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Abstract

Let C be a real polyhedral cone, generated by the integer vectors

x

1

; : : : ; x

n

. The set of points of this cone with integer coordinates forms a

semi-group whose minimal set of generators (for linear combinations with

coe�cients in Z

+

) is called the Hilbert basis of C. The Hilbert basis always

contains x

1

; : : : ; x

n

. The integer points of C which are not in the integer

cone Z

+

(x

1

; : : : ; x

n

) are called the quasi-h points.

This report presents the Hilbert basis for the cut cone over K

6

. Two

results are proven:

� The Hilbert basis of the cut cone over K

6

is composed of the 31 cuts

and of the 15 vectors d

e

de�ned for each edge e by: d

e

f

= 2 for f 6= e and

d

e

e

= 4.

� The quasi-h points forK

6

are exactly the d

e

+n�(v) for v non adjacent

to e and n 2Z

+

.

This report is the extended version of [Lab95], where Hilbert bases are

studied within the general framework of integer programming and polytope

theory. Moreover, detailed proofs are provided.

Keywords: Cut cone, Integer Programming, Hilbert basis, Gordan lemma

R�esum�e

Soit C un cône poly�edral r�eel, engendr�e par les vecteurs x

1

; : : : ; x

n

�a

coordonn�ees enti�eres. L'ensemble des points �a coordonn�ees enti�eres de C

forme un semi-groupe dont l'ensemble g�en�erateur minimal (par des com-

binaisons lin�eaires �a coe�cients dans Z

+

) est appel�e base de Hilbert de C.

Les points entiers de C qui ne sont pas dans le cone entier Z

+

(x

1

; : : : ; x

n

)

sont appel�es les points quasi-h.

Ce rapport pr�esente la base de Hilbert pour le cône des coupes sur K

6

.

Deux resultats sont prouv�es:

� La base de Hilbert pour le cône des coupes sur K

6

est form�ee des 31

coupes et des 15 vecteurs d

e

ainsi d�e�nis pour chaque arête e: d

e

f

= 2 pour

f 6= e et d

e

e

= 4.

� Pour K

6

, les points quasi-h sont exactement les d

e

+n�(v) pour v non

adjacent �a e et n 2Z

+

.

Ce rapport est la version compl�ete de [Lab95], o�u les bases de Hilbert

sont �etudi�ees dans le cadre g�en�eral de la programmation lin�eaire en nom-

bres entiers et de la th�eorie des polytopes. De plus, les preuves d�etaill�ees

sont fournies.

Mots-cl�es: Cone des Coupes, Programmation Lin�eaire en Nombres

Entiers, Base de Hilbert, Lemme de Gordan
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1 Introduction: Cuts on a graph

Let G = (V;E) be a symmetric graph, with vertex-set V = f1; : : : ; ng, and edge-

set E � V

2

. When E = f(i; j); i 6= j & 1 6 i; j 6 ng, G is called the complete

graph, denoted K

n

.

Any subset S � V partitions the vertices into two \shores", S and S. The set of

edges f(i; j) 2 E; i 2 S; j 2 Sg is called the cut induced by S (note that a

cut can clearly be de�ned by any of its two shores).

The cut vector �(S) 2 f0; 1g

E

is the binary vector with entries indexed by

edges characterizing the cut induced by S :

�(S)

ij

=

(

1 if card(fi; jg \ S) = 1

0 otherwise

By abuse of language, the cut vector is also called the cut associated to S.

Since �(S) = �(S), the set of cuts can be enumerated by considering all sets

of vertices containing a given vertex. The set of all cuts over the complete graph

K

n

will be denoted by K

n

.

We will denote by R

+

(K

n

) (resp. Z(K

n

) or Z

+

(K

n

)) the set of linear combi-

nations of cuts, with coe�cients in R

+

(resp. Zor Z

+

). For x =

P

�

S

�(S) with

�

S

2 Z

+

for all S, the sequence (�

S

) will be called a Z

+

-realization of x. The

following objects will be considered throughout this report :

� the cut polytope, P

n

= Conv(f�(S); S � V g), where Conv denotes the

operation of taking the convex hull.

� the cut cone, C

n

= R

+

(K

n

), de�ned as the real conic hull of the cuts.

� the cut lattice, L

n

=Z(K

n

), de�ned as the set linear combinations of cuts

with integer coe�cients.

� the integer cut cone IC

n

=Z

+

(K

n

), de�ned as the set linear combinations

of cuts with non-negative integer coe�cients. Points in the integer cut cone are

called h-points.

� the set of quasi-h points C

n

\ L

n

� IC

n

.

This study focuses on the complete graph over six vertices, K

6

. As a matter

of fact, for n 6 5 [De 61],

C

n

\ L

n

= IC

n

Hence, any vector admitting a R

+

-realization and a Z-realization also admits

a Z

+

-realization.

