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Abstract

Subsets of a v-set are in one-to-one correspondence with vertices of a v-

dimensional unit cube, a Delaunay polytope of the lattice Z

v

. All vertices of

the same cardinality k generate a (v�1)-dimensional root lattice A

v�1

and are

vertices of the Delaunay polytope P (v; k) of the lattice A

v�1

. Hence k-blocks

of a t � (v; k; �) design, being identi�ed with vertices of P (v; k), generate a

sub-lattice of A

v�1

. We show that 80 Steiner triple systems (STS for short)

2-(15,3,1) are partitioned into 5 families. STS's of the same family generate

the same lattice L. Each lattice L is distinguished by a set R(L) of its vectors

of norm 2. R(L) is a root system. We �nd that for the 5 types R(L) = ;,

A

7

1

, A

2

A

3

3

, A

6

A

7

and A

14

. The family with R(L) = ; contains only one STS,

which is the projective space PG(3; 2). The family with R(L) = A

7

1

contains

also only one STS. Two-graphs related to both the STS's belong to a family

of two-graphs discovered by T.Spence and described by J.Seidel in [12].

1 Introduction

A Steiner triple system (STS for short) on n points is a set T of triples of points

such that every pair of points is contained in exactly one triple of the set T . An

STS on 15 points contains 35 triples. There are 80 nonisomorphic STS on 15 points.

The �rst complete list of these STSs was given in [13]. We use a very informative

description of all 80 STSs given in [10].

Any two triples of an STS are either disjoint or intersect in a point. Hence a

graph H relates to an STS as follows. The set of vertices of H is the set T of

triples of STS. Two vertices are adjacent if and only if the corresponding triples are
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disjoint. Note that the adjacency of triples in the graph H is complementary to the

adjacency considered in [1]. The graph H related to an STS on 15 points has 35

vertices and is strongly regular. Its parameters are (v; k; �; �) = (35; 16; 6; 8). (See

[7].)

A graph with these parameters determines uniquely a regular two-graph on 36

points with minimal eigenvalue {5. It is proved in [1] that 80 two-graphs related to 80

STSs are not isomorphic. Hence, the 80 nonisomorphic STSs on 15 points provide 80

nonisomorphic strongly regular graphs with the same parameters (35,16,6,8). But,

there are much more nonisomorphic graphs with these parameters, since a regular

two-graph on 36 points with minimal eigenvalue {5 determines several nonisomor-

phic (but pseudo switching equivalent) strongly regular graphs with parameters

(35,16,6,8).

Let A be (�1)-adjacency matrix of the graph H. ({1 of A corresponds to a pairs

of adjacent vertices of H.) The minimal eigenvalue of A is equal to {5 of multiplicity

20. Hence the matrix 5I+A is positive semide�nite, and it is a Gram matrix of a set

V of 35 vectors of norm (squared length) 5 with mutual inner products �1. Since

rank of the matrix 5I+A is equal to 15=35-20, these vectors span a 15-dimensional

space.

Let T be a set of all triples of an STS. Denote by V(T ) the set of vectors

corresponding to T and by v(t) 2 V(T ) the vector related to a triple t 2 T . Then

the inner product is given by the following expression

v(t)v(t

0

) = 2jt \ t

0

j � 1: (1)

Note that this formula works for t = t

0

, when v

2

(t) = 5.

The set V(T ) generates a�nely a lattice L(T ), which is a sub-lattice of the lattice

p

2A

14

, the root lattice A

14

multiplied by

p

2. L(T ) is an even lattice, and norms of

all its vectors are divided by 4. The set R(T ) of vectors of norm 4 of L(T ) form a root

system multiplied by

p

2. We �nd that 80 nonisomorphic STS's generate lattices

L(T ) with only 5 types of R(T ), namely, R(T ) = ;, A

7

1

, A

2

A

3

3

, A

6

A

7

and A

14

. Hence

the 80 STS's are partitioned into 5 families corresponding to these R(T )'s.

The family with R(T ) = ; contains only one STS No 1 of [10], triple of which

are lines of the 3-dimensional projective space PG(3; 2) over GF

2

.

The family with R(T ) = A

7

1

contains also only one STS No 2 of [10]. Both the

STS's, No1 and No 2, can be obtained by the Moore's construction from the unique

STS on 7 points, the Fano plane PG(2; 2). We show that the Moore's construction

gives only these two STS's from a STS on 7 points.

We show that there is a vector representation of the STS's No 1 and No 2, which

is a mate of the Moore's construction. In Section 4.4 this representation is obtained

also from the 16-dimensional Barnes-Wall lattice by the method introduced in [3]

and [4].
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Ending the paper we show that the two-graphs related to STS's No1 and No 2

are given by the incidence matrices of two nonisomorphic 2-(10,4,2) designs.

2 Lattices related to Steiner triple systems

Any set V(T ) of vectors related to an STS on 15 points can be embedded into an

odd system related to all triples on these 15 points as follows.

Let V

15

= f1; 2; :::; 15g, and let a

i

, i 2 V

15

be 15 mutually orthogonal vectors of

norm 2, i.e. a

2

i

= 2. Let T

15

be the set of all triples t � V

15

, jtj = 3. For t 2 T

15

,

set a(t) =

P

i2t

a

i

. Note that a(t)a(t

0

) = 2jt \ t

0

j and a

2

(t) = 6. Let j

n

= (1; 1; :::; 1)

be an n-dimensional all-one vector. Since a(t)j

15

= 3

p

2 for any t, endpoints of all

a(t) lie on a sphere of squared radius

24

5

< 5 in a 14-dimensional a�ne hyperplane

H = fa 2 R

15

: aj

15

= 3

p

2g. H is orthogonal to j

15

. Let 
 =

1

5

(

p

2 �

1

p

3

). Set

u(t) = a(t)�
j

15

. It is easy to verify that the inner product u(t)u(t

0

) = 2jt\ t

0

j�1,

i.e. it is given by (1) for any pair of t and t

0

. In particular, u

2

(t) = 5.

Denote the set of vectors u(t) for all

�

15

3

�

= 455 triples t 2 T

15

by V

15

. The

expression (1) shows that V

15

is an odd system and the map v(t)! u(t) for t 2 T

is an embedding V into V

15

. We preserve below the notation u(t) for this special

representation a(t)� 
j

15

of triple t 2 T

15

.

Recall that a k-dimensional lattice L is an Abelian discrete group of vectors

of R

k

. L is called integral if inner products of its vectors are integral. The inner

product v

2

of a vector v 2 L with itself is called norm of v. An integral lattice

L is called even (doubly even) if norms of all its vectors are even (divisible by 4,

respectively). Obviously, L is doubly even if and only if

1

p

2

L is even.

The set V(T ) of vectors of odd norm 5 with odd inner products �1 is a special

case of an odd system of vectors studied in [4]. (Recall that an odd system is a set

of vectors such that the inner product of any two (may be equal) vectors is odd.)

Let V = V(T ) be an odd system of vectors v(t), t 2 T , for some set T . Let Z be

the set of all integers. We relate to V the following lattices:

L

0

(V) = fu : u =

X

t2T

z

t

v(t);

X

t2T

z

t

= 0; z

t

2 Zg:

L

1

(V) = fu : u =

X

t2T

z

t

v(t);

X

t2T

z

t

= 1; z

t

2 Zg:

L

1

(V) is, in fact, an a�ne lattice, since the origin does not belong to it. We have

L

1

(V) = v + L

0

(V) for any v 2 V, i.e. L

1

(V) is a translation of L

0

(V) by a vector

v. Note that V � L

1

(V). It is shown in [4] that L

0

(V) is a doubly even lattice, i.e.

u

2

� 0 (mod 4) for any u 2 L

0

(V). Similarly, u

2

� 1 (mod 4) for any u 2 L

1

(V).
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Recall that a

i

, i 2 V

15

, are mutually orthogonal vectors of norm 2. Hence the

set of vectors

fw : w =

15

X

i=1

z

i

a

i

;

15

X

i=1

z

i

= 0; z

i

2 Zg

is a 14-dimensional lattice. This lattice is the root lattice A

14

multiplied by

p

2 (see

[2]).

