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Regular two-graphs were invented by G.Higman as a mean of studying doubly transitive
representations of finite groups. A two-graph is a set of cogerent triples such that every
4-set contains an even number of cogerent triples. But it is more important for us
that each two-graph is represented by a set of equiangular lines. If the acute angle
between lines is equal to arccos%, then we can choose a vector of norm (squared
length) m along each line such that inner products of chosen vectors is equal to +1.
It v1, v9, v3 are vectors along 3 lines, then these 3 lines compose a cogerent triple if
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Abstract

We show in this paper a power of a construction [5], [6] of two-graphs from
doubly even lattices. A doubly even lattice is an even lattice multiplied by /2.
We apply this construction to the even unimodular lattices Fg @ Fg and Dy
multiplied by v/2. For the lattice v/2( Es @ Fg), the construction gives one family
of regular two-graphs on 36 points. We think that many of two-graphs of this
family are new. The lattice v/2D7; provides two families of such two-graphs.
One of these families from Dy consists of all two-graphs related to Steiner triple
systems on 15 points. Another family consists of two-graphs related to 2-(10,4,2)
designs. This family was discovered by T.Spence, by use a computer. These two-
graphs are briefly described by J.Seidel in [10]. Being distinct all the 3 families
are not disjoint. In particular, all contain the 2 two-graph related to the Steiner
triple systems having No 1 and No 2 in the extended version of [2]. We do not
consider here the hard problem on a number of isomorphism classes of two-graphs
in each family, but show that root systems related to two-graphs make possible
to distinguish nonisomorphic two-graphs.

Introduction

(v1v2)(v203)(v301) = —1, where v;v; is the inner product of vectors v; and v;.
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Sets of equiangular lines of sufficiently large size in a space of fixed dimension exist
only if m is an odd number. There is a special bound on maximal number n(m,d) of
equiangular lines at angle arccos% in a space of dimension d:

d(m* —1)

nlmd) < =

This bound is achieved if and only if the corresponding two-graph is regular. A two-
graph is regular if every pair of points belongs to the same number of cogerent triples.

This is a great problem to classify all regular two-graphs 7 (m,d) with parameters
m and d, in particular, to find a number N,,(d) of all nonisomorphic two-graphs with
the same parameters.

For m = 3, a regular two-graph 7 (3,d) exists only for d = 5,6 and 7, and 7 (3,d)
is unique in each dimension, i.e. N3(d) =1 for d = 5,6,7.

We are interested here in regular two-graphs 7 (5,15) with m = 5 and d = 15,
when n(5,15) = 36. A set of equiangular lines at angle arccost representing a regular
two-graph 7 (5,d) may exist only in dimensions d = 5, 10, 13, 15, 19, 20, 21, 22 and
23. Regular two-graphs 7 (5, d) are known for all these d # 19,20. It is known also
the number N5(d) of all nonisomorphic two-graphs 7 (5,d) for d = 5,10, 13,23, namely,
Ns(5) = N5(10) = N5(23) = 1, N5(13) = 4.

Seidel asserts in [10] that N5(15) > 227. The number 227 is composed of 11 two-
graphs from Latin squares of order 6, of 80 two-graphs from Steiner triple systems of
order 15, and 136 new ones discovered by Spence, by use of a computer. In [10] Seidel
describes a large subclass of the Spence’ family. Two-graphs of this subclass are related
to 2-(10,4,2) designs.

We show in this paper that the family of two-graphs from Steiner triple systems
and two-graphs related to 2-(10,4,2) designs can be obtained from the even unimodular
lattice Dy multiplied by v/2 by a construction introduced in [5] and [6].

We show also that every two-graph related to a 2-(10,4,2) design is a special gluing
of the unique two-graph 7(5,10) and the unique two-graph 7(3,5). More precisely,
a restriction of the set of equiangular lines representing a two-graph related to a 2-
(10,4,2) design onto a 10-dimensional space X is a set of equiangular lines representing
7(5,10). A projection of the set of equiangular lines onto the 5-dimensional orthogonal
complement to X is a set of equiangular lines representing 7 (3,5).

Similarly, any two-graph from FEg & FEjg is another special gluing of the unique two-
graphs 7(3,7) and 7(7,7).

Note that the two-graph related to the projective space P(/(3,2) belongs to all
the 3 families obtained from FEg ¢ Eg and Dfs. We show that this holds also for the

two-graph related to the Steiner triple system having No 2 in the extended version of

[2].



2 0Odd systems and lattices

A set of vectors of an odd norm m with +1-inner products spanning equiangular lines
is a special case of an odd system. An odd system V is a set of vectors v such that the
inner product vv’ of any (may be equal) two vectors of V is an odd integer. (We denote
the inner product of two vectors v and v’ by its juxtaposition vv’.) The inner product
v? = vv of a vector v with itself is called norm of v. Hence norms of all vectors of an
odd system are odd. An odd system is called uniform (of norm m) if norms of all its
vectors are equal (to m). As we use here only uniform odd systems, in what follows,
we omit sometimes the word uniform.

We call an odd system regular if it represents a regular two-graph. We consider
also reduced odd systems such that from two opposite vectors only one belongs to the
odd system. Call an interchanging of a subset of vectors of a reduced odd system by
its opposite switching of the odd system. Similarly, we call the operation of changing
the sign of a vector v by switching v.

We call odd systems V and V' isomorphic if there is a bijection ¢ : ¥V — V' such
that ¢(v1v2) = ¢(v1)@(v2). Obviously, isomorphic odd systems are equicardinal.

Let U be an odd system related to a two-graph (i.e. spanning equiangular lines).
Since v’ = £1 for v,0' € U, v # +v', we can introduce a graph G(U) with U as the
set of its vertices. Two vertices v,v" of G(U) are adjacent if and only if vo’ = —1.
If U relates to a regular two-graph, then G(U) is a Taylor distance-regular graph of
diameter 3 (see [1]).

Let U be a reduced odd system. A switching of U corresponds to a switching of
G(U). Fix vg € U. By a switching, we can isolate vg, i.e. G(U*™) = {vo} U Hy, where
Hy = G(Up) and Uy = U™ — {ve}. If U relates to a regular two-graph, then Hy is a
strongly regular graph. The (41)-adjacency matrix A of Hy has minimal eigenvalue
—m. Hence the matrix ml 4+ A is positive semidefinite, and it is the Gram matrix
of the set of vectors of Uy. For example, Hy has parameters (35,16,6,8) for a regular
two-graph 7 (5, 15) on 36 points.

A lattice L of dimension n is a free Abelian group of rank n of vectors. A lattice
is called integral if inner products of all its vectors are integral. An integral lattice is
called even if norms of all its vectors are even. An even lattice L is called doubly even
if %L is even. Norms of all vectors of a doubly even lattice are multiples of 4, and
all inner products are even. Hence minimal norm of a nonzero vector of a doubly even
lattice L is not less than 4. The set L, of all vectors of norm 4 of L is, up to the
multiple v/2, a root system. Hence below we call a vector of norm 4 a root.

Each root system is a direct sum of irreducible root systems, called its components.
A root system is called irreducible if it cannot be partitioned into two subsystems such
that roots of one of these systems are orthogonal to all roots of other. All irreducible
root systems are known. These are A,,, D, and F,,, where n and m are dimensions
of the corresponding root systems, and m = 6,7,8. Following to [4], we denote a root



system consisting of components Ry, Rs,..., Rj by the product Ry Rs... R;. In particular,
a sum of k equal components R is denoted by R*. A lattice generated by a root system
is called root lattice, but it is denoted by the direct sum of corresponding components.
For example, the root lattice Fg ¢ Fy is generated by the root system EZ.

In [5] and [6], we introduce a construction of uniform odd systems from a doubly
even lattice. Here we describe this construction for uniform odd systems of norm 5.

Let L be a doubly even lattice, and let Lg be the set of all @ € L of norm 8. Let
¢ € L have norm 12. We set

A(c) ={a € Ls: ac = 6}.

It is easy to see that a € A(c) implies ¢* = ¢ — a € A(c), and aa® = —2. Conversely,
any two vectors a,a’ € Lg with aa’ = —2 provide a vector ¢ = a 4+ @' of norm 12.

For a € A(c), define
1

v(a) =a— =c.

2

Then we have v(a)v(a’) = aa’ — 3. Since inner products of all « € L are even, the inner
product v(a)v(a’) is odd. In particular, v*(a) = 5. In other words, the set

V(e) = {v(a): a € A(e)}

is a uniform odd system of norm 5.

The construction can be reversed. Let ¢ be a vector of norm 12, which is orthogonal
to the space spanned by an odd system V of norm 5. Then the vector a(v) = v + %c
have norm 8, and a(v) + a(—v) = ¢. Let L be the lattice linearly generated by a(v) for
all v € V. Then a(v) € Ls. Hence the odd system V(c¢) from this lattice contains the
original odd system V as a subsystem. It is proved in [6] that V = V(¢) if and only if
V is closed.

Now we define the closure of an odd system. This notion is very useful for to dis-
tinguish nonisomorphic odd systems (and two-graphs). Consider the following lattices
generated by an odd system V:

L'V)y={u:u=>_zv, Y z,=q¢ (mod?2), z, € Z}, ¢=0,1.

veV veV

Let V be uniform and of norm 5. It is proved in [6] that L°(V) is a doubly even lattice,
and the affine lattice LI(V) = v+ LO(V) is a translation of LO(V). LI(V) is an odd
system and v =1 (mod 4) for all w € L*'(V). Let L(V) be the set of all vectors of
LY (V) of norm 5. Obviously, V C Li(V).

The convex hull convL}(V) of endpoints of all vectors from Li(V) is very often a
Delaunay polytope of the lattice L°()). The conditions when convL}(V) is a Delaunay
polytope is given in [6].



Definition. The uniform odd system L}(V) is called the closure of the odd system
V. The odd system V is called closed if ¥V = L}(V). Sometimes we denote the closure
of V by clV. O

Recall that if ¥ has the form V(¢) for some ¢, then V is closed.

Suppose that U is a maximal uniform odd system of norm 5 spanning equiangular
lines, i.e. uu' = %1 for distinet u,u’ € U. If U is not closed, then, for each v Ecld —U,
there is u € U such that vu = 3. Then the vector v — u has norm 4, i.e. it is a root.
Since all roots belong to L°(2), they form a root system R(U). If U and U’ represent
the isomorphic two-graphs and are not reduced (reduced), then they are isomorphic
(switching equivalent to isomorphic odd systems, respectively).

The following obvious proposition helps to distinguish nonisomorphic odd systems
spanning equiangular lines, and therefore non isomorphic two-graphs.

Proposition 1 Let U and U' be d-dimensional odd systems representing two-graphs
T and T' with the same parameters (5,d). Then T and T' are not isomorphic if
RU) # RU"). O

3 Two-graphs from the lattice Fs @ Fs

Recall that there are two nonisomorphic unimodular lattices in dimension 16, namely
Dy and FEg @ Fg, where Eg is a 8-dimensional root lattice. The root lattice Fg is
generated by its minimal vectors of norm 2 forming the root system Fgs. We use the
description of the root system Fg given in [3]. In fact, the description is given in terms
of vectors of norm 4, i.e. it gives V2Es. We continue call the minimal vectors of norm
4 of the doubly even lattice \/2Egs by roots.

Let Vs = {0} U V7, and V7 = {1,...,7}. Let h;, ¢« € Vg, be 8 mutually orthogonal
vectors of norm 1. Then roots of \/2Fy are

1) £2h;, ¢ € V5,

2) ZieQ gihi, g; € {:l:l}, |Q| =4,0 € 5(3,4,8).

Here 5(3,4,8) is the Steiner system that has the following form. Let F; be 7
triples of the unique STS 5(2,3,7) on 7 points. Its triples are lines of the projective
Fano plane PG/(2,2). Each quadruple ) € S(3,4,8) has the form ¢ = ¢t U {0} or
Q =Vi—t=0Q :=Vs—Q, wheret € Fy. If Q # @', then |Q N Q'] = 2. In this case,
QAQ' € 5(3,4,8).

