3EqPoint � hhx: Int; y: Int; z: Int; equal: 3EqPoint! Boolii

Because of contravariance of arrow, the type of the �eld equal in 3EqPoint is not a subtype

of the type of equal in 2EqPoint , therefore 3EqPoint 6�2EqPoint .

9

Let us consider the same

example in �&. We already de�ned the atomic types 2DPoint and 3DPoint . We can still use

them since, contrary to what happens in the record case, the addition of a new method to a

class does not change the type of its instances. In �&, a de�nition such as

equal: f2DPoint! (2DPoint ! Bool) ; 3DPoint ! (3DPoint ! Bool)g

7

It is important to remark that the new method is available at once to all the instances of C, and thus it is

possible to send the message m to an object of class C even if this object has been de�ned before the branch

for C in m.

8

That is, the capability of selecting a method taking into account other classes besides that of the receiver

of the message.

9

The subtyping rule for recursive types says that if from X � Y one can deduce that U � V then �X:U �

�Y:V follows. In the example above 2EqPoint � �X : hhx: Int; y: Int; equal:X ! Boolii

8

is not well de�ned either: 3DPoint� 2DPoint , thus condition (3) |i.e. covariance| requires

3DPoint ! Bool � 2DPoint ! Bool, which does not hold because of contravariance of arrow

on the left argument. It must be noted that such a function would choose the branch according

to the type of just the �rst argument. Now, the code for equal cannot be chosen until the types

of both arguments are known. This is the reason why the type above must be rejected (in any

case, it would be easy to write a term producing an error). However, in �&, it is possible to

write a function that takes into account the types of two arguments for branch selection. For

equal , this is obtained in the following way

equal: f(2DPoint� 2DPoint)! Bool ; (3DPoint � 3DPoint)! Boolg

If we send to this function two objects of class 3DPoint , then the second branch is chosen;

when one of the two arguments is of class 2DPoint (and the other is of a class smaller than or

equal to 2DPoint), the �rst branch is chosen.

At this point, we are able to make precise the roles played by covariance and contravariance

in subtyping: contravariance is the correct rule when you want to substitute a function of a

given type by another one of a di�erent type; covariance is the correct condition when you want

to specialize (in object-oriented jargon \override") a branch of an overloaded function by one

with a smaller input type. It is important to notice that, in this case, the new branch does not

substitute the old branch but rather it conceals it from the objects of some given classes. Indeed,

our formalization shows that the issue of \contravariance vs. covariance" was a false problem

caused by the confusion of two mechanisms that have very little in common: substitutivity and

overriding.

Substitutivity establishes when an expression of a given type S can be used in place of an

expression of a di�erent type T . This information is used to type ordinary application: let f

be a function of type T ! U , we want to characterize a category of types whose values can be

passed as arguments to f ; it must be noted that these arguments will substitute in the body

of the function, the formal parameter of type T . To this end, we de�ne a subtyping relation

such that f accepts every argument of type S smaller than T . Therefore, the category at issue

is the set of subtypes of T . When T is T

1

! T

2

, then it may happen that, in the body of f ,

the formal parameter is applied to an expression of type T

1

. Hence, we deduce two facts: the

actual parameter must be a function too (thus, if S � T

1

! T

2

, then S has the shape S

1

! S

2

),

and furthermore, it must be a function to which we can pass an argument of type T

1

(thus

T

1

� S

1

, yes! : : : contravariance). It is clear that if one is not interested in passing functions

as arguments, then there is no reason to de�ne the subtyping relation on arrows (this is the

reason why O

2

works well even without contravariance).

Overriding is a totally di�erent feature: say, we have an identi�er m (in the circumstances,

a message) that identi�es two functions f : A! C and g : B ! D with A and B incomparable.

This identi�er can be applied to an expression e, and the meaning of this application is f

applied to e if e has a type smaller than A (in the sense of substitutivity explained above),

else g applied to e if e has type smaller than B. Suppose now that B � A. The application

in this case is solved by selecting f if the type of e is included between A and B, else g is

selected if the type is smaller than or equal to B. But there is a further problem: the types

may decrease during computation. Thus, it may happen that the type checker sees e of type

A and infers that m applied to e has type C (f is selected). But if, during the computation,

the type of e decreases to B, the application will have type D. Thus, D must be a type that

can substitute C (in the sense of substitutivity above), i.e. D � C. You can call it covariance,

if you like, but it must be clear that it is not a subtyping rule: g does not substitute f since

g will never be applied to arguments of type A. Indeed, g and f are independent functions

that perform two precise and di�erent tasks: f handles the arguments of m whose type is

included between A and B, while g handles those arguments whose type is smaller than or

equal to B. In this case, we are not de�ning substitutivity, but we are giving a formation

rule for sets of functions in order to ensure the type consistency of the computation. Indeed,

9

while contravariance characterizes a (subtyping) rule, i.e. a tool to deduce an existing relation,

covariance characterizes a (formation) condition, i.e. a law that programs must observe.