Since for any i 2 V

15

there are t; t

0

2 T

15

such that a

i

= a(t)�a(t

0

) = u(t)�u(t

0

),

we obtain that L

0

(V

15

) =

p

2A

14

. Since the inner product a

i

j

15

does not depend on

i, L

0

(V

15

) lies in the hyperplane H

0

= fx 2 R

15

: xj

15

= 0g. Since the inner product

u(t)j

15

=

p

3 does not depend on t 2 T

15

, the lattices L

1

(V) and L

1

(V

15

) lie in the

a�ne hyperplane H

1

= fx 2 R

15

: xj

15

=

p

3g. Recall that vectors u(t) 2 L

1

(V

15

)

have norm 5. We shall see that they are all vectors of norm 5 of L

1

(V

15

).

Let L be a k-dimensional lattice. A full dimensional sphere S is called empty

sphere of L if there is no point of L inside S and points of L on S a�nely generate

R

k

. The convex hull of all points of L lying on S is called a Delaunay polytope of

the lattice L.

All Delaunay polytopes of root lattices are known (see, for example, [2] or [6],

p.32). The Delaunay polytopes of the root lattice A

n

are polytopes P (n+1; k). The

polytope P (n+1; k) is congruent to a section of a unit (n+1)-dimensional cube by

a hyperplane H

k

= fx 2 R

n+1

: xj

n+1

= kg for an integer k, 1 � k �

n+1

2

. Each

vertex of P (n+1; k) is in one-to-one correspondence with a k-subset of a (n+1)-set.

It is clear that endpoints of vectors u(t) 2 V

15

are in one-to-one correspondence

with vertices of the Delaunay polytope

p

2P (15; 3) of the lattice L

0

(V

15

) =

p

2A

14

.

In fact,

p

2P (15; 3) is congruent to the convex hull of endpoints of all vectors of norm

5 of the a�ne lattice L

1

(V

15

). We will sometimes identify vertices of the Delaunay

polytope

p

2P (15; 3) of the lattice L

0

(V

15

) with corresponding triples of T

15

.

Let V = V(T ) be an odd system corresponding to an STS with a set of triples

T . Since L

0

(V) � L

0

(V

15

), the intersection L

0

(V) \ T

15

is the set of vertices of

a Delaunay polytope of L

0

(V). Denote this polytope by P (T ). Obviously, T is a

subset of vertices of P (T ).

De�nition. The set of triples L

0

(V)\T

15

, i.e. the set of vertices of the Delaunay

polytope P (T ), is called closure of T and is denoted as clT .

A set of triples T is called closed if T =clT . An STS is called closed if its set of

triples is closed.

Similarly we de�ne a closure of an odd system V. Recall that v

2

= 5 for all

v 2 V.

De�nition. The set of all vectors of norm 5 of the lattice L

1

(V) is called closure

of V. It is denoted by cl

5

V. V is closed if V =cl

5

V.

Proposition 1 cl

5

V(T ) = V(clT ). In particular, cl

5

V

15

= V

15

.
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Proof. Recall that the lattice L

1

(V(T )) is a translation of the lattice L

0

(V(T )) such

that endpoints of vectors of V(T ) correspond to vertices of the Delaunay polytope

P (T ). Note that endpoints of all vectors of cl

5

V(T ) lie in the intersection of a sphere

of squared radius 5 in R

15

with the a�ne hyperplane H

1

. But this intersection

is a sphere circumscribing a translation of the Delaunay polytope P (T ). Hence

there is one-to-one correspondence between vertices of P (T ), i.e. triples of clT , and

endpoints of vectors of cl

5

V(T ). Therefore cl

5

V(T ) = V(clT ). Since V(T

15

) = V

15

and T

15

is closed, we have cl

5

V

15

= V

15

.

Obviously cl

5

V � V

15

. Loosely speaking, cl

5

V is a set of all vertices of a Delaunay

polytope P (V) of the lattice L

1

(V). P (V) is a translation of P (T ).

We give below some conditions for a triple t to belong to clT for an STS T .

It is obvious that for any pair of points i; j 2 V

15

, there is a unique triple t 2 T

containing i and j. Let q(i; j) be the third point of the triple t. Let t

1

; t

2

2 T be two

disjoint triples, and let t

1

= (i

1

i

2

i

3

), t

2

= (j

1

j

2

j

3

). Call three disjoint pairs (i

k

j

k

),

1 � k � 3, i

k

2 t

1

, j

k

2 t

2

, a matching of t

1

and t

2

. A pair of disjoint triples has 6

matchings. The pair (i

k

j

k

) determines a point q(i

k

; j

k

) for each k.

Lemma 1 The points q(i

k

; j

k

) 62 t

1

[ t

2

, 1 � k � 3, for any matching (i

k

j

k

).

Proof. Set q

k

= q(i

k

; j

k

). Note that j

1

= q(i

1

; q

1

). Suppose that q

1

2 t

1

[ t

2

. Then

w.l.o.g. we can suppose that q

1

= i

2

. This implies that i

3

= q(i

1

; i

2

) = q(i

1

; q

1

) = j

1

,

what contradicts to that t

1

\ t

2

= ;.

If all three points q

k

= q(i

k

; j

k

), 1 � k � 3, are distinct, we call the triple (q

1

q

2

q

3

)

derived (from t

1

; t

2

).

Proposition 2 For a Steiner triple system with a set of triples T , a derived triple

belongs to clT .

Proof. Let t

1

= (i

1

i

2

i

3

); t

2

= (j

1

j

2

j

3

), t

1

; t

2

2 T and t

1

\ t

2

= ;. Let t = (q

1

q

2

q

3

)

be the derived triple using the matching (i

k

j

k

). Set s

k

= (i

k

j

k

q

k

). Recall that, by

de�nition of q

k

, s

k

2 T . Consider vectors v(t

1

); v(t

2

), v(s

k

), 1 � k � 3. These

vectors belong to V(T ) = fv(t) : t 2 Tg. Consider the vector v = v(s

1

) + v(s

2

) +

v(s

3

)� v(t

1

)� v(t

2

). Obviously, v 2 L

1

(V). Note that v(s

k

)v(s

l

) = v(t

1

)v(t

2

) = �1,

for k 6= l, and v(s

k

)v(t

l

) = 1. Hence v

2

= 5. We can suppose that V � V

15

.

For t = (q

1

q

2

q

3

), consider the vector u(t) 2 V

15

. According to (1) and Lemma 1,

u(t)v(s

k

) = 1, u(t)v(t

i

) = �1. Hence u(t)v = 5. Since u

2

(t) = v

2

= 5, this implies

that v = u(t), i.e. u(t) 2 L

1

(V) and u(t) 2cl

5

V by Proposition 1. This is equivalent

to t 2clT .

Another condition for to belong to clT gives the following

Proposition 3 Let an STS with a set of triples T has 5 disjoint triples. Let t

i

,

1 � i � 4, be 4 arbitrary disjoint triples of T . Then the triple of points of V

15

�[

4

i=1

t

i

belongs to clT .
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Proof. Let s

i

, 1 � i � 5, be 5 disjoint triples of T . Let t

5

= V

15

�[

4

i=1

t

i

. Obviously,

the vector v =

P

5

i=1

v(s

i

)�

P

4

i=1

v(t

i

) belongs to L

1

(V). As above, it is not di�cult

to verify (using, for example, the vectors u(t)) that v = u(t

5

). This implies that

t

5

2clT .

3 Roots

A set of all vectors of norm 2 in an even lattice is called a root system. A vector of

a root system is called a root. A root system generates an even lattice, called a root

lattice. A set of all minimal vectors of a root lattice is a root system that generates

this root lattice.