Let f;, ¢ € Vg, be other 8 mutually orthogonal vectors of norm 1. All f; are
orthogonal to all h;. Then the roots of the second copy of v/2Fg are given by the above
expressions 1) and 2) with h; changed by f;.

The vectors of norms 8 and 12 in the lattice ﬂ(Eg@Eg) are sums of two and three,
respectively, orthogonal roots of the lattice. Since the automorphism group of the root
system Fg is transitive on pairs of orthogonal roots, there are, up to symmetry, two



types of vectors of norm 12: a sum of 3 orthogonal roots of the same copy of v/2Fs,
and a sum of two roots of one copy and of one root of the other copy of v/2FEs.

A vector ¢ of the first type gives a pillar odd system V(¢). This means that vectors
of V(¢) have the form +(e + ), where e is a vector of norm 1, and r is a root (of norm
4) which belongs to Es @ Es and is orthogonal to e and ¢ (details see in [6]. A maximal
reduced pillar odd system U C V(¢) spanning equiangular lines (i.e. representing a
two-graph) contains less than 36 vectors, the number of points of a regular two-graph
T(5,15).

Hence we consider only the vectors ¢ of the second type. Recall that all vectors ¢
of the same type belong to the same orbit of the automorphism group of the lattice
\/§(E8 & Eg).

We take ¢ equal to

co = hQ)+ Q)+ 2fo = h(V5) +2fo.

Here and below we use the following denotation: for any set V, any X C V., any gy,
k eV, and for any 1« € V, we set

9(X) =D g, «(X,i) =

1€X

{ 1 ifieX )

—1 otherwise.

The set A(cp) contains the following vectors:
1) 784 vectors h(Q) + Yiepeifi, @, P € 5(3,4,8),0 € P, g = 1.
2) 56 vectors a = h(Q) — 2h; + 2fo, ¢ € @), and 56 vectors ¢g — a = h(Q) + 2h;,
1 Q, Q€ 5(3,4,8).
3) 8 vectors 2h; + 2fy, and 8 vectors h(Vg) — 2h;, i € V5.
Recall that v(a) = a — %co. Then
V(Co) == Vl U VQ,

where

Vi= (h(Q) — Sh0R)+ Y il QP €S8, 0 P).
ieP—{0}

1 , 1 .
Vo = +{h(Q) — 5/1(‘/8) —2h; + fo,7 € Q), and 2h; — 5/1(‘/8) + fo,7 € Va}.
Recall that if @ 3 0, then @) = {0} U s with s € F7. For s € [, s C (), we define 7

vectors of norm 2 as follows:
1 1
w, = h(Q) — Sh(V) = ho + h(s) — Th(VA).
Note that if ) does not contain 0, then 0 € Q = V5 — Q. Hence

h(Vs)) = —w, for s = Q — {0}.

[N

MQ) — Sh(VK) = ~(h(@) -



Similarly, for P 3 0,we have P = {0} Ut, t € Fr. We set
vs(t,e) = ws + Z&fi, s, t € Fr.
1€t
In this notation, the odd system V; takes the form
Vi = £{v,(t,e) : e € {£1}', 5,1 € I},
Using this explicit expression, it is not difficult to find that
R(V1) = D Fx.

The roots of D7 are w, £ wy, s,s" € Fr. The roots of Fr are £2f;, Y.coeifi, @ €
S(3,4,8), 0 € . Note that the roots of Er are orthogonal to fq.
Let W = %256177 ws. Then W? = I and Ww, = 1 for all s € Fr. It is easy

2
to verify that wsw; = 0 for s # ¢, since |s Nt| = 1 for distinct s, € Fr. Besides,
wsh(Vz) = 0. Hence the 8 vectors h(Vs) and wy, s € Fr, form an orthogonal basis of
the space spanned by h;, ¢ € V. The vectors h; can be expressed through h(Vs) and
W,:

1 1
2ho = W + 1h(vg), 2h; = =W+ w, + 1h(Vg).

$31

For t € Fr7, and ¢ € V7, we define the following vectors of norm 5:

vo(t) = g—Wtwy, v(1) =g+ W =D ws+e(t,i)wy, ug=g+W, u; =g—W+>_w,,

$31 53¢

where ¢ = fo — ih(‘/g) is the vector of norm % orthogonal to all ws.
Note that these 64 vectors have the form ¢ + %Zseﬂ esws, where e, € {£1}, and
there is an even number of minus signs. Hence we can redenote these vectors as

u(S) =g+ W —w(S),

where w(S) = ¥ ,cqws, and |S| =0 (mod 2). Call a subset S C Fr even if it has an
even cardinality.
Now the odd system V), takes the form

Vo = H{u(S): S C Fr, Siseven}.
The root system of Vy is R(V2) = D7. Since R(Vs2) C R(V), we have
R(V(Co)) == R(Vl) == D7E7.

These are roots of Fg & Eg that are orthogonal to ¢p.



We have 1|V;| =392, 1]V,| = 64. Hence
1
§|V(c0)| = 456. (2)

It is easy to verify that vs(t,e)u(S) = —e(S,s) = £1, i.e. v’ = £1 for v € V; and
v" € Vy. We seek a maximal odd subsystem U C V(¢g) of vectors with all mutual inner
products equal to +1. Of course, we have to find separately maximal subsets ¢, C V,
and Uy C Vy such that Uy UUy; = U. Recall that, for m = 5, d = 15, the special bound
gives £|U| = 36.

In what follows in this section, we consider only reduced odd systems V; and V,
in the canonical form, when the vectors w; and ¢ in the vectors vs(t,e) and u(S),
respectively, have positive signs. We preserve for canonical systems the same notations
V; and V. Obviously, every reduced subsystem of V(¢g) can be made canonical by a
switching.

3.1 0Odd systems U4

Consider at first V. Recall that w? = 2 and wswy = 0 for s # s'. We set §(s,s’) = 1
if s =¢, and 6(s,s') =0 if s # s’. We have

vs(t, e (t',e') = 26(s,8") + > el
ietnt!
So, vs(t,e)vg(t,e) = 26(s,s") + 3. Since vv’ = £1 for distinct v,v” € U, this implies
that, for each pair (¢,¢), there is at most one s such that vs(t,¢) € U;. We denote this
s by s(t,¢).
We obtain that a map s : (t,¢) — s(t,¢) € Fr corresponds to a set iy C V; spanning
equiangular lines. Let

T,) = {(t,2) : s(t,e) = s}.

According to what was said above, the sets T are disjoint for distinct s.
Lemma 1 For any Uy C V1, spanning equiangular lines, |Ts(Uy)| < 4 for all s € Fr.
Proof. Let Ty = T(Uy). For (t,e),(t',¢") € Ts, we have vs(t, £)vs(t',&") = 2+ X, where

Y=Y el
ietnt!

Note that ¥ takes odd values. This implies that ¥ should be equal either to -1 or —3.
The case ¥ = —3 is possible only if t = ' and ¢ = —¢&’. Then Ty = {(¢,¢),(¢,—¢)}. In
fact, if there is another (¢”,e") € T, then v,(t, £e)v,(t",e") = 2 £ 3 ;cinem €i€) 1s equal
to 3 for one of the signs +. So, |T,| = 2 in the case .

Now, let ¥ = —1. Then projections of vectors vy(¢,¢) for (t,e) € T, on the space
spanned by f;, 1 < ¢ < 7, form an odd system of vectors of norm 3 with mutual
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inner products —1. But such a system contains at most 4 vectors. In fact, let v? = 3,
viv; =—1,1 <1< j <k Then 0 < (Zf v;)? = 3k — k(k — 1), i.e. k < 4. Hence
|Ts] <4 in this case. O

Since |F7| = 7 and the sets T are disjoint for distinct s, Lemma 1 implies that
contains at most 4 X 7 = 28 pairs of opposite vectors.

By Lemma 1, if T, contains more than two pairs (¢,¢), then all vectors Y ¢, €:fi,
corresponding to pairs (£,¢) € Ts, have mutual inner products —1. There are 3 types
of Ty containing 4 pairs (¢,¢) such that the corresponding vectors ¢, ¢, f; have inner
products —1. In order to describe them, we introduce the following definitions.

Let g, &', ¢” take values 1. We call the triple (e, &', ") even if the product e’e” = 1.
Otherwise the triple is called odd. There are 4 even triples and 4 odd triples. We set

= (1,1,1), ' = (1,-1,-1), e = (—1,1,—-1), & = (=1,—1,1). Let 0 < k < 3.
Then ¥ is an even e-triple, and —&* is an odd e-triple. Besides if we change the sign
of one of the units in ¥, we obtain an odd e-triple —&' for some . For two e-triples
¢ and & with the same support ¢, let e’ = 3", ¢;2l. Hence ¢ and ¢’ are of the same
parity if and only if ee’ = —1.

We use below sums of the type 3, e¥f;. In such a sum, we consider ¢ € F; as an
ordered triple ij/ such that 1 < i < j <[ <7, and the orders of £* and ¢ agree. For
example, 2 = (—1,1,—1) in Y ;cp37 £/ f; means that ¢3 = —1, ¢5 =1, and e2 = —1.

The 3 types of T are as follows.

Type 1. T, = {(#(s),e") : 0 < k <3} or T, = {(#(s), —€") : 0 < k < 3}, where #(s)’s
are the same for all 4 pairs of T}, and £* are even triples defined above. There are
7 x 2 =14 sets T of Type 1.

Type 2. T, = {(t(s),¢?), (t(s),e"), (¥'(s),€'), (¥'(s),e™)}, where t(s) # t'(s), e'e* =
glem = —1 and ¢! = ef = —cl = —™ with {¢} = #(s) N ¥'(s). There are 21 x 8 = 168
sets of Type 2.

Denote by C; the set of 4 triplest € Fr not containing ¢ € V7. Each point j € Vz—{i}
is contained in exactly two triples of (, i.e. there is a one-to-one correspondence
between 6 points of Vz — {¢} and 6 pairs ¢,t' € C;.

Type 3. T, :=T! = {(t,e(t)) : t € C;}, where for all pairs t,#' € C; with t N ¢ = {5}
we have ¢;(t)e;(t ) = —1. There are 7 x 2% = 448 sets of Type 3.

Note that if we change the signs of € in all pairs (¢,¢) of some Ty, we obtain a new
set T of the same type.

We call two sets Ts = {(¢,2)} and Ty = {(t',&’)} for s # s’ consistent if
(Yiereifi) Xier el fi) = 1 for all (¢t,e) € T and all (¥/,¢") € T,

So, we obtain that a reduced odd system U has the form

U = {Us(t,af) : (t,@) S T575 S F7}7

where T for each s is one of the above types, and all T are mutually consistent.
Let U; contain the maximal number 28 of vectors. Then the projection of i on
the 7-dimensional space spanned by f;, 2 € V7, is an odd system consisting 28 vectors
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>ict €ifi of norm 3 with mutual inner products +1. These vectors represent a two-graph
7(3,7). The special bound gives n(3,7) = 28, i.e. the two-graph is the unique regular
two-graph with parameters (m,d) = (3,7). Hence the condition of the consistency is
equivalent to the requirement that the 28 vectors >, ¢, f; for (t,e) € Ty, s € Fr, have
to form an odd system representing the unique two-graph 7(3,7).

3.2 0Odd systems £,

Let & be a family of even subsets of F;. We set
US) ={u(S5): 5 € S}.

We want to find a family S such that (S) is a maximal odd subsystem of V, spanning
equiangular lines.

Let Sy be even. Since the set of even subsets is closed with respect to symmet-
ric difference, the vector v/(S) := u(SASy) belongs to V. Besides, u/(S1)u/(S2) =
u(S1)u(S3). Hence the odd systems U(S) and U(SASy) := {u' : v € U(S)} are iso-
morphic.