This property still holds for any non complete graph over six vertices [La 93],

but collapses for K

6

. Indeed, for an edge e 2 E, the point d

e

de�ned as:

d

e

f

= 2 for f 6= e and d

e

e

= 4
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is in the cut lattice

d

ij

=

X

v2V

�(v) + 2 (�(i) + �(j)� �(i; j))

and in the cut cone

d

ij

= 1=2

X

k2V�fi;jg

�(i; k) + �(j; k)

but not in the integer cut cone.

The �rst result of this report is to prove that all points that are both in the

cut cone and the cut lattice can be represented as linear non-negative integer

combinations of the cuts and the d

e

. This set (K

6

[ fd

e

; e 2 Eg) is minimal for

this property.

The second result is to characterize the quasi-h points. It is shown that they

are exactly of the form d

e

+ n�(v) for v 2 V not incident to e and for n 2Z

+

.

This report is organized as follows: Section 2 presents the cut cone and the

cut lattice, Section 3 introduces the fundamental notions and theorems on Hilbert

bases, Section 4 contains both results of this report, Section 5 explores the map-

ping of these results on the related boolean quadric cone, Section 6 presents other

possible directions of research for �nding Hilbert bases for larger n. Finally, Sec-

tion 7 contains the detailled proof of Theorem 1.

2 The cut cone and the cut lattice

2.1 The cut lattice

Membership to the cut lattice is characterized by a very simple condition [As 82]:

x 2 L

n

, 8i; j; k 2 f1; : : : ; ng; x

ij

+ x

jk

+ x

ik

� 0 mod 2

Proof.

All cuts clearly verify this condition, so it is a necessary condition for belonging

to the the cut lattice.

Conversely, let x be an integer vector verifying this condition. We can part the

set of vertices in two: V

n

= S [ T such that x

ij

is odd if and only if i 2 S and

j 2 T . We set x

0

= x + �(S). All coordinates of x

0

are even, so the following

decomposition is a Z-realization:

x

0

=

X

16i<j6n

x

0

ij

2

(�(i) + �(j)� �(ij))

Hence x

0

2 L

n

and x 2 L

n

. �

One of the consequences of this characterization is that L

n

� 2Z

n(n�1)

2

.
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2.2 The cut cone

The cut cone C

n

is a convex polyhedron of R

N

, with N =

n(n�1)

2

generated by

2

n�1

� 1 vectors (there are as many cuts in K

n

as subsets of f1; : : : ; n � 1g and

the empty cut �(;) = (0; : : : ; 0) is the apex of the cone). It was shown in [De 73]

that the cuts are conically independent, hence, the cuts form exactly a minimal

set of generators (each cut de�ning an extreme ray of the cone). These cuts are

spread over several layers by l

1

-norm :

k�(S)k

1

= k(n� k) where k = card(S).

The cone is invariant under all linear applications induced by a permutation

on the vertices (if � 2 �

n

, one can de�ne u

�

: R

N

7! R

N

by u

�

(x) = y with

y

ij

= x

�(i)�(j)

). Moreover, it is thought that these are the only transformations

under which the cone is invariant.

For the cut polytope (which is a �nite section of the cut cone), the group of

transformations under which it is invariant is composed of the permutations on

the vertices u

�

and of some reections called switching [DGL91]. It turns out

that C

n

is the support cone of P

n

at each vertex.

A vector plays a central role for the cut cone: the vector 1

N

= (1; 1; : : : ; 1) 2

RM

N

. Indeed, R1

N

is exactly the vector space that is stable under all permu-

tations u

�

on vertices. It can thus be considered as the symmetry-axis of the

cone.

No general description of the facets of C

n

is known. They are all known for

n 6 7 ([De 61] for n 6 5, [AM 89] for n = 6 and [Gr 90] for n = 7), but from

n = 8 on, only classes of facets are known. Some facets of the cut cone can be

described as hypermetric facets :

De�nition 2.1 [De 61] for b 2 Z

n

such that

P

n

i=1

b

i

= 1, one can de�ne the

hypermetric inequality Hyp(b

1

; : : : ; b

n

) as such:

Hyp(b)(x) := Q(b

1

; : : : ; b

n

)

T

x =

X

16i<j6n

b

i

b

j

x

ij

6 0

By abuse of language, the facet of the cone induced by the equality Hyp(b)(x) = 0

is called a hypermetric facet (and is also noted Hyp(b)) .

Remark, that Hyp(1; 1;�1)(x) 6 0 corresponds to the well-known triangle

inequality. For the inequalities Hyp(b

1

; : : : ; b

n

), one has

P

jb

i

j = 2k +1, they are

denoted by the value of k: for k = 1; 2 or 3, the induced inequalities (resp. faces

or facets) are called triangular, pentagonal or heptagonal.