Each root system is a direct sum of irreducible root systems, called its com-

ponents. A root system is called irreducible if it cannot be partitioned into two

subsystems such that roots of one of these systems are orthogonal to all roots of

the other. All irreducible root systems are known. These are A

n

, D

n

and E

m

,

where n is an positive integer and m = 6; 7; 8. The subscripts are dimensions of the

corresponding root systems. Following to [2], we denote a root system consisting

of components R

1

, R

2

,..., R

k

by the product R

1

R

2

:::R

k

. In particular, a sum of k

equal components R is denoted by R

k

. A root lattice generated by a root system R

is denoted by the same symbol R. Hence a lattice R

k

is a direct sum of k lattices

R.

Recall that the lattice L

0

(T ) = L

0

(V(T )) related to an STS with a set of triples

T is a doubly even lattice. Hence a set of all vectors of norm 4 of L

0

(T ) is a

root system multiplied by

p

2. Denote this root system by R(T ). Since L

0

(T ) �

L

0

(T

15

) =

p

2A

14

, we have R(T ) � A

14

.

By de�nition of an STS, for any t 62 T , there is t

1

2 T such that jt \ t

1

j = 2.

In fact, there are 3 such triples t

1

; t

2

; t

3

2 T with this property. These triples are

uniquely determined by 3 pairs of points of t. According to (1), v(t)v(t

i

) = 3, and

therefore (v(t) � v(t

i

))

2

= 4. Since for any t; t

0

2 T , (v(t) � v(t

0

))

2

= 8 or 12, we

obtain

Proposition 4 Let T be a set of all triples of an STS. Then R(T ) = ; if and only

if T is closed.

Recall that P (V) is the Delaunay polytope of the lattice L

1

(V) related to an STS

with a set of triples T . The squared Euclidean distance between vertices v(t) and

v(t

0

) is equal to (v(t) � v(t

0

))

2

. We see that this distance take (according to (1))

values 4,8 and 12. We relate to P (V), and therefore to P (T ) � L

0

(V), a graph G(T )

vertices of which are vertices of P (V) (or P (T )). So we can identify vertices of G(T )

with triples t 2 cl T . Two triples t and t

0

are adjacent in G(T )

6



if and only if jt \ t

0

j = 2, i.e.

if and only if the squared distance between t and t

0

is equal to 4, i.e.

if and only if the vector v(t)� v(t

0

) is a root multiplied by

p

2.

By Proposition 4, G(T ) is empty (i.e. has no edges) if and only if T is closed.

For sets T of triples of STSs given in [10], we �nd some triples belonging to clT

using Propositions 2 and 3. We label each STS by its number in [10]. Obtained

root systems are given in Table 1.

Table 1

Case R(T ) G(T ) Number of STS

1 ; 35K

1

No 1

2 A

7

1

7K

1

+ 7K

3

2

No 2

3 A

2

A

3

3

K

1

+ 3(K

3


 T (4)) +K

3

4

No 3{7

4 A

6

A

7

J(7; 3) +K

7


 T (8) No 8{22, 67

5 A

14

J(15; 3) No 23{66, 68{80

Denotations of graphs in Table 1 are as follows. A union of disjoint components

is denoted by a sum. K

n

denotes the complete graph on n vertices. Hence 35K

1

denotes 35 nonadjacent vertices. G 
G

0

denotes a direct product of graphs G and

G

0

, and K

3

n

denotes the direct product of 3 graphs K

n

. J(n; k) is a Johnson graph.

We have K

n

= J(n; 1), and J(n; 2) = T (n) is a triangular graph.

Note that 23 STSs of the �rst 4 cases contain a head, that is a subsystem of

7 triples in which 7 symbols occur exactly 3 times, i.e. the projective Fano plane

F

7

= PG(2; 2).

We give explicit values of roots using the canonical representation u(t) of vectors

of V(T ). For this end, let t = (ikl) and t

0

= (jkl) be two triples that furnish a root

1

p

2

(u(t)�u(t

0

)) =

1

p

2

(a(t)� a(t

0

)). Set r(ij) = a(ikl)� a(jkl) = a

i

� a

j

. Obviously,

r(ij) = �r(ji). If

1

p

2

r(ij) 2 R(T ), then v(t) + r(ij) 2 cl

5

V if and only if j 2 t and

i 62 t. In this case v(t)+r(ij) = v(t

0

), where t

0

= t�fjg+fig. We �nd the following

roots:

p

2R(T ) = fr(2k; 2k + 1); 1 � k � 7g in the case 2;

p

2R(T ) = fr(ij) : i; j 2 f1; 2; 3g; or 4k � i < j � 4k+3; k = 1; 2; 3g in the case 3;

p

2R(T ) = fr(ij) : 1 � i < j � 7; or 8 � i < j � 15g in the case 4:

Recall that these roots are obtained by using operations described in Proposi-

tions 2 and 3. Now, for Cases 3, 4 and 5, we prove that there is no other root.

Proposition 5 Let T be the set of all triples of one of the STS's No 3{80. Then

the root system R(T ) is given by Table 1.

Recall that the lattice L

0

(T ) = L

0

(V(T )) is generated by vectors u(t) � u(t

0

) =

a(t)� a(t

0

) for t; t

0

2 T . We prove that every vector of L

0

(T ) has a property which

is not satis�ed by roots not belonging to R(T ) of Table 1.

7



Case 1. Let V

0

= f1; 2; 3g, V

k

= f4k; 4k + 1; 4k + 2; 4k + 3g, k = 1; 2; 3.The sets

V

k

, 0 � k � 3, partition V

15

. Denote an element of V

0

(V

1

; V

2

; V

3

, respectively) by a

(b; c; d). Then the triples of an STS of Case 3 have one of the following patterns: aaa,

abb, acc, add and bcd. Let

P

15

1

x

i

a

i

be a vector of L

0

(T ). We set x(V

k

) =

P

i2V

k

x

i

.

Then the patterns of triples imply that, for a generating vector of L

0

(T ), values of

x(V

k

) are either all even or all odd. This implies that this property holds for all

vectors of L

0

(T ). But any root not from R(T ) has the form a

i

� a

j

, where i and j

belong to distinct V

k

. Hence x(V

k

) is equal to 1 for two k such that jfijg \ V

k

j = 1,

and is equal to 0 for other two k. This implies that roots not from R(T ) does not

belong to L

0

(T ).

Case 2. Let V = fi : 1 � i � 7g, V

0

= V

15

� V . De�ning as above x(V ) and

x(V

0

), we obtain that x(V ) � x(V

0

) � 0 (mod 2) for any vector of L

0

(T ). This

condition is not satis�ed by the roots not from R(T ).

Case 3. The equality R(T ) = A

14

of the case 5 is obvious, since R(T ) � A

14

for

all STS's.

The equality in the case 1 will be proved in Sections 4.4. The equality in the

case 2 will be proved in the forthcoming paper [5]

4 Representations of the STS No 1 related to

PG(3,2)

In this section we give di�erent representations of the STS No 1. These representa-

tions are useful when we consider STS No 1 from di�erent point of view.

4.1 A representation of the STS No 1 by all triples of a 7-set

This representation makes very visual construction of the STS No 1. It is given by a

bijection t between triples of the STS No 1 and all triples of a 7-set. In fact, an iso-

morphism between the alternating group A

8

and the group L

4

(2) of automorphisms

of STS No 1 is tsdsfdsaaafdsaadsdsfdsdssa::::::he basis of the bijection t.

Let V

7

be a set of 7 points, say V

7

= f1; 2; :::; 7g. Let S

3

be the set of all 35 =

�

7

3

�

triples of points of V

7

. Let T

1

be the set of all 35 triples of the STS No 1. The

bijection t : S

3

! T

1

has the following property:

jt(s) \ t(s

0

)j � js \ s

0

j (mod 2): (2)

Recall that jt(s) \ t(s

0

)j takes values 0 and 1, and js \ s

0

j takes values 0,1 and 2.