But these arguments may still be too abstract for object-oriented practitioners. Thus, let us

write it in \plain" object-oriented terms as we did at the end of section 2: a message may

have several parameters, and the type (class) of each parameter may or may not be taken

into account to select the right method. If a method for that message is overridden, then the

parameters that determine the selection must be covariantly overridden (i.e. the corresponding

parameters in the overriding method must have a lesser type). Those parameters that are not

taken into account for the selection must be contravariantly overridden (i.e. the corresponding

parameters in the overriding method must have a greater type).

How is all this translated in object-oriented type systems? Take a message m and apply

(or \send") it to n objects e

1

: : : e

n

where e

i

is an instance of class C

i

. Suppose that to select

the method you want to take into account the classes of the �rst k objects only. This can be

expressed, say, by the following notation

m(e

1

; : : : ; e

k

je

k+1

; : : : ; e

n

)

If the type of m is fS

i

! T

i

g

i2I

, then the expression above means that we want to select the

method whose input type is the min

i2I

fS

i

j (C

1

� : : : � C

k

) � S

i

g and then to pass it all the

n arguments. The type, say, S

j

! T

j

of the selected branch must have the following form:

(A

1

� : : : �A

k

)

| {z }

S

j

! (A

k+1

� : : : �A

n

)! U

| {z }

T

j

with C

i

� A

i

for 1� i� k and A

i

� C

i

for k < i� n.

10

If we want to override the selected

branch by a more precise one then, as explained above, the new method must covariantly

override A

1

: : : A

k

(to specialize the branch) and contravariantly override A

k+1

: : : A

n

(to have

type safety).

4 Covariance in the record-based model

We said in the previous section that covariance must be used to specialize the arguments that

are taken into account during selection of the method. In record-based models, no argument

at all is taken into account to select the method: the method is uniquely determined by the

record (i.e. the object) that the dot selection is applied to. Thus, in these models, it appears

that you can have only contravariance and no covariance condition.

Strictly speaking, this is not very precise, since the record-based model does possess a limited

form of \covariance" (in the sense of a covariant dependency that the input and the output of

a message must respect) but it is hidden by the encoding of objects. Consider a label `. By the

subtyping rule for record types, if you \send" this label to two records of type S and T with

S � T , then the result returned by the record of type S must have a type smaller than or equal

to the type of the one returned by T . This exactly corresponds to the covariant dependency

stated by the covariance condition (3)

11

, but its form is much more limited because it applies

only to record types (since we \send" a label), and not to products (i.e. multiple dispatch) nor

to arrows. This is shown by the fact that a record-label ` can be seen as a potentially in�nitely

branching overloaded function that takes as argument any record with at least a �eld labeled

by ` and returns a value of the corresponding type:

` : f hh`:T ii ! T g

T2Types

10

Indeed, by the covariance condition, all methods whose input type is compatible with the one of the

arguments must be of this form.

11

Recall that in the overloading-based model, covariance has exactly the same meaning as here, that is, the

smaller the object that a message (label) is sent to, the smaller the type of the result.

10

Note then that covariance condition (3) is respected since hh`:T ii � hh`:T

0

ii implies T � T

0

.

But all the types of the arguments are records of the same form : : : no other kind of type is

allowed.

However the idea is that \explicit" covariance without multiple dispatching does not exist.

Actual record-based models do not possess multiple dispatching. But, this does not mean that

the analogy \objects as records" is incompatible with multiple dispatching. The problem is

that the formalisms that use this analogy are not expressive enough to model it.

In the rest of this section, therefore, we show how to construct a record-based model of

object-oriented programming using the �&-calculus, i.e. we use �& to describe a model in

which objects will be modeled by records. In the model obtained, it will be possible to perform

multiple dispatch and thus we will recover the covariance relation. Thus, we show by an example

that covariance and contravariance can cohabit in type-safe systems based on the \objects as

records" analogy.