Hypermetric facets do entirely de�ne the cut cone for n 6 6. From n = 7 on,

other facets must be taken into account for the de�nition of the cone.
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The cone C

6

is de�ned by the following facets Hyp(b

1

; : : : ; b

6

) :

� 60 triangular facets T

i;jk

(x) = 0 for 1 6 j < k 6 6

corresponding to b

i

= �1; b

j

= b

k

= 1 and b

l

= 0 otherwise

� 60 pentagonal facets P

ij;klm

(x) = 0 for 1 6 i < j 6 6; 1 6 k < l < m 6 6

corresponding to b

i

= b

j

= �1; b

k

= b

l

= b

m

= 1 and b

n

= 0 otherwise

� 30 heptagonal-I facets H

i;j

(x) = 0 for i 6= j

corresponding to b

i

= �2; b

j

= �1 and b

k

= 1 otherwise

� 60 heptagonal-II facets H

0

i;jk

(x) = 0 for 1 6 j < k 6 6

corresponding to b

i

= 2; b

j

= b

k

= 1 and b

l

= �1 otherwise

For 6 vertices, the cut cone admits 210 facets (partitioned into 4 orbits) and

for 7 vertices, it has 38 780 facets (partitioned into 36 orbits) [DD 95]. Hence for

n = 7, it becomes very hard to solve linear programs because of the number of

facets. For n > 8, it is impossible since the description of the cone is no longer

known in terms of facets.

3 Hilbert bases

Hilbert bases were introduced in [GP 79] after the work of Hilbert (in relation

with the Nullenstellensatz) and Gordan. A clear description of these notions can

be found, for example, in [Sc 86].

3.1 De�nition and fundamental theorems

Let C be a polyhedral cone, integral over a lattice L (C is a generated as a cone,

by a �nite number of vectors of L, x

1

; : : : ; x

m

). The intersection S = C \L forms

a semi-group (the sum of two vectors in S is also in S) of which we want to �nd

the generators (a set of vectors y

1

; : : : ; y

k

is said to generate a semi-group S if any

element of S can be decomposed as a linear combination of the y

i

with coe�cents

in Z

+

). Such a generating set is called a Hilbert generating set. In the case

where this set is minimal (inclusion-wise), it is called a Hilbert basis. There

are two short but fundamental theorems concerning this theory, one of existence

and the other of unicity.

Gordan lemma [Go 1873]

For an integral polyhedral cone, the following set is a �nite Hilbert generating

set :

L \ f

m

X

i=1

�

i

x

i

; 0 6 �

i

6 1g

6



Proof.

First, note that only the projection of the cone on the vector space spanned by

the lattice L matters, so we can suppose that L is full-dimensional. Moreover,

one can suppose, up to a linear application, that L = Z

n

. The set of integer

points in f

P

m

i=1

�

i

x

i

; 0 6 �

i

6 1g is �nite.

Moreover, let y 2 C \ Z

n

, y can be decomposed as y =

P

k

i=1

�

i

x

i

,

so y =

P

m

i=1

b�

i

cx

i

+ z with z =

P

m

i=1

(�

i

� b�

i

c)x

i

where z and the x

i

are in

the exhibited set. So it forms a Hilbert generating set. �

Composition of the Hilbert basis [Sc 86]

Moreover, for a \pointed" cone (containing no vector space other than 0), there

exists a unique minimal (for inclusion) Hilbert generating set. It is called the

Hilbert basis. It is exactly composed of the points:

H = fx 2 C \ L; such that x = y + z with y; z 2 C \ L) y = 0 or z = 0g

Proof.

First, it is clear that these points are in any Hilbert generating set. So, by Gordan

lemma, they are in �nite number. It remains to prove that they form a Hilbert

generating set.

Since the cone is pointed, there exists a vector h such that for any x 2 C, x:h > 0,

Moreover, from Gordan lemma, there exists an " > 0 such that 8x 2 C; x:h > "

(this scalar product with h will be used as a measure on the cone).

For x 2 C \ L, either x 2 H, or x = y+z, with y; z 2 C \ L, in which case, the

decomposition is performed once again with y and z. Since y:h; z:h < x:h � ",

the process ends in a �nite number of decompositions, after which we have a

decomposition of x as sum of points of H. So H is a Hilbert generating set. �

The de�nition of a Hilbert basis is related to a given cone and lattice, but it

can also be seen as an intrinsic property of the set of points. As a matter of fact,

a set of points H is a Hilbert generating set for the cone and the lattice that it

generates if and only if

Z(H)\R

+

(H) =Z

+

(H)

(the right-hand side is always included into the left-hand side of the equation).

So, being a Hilbert generating set can be seen as a completeness property.

3.2 An algorithm for computing Hilbert bases

This section addresses the problem of computing the Hilbert basis of a cone C

of dimension n, generated by integer vectors x

1

; : : : ; x

m

. The Gordan lemma

provides us with a Hilbert genrating set. Finding the Hilbert basis is then just

a matter of shrinking this set untill it is minimal. The issue at stake is that

7



of �nding the primitive elements in a semi-group. Indeed, the integer cone is an

additive semi-group and the points x of the Hilbert basis are primitive : their sole

decomposition as the sum of two others points of the integer cone is x = x+ 0.