Although this bijection can be given a priori, it is convenient sometimes to see it

inside the Steiner system S(24; 8; 5) (cf. [1], Section 5).
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A Steiner system S(24; 8; 5) is a set V

24

of 24 points and a collection of 8-subsets,

called blocks, such that every 5-subset is contained in one block. It is well known

that there exists a unique S(24,8,5). Any pair of its blocks intersects in 4, in 2 or in

no points (see [2]).

We �x two points of V

24

, 1 and 0, and consider a set B of all blocks containing

1. Intersections of these blocks with V

24

� f1g form a Steiner system S(23,7,4).

Let

B

0

= fB 2 B : B 3 0g:

Let B

1

2 B and 0 62 B

1

, i.e. B

1

62 B

0

. We partition the set V

24

as follows

V

24

= f0g [B

1

[ V

15

:

So, 0;1 62 V

15

, 1 2 B

1

and jB

1

� f1gj = 7. We can identify B

1

� f1g with V

7

.

Let s 2 S

3

be a triple of points of B

1

�f1g. Then the 5-set f1; 0g [ s determines

uniquely a block B(s) 2 B

0

. The 35 triples of S

3

provide 35 blocks of B

0

. We show

that 35 triples

t(s)

def

= B(s)� s� f0;1g � V

15

; s 2 S

3

;

form an STS isomorphic to the STS No 1.

We show that (2) holds. Note that

B(s) \B(s

0

) = (s \ s

0

) [ f0;1g [ (t(s) \ t(s

0

)):

Case 1. js \ s

0

j = 2. In this case jB(s) \ B(s

0

)j � 4. Since 4 is the maximal

cardinality of an intersection of two blocks, we have jB(s) \ B(s

0

)j = 4 and t(s) \

t(s

0

) = ;.

Case 2. js \ s

0

j = 1. In this case jB(s) \ B(s

0

)j � 3. Since there are only

even cardinalities of intersections of two blocks, we have jB(s) \ B(s

0

)j = 4 and

jt(s) \ t(s

0

)j = 1.

Case 3. js \ s

0

j = 0. In this case jB(s) \ B(s

0

)j � 2. For to show that, in fact,

jB(s) \ B(s

0

)j = 2 here, we give an explicit bijection t : S

3

! T , given by Figure

11.17 on page 312 of the book [2].

Figure 11.17 shows 35 sextets, i.e. 35 partitions of the set V

24

into six tetrad (i.e.

4-sets) such that any two tetrads of a sextet give an octet (an 8-set), i.e. a block of

the Steiner system S(24,8,5). Each sextet is partitioned into a left octet and a right

4 � 4 square containing 4 tetrads. Let us label cells of the left octet and the right

square as follows

1 1 0 1 2 3

2 3 4 5 6 7

4 5 8 9 10 11

6 7 12 13 14 15

9



In each sextet we consider two tetrads containing 1 and 0. Other 3 points of these

two tetrads form triples s 2 S

3

and t(s) 2 T

1

, respectively. Hence the left octet is

B

1

, and the right square is f0g [ V

15

. It is remarkable that the 35 triples t(s) are

exactly the 35 triples of the STS No 1 of [10].

Note that Proposition 2(i) of [11] describes a bijection between 35 lines of a

3-dimensional projective space PG(3,2) and 35 triples of a 7-set. The bijection is

such that two lines of PG(3,2) intersect if and only if the corresponding triples have

precisely one common point. So, Figure 11.17 of [2] describes a bijection between

35 lines of PG(3,2) and 35 triples of the STS No 1.

4.2 Steiner triple systems No 1 and No 2

There is a remarkable construction of an STS on 15 points using a unique STS on

7 points. This construction is a special case of a Moore's recursive method (see [9],

Theorem 15.14.2).

Let F

7

= f(123); (145); (167); (246); (257); (347); (356)g be 7 triples of the unique

STS on 7 points. Its triples are lines of the projective Fano plane PG(2; 2).

We distinguish the point 1 of V

15

and partition other 14 points into 7 pairs

(2i; 2i+1), 1 � i � 7. We relate to the even point 2i the number "

i

= 1, and to the

odd point 2i+ 1 the number "

i

= �1.

Let ", "

0

, "

00

take values �1. We call the triple ("; "

0

; "

00

) even if the product

""

0

"

00

= 1. Otherwise the triple is called odd. There are 4 even triples and 4 odd

triples. We set "

0

= (111), "

1

= (1 � 1 � 1), "

2

= (�11 � 1), "

3

= (�1 � 11). Let

0 � k � 3. Then "

k

is an even "-triple, and �"

k

is an odd "-triple.

Triples of the STS No 1 are constructed as follows. There are 7 triples containing

1:

t

i

= (1; 2i; 2i+ 1); 1 � i � 7:

One corresponds 4 triples of the STS to each triple s 2 F

7

as follows. For s = ijk,

consider 3 pairs (2i; 2i+1), (2j; 2j+1), (2k; 2k+1). We take a point from each pair

such that the related to chosen points "-triple "(s) = ("

i

; "

j

; "

k

) is even. In other

words, a sum of the chosen points is even. Note that, for given s, we have four even

triples "(s).

We represent obtained by this way 28 triples t in the array below. In the �rst

row of this array we show triples s = (ijk) 2 F

7

. The following 3 rows show

corresponding pairs. The last 4 rows show obtained triples. The �rst column shows
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"-triples.

123 145 167 246 257 347 356

(2; 3) (2; 3) (2; 3) (4; 5) (4; 5) (6; 7) (6; 7)

(4; 5) (8; 9) (12; 13) (8; 9) (10; 11) (8; 9) (10; 11)

(6; 7) (10; 11) (14; 15) (12; 13) (14; 15) (14; 15) (12; 13)

"

0

= (111) 2; 4; 6 2; 8; 10 2; 12; 14 4; 8; 12 4; 10; 14 6; 8; 14 6; 10; 12

"

1

= (1 � 1 � 1) 2; 5; 7 2; 9; 11 2; 13; 15 4; 9; 13 4; 11; 15 6; 9; 15 6; 11; 13

"

2

= (�11 � 1) 3; 4; 7 3; 8; 11 3; 12; 15 5; 8; 13 5; 10; 15 7; 8; 15 7; 10; 13

"

3

= (�1� 11) 3; 5; 6 3; 9; 10 3; 13; 14 5; 9; 12 5; 11; 14 7; 9; 14 7; 11; 12

We denote by t

s

("

k

), s 2 F

7

, 0 � k � 3, the triple obtained from s 2 F

7

and

related to "-triple "

k

. We consider here s as an ordered triple (ijl) such that i < j < l,

and the orders of "

k

and s agree. For example, t

257

("

2

), where "

2

= (�1; 1;�1),

means that "

2

2

= �1, "

2

5

= 1, "

2

7

= �1.

Note that

jt

i

\ t

j

j = 1 1 � i < j � 7;

jt

i

\ t

s

("

k

)j = jfig \ sj = 0 or 1;

jt

s

("

k

) \ t

s

("

l

)j = 1 s 2 F

7

; 0 � k < l � 4;

jt

s

("

k

) \ t

s

0

("

l

)j =

1

2

(1 � 1) = 0 or 1 if s 6= s

0

; fig = s \ s

0

; "

k

i

= �"

l

i

;

where the signs agree.

(3)

The same construction works for STS No 2. In this case, one takes odd "-triples

"(s) for triples s = (347) and s = (356) of F

7

. For example, the triple s = (347)

provides pairs (6,7),(8,9),(14,15). The 4 odd "-triples �"

k

, 0 � k � 3, form from

these pairs the following 4 triples t = (7; 9; 15); (7; 8; 14); (6; 9; 14); (6; 8; 15).