The Abelian group of even subsets of Fr consists of the following sets: 0-set (), 2-sets
d;(t), two types of 4-sets C; and D;(t), and 6-sets ¢(t), where

ct)y={t}=F—{t}, di(t) ={s € Fr:s>is#t}, t 34,1 € Vs,

CZ':{SEF728¥Z'}, Di(t):{t}U{SEF7289i}, t%i,ie%.
Comparing the definitions of vectors u;, v;(t) and sets d;(t), C;, D;(t) and ¢(t) we see
that

ug = u(0), vo(t) = u(e(t)), vi(t) = u(d;(t)) for ¢ € ¢,
u; = u(Cy), vi(t) =u(D;(t)) for ¢ & t.
According to what was said above, we can consider at first the case () € S.
Consider inner products of vectors u(.5):

u(S)u(T) =5 — |S| — |T| +2[SNT). (3)

For S,T € S, we have to have u(S)u(T) = +1. For S = 0, this condition implies
|T| =4 or 6.

Recall that maximal reduced odd systems U; and U contain 28 and 36 vectors,
respectively. Hence a maximal odd system U(S) contains 8 vectors. In other words, a
maximal family § contains 8 even sets.

Lemma 2 A mazximal family S with ) € S does not contain sets of cardinality 6.
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Proof. Let S, T be subsets of F; of cardinality 6. Since |Fr| =7, we have |[SNT| = 5.
Hence, for |S| = |T| = 6, (3) takes the form u(S)u(7) = 3. This implies that S
contains at most one 6-set.

Suppose S contains a 6-set So. For |S| = 6 and |T'| = 4, (3) gives u(S)u(T) =
2|SNT|—=5. Hence |SNT|=2or 3. But since |Fr| =7, we have |SNT| > 3. Hence
|SNT| =3. So S consists of §), Sy and some 4-sets S such that the set T := Sy N S
has cardinality 3. Since for 4-subsets S and S, (3) implies that |S N S| =1 or 2, we
have [T NT'| < 1. I |TNT'| =0, then S contains only four sets: @, Sy, S and 5,
because any other 3-set T has an intersection of cardinality 2 with T" or T”. Hence
T NT'| = 1. But a 6-set contains at most four 3-subsets with mutual intersections of
cardinality 1. Hence if § contains a 6-set, then it contains at most 6 sets. This implies
that a maximal family & does not contain a set of cardinality 6. O

So, a maximal family S contains, besides ), only 4-sets. For 4-sets S, T, the equality
(3) takes the form

u(SHu(T)y=2|SNT|-3.

For a given ¢ € V7, there are 4 sets D;(1) with ¢ Z ¢. Since each 1 € V7 is contained
in 3 triples of Fr, we have |D;(t)N D;(t')| = 3 for t # t'. Hence every family S contains
at most one set from 4 sets D;(¢) for given ¢. Denote ¢ corresponding to D;(t) € S by
t;.

Note the following pairs of sets D;(f) and C} having an intersection of cardinality
3

For ¢ 7£ k, |D2(t2) N Ck| =3 if k& € ti, (4)

and

|D2(t2) N D]‘(t]‘)| =3 if 2 € t]‘ andj € ti. (5)
Lemma 3 [f there is ¢ € V7 such that C;, D;(t;) € S then the family S is not maximal.

Proof. Suppose that C;, D;(t;) € S with¢ € ;. Let D;(¢;) € S. Recall that |[SNT| =1
or 2 for S,T € S.

Hence, by (4) (for ¢ = j and k =14), ¢ € t;, and, by (5), 7 € t;. Since j € t; Ut; and
t; # t;, there is only one point j’ # j in the set V7 — (¢, Ut;). We show that there is at
most one set D;(t;) € S for [ #1,j. As above we have t; 3¢, [ € t;, 1, # 1,.

If ¢, = t;, then the conditions [ # j and [ ¢ ¢; Ut; =¢t; Ut;, imply that [ = 5.

If t; # t;, then either j € t; or j' € t;. If j € 1}, then, by (5), [ & t;, what implies
[ =4 It j/ € t;, then [ € t;, i.e. [ is the third point of ¢; distinct from the points of
the intersections t; N t; and #; Nt; = {¢}.

So [ is uniquely determined by ¢ and j. If D;(¢;) € S with such [, then § can contain
a set C) with k # ¢, only if t; = ¢; and {k} = ¢, N{;. So, we obtain that, in this case,
S contains at most 6 sets: 0, Cy, D;(t;), D;(t;), Di(t;) and Cg, i.e. S is not maximal.

Suppose now, that S contains only one set D;(t;) from D-sets. Then S contains at
most 3 sets (), for k € t;. Hence, in this case, S also contains at most 6 sets: ), C;,

Di(ti), and Ck for & € ti. O
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So we obtain that if S contains a set D;(¢;), then k € ¢, for all C) € S. This implies
that & has one of the following forms:

SO =A{0,Cy. ke Vz},

S(t)={0,D;(t),1 € Vo —t,Cy, k € t}.

Denoting U(S) by Uy and Us(t) for S = S® and S = S(t), respectively, we obtain

U = {u; 11 € Vi), Us(t) = {uo,up,vi(t) : k €1 € Vi —t}.

Since the group of even sets is generated by 6-sets,we can consider U(SAc(t)A...Ac(t'))
for different families of ,..., t'. By this way, we obtain only two new systems

Ug(t) ={vi(t) : 1 € Vs}, Uzl(t) = {vo(t),vi(t),u; s k €t,0 € Vo —1}.
Hence we have

Proposition 2 FEvery maximal odd system Uy has one of the form U, Us(t), US(1),
Uy(t), t € I O

It is easy to verify, using the definitions of v;(¢), u;, ¢ € Vg, that
vi(t)vi(t) = vi(t)u; = wuy =1 for i,5 € Vi, i # j.

Hence all the systems U3, Us(t), UL(t), Uy (t) are isomorphic.

Note that, since the vectors ¢, ws, s € F7, and f;, ¢ € V7, are mutually orthogonal,
a change of signs of some of these vectors transforms the odd system V(¢p) and any of
its subsystem U/ into isomorphic odd systems.

Lemma 4 The odd systems Uy UUI(t) and Uy U U, (t) are isomorphic to a switching
of the odd systems U] UUS and U; U Uy(t), respectively, where the sets T of the odd
system U] are of the same type as the corresponding sets Ts of the odd system U .

Proof. For fixed t € F7, consider the following transformation: w; — —wy, ¢ — —g.
This transformation generates the following transformation of vectors v and u: v;(t) —
—u;, u; — —vi(t), ¢ € V. Obviously this transformation, up to switching, permutates
UI(t) with UJ, and Uy (t) with Us(t).

Additionally, we make the transformation Ty = {(s(t),e)} — T} = {(s(¢), —¢)} in
the reduced odd system ;. Obviously, after this transformation, we obtain, up to
a switching, an odd system U] of the same form as U;. The assertion of the lemma
follows. O

According to Lemma 4, for to find all nonisomorphic two-graphs given by Eg & Eg,
it is sufficient to consider the odd systems U = Uy UUY and U = Uy U Uy(t). We
choose just these systems, since they contain the vector ug which has the inner product
uov = 1 for all other v € U. In this case, the vertex ug is isolated in the graph G(U),
and the graph G(U — {ug}) is a strongly regular graph with parameters (35,16,6,8).
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The projection of the vector u(.S) on the space spanned by ws, s € Fr, is the vector
w(S) =W =V esws = 3 og5Ws — %Sesws. The norm of the vector v/2w(S) equals
7. Moreover, for u(S) € Us, all the corresponding 8 vectors v/2w(S) have mutual inner
products —1 and span the 7-dimensional space with the basis (ws, s € F7). Hence these
vectors represent a two-graph 7 (7,7). Since, for (m,d) = (7,7) the special bound
gives n(7,7) = 8, the two-graph 7(7,7) is the unique regular two-graph with these
parameters.

Recall that the projection of U on the 7-dimensional space with the basis (f;,7 € V%)
represent the unique two-graph 7 (3, 7). Hence one can say that any two-graph 7 (5, 15)
obtained from the lattice Fg & Fjs is a special gluing of the unique two-graphs 7(3,7)
and T (7,7).

3.3 Two-graphs 7;(5,15) and 7;(5,15)

We obtain that each two-graph from the even unimodular lattice Eg@ Fs is represented
by a reduced odd system which is a union of odd systems ; and ;. We consider two
special cases of odd systems of such the form. These two odd systems belong also to
other two families of odd systems from the second even unimodular lattice Dy.
Consider a reduced odd system U, where all 7 sets T, s € Fr, are of Type 1. In this
case the sets T determine a bijection between two copies of [ consisting of triples s
and triples ¢(s). Recall that F7 is the projective Fano plane P(G/(2,2). Let the bijection
be an isomorphism of the two planes. Then we can, without loss of generality, identify

triples #(s) with s. Now, U; consists of vectors v,(s,e") = w, + ¥e, ¥ f;, where &*

1€s5 <4
for all £ is either odd or even. For these vectors, we introduce the special denotation

us(£e"), where + and — correspond to even and odd e-triples respectively. So

us(ek):ws—l-Zasf ,osely 0< k<3, (6)
€S
Let S C Fr be a set of triples s. We denote by U;(.5) the odd system U, containing
us(—e") for s € S, and u,(c*) for s € S with even c*. We denote by U(S) the union of
U, with UJ. We have

US) = {ur 0SS T us(—*).0 < k<35 €8 un(ch),0<k<3.s¢5: ).

U(S) represents a regular two-graph 7 (5, 15). Denote this two-graph by 7 (.5).

We define a transformation of S. Recall that there are 3 triples s € F; containing a
given point ¢. For each 7, 1 < <7, consider triples s € S containing . If there are 3
such triples, then delete them from 5. If there are two such triples, then change they
by the third triple containing ¢. If there is one or no triple containing ¢, then S is not
transformed. Obviously, after such transformation for all :, we obtain S with either
one or none of the triples. We call S positive if it is transformed into empty set, and
negative, otherwise.
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Proposition 3 Let S C F; be a set of triples s € F;. Then Ui(S) (and U(S)) are
isomorphic to Uy () (and U(D)) or Ur({s}) (and U({s})) according to S is positive or

negative, respectively.

Proof. Note that if we change in U (5) vectors f; for some ¢« by —f;, we obtain an
isomorphic odd system. This change of the sign of f; is equivalent to the change of the
sign before ¥ for all k, 0 < k < 3. In other words, the change f; by — f; is equivalent to
the change of the even e-triple in u,(c*) with s 3 ¢ by the odd e-triple (and conversely).

So, if the set S C F; contains 3 triples containing the point ¢, we can eliminate
these triples from S simultaneously transforming f; into —f;. If the set S contains
two triples with 2, we can change the two triples by the third triple containing z and
transforming the f; by —f;. The assertion of the proposition for ¢;(.5) follows. Since
we do not change vectors w;, the assertion of the proposition is also true for ¢(5). O

Taylor proves [11] that there is a unique two-graph 7y(5, 15) with a doubly transitive
automorphism group. The full automorphism group of 7o(5, 15) is Sp(6,2). It is shown
in [2] that the two-graph 7o(5, 15) relates to the unique Steiner triple system, triples
of which are lines of a 3-dimensional projective space PG/(3,2) over the field GF,. We
show in [7] that 7(0) = 7o(5,15).

Obviously, there is a permutation of the set V7 that transforms any triple s € Fr in
any other s’ € Fr. This permutation generates an isomorphism of odd systems U({s})
and U({s'}). Denote by 71(5, 15) the two-graph represented by any of these isomorphic
odd systems. We show in [7] that 7;(5, 15) relates to the Steiner triple system having
number 2 in the extended version of [2].

3.4 0Odd systems representing 7(5, 15)

In this section we consider in details two odd systems U({t}) = U ({t}) UUY and
U(t) = U (D) Uly(t), and show that they are isomorphic, closed and its root system is
R(U({t}) = A], i.e. it consists of 7 mutually orthogonal roots.

Each odd system representing the two-graph 7;(5,15) is a perturbation of the odd
system U(0) representing the two-graph 75(5,15). In what follows, we redenote the
odd system U(0) by W.