Another instance of this problem is to �nd all prime integers up to n : The set

S of integers that are products of integers in [1; n] is a multiplicative semi-group

and the prime integers p in [1; n] are the primitive elements of S : those which

sole decomposition as a product of two elements of S is p = p � 1.

The de�nition of primitive element is negative (\elements such that there

exist no two other elements such that ..."), so it takes some computations to test

whether an element is primitive or not. Algorithmically, the best solution for

testing primitiveness over a large set of points is not to test individually but to

proceed by ooding, as in Eratosthen's method for prime integers. Starting from

a large set of points, one progressively removes those that can be obtained as sum

(resp. product for the case of integers) of two others. The �nal set generates the

same sub semi-group as the initial set, but it is minimal for that property.

Unfortunately, the initial set to examine is very large. By Gordan lemma,

points of Hilbert bases are located in the parallelepiped

P =

(

m

X

k=1

�

k

x

k

for 0 6 �

k

6 1

)

When the number of generators of the cone is in large excess compared to the

dimension of the space, the volume of P increases dramatically. Moreover, this

domain being de�ned by real parameters, it is impossible to enumerate its integer

points (this is precisely what knowing the Hilbert basis allows to do). A solution

is to enumerate integer points with positive coordinates of a bound norm and to

test for each one of them whether they are in te cone or not. So, P is approxi-

mated by the intersection of a larger cone ((R

+

)

n

) and a sphere. The sphere is

a sphere of radius M(C) = Max(kxk; x 2 P). l

1

and l

1

-norms are convenient

for enumeration. The number of points of R

n

with integer coordinates and of

l

1

-norm k is P (k) = C

n

n+k�1

. So the total number of points to be looked at is

Tot(C) =

P

M(C)

k=1

P (k).

For the case of the cut cone,M(C

n

) = n(n�1)2

n�3

(M(C

4

) = 24; M(C

5

) = 80

and M(C

6

) = 240). This leads to

Tot(C

n+1

) >

n

2

2

n�2

X

k=0

C

n

2

=2

n

2

=2+k

:

This algorithmic approach is unreasonable for the cut cone from n = 5 on.
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A few remarks help dimishing this number :

� By Caratheodory's theorem, every point of the cone is R

+

-combination of

at most n generators. This limits the initial set to

(

m

X

k=1

�

k

x

k

; 0 6 �

k

6 1; with at most n �

0

s > 0

)

� The initial set can be taken up to the symmetries of the cone. In the case

of the cut cone, one can, for example, only consider points with decreasing

coordinates 12; : : : ; 1n.

4 Hilbert bases and cuts

The purpose of this research is to pursue the investigations of Deza, Grishukhin

[DG 94] and Laurent [La 93] concerning Hilbert bases and cuts. Let H be the

class of graphs whose cuts form a Hilbert basis. Determining H is a hard open

question.

On the other hand, the dual problem, which consists in characterizing the

graphs whose family of circuits is a Hilbert basis is completly solved. The family

of circuits of a graph G is a Hilbert basis if and only if G is not contractible to

the Petersen graph P

10

[AGZ90]. This problem is actually easier since the circuit

cone is much simpler than the cut cone (its facets are all known: they are de�ned

by the cycle inequalities).

For the cut cone, we know that:

� for graphs K

n

with n 6 5, the cuts form a Hibert basis [De 61].

� for strict subgraphs of K

6

, the cuts form a Hilbert basis [La 93].

� for graphs that are not contractible to K

5

, the cuts form a Hilbert basis

[FG 94].

� if the cuts of G form a Hilbert basis, then G is not contractible toK

6

[La 93].

So, K

6

is not a Hilbert basis, indeed the d

e

are known for long to be quasi-h

points. A conjecture, formulated in [DGL91], that the d

e

complete the family of

cuts into the Hilbert basis of C

6

is proved below in theorem 1.

4.1 The Hilbert base of C

6

Theorem 1 For K

6

, the set K

6

[ E with E = fd

e

; e 2 Eg composed of the 31

non-zero cuts and of the 15 d

e

forms a Hilbert basis.

9



A sketch of the proof follows; the complete proof, a little technical, is given in

section 7, at the end of this report.

Outline of the proof

Let B be the Hilbert basis for the cone C

6

and the lattice L

6

, we need to show

that B = K

6

[ E.

It can be easily checked that E � B (d

e

cannot be decomposed as a sum of

two points belonging both to the cut cone and the cut lattice). So, it remains to

prove that B�K

6

� E. Let x be a \missing" point (a point in B�K

6

) and let us

show that x 2 E. We start by locating x \near" some facets with the following

proposition:

Proposition 4.0 For any vertex i 2 f1; : : : ; 6g,

� either x is on a triangle facet of vertex T

i;jk

(x) = 0 for some j; k 2 V ,

� or x is at distance 2 or 4 of a heptagonal-I facet H

ij

(x) 2 f�2;�4g for

some j 6= i.