In general, if, for each s 2 F

7

, one takes either 4 even or 4 odd "-triples (parity is

chosen arbitrary), one obtains an STS. We show below that in either case we obtain

an STS which is isomorphic either to STS No 1 or to STS No 2. For this end, let

S � F

7

be a set of triples. We de�ne a transformation of S. Recall that there are

3 triples s 2 F

7

containing a given point i. For each i, 1 � i � 7, consider triples

s 2 S containing i. If there are 3 such triples, then delete them from S. If there are

two such triples, then change it by the third triple containing i. If there is one or no

triple containing i, then S is not transformed. Obviously, after such transformation

for all i, we obtain S with either one or none of the triples. We call S positive if it

is transformed into empty set, and negative, otherwise.

Proposition 6 Let S � F

7

be a set of triples s 2 F

7

. Let an STS be obtained by

Moore's construction using odd "(s) for s 2 S, and even "(s) for s 2 F

7

� S. Then

this STS is isomorphic to STS No 1 or No 2 according to S is positive or negative,

respectively.
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Proof. Note that a permutation of the set V

15

transforms an STS into an isomorphic

STS. Consider a permutation of V

15

which is the transposition (2k; 2k+1), for some

k, 1 � k � 7. This transposition changes only those triples of an STS which are

obtained from triples s 2 F

7

containing the point k. There are 3 � 4 = 12 such

triples. It is easy to see that the transformed triples can be obtained by Moore's

construction if one takes odd triples "(s) for s 3 k.

So, if the set S � F

7

contains 3 triples containing the point k, we can elimi-

nate these triples from S simultaneously transforming the STS by the transposition

(2k; 2k + 1). If the set S contains two triples with k, we can change the two triples

by the third triple containing k and performing the transposition (2k; 2k + 1). The

assertion of the proposition follows.

We �nish this section with Table 2 describing the bijection t between all triples

s 2 S

3

of the 7-set V

7

and all triples of the STS No 1.

Table 2.

267 t

123

("

1

) 126 t

347

("

1

) 127 t

145

("

2

) 345 t

257

("

0

)

367 t

257

("

1

) 136 t

145

("

0

) 137 t

347

("

3

) 245 t

123

("

3

)

467 t

145

("

3

) 146 t

257

("

3

) 147 t

123

("

0

) 235 t

347

("

2

)

567 t

347

("

0

) 156 t

123

("

2

) 157 t

257

("

2

) 234 t

145

("

1

)

167 t

6

236 t

167

("

3

) 237 t

356

("

0

) 145 t

4

246 t

246

("

0

) 247 t

7

135 t

356

("

1

)

256 t

5

257 t

246

("

1

) 134 t

167

("

2

)

346 t

3

347 t

246

("

2

) 125 t

167

("

0

)

356 t

246

("

3

) 357 t

1

124 t

356

("

2

)

456 t

167

("

1

) 457 t

356

("

3

) 123 t

2

Note that the triples of S

3

of the same row laying in the 3th, 5th and 7th columns

of Table 2 have the form ij6, ij7 and ij67 = V

7

� fij67g, respectively.

4.3 A vector representation of STSs No1 and No 2

There is a mate construction of an odd system of vectors of norm 5 related to above

obtained STSs.

Let w

s

, s 2 F

7

, be 7 mutually orthogonal vectors of norm 2, and let g be a vector

of norm

3

2

orthogonal to all w

s

. At �rst, we construct vectors u

i

corresponding to

triples t

i

= (1; 2i; 2i + 1). We set

u

i

= g �

1

2

X

s2F

7

w

s

+

X

s3i

w

s

; 1 � i � 7: (4)

Let e

i

, 1 � i � 7, be 7 mutually orthogonal unit vectors. All vectors e

i

are orthogonal

to all w

s

and to g, and relate to pairs (2i; 2i + 1). Recall that each triple t

s

("

k

)
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corresponds to s 2 F

7

and to the even triple "

k

= ("

k

i

; "

k

j

; "

k

l

), where s = (ijl). We

set

u

s

("

k

) = w

s

+

X

i2s

"

k

i

e

i

; s 2 F

7

; 0 � k � 3: (5)

It can be easy veri�ed, using (3), that if we set

v(t

i

) = u

i

; v(t

s

("

k

)) = u

s

("

k

); (6)

then the vectors v(t) satisfy (1).

Note that endpoints of vectors w

s

+

P

i2s

"

i

e

i

, for �xed s and for 2

3

= 8 (�1)-

triples ", form a 3-dimensional cube Q(s) with a center in the endpoint of w

s

. We

call a vertex v of the cube Q(s) (and corresponding triple of an STS) even (odd) if

v relates to an even (odd, respectively) triple ". So, 28 even vertices of the 7 cubes

Q(s), s 2 F

7

, relate to triples of the STS No 1. If we change even vertices of Q(347)

and Q(356) by odd vertices, we obtain the set T

2

of triples of STS No 2. Denote by

V

1

and V

2

the sets of 35 vectors u

i

, 1 � i � 7, and u

k

s

, s 2 F

7

, 0 � k � 3, related to

STS's No 1 and No 2, respectively.

Now we show that the vectors

p

2e

i

are roots of the odd system V

2

related to

STS No 2. Consider two disjoint triples of STS No 2 t

4

= (1; 8; 9), i.e. t

i

for

i = 4, and t

167

("

1

) = (2; 13; 15), and the matching (1,2), (8,13), (9,15) of these

triples. The triples of STS No 2 containing the pairs of this matching are t

1

=

(1; 2; 3), t

246

("

2

) = (5; 8; 13), t

347

(�"

0

) = (7; 9; 15), respectively. Hence q(1; 2) = 3,

q(8; 13) = 5, q(9; 15) = 7. These 3 distinct points form the derived triple (3; 5; 7) =

t

123

(�"

0

). This triple, as the triple (7; 9; 15) = t

347

(�"

0

), is an odd triple. By

Proposition 2, the odd triple t

123

(�"

0

) = (3; 5; 7) belongs to clT

2

. The corresponding

vector v(t

123

(�"

0

)) = u

123

(�"

0

) satis�es the equality

u

1

+ u

246

("

2

) + u

347

(�"

0

)� u

4

� u

167

("

1

) = u

123

(�"

0

);

where u-vectors and triples relate according to (6). Hence u

123

(�"

0

) 2 L

1

(V

2

).

Since the vectors u

123

("

i

) for even "

i

belong to the odd system V

2

, we obtain 3 roots

(multiplied by

p

2) (i.e. vectors of L

0

(V

2

) of norm 4)

2e

i

= u

123

("

i

)� u

123

(�"

0

); i = 1; 2; 3:

Similarly, we can obtain all 7 roots

p

2e

i

. Each root connects an even vertex with

an odd vertex of a cube Q(s). Recall that we prove in [5] that there is no other

roots in the root system of STS No 2.

4.4 A representation of STS No 1 by minimal vectors of a

sub-lattice of the Barnes-Wall lattice

The vector representation of the previous section can be obtained from a doubly

even lattice by the following construction [4].
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Let L be a doubly even lattice. For the inner product ab of two vectors a; b 2 L

of norm 8, we have ab = �4;�2; 0. Hence a vector c = a+ a

�

have norm c

2

= 12 for

any two vectors a and a

�

of norm 8 with aa

�

= �2. Let c be a vector of L of norm

c

2

= 12. Consider a set A(c) of vectors a 2 L of norm 8 such that ac =

1

2

c

2

= 6. It

is easy to show that if a 2 A(c), then the vector a

�

� c � a belongs to A(c), too.

Besides, it can be proved that aa

0

= 2 or 4 for a; a

0

2 A(c), a

0

6= a

�

(see [3]). We set

v(a) = a�

1

2

c; a 2 A(c):

We have

v

2

(a) = 5; v(a

�

) = �v(a); and v(a)v(b) = ab� 3:

Since ab is even, the inner product v(a)v(b) is odd. Hence the set

V(c) = fv(a) : a 2 A(c)g

is an odd system of vectors of norm 5.