We show in [7] that W is closed, since it can be obtained by our construction from
the Barnes-Wall lattice Ajg. Namely, Wy = V(¢) for every vector ¢ € V2A16 of norm
12. Since the odd system W, has no pair of vectors with the inner product £3, the
root system of Wy is empty, i.e. R(OWy) = 0.

Call minimal by inclusion dependencies of Wy by circuits. Minimal by cardinality
circuits of Wy consist of 6 vectors such that a sum of these vectors or its opposites is
equal to 0. In the graph G(Wp), a circuit induces a switched maximal clique (of size
6). Later, in Section 8.4, we consider the graph G(W)) in details.
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Any 5 vectors of a circuit compose a broken circuit. Obviousely, the sum of 5 vectors
of a broken circuit is the 6th vector with an opposite sign. In other words, a broken
circuit generates a vector of the lattice Li(W)).

An odd system U representing 77(5,15) is obtained from W, by a substitution of
some vectors. In this case, if a vector v of a circuit is substituted by v’, then this
circuit ceases to be a dependency, it becomes a broken circuit. But this broken circuit
generates v, i.e. v belongs to clf. Besides vo’ = £3, and if vv’ = 3, then the vector
v —v'is a root of R(U).

We use circuits of Wy of the following form

{ta, up, us(e(s)) 1 s € Ci},

where C; is the 4-set of triples s € F7 not containing ¢ € V7, and the pair a,b € V3 is
such that either « = 0, b = ¢ or the triple ab: belongs to F7, i.e. it is one of the triples
of F; containing ¢. Fach point j € V7 — {¢} belongs to exactly two s,s" € C;. Hence
the e-triples £(s) and £(s’) are such that ¢;(s) = 4¢;(s'), where the sign — corresponds
to all j in the case (a,b) = (0,7), and to j = a,b in the cases (a,b) # (0,7), and the
sign + corresponds to the other cases. The corresponding dependencies are

u; — ug + Z us(e(s)) =0 and u, + Z us(e(s)) = up + Z us(e(s)).  (7)

seC; sSa,sFb s3b,5Fa

Consider, at first, the odd system U({t}). The vectors of U({t}) distinct from the
vectors of Wy are us(—¢*), 0 < k < 3. Any circuit of (7) with C; 3 ¢ generates u,(c*)
for some k. Since there are 4 choices of £(s), we obtain w;(¢*) for all k, 0 < k < 3.

For k # 0, we have that the vector

u(e%) —u(—e®) =D fi+ Db fi =2,

jet JjET

is a root. Here [ is such that ¢f = 1 and 5? = —1 for j # [. So, we obtain 3 roots 2f;
for y €.

Now, consider the vectors us(c*) € U({t}) for s # t. Let {j} = sNt. Then the
vector u,(e") — 2¢% f; of norm 5 belongs to clt/({t}) and has the form u (—¢') for some
[. Then, as above, we can obtain the roots 2f; for j € s. Continuing in this way, we
obtain the 7 mutually orthogonal roots 2f;, j € V7. In this case, cld({t}) contains
vectors u,(e) for all 8 = 2% e-triples ¢ € {£1}*.

We show below that there is no other vector in cli/({t}), i.e. cld({t}) contains the
following 64 vectors: w;, ¢ € Vg, and uy(e), ¢ € {+1}°, s € Fr. We denote this odd
system consisting of these 64 vectors by Wj.

Now, we consider the odd system U(t) = Uy (D) U Usz(t), and show that clif(t)
is isomorphic to W;y. The vectors v;(t) € U(t) substitute the vectors u; € Wy for
1€ Vo — 1.
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Consider the 4-set V; — t in details. Since F%; is a Steiner triple system, each
unordered pair ¢k of points of V; belongs to exactly one triple of F7. In other words,
the pair ¢k determines uniquely a triple of F7. Since there are 6 distinct pairs of
points in V7 — ¢, we obtain all other 6 triples of F7 distinct from ¢. These 6 triples
are partitioned into 3 pairs of triples having the same intersection point with ¢. For
m € t, let p(m) and ¢(m) be the pair of triples with p(m)Nt = g(m)Nt = {m}. Since
p(m)Ng(m) = {m}, the triples p(m) and ¢(m) are determined by complementary pairs
of points of the 4-set V7 — t. In other words, each point m € t determines uniquely
both a partition of V; —¢ into complementary pairs ¢7, kl and the corresponding triples
p(m) and g(m).

Fix j € Vz — ¢, and, for each m € ¢, the triple containing j take as p(m). So, the
3 triples p(m), m € t, are triples of the form ¢,,jm where the point ¢,, is determined
uniquely by the pair j, m.

Recall that, by Proposition 3, the odd system U;(0) is isomorphic to U (S) for
positive S C Fr. It is easy to see that the set P; := {p(m) : m € t} of 3 triples
containing 7 € V; is a positive set. For what follows, it is convenient to take the
isomorphic odd system Uy (P;) U Usx(t) instead of U () U Us(t). We denote the new
odd system by U(t) as before. So, each vector wu,(,)(e) € U((1) has odd triples ¢, i.e.
Migp(my €1 = —1.

Recall that u; € U(t) for ¢ € V7 — 1. Since ug € U(t), the first dependency in (7)
generates u; for ¢ € Vz —t. If iym = p(m), then the vector

ri(m) = u; —vi(t) = u; —vi(t) = Zws + Zws +wy = 2W = wp(m) — Wo(m)

$31 $37

is a root. Now, the vector uy(,(¢) and the root r,(m) give the following new vectors
of clUd(t):
oy (©) + 1elm) = Wy + D €ifi = vy (g(m),€).

i€q(m)
Similarly, we obtain the vectors v () (p(m),€) = upmy(e) — re(m) €clid(l).
The vectors vy (g(m), €) and uy(m)(e’) provide a new root if ¢,, = ¢/ . Let p(m) =
{igm} and ¢(m) = {klm}. We set ¢ = (0; : 1 € Vz —t}, where 0; = ¢}, 0; = &,
o) = —€g, 0 = —¢;. Recall that {ijkl} = Vz —t. Then

(o) = tpimy (&) = vpmy(q(m), &) = D oifi

1€Vr—t

is a root. Recall that ¢’ is odd and ¢ is even and ¢;, = ¢,,,. Hence ge; = —¢le’ = ¢, =
er,- This implies that [[;ey,_, 0; = —1.

Call a quadruple o € {£1}V77! odd if [ljev,—+0; = —1, and even, otherwise. There
are 4 pair of opposite odd quadruples. In each pair of opposite quadruples, we choose
the odd quadruple o' having only one —1 on the place : € V5 — ¢.

16



Choosing suitable & and &', we can obtain the roots ri(£o?) for all 8 quadruples o.
Obviously, r{(—c) = —r;(o). We redenote r;(a') by r4(7). So, we obtain that the root
system R(U(t)) contains the 7 mutually orthogonal roots ry(i), 1 € V7.

Besides, we obtain that clif(t) contains, excepting the vectors of U(t), the vectors
u; for v € Vi — 1, vectors vy, (q(m), €) for even e, and vy, (p(m), ) for odd e, m € 1.
So, we have 4 + 6 x 4 = 28 additional vectors in clif(¢).

Now, we show that these 364+28=64 vectors of cli/ () form an odd system isomorphic
to Wi. To this end, we introduce a new orthogonal basis of the space spanned by U(t).
Recall that the old basis consists of the following 15 mutually orthogonal vectors: g,
fi, 1 € Vo, w,, s € Fr.

Let H = %ZieW—t fi- We set

1 3 1 .
g/ - 59"’ Zwta €m — §(wp(TrL) - wq(m))vm €t, = H — fﬁl eV —1,

1 1 1
Te= g = W Tp(m) = §(wp(m> + Wo(m)) + fins Tam) = §(wp(m> + wy(my) — fm.m € L.

2

It is easy to verify that ¢/? = %, e2 =elf=1,a2= J}Z(m)

vectors are mutually orthogonal. We can express the vectors of the old basis via the
vectors of the new basis as follows. (Note that 2H = Y .cy. ¢ fi = Xicv_s €i)

= xz(m) = 2, and all these

1 3 1 .
g = 59/ + thv Jm = §(xp(m) - xq(m))vm €t, fi=H—e i €Vr—t,

, 1 1 1
wy =¢ — §xt, Wy(m) = §(xp(m) + xq(m)) + €m, Wy(m) = §(xp(m) + xq(m)) — €y, m E 1.

Now, we introduce the following vectors of norm 5 similar to vectors u;, ¢+ € Vg, and

us(e), s € Fr. Weset X = %Zseﬂ s and

Yo :g/—I_Xv Y = g/_X —I_Zwsv ys({-j) =T +25iei-
531 1€
Now, we identify the vectors v € U(t) with y;, ¢ € Vg, and y;(e), s € Fr.

Fori e Vi —t and m € 1, we set €,,(1) = 1 if ¢ € p(m), and &,,,(1) = =1 if ¢ € g(m).
Recall that we fix j € Vz—t such that j € p(m) for all m € t. Henceeachi € Vo—t—{j}
belongs to p(m) exactly for one m, and to ¢(m) exactly for two other m € ¢. This
implies that the triple e(¢) = {e,,(¢) : m € t} is even for all ¢ € V7 —¢.

It is not difficult to verify that, for ¢« € V7 — ¢, we have

i = ye(e(1)), vilt) = ya(—e(i), wele(1)) = yi.

For m = 0 or m € t, we obtain wu,, = y,.
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Now consider the vectors uy(e) for s = p(m) and ¢(m). Let s = p(m) = {igm}.
Recall that ¢ is odd for wym)(e) € U(t), ie. gie; = —ep. Hence if €, = 1, then
e;+¢;,=0,and if ¢, = —1, then ¢; = ¢;. Therefore we obtain

if €, = 1, then wp(m)(€) = Ypm) (') where & = (g, —4, —¢;) is odd, and
if e, = —1, then wuy(n)(€) = Yg(m)(€”) where &” = (—¢,,, 4, ¢5) is even.
Similarly, if s = ¢(m) = {klm}, then ¢ is even in uym)(¢), and we obtain
if e =1, then () (€) = Ypm)(e”) where & = (=&, ep, 1) 1s odd,

if e, = —1, then uy(n)(€) = yg(m) (') where &’ = (e, —ep, —&;) is even.

So, we obtain that U(¢) = Vi (P; U{t}) U3, where Y;(S) is the set of y,(¢) with odd
efor s € S, and even ¢ for s € S, and V) = {y,; : 1 € Vi}.
Obviously, the natural bijection a(t) of basic vectors:

Oé(t) :gHglv fl = C, W 7 T

generates an isomorphism of odd systems of types ¢ and ). Recall that U(t) =
Ur(P;)UUs(t), where Us(t) = {ug, m, vi(t),m € 1,1 € Vo—1t}, and Uy (P;) is isomorphic

to U;(0). Hence we obtain for ¢(t) the following two isomorphic representations
U(t) = U (P;) Uly(t) = Uy (P U{t}) Uy = U ({t}) Uy = U({t}).
The same bijection shows that clif(t) contains an odd system isomorphic to Wy. Set
Uey(8) = {us(e) s e is even}, Uyq(s) = {us(e) e is odd }, Ui (8) = Uey(8) U Uoa(s),

U = {ug,ty im €t U = {u; 0 € Ve —t}, U = {vi(t) 1 € Ve —1}.

Note that each set (besides U;(s)) contains 4 vectors, and Uy = UL UU}.
Then we have

Wi = U DU User, Uy (s).

It we use the same representation of Wy in y-vectors and then substitute y-vectors by
equal u-vectors, we obtain that the bijection «(f) makes the following permutations:

uto A utov utl A uev(t)v uod(t) A UE,

Ueo(p(m)) < Ueo(p(m)), Usa(p(m)) < Uei(g(m)), Usa(q(m)) < Usalq(m)).

Hence we obtain

Wi = U VU UUF U UL (L) User— g U (s).