The key point is that records can be encoded in �&. Thus, by using this encoding, we

can mimic any model based on simple records, but with an additional bene�t: we also have

overloaded functions. For the purposes of this paper, simple records su�ce. Let us recall their

encoding in �& as given in [CGL95]

Let L

1

; L

2

; : : : be an in�nite list of atomic types. Assume that they are isolated (i.e., for

any type T , if L

i

� T or T � L

i

, then L

i

= T), and introduce for each L

i

a constant `

i

:L

i

. It

is now possible to encode record types, record values and record �eld selection, respectively, as

follows:

hh`

1

:V

1

; : : : ; `

n

:V

n

ii � fL

1

! V

1

; : : : ; L

n

! V

n

g

h`

1

=M

1

; : : : ; `

n

=M

n

i � (" & �x

L

1

:M

1

& : : :& �x

L

n

:M

n

) (x

L

i

62 FV (M

i

))

M:` � M

�

`

In words, a record value is an overloaded function that takes as argument a label |each label

belongs to a di�erent type| that is used to selected a particular branch (i.e. �eld) and then is

discarded (since (x

L

i

62 FV (M

i

)). Since L

1

: : : L

n

are isolated, then the typing, subtyping and

reduction rules for records are special cases

12

of the rules for overloaded types. Henceforth,

to enhance readability, we will use the record notation rather then its encoding in �&. Just

remember that all the terms and types written below are encodable in �&.

13

Consider again the equal message. The problem, we recall, was that it is not possible to

select the right code by knowing the type of just one argument. The solution in the overloading-

based approach was to use multiple dispatching and to select the code based on the class of

both arguments. We can use the same solution with records. Thus, the method de�ned for

2EqPoint must select di�erent code according to the class of the \second" argument (similarly

for 3EqPoint). This can be obtained by using in the �eld for equal an overloaded function. The

de�nition of the previous two recursive types therefore becomes:

2EqPoint � hhx: Int;

y: Int;

equal: f2EqPoint! Bool; 3EqPoint ! Boolg

ii

3EqPoint � hhx: Int;

y: Int;

z: Int;

equal: f2EqPoint! Bool; 3EqPoint ! Boolg

ii

12

There is a \if and only if" relation, e.g. the encodings of two record types are in subtyping relation if and

only if the record types are in the same relation.

13

More precisely, in �& plus recursive types.

11

Note that now 3EqPoint�2EqPoint . But the objection may be raised that when we de�ne the

class 2EqPoint the class 3EqPoint may not exist yet, and so it would be impossible to de�ne in

the method equal for 2EqPoint the branch for 3EqPoint . But note that a lambda abstraction

can be considered as the special case of an overloaded function with only one branch and, thus,

that an arrow type can be considered as an overloaded type with just one arrow (it is just a

matter of notation; see section 4.3 of [Cas94]). Thus, one could have �rst de�ned 2EqPoint as

2EqPoint � hhx: Int;

y: Int;

equal: f2EqPoint! Boolg

ii

and then added the class 3EqPoint with the following type:

3EqPoint � hhx: Int;

y: Int;

z: Int;

equal: f2EqPoint! Bool; 3EqPoint ! Boolg

ii

Note that again 3EqPoint�2EqPoint holds. An example of objects with the types above is

Y (�self

2EqPoint

:

hx = 0;

y = 0;

equal = �p

2EqPoint

:(self :x = p:x) ^ (self :y = p:y)

i)

Y (�self

3EqPoint

:

hx = 0;

y = 0;

z = 0;

equal =(�p

2EqPoint

:(self :x = p:x) ^ (self :y = p:y)

&�p

3EqPoint

:(self :x = p:x) ^ (self :y = p:y) ^ (self :z = p:z))

i)

where Y is the �xpoint operator (which is encodable in �&: see [Cas94]).

The type safety of expressions having the types above is assured by the type safety of the

�&-calculus. Indeed, the type requirements for specializing methods as in the case above can

be explained in a plain way: when specializing a binary (or general n-ary) method for a new

class C

0

from an old class C, the specialized method must specify not only its behavior in the

case that it is applied to an object of the the new class C

0

, but also its behavior in the case that

it is applied to an object of the old class C. Going back to our example of section 2, this is the

same as saying that when one specializes the class of natural numbers from the real numbers,

then type safety can be obtained by specifying not only how to compare a natural number to

another natural number, but also how to compare it to a real number. The conclusion is that,

in the record-based approach, specialization of functional �elds is done by using (contravariant)

subtypes but, in order to make it type-safe with binary methods, one has to specialize more

accurately a method by de�ning its behaviour not only for the objects of the new class, but

also for all possible combinations of the new objects with the old ones.

Finally, we want to stress once more that, in this record-based model, covariance and con-

travariance naturally coexist. This is not apparent in the example above with equal since all

the branches return the same type Bool. But imagine that instead of the method for equal we

had a method add : then we would have had objects of the following types:

12

2AddPoint � hhx: Int;

y: Int;

add: f2AddPoint! 2AddPointg

ii

3AddPoint � hhx: Int;

y: Int;

z: Int;

add: f2AddPoint! 2AddPoint; 3AddPoint! 3AddPointg

ii

The various branches of the multi-method

14

add in 3AddPoint are related in a covariant way,

since the classes of their arguments do determine the code to be executed.