In this section, we apply this construction to the 16-dimensional Barnes-Wall

lattice, denoted by �

16

in [2]. We show, in fact, that STS No 1 is closed, that is

P (T

1

) is a Delaunay polytope of a 14-dimensional sub-lattice of the Barnes-Wall

lattice �

16

.

It is more convenient to consider the doubly even lattice

p

2�

16

. The set of

minimal vectors of

p

2�

16

consists of the following vectors of norm 8.

(1) 480 vectors of the form (�2

2

; 0

14

), where there are two nonzero components

equal to 2 or {2,

(2) 3840 vectors of the form (�1

8

; 0

8

), where the positions of �1's form one of

the 30 codewords of weight 8 of the �rst order Reed-Muller code and there are an

even number of minus signs. (These codewords of length 16 are given in Figure 6 of

[6]).

There are exactly 36 pairs (a; a

�

) of vectors of A(c) in

p

2�

16

for any c 2

p

2�

16

of norm 12. We give an analytic description of these vectors.

Let c = (�11

7

j20

7

). There are exactly 7 minimal vectors a

i

= (0

i�1

20

8�i

j20

7

),

2 � i � 8, of type (2

2

0

14

), and one vector a

0

= (�20

7

j20

7

) of type (�220

14

), such

that a

i

c = 6, i.e. a

i

2 A(c).

Now consider minimal vectors having a codeword as a support. For brevity sake,

we call such vectors codevectors. We denote a codevector a as a join a = (b; d) of

two 8-dimensional vectors b = (b

0

; b

1

; :::; b

7

) and d = (d

0

; d

1

; :::; d

7

).

Note that the vectors a

�

0

= c � a

0

= (1

8

j0

8

), and a

�

i

2 A(c), 1 � i � 7, are

codevectors (b; d) such that b

i

6= 0 and d

i

= 0, 0 � i � 7. All these 8 vectors have

the same support. Since any two codewords have exactly 4 common 1's, vectors b

and d each have exactly 4 nonzero coordinates for any codevector a = (b; d) 6= a

�

i

.
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For a codevector a = (b; d) to belong to A(c), it is necessary that b

0

� 0, b

i

� 0,

1 � i � 7, and d

0

= 1. Since ac = �b

0

+

P

7

i=1

b

i

+ 2d

0

= 6, this implies that if

a = (b; d) 2 A(c) is a codevector and a 6= a

�

i

, 0 � i � 7, then (b

�

; d

�

) � a

�

= c� a

is also a codevector of A(c). >From two vectors b and b

�

of a pair (b; d) and (b

�

; d

�

),

exactly one has nonzero �rst coordinate b

0

. We take (b; d) with b

0

= �1 (and, recall,

d

0

= 1) as a representative of the above pair.

Vectors b and d of such a representative have additionally 3 nonzero coordinates

among b

i

's and d

i

's. Let s = fi : b

i

= 1g, t = fi : 1 � i � 7; d

i

6= 0g. According

to this we re-denote representatives as a(s; t), where s and t are two triples of a

7-set. Recall that supports of two codevectors a; a

0

intersect in 4 elements, and two

elements corresponding to b

0

= b

0

0

= �1 and d

0

= d

0

0

= 1 belong necessarily to

the intersection. This implies that js \ s

0

j + jt \ t

0

j � 2. Since a codevector has

even number of minus signs, and b

i

� 0, 1 � i � 7, b

0

= �1, there are exactly 4

codevectors a

k

= (b

k

; d

k

) 2 A(c), 0 � k � 3, with the same support such that b

k

does not depend on k and d

k

has 3 or 1 negative coordinates, i.e. d

k

is related to

the odd triple �"

k

. Recall that "

k

, 0 � k � 3, is an even triple de�ned in Section

4.2.

Suppose that there are a = a(s; t) and a

0

= a(s

0

; t

0

) such that jt \ t

0

j = 2. Since

there are 4 codevectors of A(c) with the same support, we can choose a(s; t) with

d = d(t) having 3 minus signs, and a(s

0

; t

0

) with d

0

= d(t

0

) having one minus sign in

t � t \ t

0

. Hence dd

0

= �1. The equality jt \ t

0

j = 2 implies s \ s

0

= ;. Therefore

bb

0

= 1, and, for the inner product aa

0

we have aa

0

= bb

0

+ dd

0

= 1 � 1 = 0, what

contradicts to aa

0

= 2 or 4 for a; a

0

2 A(c). This implies that jt \ t

0

j � 1 for t 6= t

0

.

Recall that A(c) is a subset of the set of minimal vectors of the lattice

p

2�

16

.

An inspection of the set A(c) shows that one can choose a labeling of coordinates

of b(s) and d(t) such that s = t, i.e. s and t take positions with the same labeling,

for any codevector a(s; t). Hence we can re-denote a(s; s) by a(s). Besides we have

that js \ s

0

j � 1, for any two codevectors a(s); a(s

0

) 2 A(c), since we have showed

that jt\ t

0

j � 1. This means that triples s form a Steiner triple system on 7 points.

So, we obtain that A(c) has 36 pairs of vectors a; a

�

, where a is one of the

following 36 vectors:

8 vectors a

i

, 0 � 1 � 7, and

7� 4 vectors a

k

(s), s 2 F

7

, 0 � k � 3.

Note that a

0

a

i

= a

0

a

k

(s) = 4 for all a

i

, i 6= 0, a

k

(s).

Consider vectors u

i

= v(a

i

) = a

i

�

1

2

c, and u

k

(s) = a

k

(s)�

1

2

c.

Let f

i

, e

i

, 0 � i � 7, be an orthonormal basis of R

16

such that a codevector

a = (b; d) has the form a =

P

7

i=0

(b

i

f

i

+ d

i

e

i

). In the basis (f; e) the vectors c and

every a 2 A(c) take the form (recall that "

k

, 0 � k � 3, are even triples)

c = �f

0

+

P

7

1

f

i

+ 2e

0

;

a

0

= 2(e

0

� f

0

), a

i

= 2(e

0

+ f

i

), 1 � i � 7;
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a

k

(s) = (e

0

� f

0

) +

P

i2s

f

i

�

P

i2s

"

k

i

e

i

, s 2 F

7

, 0 � k � 3.

Similarly for vectors v(a) = a�

1

2

c 2 V(c) we have

u

0

= v(a

0

) = �

3

2

f

0

�

1

2

P

7

1

f

i

+ e

0

;

u

i

= v(a

i

) = e

0

+

1

2

f

0

+ 2f

i

�

1

2

P

7

1

f

i

;

u

k

s

= v(a

k

(s)) = �

1

2

f

0

+

P

i2s

f

i

�

1

2

P

7

1

f

i

�

P

i2s

"

k

i

e

i

.

We set

w

0

=

1

2

f

0

�

1

2

7

X

1

f

i

; and w

s

= �

1

2

f

0

+

X

i2s

f

i

�

1

2

7

X

1

f

i

; s 2 F

7

:

One can verify that

w

2

s

= 2; w

s

w

s

0

= 0 for s; s

0

2 F

7

[ f0g:

The vectors w

0

; w

s

form another basis of the 8-space spanned by f

i

, 0 � i � 7. In

this basis the vectors u

i

and u

k

s

take the form

u

0

= g +

1

2

X

s2F

7

w

s

; u

i

= g �

1

2

X

s2F

7

w

s

+

X

s3i

w

s

; u

k

s

= u

s

(�w

s

� "

k

) =

X

i2s

"

k

i

e

i

:

Here the vector g = e

0

+

1

2

w

0

has norm

3

2

and is orthogonal to all w

s

and e

i

.