We can consider these two representations of W; as two distinct embeddings of the
odd system W, into the odd system V(c¢o) = V4 U Vs.
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We have U UU} = U C Vy and Ugep,Ui(s) C Vy in the first embedding. In the
second embedding, we have, as in the first embedding, Y C V; and User szd1(s) CU;.
But () is embedded into V; and represented there as the set U! UU?. Similarly, U}
is embedded into V; and represented there as the set U.,(f). Since ¢ is an arbitrary
triple of F;, we have

Proposition 4 For anyt € Fr, there is an embedding of the odd system Wy into V(co)
such that Uy (t) is embedded into Vo and U} is embedded into Vy. O

Now we prove very important fact.
Theorem 1 The odd system Wi is closed.

Proof. We saw that the odd system W, = U Usep Ui(s)can be embedded into the
odd system V(¢g) = Vi1 UV, in different ways. For example, for any s,t € F7, there
exists an embedding such that 2 (s) C Vy and U (t) C V,. Call the sets Uy and U (s),
s € Fr, components of Wi.

Suppose that Wy is not closed, and let v €cIW; —W;. Since W, contains a maximal
system of vectors with mutual inner products £1, there is a vector u € Wy such that
vu = +3. Let Ws(v) = {u € Wy : wv = £3}. We show that Ws(v) is contained in one
of components. Suppose to the contrary, that there are uy,uy € Ws(v) such that uy
and uy belong to distinct components. Consider an embedding of Wy into V(¢p) such
that the components containing u; and us belong to different systems V; and V;. But
this contradicts to that wu’ = £1 for v € V; and «’ € Vs, and v belongs either to V; or
to V.

Now, suppose that Wj is naturally embedded into V(cp), i.e. U C Vy and Usep U(s) C
V. Obviously, cW; € V(¢g). Hence each vector of ViNcIW; has the form vy(?,¢) for
s,t € Ir, s £ t, and ¢ € {£1}. Similarly, each vector of VoNclW; has the form wu(S)
for some even S C Fr.

For vs(t,e) # uy(e') we have |vg(t, e)ug(e")] = 3 in the following two cases:

1) s=4¢,t#s and g, = 1, where ¢ € t N &', what implies ug(e') € U(s),

2) s #£ ', t =35 and ¢ = &’ what implies uy (") € U(1).

In other words, the vector vs(t,) has the inner product +3 with some vectors of
distinct components U(s) and U(t). Hence vs(t, ) €clW;.

We saw that, for any ¢ € Fr, there is an embedding W, into V(co) such that U4} C V,
and U C V,. Since for each two points 7,5 € V7 there is t € F; such that u;, € U},
u; € U, we conclude as above that each v €clW; has the inner product +3 with only
one u; € UY. Recall that vy = u(0) and w; = u(C;), i € V. Tt is not difficult to verify
that for any even set S C F7, S # 0,C;, there is at least 3 points ¢ € Vg such that
|u(S)u;| = 3. So, u(S) €cIW; for S # 0, C;. This implies that cIW; = Wy, i.e. Wy is
closed. O

Corollary 1 R(U({s})) = R(U(t)) = ROW) = AT
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3.5 Two-graphs from Es ¢ Es distinct from 7 (5, 15)

As an example, we give an odd system U(7) := Uy (i) UUY with a large root system.
Recall that C; is the set of s € F; not containing ¢, and any v € U; has the form
v = vy(t,e), where (t,¢) € T,. We take the sets T as follows. For s ¢ C, i.e. for
s 5 1, we take Ty = {(s,e)} with all odd e-triples for one s 3 ¢, and with all even
e-triples for the other two s 3 ¢. For s € C;, we take Ts = {(t,e(s,t)) : t € C;}, where
e(s,t) € {£1}" satisfies the following conditions. For all s,t € C;,

e(s,t) is even, e(s,t) = e(t,s), £(s,s) =% = (1,1,1),

e(s,t)e(s',t) = £1, and ¢j(s,t) + ¢;(s,t') =0 for y € t N Y.

{e(s,t):t € Ciy ={e(s,t):5€ Ciy ={F:0 <k <3},

It can be verified that these T are mutually consistent. By the method as above,
we obtain that

R(U(l)) - A1D3D4D67

where Ay = {2f;}, Ds = {ws; T wy : 5,8 31}, Dy ={ws+wy : s, € C;}, Dg = {2f; :
JF U jeqeifi e €{£1},Q =Vr —s,s 31}

We end this section with a two-graph represented by an odd system U with R(U) =
R(V(Co)) == D7E7.

Let ¢ : F; — V; be an arbitrary bijection between two the 7-sets. Using this
bijection, we consider an odd system U;(¢) with the sets T, taken as follows. For
s € Iy, we set Ty = {(1,e¢) : t € CUys)}, and choose ¢; such that the corresponding
family of T will be consistent. Besides, we take all ¢; even in all T with s # s¢, and
¢ is odd for (t,e;) € Ty,. It is not difficult to verify that R(U(¢)) = D7 E7, where
U(6) = th(6) UL,

Note that the root systems AyD3D,Ds and D;E7 are not contained in the root
systems Ay and DigAs of the two odd systems obtained by our construction from
the lattice Dfs. Hence the odd systems (i) and U(¢) represent two-graphs which are
not contained in both the families of two-graphs from Dfs. It seems to us that these
two-graphs were not known early. This assertion is true up to not known for us the
two-graphs announced by T.Spence in the unpublished work referenced in [10].

4 The even unimodular lattice Df%

Now, we apply our construction to v/2D7s, to the 16-dimensional even unimodular
lattice Dy multiplied by v/2. A description of Dy can be found in [4].

Let Vig = {0} U Vis and Vis = {i: 1 <¢ < 15}, Let ¢;, ¢ € Vig, be a frame of 16
mutually orthogonal vectors of norm €? = 2. The minimal vectors of the lattice v/2D;
(of norm 4) are roots te; +e;, 0 <i < j < 15, of the root system V2 Dy6. The lattice
V2D3; is generated by its roots and by the vector %Z}io e; of norm 8.

Any vector of /2Dy has the form Y0° z;e; (see [4]) such that
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l)zg=a1=... =215 (mod Z),
2)2:1;Z€Z 0<i<15,
3) 20’2, =0 (mod 2).

Using this, we obtain that any vector of norm 8 is one of the following 3 types.

(1) £2¢;, 0 < ¢ < 15,

(2) Yicgciei, @ € Vig, |Q] =4, &s € {£1}, Yiegei =0 (mod 2),

(3) 2y cies, e € {£1}, 307, =0 (mod 4).

There are 3 types (1)(3); (2)(2); (2)(3) of pairs of vectors of norm 8 with the inner
product —2. Summing the vectors of each pair, we obtain a vector ¢ of norm 12. It
turns out that there are vectors ¢ of the following two types:

(I) % (1)5 E,€; — 25kek = —%ekek + %Zz;ék E.€4, (1)5 &, = 0 (mod 4),

(1) Yieseiei, |S] =6, 5 C Vig.

Note that vectors ¢ of the same type belong to the same orbit of the automorphism
group of the lattice v/2D{,. Hence, up to the symmetry, we can consider the following
representatives of these two types:

3 1

€1 = 5¢o -I- e(Vi5), and ¢rr = e(5), So={0,1,2,3,4,5}.

5 Case I: two-graphs related to Steiner triple sys-
tems

Let Ti5 be the set of all 3-subsets t C Vi5, || = 3. For t € Tis, we set a(t) = eg + e(?).
Then using the definition of the set A(¢), we obtain

A(er) = {a(t),er —alt) : t € Tis} U {2e0,¢1 — 2€0}.

Recall that v(a) = a — %c;. We set
1
Vo = 0(260) = ¢+ 1(60 - e(‘/IS))v

olt) = vlat)) = e(t) + (o — e(Vig)), and
{v(t):t €T}

=
=
I

Then
V(er) = £({vo} UV(T15)).

It is easy to see that

R(V(er)) = R(V(T15)) = Aua.
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Since there are |T15| = (135) = 455 triples ¢, we have

1
As vov(t) = 1 for all t € Ty5, we have
V(T1s5) = {v € V(er) :vvg = 1}.

Note that, for ¢,¢ € T}s,
o(t)o(t) =21tnd| - 1. (9)

Hence v(t)v(t') = 1 if and only if [t N¢'| < 1.

Proposition 5 Any maximal reduced odd subsystem of V(er) spanning equiangular
lines is switching equivalent to one of the 80 reqular odd systems corresponding to 80
nonisomorphic Steiner triple systems on 15 points.

Proof. Obviously, any reduced odd subsystem & C V(¢j) can be switched to the form
U™ ={vo} UV(T) for some T C Tis.

Consider an odd system V(T') for a maximal by inclusion set T C Ti5 such that
vectors v(t) of it have all mutual inner products +1. Then, according to (9), for each
pair ¢ of points of Vi5, there exists at most one triple ¢ € T' containing it. If, for each
pair 2, there exists a triple t € T' containing it, then T' is maximal and called a Steiner
triple system (briefly STS). It is well known that there exist 80 nonisomorphic STS on
15 points. O

Each STS with a set of triples T' contains |T'| = 35 triples. Hence the odd system
{vo} UV(T) contains 36 vectors and spans 36 equiangular lines at angle arccost. Since
the special bound is achieved, the odd system {vo} U V(T) with T" as a set of triples
of an STS corresponds to a regular two-graph on 36 points. It is proved in [2] that all
these two-graphs are not isomorphic. The odd systems of norm 5 related to STS’s on
15 points are studied in [7].

6 Case II: Two-graphs related to 2-(10,4,2) de-
signs

6.1 The odd system V(c)

Recall that
err = e(So), So={0,1,2,3,4,5} .
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We set Vig = Vig — So, Ts = {t C So : |t| = 3}, and F = {e € {£1}"10: Y icvi, Ei = 2
(mod 4)}. Let
1 1
ale) = 56(50) + 5 Z gie;, e €l

1€V
al(t) =e(t)+ oei, @ € Vig,t € Tg,0 € {£1}.

K3

Using the definition of A(cjy) we obtain
Alerr) ={ale),al(t):e € B, t € Ts, i € Vip, 0 € {£1}}.

The corresponding v-vectors v(a) = a — Lej; are
P 2

o(e) = vlale)) = 5 Y e, c€ B

1€V

K3

v (t) =v(al(t)) = %(e(t) —e(t)) +oe;y T =59 —1.

Consider a 10-dimensional cube ()10 with edges of norm 2. Let its edges be parallel
to vectors of the frame {¢; : ¢ € Vjp}, and its center be in the origin. Then vertices of
the cube are given by the vectors v(e) for all 2! values of ¢ € {£1}"1°. The condition
Yievio € =2 (mod 4) chooses even vertices of the cube Q1.

Now we introduce a new denotation for v(g). For ¢ € {£1}"10 we set p(c) = {1 €
Vio :€i = —1}. Then v(e) = 2e(Vio — p(e)) — 3e(p(e)) = 3e(Vig) — e(p(e)). For e € E,
the set p(¢) has an even cardinality. Let P be the family of all subsets p C Vi of
even cardinality. Redenoting v(e) by corresponding v(p), we rewrite v(¢) and v7(¢) as
follows:

o(p) = 3e(Vio) — e(p). (10)

vl (t) =e(t)+ oe; — %e(So).

Hence
V(err) = {o(p),v{ (1) : p € Pt € Ts,i € Vi, 0 € {£1}}.
For what follows, we need explicit expressions for inner products of vectors from
V(err). Recall that e;e; = 26;;, where 6,5 = 1 if ¢« = j, and é;; = 0, otherwise. Since
tNp=~0forallt e Ty and p C Vi, we have

v(po(p’) = 2lpnp'|—pl =[P +5, (11)
v(pi(t) = Foelp,i), (12)
(T () = 2nt| -3+ 200, (13)

where €(p, ) is defined in (1).
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We introduce the following odd subsystems of V(¢y)
Ve={v(p):p€ P}, Vi={vi(t):t € Tsi€ Vig}, Vr =VF UV

Since v; () = —vF' (%), where T = Sy — ¢, we have V' = — V7' and

V(CH) = VP U VT.