Let us note that the points d

e

that we want to obtain are in a special situation:

they are at distance 4 of two heptagonal-I facets based on the same edge and

they are on four triangle facets all based on that same edge. For example, with

d

56

, one has T

1;56

(d

56

) = T

2;56

(d

56

) = T

3;56

(d

56

) = T

4;56

(d

56

) = 0

and H

56

(d

56

) = H

65

(d

56

) = �4.

We part the vertices in two groups T and H depending in which case of the

above proposition they are. (For d

56

; T = f1; 2; 3; 4g and H = f5; 6g). The rest

of the proof consists in narrowing the possibilities for T and H in order to �nd

that x is a d

e

.

� Technical lemma forbidding x to full�ll at the same time several triangle

equalities -in certain con�gurations- entail that at most 4 vertices are in T .

Hence, at least 2 vertices are in H.

� By enumerating all possible con�gurations for those two vertices in H, we

check that the only possible one is that on a common edge (H

ij

(x);H

ji

(x) 2

f�2;�4g).

� Up to permutation, we can suppose H

56

(x);H

65

(x) 2 f�2;�4g. This gives

T

1;56

(x) = T

2;56

(x) = T

3;56

(x) = T

4;56

(x) = 0.

10



� This leads to a �nite (and relatively small) number of possibilities for x.

We check by enumeration on a computer that the only quasi-h point of this

form is d

56

.

Hence, the d

e

manage to complete K

6

into a Hilbert basis.

The technical (and hard) part of the proof consist in forbidding x to be on

several triangular facets -in certain con�gurations- at the same time. The proofs

all follow the same scheme: a proof ad absurdum is performed, the coordinates

of x are described in terms of integer parameters (over small domains) and we

check by enumeration on a computer that none of these points is quasi-h.

4.2 Some remarks about the d

e

Historically, the d

e

have been the �rst examples of quasi-h points noticed : they

were discovered in [BG 73] and expressed in terms of quasi-h points in [AD 80].

First, we need a de�nition:

De�nition 4.2 Let x 2 R

N

be the metric on K

n

, for t > 0, its t-antipodal ex-

tension ant

t

(x) is a metric on K

n+1

de�ned by ant

t

(x)

n;n+1

= t, ant

t

(x)

i;n+1

=

t� x

i;n

for 1 6 i 6 n� 1 and ant

t

(x)

i;j

= x

i;j

for 1 6 i < j 6 n+ 1

A number of remarks about these points d

e

need to be made to illustrate the

particularity of their position which could be relevant for points of Hilbert bases

for larger n.

d

e

is twice the metric on K

6

� e which can be obtained in many ways:

� It is the closest integer point to the point 1

n

which is on the axis of sym-

metry

� it can be constructed as the 2-antipodal extension of 1

6

�  

e

where  

e

is

the characteristic vector of the edge e.

� K

6

� e is the minimal non-complete subgraph in the cocktail-party graph

K

5�2

� K

6

� e is the ridge graph of the prism with base K

4

(Recall that the ridge

graph of a polytope is the skeleton of the dual polytope)

4.3 Quasi-h points and scale

From now on, we only consider cut cones over K

n

. The quasi-h points are de�ned

as those that are both in the cut cone and the cut lattice, but not in the integer

11



cut cone. The second result of this study is to give the explicit composition of

the set of quasi-h points for n = 6.

Theorem 2 The quasi-h points for K

6

are exactly the d

e

+ n�(v) for v not inci-

dent to e and n 2Z

+

.

Let us note that these quasi-h points belong to 60 = 15 � 4 a�ne rays and that

they form an in�nite set. For n 6 5 there are no quasi-h points (since the cuts

form a Hilbert basis), and that for n > 7 there are in�nitely many quasi-h points

([DG 94]). This result �lls the gap in between. Hence, when the graph increases

fromK

5

or K

6

�e to K

6

, the number of quasi-h points rises up from 0 to in�nitely

many, so, for cuts, no situation with a �nite (strictly positive) number of quasi-h

points is known.

Proof

First, let us prove that the d

e

+n�(v) are indeed quasi-h points for v not adjacent

to e and n 2 Z

+

. Let us set d

n

= d

12

+ n �(3) and suppose that there exists n

such that d

n

2 IC. Let n

0

be the smallest such n.

d

n

0

=

X

S�V

n

�

S

�(S) with �

S

2Z

+

(1)

Moreover, all d

n

are on the face F de�ned by T

4;12

(x) = T

5;12

(x) = T

6;12

(x) = 0.

Let Supp(�) = fS � V

n

; �

S

6= 0). We have 8S 2 Supp(�); �(S) 2 F .

F contains 17 cuts: �(1); �(2); �(3); �(1; i); �(2; i) for 3 6 i 6 6 and �(1; i; j)

for 3 6 i < j 6 6.