5 Conclusion

With this paper we hope to have contributed decisively to the debate about the use of covariance

or contravariance. We tried to show that the two concepts are not antagonist, but that each one

has its own use: covariance for specialization and contravariance for substitutivity. Also, we

have tried to convey the intuition that the independence of the two concepts is not characteristic

of a particular model but is valid in general. The fact that covariance did not appear explicitly

in the record-based model was not due to a defect of this model but rather to a de�ciency of all

the calculi that used this model, which were not able to capture multiple dispatching. Indeed,

it is only when one deals with multiple dispatching that the di�erences between covariance and

contravariance become apparent. The use of overloaded functions has allowed us to take the

covariance hidden in records out of its shell.

As an aside, we have shown that the �&-calculus can be taken as the basic calculus both of

an overloading-based and of a record-based model. In that case, one not only obtains a more

uniform vision of object-oriented type theories but, in the case of the record-based approach,

one also gains multiple dispatching, which is the solution to the typing of binary methods.

The Golden rules

1. Do not use (left) covariance for arrow subtyping.

2. Use covariance to override parameters that drive the selection of the method.

3. When overriding a binary (or n-ary) method, specify its behavior not only for the actual

class but also for its ancestors.

acks

I want to thank V�eronique Benzaken who encouraged me to write this paper and Kathleen

Milsted for her patient reading and many suggestions.

References

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Implementing an Object-

Oriented Database System: The Story of O

2

. Morgan Kaufmann, 1992.

14

A multi-method is a method that takes some objects as argument and selects the code according to the

classes of these objects.

13

[Car88] Luca Cardelli. A semantics of multiple inheritance. Information and Computation,

76:138{164, 1988. A previous version can be found in Semantics of Data Types,

LNCS 173, 51-67, Springer, 1984.

[Cas94] G. Castagna. Overloading, subtyping and late binding: functional foundation of

object-oriented programming. PhD thesis, Universit�e Paris 7, January 1994. Ap-

peared as LIENS technical report.

[CGL95] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with sub-

typing. Information and Computation, 117(1):115{135, 1995. A preliminary version

was presented at the 1992 ACM Conference on LISP and Functional Programming ,

San Francisco, June 1992.

[CM91] L. Cardelli and J.C. Mitchell. Operations on records. Mathematical Structures in

Computer Science, 1(1):3{48, 1991.

[DG87] L.G. DeMichiel and R.P. Gabriel. Common Lisp Object System overview. In

B�ezivin, Hullot, Cointe, and Lieberman, editors, Proc. of ECOOP '87 European

Conference on Object-Oriented Programming, number 276 in Lecture Notes in Com-

puter Science, pages 151{170, Paris, France, June 1987. Springer.

[Dyl92] Apple Computer Inc., Eastern Research and Technology. Dylan: an object-oriented

dynamic language, April 1992.

[Ghe91] G. Ghelli. A static type system for message passing. In Proc. of OOPSLA '91,

1991.

[GM89] J.A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for

multiple inheritance, overloading, exceptions and partial operations. Technical Re-

port SRI-CSL-89-10, Computer Science Laboratory, SRI International, July 1989.

[GM94] Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-Oriented Pro-

gramming: Types, Semantics, and Language Design. The MIT Press, 1994.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.

Addison-Wesley, Reading, Mass., 1983.

[JKKM92] Jean-Pierre Jouannaud, Claude Kirchner, H�el�ene Kirchner, and Aristide Megrelis.

OBJ: Programming with equalities, subsorts, overloading and parametrization.

Journal of Logic Programming, 12:257{279, 1992.

[LRV88] C. L�ecluse, P. Richard, and F. V�elez. O

2

, an object-oriented data model. In Pro-

ceedings of the ACM SIGMOD conference, Chicago, Illinois, June 1988.

[MOM90] N. Mart��-Oliet and J. Meseguer. Inclusions and subtypes. Technical Report SRI-

CSL-90-16, SRI International, Computer Science Laboratory, December 1990.

[PW92] L.J. Pinson and R.S. Wiener. Objective-C: Object-Oriented Programming Tech-

niques. Addison-Wesley, 1992.

[R�em89] D. R�emy. Typechecking records and variants in a natural extension of ML. In 16th

Ann. ACM Symp. on Principles of Programming Languages, 1989.

[Sch94] Michael Schwartzbach. Developments in object-oriented type systems. Tutorial

given at POPL'94, January 1994.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[Wan87] Mitchell Wand. Complete type inference for simple objects. In 2nd Ann. Symp. on

Logic in Computer Science, 1987.

14