Note that vv’ = 1 for v € Vp, v’ € Vr.
It is not difficult to verify that R(Vp) = Do and R(Vr) = AsDyo. Hence

R(V(C[[)) = A5D10.

These are roots of Dig orthogonal to ¢y = e(.Sp).
There are 37, (;2) = 2% = 512 vectors v(p), p € P, and 2 x 10 x (g) = 400 vectors
v?(t). Hence

K3

1

§|V(CH)| = 456.
Comparing this number with (2) and (8), we see that V(co), V(cr) and V(cyg) are
equicardinal. One can think that they are isomorphic. But we have

Proposition 6 The odd systems V(co), V(cr) and V(err) are not isomorphic.

Proof. Recall that each of the odd systems V(¢;), ¢ = 0,1, 11, is partitioned into two
odd subsystems V; and V; such that viv, = £1, for v; € V;, @ = 1,2. But, the table
below shows that for the 3 odd systems these partitions are distinct.

V(co) | V(er) | Vienr)
V] 392 | 1 200 O
Wao| 64 | 455 | 256

Note that the odd systems V(¢;), ¢ = 0, [, I 1, span sets of lines with only two angles:
arccost and arccos?.

Conjecture The mazximal number of lines spanning a 15-dimensional space and
having angles arccos% and arccos% is equal to /56.

In what follows, we consider canonical reduced odd subsystems of V(¢;y) of vectors
v(p) with |p| <4 and v7(¢) with o = +1. Since v(Vio — p) = —v(p), every reduced odd
subsystem can be made canonical by a switching.

We seek a maximal odd subsystem U C V(cjy) of vectors spanning equiangular
lines. Hence vv’ = %1 for all v,v" € U. Since vv’ = x1 for v € Vp and v € Vp,
we have to find separately maximal sets Up C Vp and Uy C V7 spanning equiangular

lines, Up Ul = U.
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6.2 Odd systems Uy related to 7(3,5)

Now we consider a canonical subsystem Uy C Vr spanning equiangular lines. Recall
that v7(t) € Ur only for ¢ = +1. We redenote v;'(¢) by vi(t).
Fix k € Vip. The equality (13) gives

vr(Hve(t)y =2/t Nt — 1.
For vy (1), vg(t') € Uy, this equality implies
[t <1. (14)

Hence t # ¢/, and we set
TF = {t :vp(t) € Ur}.

Now, for ¢ # 7, (13) and the condition v;(¢)v;(#') = £1 imply
[tnt'| =1 or 2, (15)

ie. t # t'. Hence, for each t € Tg, there is at most one index k € Vjp such that
vp(t) € Ur, i.e. the sets T* are disjoint. Besides, since |Ts| = 20, we obtain that
|Ur| < 20.

Since |t N#'| < 1 for ¢,# € T*, there are possibilities of the following two types:

(i) T* = {t,%} for some t € Ty,

(ii) T* is such that [t N#'| =1 for all t,#' € T*.

T* contains at most 4 triples ¢ € Ty in the case (ii). Let T* contains only in-
tersecting triples. According to (15), triples from distinct 7% are not disjoint. Hence
the triples complementary to triples of 7% does not belong to no 7. In this case Uy
contains strictly less than 20 vectors. Now we show that the case (i) gives Uy with
exactly 20 vectors.

There are at most 10 mutually intersecting triples in 7§, since Ts contains exactly
10 pairs (¢,7) of disjoint triples. Note that [t N#'| =3 — |t N ¢'|. Hence if the condition
(15) holds for ¢ and #', then it holds for all 4 pairs (¢,t), (1,1'), (¢,¥'), (I,1"). Let we
have 10 mutually intersecting triples. Then we can add to these triples its complements
such that the conditions (14) and (15) still hold. In this case, the set T is of type (i),
i.e. TF = {t,1}, for every k € Vio. So, distinct partitions (¢,7) of the set Sy correspond
to distinct £ € Vjp. Hence we obtain that there is a one-to-one correspondence between
choices of Uy C Vp and bijections between a 10-set and 10 distinct partitions of a 6-set.

We obtain 20 vectors vi(t), vi(%), k € Vig, of Ur. Fix the point 0 € Sy. In each T*
we choose a triple t; containing 0. Then the 10 triples ¢, mutually intersect (in 0), are
distinct and have the form ¢, = {0¢5}, where ¢,57 € Sy — {0}. Therefore we obtain a
bijection ¢ : E5 — Vig between the set Es5 of 10 pairs 25, 1 <1 < j <5, and 10 points
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of the set Vig. Hence we can label points of Vi by pairs 75 and redenote vy (t) and v (7)
for t = {0u5} and for k = ¢(ij), 1 <i<j <5, as

1 1
vfj = e4(ij) + € +e; +eo — 56(50), vfj = €g4(ij) — € — € —€o + 56(50). (16)

In these notations we have

a,b
, vivg = —1,

a a a
vz’jvg’l = VU = —1,

a a a
ViUt = U3V = L.

Here the indices ¢, j, k, [ are all distinct.

We denote by Ur(¢) the odd system Up corresponding to the bijection ¢.

The explicit expression of vectors vfj’b € Ur(¢) shows that the projection of the odd
system Ur(¢) onto the space spanned by e;, ¢ € Sp, is an odd system V5(5) of vectors
of norm 3 spanning equiangular lines. (Note that prof; = —prvfj). Since ve(Sy) = 0 for
all v € Ur(¢), the odd system V5(5) spans, in fact, a >-dimensional space. But there is
a unique two-graph 7(3,5) with parameters m = 3 and d = 5. Just this two-graph is
represented by the odd system Vs(5).

6.3 Odd systems Up related to two-graphs 7(5,10)

Now we consider canonical subsystems Up C Vp spanning equiangular lines.

Note that Vp spans a 10-dimensional space. But there is a unique (up to an isomor-
phism) maximal set of equiangular lines at angle arccos% spanning a 10-dimensional
space, since, recall, N5(10) = 1. This set contains 16 lines. Described below odd sys-
tems Up are, in fact, different but isomorphic representations of this unique regular
two-graph 7 (5, 10) with parameters m =5 and d = 10.

We obtain that the odd system Up U U7z is a special gluing of the odd system Up
representing the unique two-graph 7 (5, 10), and of the odd system Vs(5) representing
the unique two-graph 7 (3,5). This gluing depends on the bijection ¢ and is as follows.
We add to each pair of opposite vectors £prv; € V3(5), spanning the same line, a
vector ex, k € Vig, k = ¢(i7), of norm 2 which is orthogonal to the space spanned by
V3(5). All vectors e, are mutually orthogonal, and form a basis of the space spanned
by Up. We obtain a 15-dimensional odd system of vectors of norm 5. Then we unite
the obtained odd system with Up.

Let @@ C P be a family of even subsets of Vjo with |p| < 4. We set

Up(Q) = {v(p) : p € Q}.

We want to find all families () such that Up(Q) is a maximal odd subsystem of Vp
spanning equiangular lines. Since Up((Q)) represents the same two-graph 7 (5,10) for

26



any ), the odd systems Up(Q) are isomorphic for all Q). But we seek @) and @’ such
that Up(Q) and Up(Q)') are not switching equivalent.

Let py € P. Since the set P of even subsets is closed with respect to symmetric dif-
ference, the vector v'(p) := v(pApy) belongs to Vp for p,po € P. Besides v'(p1)v'(p2) =
v(p1)v(p2). Hence the odd systems Up(Q)) and Up(QApy) := {v' : v € Up(Q)} are
isomorphic.

Obviously, Up(QApy) can be switched to the canonical form. If py € @, then
0 € QApy. Hence, at first, we find sets () containing @), and after that consider QApy
for all pg € P.

Let § € Q. We set Q = {0} U B, and vy := v(0) = 1e(Vio). Hence Up(Q) =
{vo} UUp(B). The condition v(p)v(p') = £1 for p,p’ € @ and (11) for p’ = () implies
that |p| = 4 for all p € B. Of course, p belongs to B not for all p of cardinality 4. At
first, for |p| = [p/| = 4, (11) implies

v(p)o(p’) =2lpnp'|=3. (17)
Now the condition v(p)v(p’) = £1 implies
lpnp|=1or2. (18)

So, we have to find a maximal family B of 4-subsets of the 10-set Vjo such that (18)
holds. We know that a maximal family contains 15 4-subsets. Such families are well
known. These are 2-(10,4,2) designs.

Recall that for any odd system U with +1 inner products, G(U) is a graph on U,
where v, v" € U are adjacent if and only if vo’ = —1. Since vov(p) = 1 for all p € B, the
vertex vg is isolated in the graph G(Up(Q)), and the graph G(Up(B)) = Hy is the same
for all B, since all odd systems Up(B) are isomorphic. It is not difficult to verify that
Hy is the triangular graph T(6) (see, e.g., [8]). It relates to the two-graph 7 (5, 10).
The equation (17) says that v(p) and v(p’), p,p’ € B are adjacent in Hy if [pNp/| = 1.

Now we consider the sets ) = QoApg, where Qg > 0.

Proposition 7 Let Qo 2 0 and po € P. Then the odd system Up(QoApo) UUr (o) is
isomorphic to a switching of the odd system Up(Qo) UUr ().

Proof. Note that if we change e; by —e; for ¢ € py in all vectors of an odd system
U C V(err), we obtain an isomorphic odd system. We show that this change of signs
of ¢; for i € py transforms Up(QoApo) UUr(¢) into a switching of Up(Qo) U Ur(9).

Recall the definition (10) of vectors v(p). We see that the vector v(pApg) can be
obtained from v(p) by the change of signs of all ¢; for ¢ € py. Hence the odd system
Up(Qo) can be obtained from Up(QoApy) by the map e; — —e;. Obviously, Up(QoApo)
and Up(Qo) are isomorphic.

Now, recall the definition (16) of vectors vfj’b € Ur(¢). The change of signs of ey
for ¢(1j) € po transforms v, into —v?j and vf’j into —vf; for ij € ¢~ (po). Now we

switch all vectors —vfj’b. The result follows. O
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Proposition 7 implies that we can consider the odd systems Up only in the form
Up = {vo} UUp(B) with B as the set of blocks of a 2-(10,4,2) design.

Now we move the bijection ¢ : E5 — Vjg of previous section into the odd system
Up(B). Let (e;; : ij € Es5) be a fixed set of mutually orthogonal vectors of norm 2.
Denote by Uy the odd system of vectors vfj’b, ij € Es given by (16), where ey is
substituted by e;;. We fix a bijection ¢¢ and identify Vio with Es = ¢5'(Vio). Now,
we can identify any subset p C Vio with the subset ¢5'(po) C Fs, and consider every
bijection ¢ : Es — ¢o(FEs) as a permutation 7 = ¢5'é of the 10-set Fs.

We preserve the denotation B for the set {¢5'(p) : p € B}. We saw that B is a set
of blocks of a 2-(10,4,2) design with the ground set Fs.

Two designs on a set V of points are isomorphic if there is a permutation of V'
which transforms blocks of one design into blocks of another. Gronau [9] shows that
there exist exactly 3 nonisomorphic 2-(10,4,2) designs. Let Dy, Dy and D3 be fixed
representatives of the 3 isomorphism classes of 2-(10,4,2) designs defined on the set Ej.
Let B; be the set of blocks of the design D;, 2 = 0,1,2. Obviously, a set B defining the
odd system Up(B) has the form B = xB; = {wx(b) : b € B;} for some ¢« € {0,1,2} and
a permutation 7 of F5. Hence we can redenote the odd system Up({0} U B) UUr (o)
as U(7B;) and set U(rB;) = {vo} UUp(7B;). Recall that vy = v() = %e(Vlo), and
vvg = 1 for all v € Up(T B;).

Denote the two-graph represented by the odd system U(7 B;) as 7 (7 B;). In [10] Sei-
del describes briefly two-graphs of the type 7 (7 B;), and says that they was discovered
by T.Spence by use of a computer.