Note that these vectors u

i

and u

k

s

form an odd system

V

0

(c) = fv 2 V(c) : vu

0

= 1g:

It is easy to see that each v 2 V

0

(c) has the form v = v(a) for a 2 A(c) such that

aa

0

= 4.

Proposition 7 The odd system V

0

(c) is closed for every c 2

p

2�

16

of norm 12 and

every a

0

2 A(c). V

0

(c) is isomorphic to the odd system V

1

related to STS No 1.

Proof. Recall that the set of endpoints of all vectors v 2 V

0

(c) is equal to the set

of endpoints of all minimal vectors a of the Barnes-Wall lattice

p

2�

16

such that

ac = 6 and aa

0

= 4. Let H

14

(c; a

0

) be the 14-dimensional a�ne space of all vectors

x 2 R

16

such that xc = 6 and xa

0

= 4. Let L

14

=

p

2�

16

\H

14

(c; a

0

). The above set

of endpoints belong to L

14

. Moreover, as the vectors a 2 A(c) are minimal vectors

of

p

2�

16

, the set of endpoints of all v 2 V

0

(c) is the set of all vertices of a Delaunay

polytope of the lattice L

14

. This implies that V

0

(c) is closed.

Comparing v 2 V

0

(c) with u

i

from (4) and u

s

("

k

) from (5), we see that both u

i

's

coincide and u

k

s

= u

s

(�"

k

). Hence the odd system V

0

(c) can be obtained from the

odd system V

1

, related to STS No 1, by interchanging the even vertices of Q(s) by

odd vertices for all s 2 F

7

. According to Proposition 6, as the set of all triples of F

7

is a positive set, the odd system V

0

(c) represents STS No 1, too.
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5 The two-graph related to STS No 2

Recall that the inner product v(t)v(t

0

) for two triples t and t

0

of an STS takes the

values �1. This means that vectors v(t), t 2 T , of norm 5 span equiangular lines at

angle arccos

1

5

.

Sets of equiangular lines and two-graphs are in one-to-one correspondence. We

do not need here in an exact description of this correspondence. Details see, for

example, in [1]. It is important for us only that each line is spanned by a pair of

opposite vectors (of norm 5), and the set of all lines is represented by an odd system

of these vectors, taken one from each pair. A change of vectors of a subset by its

opposite is called switching of the odd system. Obviously, the switched odd system

represents the same two-graph as original one.

A maximal set of equiangular lines at angle arccos

1

5

in a 15-dimensional space

contains 36 lines and corresponds to a regular two-graph.

The odd systems described above and related to Steiner triple systems contain

35 vectors. The 36th vector can be obtained as follows. Let an odd system V

contains 5 vectors v

i

; 1 � i � 5; with all mutual inner products {1. These 5 vectors

correspond to 5 mutually disjoint triples. Then the vector v =

P

5

i=1

v

i

has norm 5

and inner products �1 with all other vectors of V. For the odd system described in

the previous section, the 36th vector is

u

0

= g +

1

2

X

s2F

7

w

s

:

It can be obtained, for example, as the sum of v(t) for t=(1,2,3), (4,8,12), (5,10,15),

(6,11,13), (7,9,14). It is easy to verify that v

0

has the inner product +1 with all

other vectors of V

1

(and V

2

), i.e.

u

0

u

i

= u

0

u

s

(�"

k

) = 1; 1 � i � 7; s 2 F

7

; 0 � k � 3:

In general, let V be an odd system of 36 pairs of opposite vectors related to a regular

two-graph. Then vv

0

= �1 for any v; v

0

2 V such that v 6= �v

0

.

Obviously, for any v

0

2 V, we can choose a vector v from each pair of opposite

vectors such that vv

0

= �1. Then the chosen 35 vectors form a set of vertices of a

strongly regular graph H(v

0

) = H(v

0

;V). Two vectors v and v

0

are adjacent in H

if and only if vv

0

= �1. Obviously the graphs H(v

0

) and H(�v

0

) are isomorphic.

But if v

0

6= �v

0

0

, then the graphs H(v

0

) and H(v

0

0

) may be not isomorphic. But

they are "pseudoswitching" equivalent. Note that the graph H(v

0

) = H

1

related to

STS No 1 does not depend on v

0

, since the corresponding two-graph have a doubly

transitive automorphism group, and H

1

is the unique rank 3 graph with parameters

(35,18,6,8). (See [1] and [7] for details.)
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Any clique of H(v

0

) has size at most 5. H(v

0

) contains a clique of maximal size

not for every v

0

. For example, graphs H corresponding to 10 Steiner triple systems

No 14, 16, 24, 26, 29, 35, 40, 52, 59, 62 do not contain cliques of maximal size 5. But

in the corresponding odd system there is a vector v

0

0

such that H(v

0

0

) has a clique of

size 5.

Let H(v

0

) contains a clique C of maximal size. Denote vertices of C (and corre-

sponding vectors) by v

i

, 1 � i � 5. By the construction, v

i

v

j

= �1 for 0 � i < j � 5.

One can easy to verify that

P

5

i=0

v

i

= 0. Let v be a vertex of H(v

0

) not belonging

to C. Since vv

0

= �1, and

P

5

0

vv

i

= 0 there are exactly 2 vertices of C, say v

i

and

v

j

, i; j > 0, with vv

i

= vv

j

= �1, which are adjacent to v. Since H(v

0

) is strongly

regular with parameters (35,16,6,8), there are exactly 6 vertices adjacent to given

two adjacent vertices. Hence there are exactly 3 vertices of H(v

0

) � C adjacent to

v

i

and v

j

. We denote these vertices by (ij), (ij)

a

and (ij)

b

. So, if H(v

0

) contains a

clique C of size 5, then 35 vertices of H(v

0

) can be labeled as v

i

, 1 � i � 5, (vertices

of the clique C), and (ij); (ij)

a

; (ij)

b

, 1 � i < j � 5 (other vertices).

Recall that the vertices of the graph H

1

related to STS No 1 are naturally labeled

by triples ijk such that 1 � i < j < k � 7 (see Table 2). It is easy to see that

H

1

= H(v

0

), where v

0

= �u

0

, and u

0

is de�ned at the beginning of this section, and

Table 2 shows that two labeling relates as follows:

v

i

= i67; (ij) = ij67; (ij)

a

= ij6; (ij)

b

= ij7; 1 � i < j � 5;

where ij67 = V

7

� fij67g is a complement of the set fij67g in V

7

.

Seidel in [12] describes a family of two-graphs discovered by T.Spence, by use

of a computer. Using the above labeling of vertices of the graph H(v

0

), we give a

detailed description of this family and show that two-graphs related to STS No 1

and No 2 belong to this family.

It is easy to see that the subgraph of H

1

induced on the set of vertices fv

i

: 1 �

i � 5g [ fij; 1 � i < j � 5g is the triangular graph T (6). Similarly, the subgraphs

of H

1

induced by vertices (ij)

a

and (ij)

b

, 1 � i < j � 5 are T (5)'s.

Let Q be the graph induced on 20 vertices (ij)

a

, (ij)

b

, 1 � i < j � 5. We

saw that Q is a "union" of two T (5)'s. Now we show that Q is similar "union" of

two Petersen graphs. In fact, Q can be partitioned into 4 induced circuits of length

5. Denote these circuits by C("; �), where � 2 fa; bg and " 2 f0; 1g. The circuit

C(0; �) contains the vertices (12)

�

, (23)

�

, (34)

�

, (45)

�

, (15)

�

. The vertices of C(1; �)

are (13)

�

, (35)

�

, (25)

�

, (24)

�

, (14)

�

. Of course, this partition is not unique. It is

easy to see that the circuits C(0; a) and C(1; a) (as the circuits C(0; b) and C(1; b))

induce the T (5) graph. Similarly, the circuits C(0; a) and C(1; b) (as the circuits

C(1; a) and C(0; b)) induce the Petersen graph. Just this last partition of the graph

H(v

0

) into T (6) and two Petersen graphs was used in the considerations of Seidel

[12].
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Call an edge of the graph Q of the form ((ij)

a

; (ij)

b

) basic. Let E

10

be the set of

all 10 basic edges. We denote basic edges as e(ij). Consider, at �rst, adjacencies of

vertices of T (6) and Q in the graph H

1

of STS No 1. If a vertex v of T (6) is adjacent

to one endvertex of a basic edge, then it is adjacent to the second endvertex of this

edge. Each vertex v of T (6) is adjacent to 4 pairs of endpoints of 4 basic edges. Let

E(v) � E

10

be the set of basic edges whose endpoints are adjacent to v. It is easy

to verify that these 15 subsets E(v) of cardinality 4, where v is a vertex of T (6),

form a set E

0

of blocks of a 2-(10,4,2) design.