All these cuts but �(3) separate vertices 1 and 2. But, f3g 62 Supp(�) since n

0

is

minimal. So, by projecting (1) on edge 1-2, we get

4 =

X

S2Supp(�)

�

S

(1

0

)

But for all subsets S of vertices we have the bound k�(S)k

1

6 9 on the l

1

norm

of the cuts, so

kd

n

0

k

1

6 k

X

S

j�

S

jk�(S)k

1

6 9

X

S

j�

S

j = 36:

But kd

n

k

1

= kd

12

k

1

+ nk�(3)k

1

= 32 + 5n, so kd

n

0

k

1

> 37.

So, there exists no d

n

2 IC, thus all d

n

are quasi-h. �

Let us now prove that these points are the only quasi-h points of K

6

We start by showing that all other \perturbations" of d

12

do have aZ

+

-realization.

(1) d

12

+ �(1) = �(2) + �(1; 3) + �(1; 4) + �(1; 5) + �(1; 6)

(2) d

12

+ �(1; 2) = 2�(1) + 2�(2) + �(3) + �(4) + �(5) + �(6)

12



(3) d

12

+ �(1; 3) = �(2) + �(1; 3) + �(3; 4; 5) + �(3; 4; 6) + �(4; 5; 6)

(4) d

12

+ �(3; 4) = �(1) + �(3) + �(4) + �(2; 5) + �(2; 6) + �(2; 3; 4)

(5) d

12

+ �(1; 2; 3) = �(1) + �(2) + �(4) + �(5) + �(6)

+ �(1; 3) + �(2; 3)

(6) d

12

+ �(1; 3; 4) = �(1; 3) + �(1; 4) + �(2; 5) + �(2; 6) + �(1; 5; 6)

(7) d

12

+ d

23

= �(1) + �(2; 3) + �(2; 4) + �(2; 5) + �(3; 6)

+ �(1; 2; 6) + �(1; 3; 4) + �(1; 3; 5)

(8) d

12

+ d

34

= �(1) + �(2; 3) + �(2; 4) + �(3; 5) + �(4; 6)

+ �(1; 3; 4) + �(1; 3; 6) + �(1; 4; 5)

(9) d

12

+ �(3) + �(4) = �(1; 3) + �(2; 4) + �(3; 4) + �(1; 4; 5) + �(1; 4; 6)

Let x be a quasi-h point, x can be written

x =

X

S�V

n

�

S

�(S) +

X

e2E

�

e

d

e

with �

S

; �

e

2Z

+

Since 8e 2 E; 2d

e

2 IC , one can rewrite

x =

X

S�V

n

c

�

S

�(S) +

X

e2E

c

�

e

d

e

with

c

�

S

2Z

+

and

c

�

e

2 f0; 1g

Because of decompositions (7) and (8) (and their permutations), one can rewrite

x =

X

S�V

n

f

�

S

�(S) +

g

�

e

0

d

e

0

with

f

�

S

2Z

+

and

g

�

e

0

2 f0; 1g

Since x 62 IC;

g

�

e

0

= 1. Set e

0

= v

1

v

2

.

Decompositions (2), (3), (4), (5) and (6) imply

8S � V

n

; card(S) 2 f2; 3g )

f

�

S

= 0.

Decomposition (1) implies that

e

�

fv

1

g

=

e

�

fv

2

g

= 0.

Decomposition (9) implies that card(fi 2 V

n

� fv

1

; v

2

g;

e

�

fig

> 0g) 6 1.

Finally, we get the following decomposition :

x = d

e

0

+ n�(v) for v not adjacent to e

0

So all quasi-h points are necessarily of this form. �

The quasi-h points are not in the integer cone, so they admit onlyR

+

-realizations.

In fact, the coe�cients can always be taken rational rather than real, and their

denominators can be bounded. This fact is grasped by the notion of scale.

De�nition 4.3 Let x be a quasi-h point, its scale �(x) is de�ned as the smallest

positive integer k such that kx 2 IC.

(x admits a Q

+

-realization, so such a k always exists)

13



Theorem 3 [DG 94]

There exits an integer k such that for all quasi-h points, kx 2 IC

n

.

This is a surprising theorem since there is in�nitely many quasi-h points for n > 6,

and for each of them x, the scale �(x) divides k.

The smallest such k is called the scale of the cone and is denoted �. The scale

brings the following estimation for the integer cone:

� C \ L � IC � C \ L

Proof. The proof is like that of the Gordan lemma. Let x

1

; : : : ; x

n

be a set of

generators of the cone. Let k be the smallest common multiple of all �(x) for

x 2 f

P

�

i

x

i

; 0 6 �

i

6 1g \ L.

For all y 2 C \ L, let us show that ky 2 IC. y can be decomposed as

y =

X

�

i

x

i

=

X

b�

i

cx

i

+ z with z =

X

(�

i

� b�

i

c)x

i

hence, kz 2 IC, so ky 2 IC. �

Corollary 1 For C

6

,we have � = 2.