We formulate the following

Theorem 2 Every two-graph obtained from the lattice D7 is either one of 80 two-
graphs related to Steiner triple systems or a two-graph of the type T (x B;), 1 = 0,1, 2,
where © corresponds to the 2-(10,4,2) design D;, and 7 is a permutation of the ground
set of D;. O

6.4 Combinatorics of the graph G, = G(Ur)

Now we consider the graph G = G(Ur). It is complementary Johnson graph J(6,3),
where vf; corresponds to the triple 0z7, and vf’j corresponds to the complementary triple
0t = So — {0:5}. Two vertices v and v are adjacent if and only if the corresponding
triples ¢ and ¢ satisfy the inequality [t N #'| < 1. Call the edges connecting v, and vfj,
i.e. connecting complementary triples in J(6,3), basic, and denote them e;; (i.e. we
identify the basic edges with the vectors e;;).

The graph G'7 has very remarkable properties. It can be partitioned into 4 induced
circuits of length 5 (recall that Gp has 20 vertices). Of course, this partition is not

unique. We take the following circuits (the neighbouring vertices are adjacent):
C(Ov S) = {vf% 1);4, 1);5, Uf4, v;S}v and 0(17 S) = {vf?)v 1);4, vav v§37 vis}v § = a, b.
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The circuits C'(0,a) and C(1,a) (so as C(0,b) and C(1,b)) induce the Petersen graph
Pe. Similarly, the circuits C'(0,a) and C(1,b) (so as C'(0,b) and C(1,a)) induce the
triangular graph T'(5). Hence G'r is a union both of the two Petersen graphs, and of
the two T'(5)’s. Note here that just the partition of Gz into two Petersen graphs was
used by Seidel [10] for the description of the corresponding two-graph.

In both the partitions, the 10 edges connecting related vertices of the two copies
of T'(5) (and of Pe) are the 10 basic edges e;;, 1 < ¢ < j < 5. The set of all the
basic edges forms a maximal matching in G'r. Since the triangular graph 7'(5) and the
Petersen graph Pe are complementary, we obtain that G7 is also the Johnson graph
with added basic edges connecting complementary triples. Any maximal clique of G
has size 4. There are exactly 30 maximal cliques. The 30 cliques can be partitioned
into 5 groups with 6 cliques in each group. The 6 cliques of a group are partitioned
into 3 couples of matched cliques. The cliques of a couple are matched by basic edges.

Each group is uniquely determined by an element ¢ of a 5-set. Denote this 5-set
Vs = {4,7,k,[,m}. The cliques of the i-th group are as follows. There are 3 partitions of
the 4-set Vs — {i¢} into pairs. So if {jklm} = V5 —{i}, then the partitions into pairs are
(jk,Im), (51, km), (jm, kl). Couples of the partitions are in one-to-one correspondence
with couples of cliques.

Let A; be the set of the 3 couples of partitions of the set V5 — {i}. Denote by M,
the couple of cliques corresponding to a couple a € A; of partitions. For example, the
couple M, of cliques corresponding to the couple of partitions o = [(jk, Im), (5{, km)]
contains the following vertices (v%,vf,,v%, v}, ) and (vi 0] v%, vf ).

Denote by b(«) the 4-set of basic edges matching two cliques of the couple M,,
a € A Let By = {b(a) : a € A;;0 € Vi), It is easy to verify by inspection that the
following proposition holds.

Proposition 8 By is a set of blocks of a 2-(10,4,2) design. O

We take the design of Proposition 8 as Dy, i.e. as one of fixed representatives of 3
nonisomorphic designs.

The automorphism group of the graph G'r is Sg X Z3, the automorphism group of
the Johnson graph J(6,3) (see [1]). This group maps the set of basic edges into itself,
and a couple of cliques into a couple of cliques. Its subgroup Z, inverts the basic edges.
Hence the symmetric group Sg is contained in the automorphism group of the design
Dy. It can be shown that Sg is the automorphism group of Dy.

6.5 Two-graphs 7(7B;)

Recall that U(xB;) = {vo} Uly(7 B;). In particular, for the identity permutation, and
for ¢ = 0, we have U(By) = {vo} UlUs(Bo).

Theorem 3 The two-graph T (By) is isomorphic to To(5,15).

29



Proof. Recall that 75(5,15) is represented by the odd system {vo} U V(Tp), where Tj
is the set of triples of the Steiner triple system related to PG/(3,2). We show that the
odd systems Uy(By) and V(T}) are isomorphic.

Recall that vectors v(t) € V(Ty) satisfy (9). It is proved in [7] that one can label
vectors v € V(Tp) by all 35 = (;) triples s of a T-set such that for labeled vectors v(s)
the following holds:

2lsns’| =1 if [s N s'| is odd,

(o) - | ! (19)

otherwise.

We prove our theorem if we can label vectors from U(By) by triples s such that (19)
holds. As a labeling 7-set, we take the set V; = V5 U {6, 7}.

Note that the graph G is a union of two triangular graphs T'(5). Recall that two
vertices v, v are adjacent in Gy = G(Ur) if and only if vo’ = —1. There is a natural
labeling of vertices of T'(5) by pairs 15, 1 < 7 < j < 5, such that two vertices are
adjacent if and only if their labels intersect in a point. Recall that vertices of the two
copies of T'(5) are matched by basic edges. If matched vertices of G are labeled by
the same pair 27, then not matched vertices from distinct copies are adjacent if and
only if their labels does not intersect.

Hence, we label vertices of one copy of T'(5) by triples i¢j6 and matched vertices of
the other copy by 257, such that the pairs ¢j correspond to above discussed labeling of
T(5). If we denote the corresponding vectors as v(¢j6) and v(¢j7), then the condition
(19) holds.

For this labeling, the cliques of G are of two types: 5 couples of cliques ¢;, = {ijr :
J € Vs, g £}, r€{6,7}, and 10 couples of cliques ¢;;, = {ejr; klr' : k1 € Vs — {ij}},
r'={6,7} —r,r=6,7.

Recall that 4 edges matching vertices of a couple of cliques form a block from By.
We label the block related to the couple (g6, gi7) by the triple 67, ¢ € Vs. The block
related to the couple (g¢ij6, ¢ij7) is labeled by the triple Vi — {ij}. It is easy to verify
that obtained labeling of the whole odd system Uy(By) is consistent with (19). O

Note that the labeling by triples of vertices of G'r considered as the complementary
Johnson graph is distinct from the labeling given by Theorem 3.

Consider lattices LY (U(7B;)), ¢ = 1,2. In particular, we are interested in the set
cld (7 B;) Recall that v(b) €cld(x B;) for all b € 7 B;, where v(b) = vg — e(b) is defined
in (10), and vy = %e(Vlo).

Lemma 5 For any permutation m, any b € By, we have v(b) €clU(rB;), 1 = 0,1,2.
Proof. Recall that every block b = b(ar) € By corresponds to a pair M,, a € A;, of
cliques of G7. The vertices of these cliques are: vy, v, v%, v8,,, (r,5) = (a,b), where

vj; is given in (16). Since €k, €im, €)1, €km are the basic edges matching these cliques,
the vector v(a) := v(b(a)) has the form vy — (ejx + €1m + €51 + €km)-
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Each clique of the couple M, and the vectors v(«a) and vo form the following minimal
dependency, i.e. circuit,

v A g, + U5+ g, Fv(a) — v = 0.

If v(a) € U(7B;), then we obtain a broken circuit. Since the norm of v(«) is 5, this
broken circuit gives v(«a) €cld(rB;). O

Theorem 4 The odd system U(w B;) is closed if and only if i = 0, and © is the identity
map.

Proof. By Theorem 3, the odd system U(By) is related to the STS triples of which
are lines of PG(3,2). It is proved in [7] that U(By) = {ve} U V(1}) is closed, since
U(By) = V(c), where V(¢) is the odd system obtained from the Barnes-Wall lattice

by the construction described in section 2. Now, by Lemma 5, U(B) is not closed if
B # By. O

6.6 The two-graph 7,(5,15)

We saw that among the two-graphs 7 (7 B;) there is the unique two-graph 7 (Bg) =
7o(5,15) isomorphic to the two-graph related to the STS triples of which are lines of
PG(3,2). This STS has No 1 in the extended version of [2]. In this section we show
that many of two-graphs 7 (x B;) are isomorphic to the two-graph 71(5, 15) related to
the STS No 2 in the extended version of [2].

At first, we represent explicitly the odd system U(By) as the odd system Wy rep-
resenting 7o(5,15). In fact, this is another proof that 7 (By) = 7o(5, 15).

We take unit vectors f;, 0 < ¢ <7, and vectors g, w,, s € I as follows.

fi= %(623 +ess) fo= %(624 +ess) fa= %(625 + €e34)
f4 = %(625 - 634) f5 = %(624 - 635) f6 = %(623 - 645)
fr= %(60—61) g = %(€0+€1)—i(€2+63—|—€4—|—65)
Wi23 = %(612 + €13+ €14+ €15)  wias = %(612 + €13 — €14 — €15)
Woqe = %(612 — €13+ €14 — €15) W3z = %(612 — €13 — €14 + €15)
W7 = %(62 +e3 —eq— €5) Wos7 = %(62 —e3+eq—e5)
Waq7 = %(62 — €3 — €4+ €5)

The identification of v(«) and vfj’b with w; and u,(e¥) is as follows:

v(23,45;24,35) = upps(e?)  v(23,45;25,34) = uppa(e?)  v(25,34;24,35) = uyys(el)
Vo = U123(€0)

v(15,34;14,35) = upas(e?)  v(13,45;15,34) = uzse(e”
0(15,24, 14,25) == U145( ) U(l 45 14 25) — U246
v(12,35;13,25) = —upas(c?) v(13,25;15,23) = uge(e
v(12,34;13,24) = —upys(e?) 0(12,34;14,23) = —ung

) 0(13,45; 14, 35) = usse(c”)
2} 0(12,45;15,24) = —usse(c
) (12,3515, 23) = —uase(c
e3) 0(13,24;14,23) = usse(el)
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Vg = u167(50) 033 = —u167(53) Vs = —U167(52) vfis = u167(51)

vy = u257(50) 034 = —u257(53) Vg5 = —U257(52) v§5 = u257(51)
Vg5 = u347(50) 035 = —u347(53) vy = —U347(52) 034 = u347(51)
Vi = Uo Vi3 = U Vig = Uz V5 = U3
Wiy = —ur V3= —Ug U, = —Us U5 = —Uy

We see that U(By) is, up to a switching, the odd system W,. Now we show that
U(T By), for some 7, and U(By) are, up to a switching, the odd systems ¢(S) for some
S (see Section 3.2).

Recall that Dq is the 2-(10,4,2) design with By as the set of its blocks. Among
isomorphic to D; designs, : = 1,2, one can choose a design such that it has a maximal
number of common with Dy blocks, i.e. with maximal |B; N By|. Just such designs we
take as fixed representatives Dy and D,. Then |B; N By| = 11, and |By N By| = 9, i.e.
D; and D, have 4 and 6 blocks distinct from blocks of Dy.

We take the following representative Dy (see [9] and [7]). The set B; of blocks of
Dy differs from By by the following 4 blocks. Instead of blocks

(13,45;15,34), (12,45;14,25), (13,25;15,23), (12,34;14,23)

of By, the design Dy contains the blocks

by = (12,45; 14,34), by = (13,45; 15,25), by = (12,25; 14,23), bs = (13,34: 15,23).
Using the definitions (10) of v(b) and (6) of u,(c"*), we obtain
v(b) = —usae(—e®),v(bs) = uass(—c?), v(bs) = —uzss(—c'), v(bs) = ugae(—e’).