We give the incidence matrix of this design in Table 3.

Table 3

v

1

v

2

v

3

v

4

v

5

12 13 14 15 23 24 25 34 35 45

e(12) 1 1 1 1 1 1

e(13) 1 1 1 1 1 1

e(14) 1 1 1 1 1 1

e(15) 1 1 1 1 1 1

e(23) 1 1 1 1 1 1

e(24) 1 1 1 1 1 1

e(25) 1 1 1 1 1 1

e(34) 1 1 1 1 1 1

e(35) 1 1 1 1 1 1

e(45) 1 1 1 1 1 1

Gronau [8] shows that there exist exactly 3 nonisomorphic 2-(10,4,2) designs.

One can take from each isomorphism class three designs such that its incidence

matrices di�er only in the right lower 6 � 6 sub-matrix. This sub-matrix is an

adjacency matrix of vertices (ij), 2 � i < j � 5, and (kl)

a

, (kl)

b

, 2 � k < j � 5.

We give below these 3 sub-matrices.

23 24 25 34 35 45 23 24 25 34 35 45 23 24 25 34 35 45

e(23) 1 1 1 1 1 1

e(24) 1 1 1 1 1 1

e(25) 1 1 1 1 1 1

e(34) 1 1 1 1 1 1

e(35) 1 1 1 1 1 1

e(45) 1 1 1 1 1 1

We denote 2-(10,4,2) designs corresponding to these matrices by D

0

, D

1

and D

2

,

respectively.

Now we describe graphs H(v

0

) of the above mentioned family of two-graphs. Let

E be an arbitrary set of 4-subsets of E

10

forming blocks of a 2-(10,4,2) design D(E).
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Then jEj = 15. Let G(E) be a graph constructed on the set E as follows. Two

vertices E and E

0

are adjacent in G(E) if and only if jE \ E

0

j = 1. (Recall that,

for any two blocks E;E

0

of a 2-(10,4,2) design, we have jE \ E

0

j = 1 or 2.) Using

the incidence matrices of the 3 nonisomorphic designs D

0

, D

1

and D

2

, it is easy to

verify that G(E) is isomorphic to the triangular graph T (6) for all these 3 designs.

We form a graph H(Q; E) as follows. We take a union of the graphs G(E) and Q,

i.e. the set of vertices of H(Q; E) is the union of the set E and the set of vertices of

Q, and each of these sets induces the corresponding graph. We de�ne an adjacency

of a vertex E of G(E) and a vertex v of Q as follows. Recall that E is a set of basic

edges of Q. We set the vertex E of G(E) is adjacent to a vertex v of Q if and only

if v is an endvertex of a basic edge from E.

Proposition 8 The graph H(Q; E) is a strongly regular graph with parameters

(35,16,6,8) for any 2-(10,4,2) design D(E).

Proposition 8 can be proved by inspection. We shall prove it in the forthcoming

paper [5], where we show that for each H(Q; E) there is a two-graph having it as

H(v

0

). Moreover, we show there that all these two-graphs can be obtained from the

even unimodular lattice D

+

16

by the method of [3] and [4] described here in Section

4.4.

Call a two-graph of D

i

-type if the two-graph has H(Q; E) as H(v

0

), where E is

the set of blocks of a design isomorphic to D

i

.

We saw above that the following proposition holds.

Proposition 9 The two-graph related to STS No 1 is of D

0

-type.

Now we prove

Proposition 10 The two-graph related to STS No 2 is of D

1

-type.

Proof. Consider at �rst the two-graph related to STS No 1. Since H(v

0

) does not

depend on v

0

for this two-graph, we can take v

0

= �u

123

("

0

). Let the clique C

consists of the following 5 vectors:

v

1

= u

123

("

3

); v

2

= u

246

("

0

); v

3

= �u

145

("

2

); v

4

= �u

246

("

3

); v

5

= u

145

("

1

):

The other vectors obtain labeling as follows:
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Table 4.

(12) = �u

246

("

2

) (12)

a

= �u

167

("

2

) (12)

b

= u

167

("

1

)

(13) = u

145

("

0

) (13)

a

= u

257

("

1

) (13)

b

= �u

257

("

2

)

(14) = u

246

("

1

) (14)

a

= u

167

("

0

) (14)

b

= �u

167

("

3

)

(15) = �u

145

("

3

) (15)

a

= �u

257

("

3

) (15)

b

= u

257

("

0

)

(23) = u

356

("

1

) (23)

a

= u

1

(23)

b

= �u

6

(24) = u

123

("

1

) (24)

a

= u

347

("

1

) (24)

b

= �u

347

("

2

)

(25) = �u

356

("

3

) (25)

a

= �u

4

(25)

b

= u

3

(34) = �u

356

("

2

) (34)

a

= �u

7

(34)

b

= u

0

(35) = u

123

("

2

) (35)

a

= u

347

("

0

) (35)

b

= �u

347

("

3

)

(45) = u

356

("

0

) (45)

a

= u

2

(45)

b

= �u

5

v

0

= �u

123

("

0

) v

1

= u

123

("

3

) v

2

= u

246

("

0

)

v

3

= �u

145

("

2

) v

4

= �u

246

("

3

) v

5

= u

145

("

1

)

The adjacency matrix of these vectors considered as vertices of H(v

0

) is given by the

incidence matrix of the design D

0

. Note that the incidence matrices of designs D

0

and D

1

di�er only in a 4�4 sub-matrix A composed by intersections of the columns

(23),(25),(34),(45) and rows e(23), e(25),e(34),e(45). These sub-matrices A

i

� D

i

,

i = 0; 1, are complemented.

Note now, that if we change the signs before "

k

in u

356

("

k

) for all 4 k, then the

vectors of Table 4 will form the switched odd system V

2

. Denote the switched odd

system V

sw

2

.

All the vectors u

356

("

k

) stay in rows of Table 4 labeled by (23), (25), (34),

(45). Call these rows special. Other vectors in the special rows have the form �u

i

,

0 � i � 7. Recall that u

s

("

k

) is adjacent to u

i

(i.e. u

s

("

k

)u

i

= �1) if and only

if i 62 s, i.e. this adjacency does not depend on k. Besides, we have for s 6= t,

u

s

("

k

)u

t

("

l

) = �1 if and only if "

k

i

= �"

l

i

for fig = s\ t. Hence, when we change the

sign before "

k

in u

356

("

k

), we change adjacencies of u

356

("

k

) with all vectors excluding

vectors in the special rows. Now we switch 4 vectors u

356

(�"

k

), 0 � k � 3, of the

odd system V

sw

2

(i.e. change the signs before u

356

(�"

k

)). Then the adjacencies

of switched vectors with all vectors of not special rows will be as in H

1

, i.e. this

adjacency will be given by the incidence matrix of D

0

. But the adjacencies of vectors

u

356

(�"

k

) with all vectors of the form u

i

will be changed, i.e. they will be given by

the matrix A

1

instead of the matrix A

0

. All the adjacencies will be given by the

incidence matrix of the design D

1

. Hence, after switching, we obtain an odd system

representing a two-graph of the D

1

-type.
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