Proof. Let us note that 2d

e

2 IC:

2d

ij

=

X

�(i; k) + �(j; k)

So, for all quasi-h points y (recall that y = d

e

+ n�(v)), 2y 2 IC. So � 6 2. But,

� > 1 since there are quasi-h points, hence � = 2 �

Hence, we have three notions for describing the integer cone:

quasi-h points Hibert basis scale

n 6 5 ; K

n

1

n = 6 fd

e

+ n�(v)g K

6

[ fd

e

; e 2 Eg 2

n > 7 some in�nite set K

n

[ some �nite set some �nite integer

On this �gure, it appears clearly that C

6

is a treshold case between the simple

situation of n 6 5 and the unknown cases of n > 7.

The quasi-h points represent the �nest notion to describe the integer cone. How-

ever, they do not seem to be the most adapted to complex examples. For instance,

in our case (n = 6), the Hilbert basis is relatively simple (it is composed of the

generators of the cone plus one vector and its permutations) and the set of quasi-

h points is anyhow in�nite. The Hilbert basis is a more tractable information

since it is a �nite set.

14



The scale of the cone, although it does not give very precise information, allows

to enumerate the points of the integer one (at least a superset of it), by taking

all linear combinations of the generators with coe�cients in 1=� Z

+

. It is thus a

precious information.

5 Boolean quadric programming

The cut polytope can be seen also as an object attached to boolean theory, rather

than graph theory. Indeed,

P

n

= Conv((jx

i

� x

j

j)

16i<j6n

; x 2 f0; 1g

n

)

Under this formulation, another object is naturally related to the cut polytope,

the boolean quadric polytope :

BQP

n

= Conv((x

i

x

j

)

16i6j6n

; x 2 f0; 1g

n

)

Both these polytopes arise in linear programming. One can also de�ne the

boolean quadric cone as the conic hull of the boolean quadric polytope. These

boolean quadric objects also have their graph-theory description. Indeed, the

boolean quadric cone BQC

n

can be seen as the conic hull of the intersection

vectors on K

n

.

De�nition 5.4 Let S be a subset of V

n

. The following n�n matrix �(S) de�ned

by

�(S)

ij

=

(

1 for i; j 2 S

0 otherwise

is called the intersection matrix. As for cuts, this matrix is symmetric, so the

intersection vector �(s) is de�ned as the vector of f0; 1g

n(n+1)

2

containing the

entries of the intersection matrix indexed by the ordered pairs f(i; j); 1 6 i 6

j 6 ng. Let �

n

be the set of all intersection vectors on K

n

.

It can be easily checked that BQC

n

= R

+

(�

n

)

In fact, the intersection vectors of K

n

and the cuts of K

n+1

are isomorphic by

the following applications (this dual vision called the covariance map was in-

troduced in [De 73]):

�

0

(x) = p with p

ij

=

(

x

0i

for 1 6 i = j 6 n

x

0i

+x

0j

�x

ij

2

for 1 6 i < j 6 n

 

0

(p) = x with

(

x

0i

= p

ii

for 1 6 i 6 n

x

ij

= p

ii

+ p

jj

� 2p

ij

for 1 6 i < j 6 n

15



(This actually comes to specializing one vertex, here 0, but any other vertex i

could have been chosen, bringing similar aplications �

i

and  

i

).

Let S be a subset of f0; 1; : : : ; ng not containing 0, and let �(S) denote the cut

of K

n+1

and �(S) the intersection vector of K

n

, this correspondance gives:

�(S) = �

0

(�(S)) and �(S) =  

0

(�(S))

and hence

�

0

(C

n+1

) = BQC

n

This correspondance is all the more interesting for integer programming that it

maps the cut lattice into the integer lattice. Indeed,

�

0

(L

n

) =Z

N

Hence, all results of this study on the cut cone and the cut lattice can be mapped

onto the boolean quadric cone and the integer cone.

Notation. For e 2 E

n

, let �

e

be

8

>

<

>

:

�

e

ij

= 1 pour i 6= j

�

e

ii

= 2 pour i 2 f1; : : : ; ng

�

e

e

= 0

and for v 2 f1; : : : ; ng let �

v

be

8

>

>

>

<

>

>

>

:

�

v

ij

= 1 pour i 6= j; i; j 6= v

�

v

ii

= 2 pour i 6= v

�

v

vi

= 2 pour i 6= v

�

v

vv

= 4

With these notations, the action of the covariance map on the Hilbert basis can

be explicited: �

e

= �

0

(d

e

) and �

v

= �

0

(d

0v

).

Since this mapping is a linear bijection , all properties concerning linear combi-

nations are transported from the cut cone to the boolean quadric cone. Hence,

we can directly translate our results in the boolean quadric language.

Corollary 2 The intersection vectors form a Hilbert basis of the boolean quadric

cone BQC

n

if and only if n 6 4.