This shows that U(By) is, up to switching, U(.S) for S = {246}. Hence, by Proposi-
tion 3, we obtain (cf. Proposition 8 of [7])

Proposition 9 The two-graph T (By) is isomorphic to T;(5,15). O

The following lemma is very useful for to find a root system R(U) for U = U(x B;).
Let V5 = {ijklm}. We define the following root systems isomorphic to A7:

Ri = {E(eo — €;), E(ejn = erm), (e £ epm ), lejm £ em)},
Rij = {F(e; — e;), T(ew £ eji), Tlea T €i), T(eim £ €jm) }-

Lemma 6 Let U be an odd system of the type U(x B;), © = 0,1,2. Then
(i) if one of the vectors of R; is a root of R(U), then R; C R(U),
(ii) if one of the vectors of R;; is a root of R(U), then R;; C R(U).

b 1
Proof. Recall that v, = e;; + wij, v, = e;; — wyj, where w;; = eo +¢; +¢; — 5¢(S0) =

%(eo +e+e; —er—e —ey) with So = {0ujkim}.
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Using this, we obtain the following identities:
a a _ . oG b . .
Ui + vy, = €kt €im + €0 — €5 Uik — Uiy = €jk — Cim + eo — €53

a a . a b . . . .
Vi T V5 = €k T €k T € — €5 UV — U = €k — €k + € — €.

By definition of the lattice L°(), the sum of any two vectors of & belongs to L°(U).
Since any root of R(U) is a vector of L°(U) of norm 4, the assertion of this lemma is
implied by the above identities. O

Note that if e, — eg and eg — e, are roots of R(U), then e, — e, is also a root of
R(U). Using this and Lemma 6, we obtain

Proposition 10 LetU C V(cyg) represents a two-graph T (7 B;). Then the root system
R(U) is one of the following 6 root systems:

(1) 0,

(2) R = Rij = Af,

(3) R, UR;UR;; = R;; UR;, UR;. = AyD3,

(4) R; URjr U Ry, = AYDy,

(5) R, U RJ‘ U R U Rij U R U R]‘k U Ry = A1A3D, De,

(6) R(V(C[[)) == A5D10. O

Now we consider sets B which are obtained from blocks of By by a permutation of ele-
ments of F5. Supposing that all indices are distinct, we set Il; = {(jk, Im), (I, km), (ym, kl)}
and 1I;; = {(¢k, k), (i1, 1), (im,jm)}. Note that II; and II;; consist of commuting
transpositions. Let

7= gk, Im) (51, km)(gm, kl), and 7;; = (ik, 7k)(el, 1) (im, ym). (20)

be the permutations which are the product of all the 3 transpositions of II; and II;;,
respectively. Then 7; and 7;; belong to the automorphism group of By.

Proposition 11 Let © be one of the permutations 7 and 77', where 7,7 both belong
to either I1; or 1l;;, 7 # 7'. Then the two-graph T (7 By) is isomorphic to T, (5,15).
Besides,
(i) if 7= (jk,Im) € 11;, then R(U(TBy)) = R;,
(it) if 7= (ik,jk) € 1;;, then R(U(TBy)) = R;;.

Proof. Note that in the above identification of U(By) with W, the index 1 is special,
and the vectors 2f; are roots of Rj.

If we set mei; = erj), Tijei = €j, Tijeo = o, 1,] € Vs, then we have Ty Ry = R;,
miR; = mm;R1 = R;;. Using these permutations, we can identify U(By) with W
taking f; equal to the roots of R; or of R;;. Moreover, m;;Il;7;; = I1;, m;1l;7; = IL;.

Hence we can prove this proposition only for I1; = {(23,45), (24, 35)(25,34)}. The
transformation of By by one of the transpositions (23,45), (24,35), (25,34) corresponds
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to the change of f; by —f; for i = 6,5,4 (respectively) in the vectors u,(&*) related to
v(b), b € By. All other vectors f; and w, remain unchanged. Similarly, a product of
two transpositions corresponds to a change of signs before two f;’s. It easy to verify
that so obtained U(w By) is, up to a switching, U(S) for some negative S C Fr. For
example, the permutation = = (23,45)(25,34) corresponds to the change of the signs
before fs and fy such that S = {145,356}. By Proposition 3, U(S) represents the
two-graph 7;(5,15). O

Proposition 11 implies

Corollary 2 The closure of the odd system U(rBy) with # = 7 or 7 = 77" depends
only on the set Il; or Il;; to what 7 and 7" belong, but not on particulars T and 7'.

Note that the permutation # = 77/ is the product of two commuting transpositions
from the same set II; or II;;. We have the following similar result for two commuting
transpositions from distinct sets II; and II;;. But compare this with Proposition 14
below.

Proposition 12 Let 7 = (¢k,jk) € 1l;;, 7 = (ij,Im) € Il be the two commuting
transpositions. Then R(U(T7'Bo)) = Ry = A7, O
6.7 Two-graphs 7 (7B;) distinct from 7, (5,15)

Now consider the design Dy. We take the following representative of Dy. The set Bj
of blocks of D, differs from By by the following 6 blocks. Instead of blocks

(12,34;14,23), (24, 35; 25,34), (13,25; 15,23), (13,45; 15, 34), (23,45; 24, 35), (12,45; 14, 25)
of By, the design D, contains the blocks
(12,34;14,25), (24, 35;45,34), (13,34; 15,23), (13,45; 15, 25), (23, 25; 24, 35), (12,45; 14, 23).

Using Lemmas 6 and 5, it is not difficult to verify that the following proposition is
true.

Proposition 13 The root system R(U(By)) contains the root system Ry U Ray U Ras =
Al Dy, where 9 orthogonal roots eq — €1, €9 — €4, €3 — €5, €19 & €14, €13 & €15, €94 L €35
Jorm the root system A, and the root system Dy consists of 6 roots on the set ea3,ea5,

€34, €45. Hence R(U(BQ)) 2 A?D;l O

It is very remarkable that the same root system is contained in R(U(77'By)), where
7= (12,14) and 7/ = (23,45). This is implied by the following proposition (cf., with
Proposition 12 above).

Proposition 14 Let 7 = (ik,jk) € ;;, 7" = (il,jm) € 1y be the two commuting
transpositions. Then R(U(T7'By)) 2 R U R;; U Ry, = A7Dy. O
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Recall that R(V(crr)) = AsD1o. Now we give a permutation 7o such that R(U(roBy)) =

AsD1o. The permutation 7 is the product of 5 commuting transpositions, namely,
7o = (12,45)(13,25)(14,23)(15, 34)(24, 35).

Note that 75! = 7. The permutation my transforms the original labeling of vertices
vf and vf’j of the graph G into the labeling by triples (7o(77)6) and (7o(:7)7) given
in Theorem 3. Note that By N 7gBy = 0, in other words mqBy is one of the most far
families from Bg.

Proposition 15 R(U(7xBy)) = AsDio.

Proof. By using Lemmas 5 and 6, we find R(U(7oBy)) 2 AsD1o. But since R(U (7o Boy)) C
R(V(err)) = AsDyg, we have the equality. O

7 Two-graphs related to Latin squares

Recall that there are regular two-graphs 7 (5, 15) related to Latin squares of order 6.
A Latin square of order 6 consists of 36 ordered triples ¢7k of symbols ¢, j, k taken from
a 6-set Vg such that for each pair of coordinates every pair of symbols occurs exactly
once. We represent the set Ty 3 of all 6° = 216 ordered triples by a 15-dimensional odd
system of vectors of norm 5 as follows.

Let €54, 72 € V5, @ = 1,2, 3, be 18 mutually orthogonal vectors of norm 2. As before,
we set e,(V6) 1= Yiev, €ia. Let

1
Ujg = €ig — gea(%)7 1€ Vg,a=1,2,3.

Note that u;.e,(Vs) = 0, i.e. the 6 vectors u,, for fixed a span a 5-dimensional space.
Besides, we have uj,uj, = 0 if a # b, wjuj, = —% if i # 7, and u?, = %
We represent the ordered triple s by the vector

v(8) = wi + ujo + ups if s = 1jk.

It is easy to verify that v(s)v(s’) = 2|s N s'| — 1, where |s N /| denotes the number
of coordinates where equal symbols stay. In particular, we have v(s)? = 5. Since, by
the above definition of a Latin square, |s N s'| < 1, we have v(s)v(s’) = £1 for s, s’
belonging to the same Latin square.

Since v(s)v(s') is odd for all s,s" € Tg3, the vectors v(s) form an odd system
V(Ts3). It is not difficult to see that the lattice L°(V(Ts3)) is, up the multiple V2, the
15-dimensional root lattice As & As & As. Hence the odd system V(75 3) has the root
system

R(V(Ts3)) = AL
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As in Section 7, we obtain that odd subsystems ¢ C V(Ts3) spanning equiangular
lines correspond to Latin squares. It is well known (see, e.g., [2]) that there are 12
nonisomorphic Latin squares. It is proved in [2] that these 12 Latin squares generate
11 nonisomorphic two-graphs. Two Latin squares having No 87 and No 89 in the
extended version of [2] are switching equivalent. We find that R(U) 2O A} for the odd
system U corresponding to these two Latin squares and representing the corresponding
two-graph.

For the odd systems U representing other 10 Latin squares No 81-86, 88, 90-92, we
find R(U) = R(V(Ts3)) = A3

Proposition 16 Let T be a two-graph related to one of the Latin squares No 81-80,
88, 90-92, and represented by an odd system U with R(U) = A3. Then T is not
isomorphic to any two-graph from the lattices Es & Eg and Dy.

Proof. Recall that R(U') C D;F; for any two-graph 7 (U’') from Fs & Es. It is easy
to see that AZ ¢ D;FE;. This implies that 7 is not isomorphic to any two-graph from
Eg & Fs. Similarly, 7 is not isomorphic to any two-graph related to a Steiner triple
system, since A2 & Ajy.

Now let U’ represent a two-graph of the type 7 (xB;), i = 0,1,2. Then R(U') C
R(V(err)) = AsDiyo. Moreover, the roots of Dyg are of the form +e;, + ek, £eji & €ppm,
and the roots of Aj are of the form +(e; —¢;), 0 <i < j <5.

If 7 is isomorphic to a two-graph of the type 7 (7 B;), then U is switching equivalent
toU’, and R(U) C AsD1o. Hence some of roots of R(U) have one of the form e;, — ey,
or €;i — €im, and R(U) has at least two nonorthogonal roots of these forms. Then
Lemma 6 implies that R(U) has also roots of the form e;, + € and €, + €. In

other words, R(U) contains a root system Dy, for some k > 1. This contradicts to the
equality R(U) = AZ. O

& Problems

1. Prove Conjecture in Section 6.1. Note that the unit vectors %v of a reduced odd
system V(¢;), 1 = 0,1, 11, multiplied by %, form a spherical code of dimension 15 and
size [V(¢;)| = 456 with the 4 inner products fve’ = £1, 42, There exists a linear
programming bound on size of a spherical code. For to find this bound on |V(¢;)] it is
sufficient to find a real polynomial f(t) of degree N such that f() < 0fort € {3, +2},
and coefficients f; in the expansion of f(¢) in terms of Gegenbauer polynomials satisfy
fo>0,f>0,1<:¢<N. Then [V(¢)| < ﬂfoll (Details see in [4]).

2. Prove that in Proposition 13 is equality, i.e. R(U(Bz)) = A]D4. Similarly, prove
the equality in Proposition 14, i.e. R(U(7Bo)) = A]D,, where 7 = (24,34)(13,25).

3. Let R(V) be the complete list of all root systems R(U) for odd subsystems ¢« C V
spanning equiangular lines.We show in [7] that R(V(c1)) = {0, A], Ay A3, AgA7, A14}.
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Find R(V(co)) and R(V(cry)). We show 0, AT, Ay DsDy D, D:E; € R(V(co)), and
0, A7, AsDyo € R(V(crz)). In particular, prove that all the 6 root systems of Proposi-
tion 10 belong to R(V(cyr)), i.e. prove that R(V(cry)) = {0, A], A3 D3, A}Dy, Ay A3D4 Dy,
AsD1o}.

4. Find all nonisomorphic two-graphs given by U C V(¢p) and U C V(e¢yr). Recall
that there are exactly 80 nonisomorphic two-graphs obtained from V(¢y). They relate
to 80 nonisomorphic Steiner triple systems on 15 points.

5. Prove that circuits (7) generate all dependencies of the odd system V(¢g). More
general, prove that minimal by cardinality circuits defined in Section 3.4 generate all
dependencies in any odd system of norm 5 representing a regular two-graph.
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