Corollary 3 The Hilbert basis of the boolean quadric cone BQC

5

for the integer

lattice is made of the intersection vectors �(S) for S � f1; : : : ; 5g, of the �

e

for

e 2 E

n

and of the �

v

for v 2 f1; : : : ; 5g.

Corollary 4 The quasi-h points of �

5

are made of:

16



� �

v

+ n�(fv

0

g) for v; v

0

2 f1; : : : ; 5g; v 6= v

0

; n 2Z

+

� �

e

+ n�(f1; 2; 3; 4; 5g) for e 2 E; n 2Z

+

� �

e

+ n�(fvg for v 2 f1; : : : ; 5g; e 2 E, e not adjacent to v, n 2Z

+

Corollary 5 The scale of the boolean quadric cone BQC

5

is 2.

6 Possible directions of research

6.1 The Hilbert basis for the lattice Z

N

Up to now, Hibert bases have only been considered for the cone C

n

and the lattice

L

n

. Another problem would be to consider for the same cone C

n

, the lattice Z

N

.

In fact, these two problems are related. Let us denote by LB

n

the Hilbert basis for

C

n

and L

n

and by IB

n

the Hilbert basis for C

n

and Z

N

. The following inclusion

holds :

LB

n

� 2IB

n

[

0

@

L

n

\

8

<

:

X

x

i

2IB

n

"

i

x

i

; "

i

= 0; 1

9

=

;

1

A

Hence, LB

n

can be easily obtained from IB

n

. But conversely, IB

n

cannot be

easily obtained from LB

n

.

Proof.

Let us denote by G

n

the set 2IB

n

[ (L

n

\ f

P

x

i

2IB

n

"

i

x

i

; "

i

= 0; 1g).

It is clear that the points of G

n

are in the cut cone and the cut lattice. More-

over let x be a point of the cut lattice and the cut cone, x is a fortiori a

point of Z

N

, and can hence be decomposed over the Hilbert basis IB

n

as x =

P

x

i

2IB

n

n

i

x

i

; with 8i; n

i

2Z

+

. For all i, set p

i

=

j

n

i

2

k

.

Hence, x =

P

x

i

2IB

n

p

i

(2 x

i

) +

P

x

i

2IB

n

"

i

x

i

.

So, G

n

is a Hilbert generating set, so LB

n

� G

n

. �

The bases IB

n

seem to be composed of many more vectors than the LB

n

, but

much smaller ones (since the considered lattice is thinner). Geometrically, they

seem to be located closely around the point 1

N

(the smallest integer point on the

axis of symmetry). Moreover, for all n; 1

N

2 IB

n

.

Proof.

Suppose 1

N

62 IB

n

. Then, 1

N

= y + z with y; z 2 C

n

; y; z 6= 0. Hence, the

set of edges E could be partitionned into E = F [ F , such that for all edges

e 2 F; y

e

= 0 and z

e

= 1 and conversely, for all edges e 2 F; y

e

= 1 and z

e

= 0.

Up to switching y with z, one can assume y

12

= 1 and z

12

= 0. If y

13

= y

23

= 0,

y breaks a triangle inequality and subsequently is not in the cone and if y

13

=

17



1 and y

23

= 0 or y

13

= 0 and y

23

= 1, z breaks a triangle inequality and subse-

quently is not in the cone. So, y

13

= y

23

= 1. Repeating this argument brings

that for all edges e; y

e

= 1. Hence, z = 0, which is contradictory. So, 1

N

2 IB

n

.

�

Below, we denote by S

1

(x; n) (resp. S

1

(x; n)) the l

1

(resp. l

1

) sphere of center

x and of radius n (in Z

N

). We have computed (with the algorithm described in

section 3.2) the bases IB

n

for n = 3; 4 and did most of the computations for

n = 5.

� IB

3

= K

3

U f1

3

g = S

1

(1

3

; 1) and card(IB

3

) = 4.

� IB

4

= K

4

U S

1

(1

6

; 1) � S

1

(1

6

; 3) and card(IB

4

) = 22

� If IB

5

� S

1

(0; 4) then IB

5

� K

5

U S

1

(1

10

; 5) � S

1

(1

1

0; 6)

and card(IB

5

) = 298

6.2 The growth of the scale with n

Let us denote by �

n

the scale of the cut cone C

n

. We have �

3

= �

4

= �

5

= 1

and �

6

= 2.

Since the cone C

n

is a projection of the cone C

n+1

on a lesser-dimensional vector

space, one always has �

n+1

j�

n

. Hence, the function � is nondecreasing.

The only known bound on � is a linear lower bound : �

n

>

l

n�1

4

m

. This bound

comes from the d

e

: �(2 d(K

n

�e)) >

l

n�1

4

m

. This inequality becomes an equality

for n 6 6. No upper bound for �

n

is known.

Bounds on the scale would be of great interest since they would allow the enu-

meration of a superset of the integer cone. Actually, even if the scale gives a

much weaker information than the actual composition of the Hilbert basis, it can

help �nding the Hilbert basis. Indeed, knowing � allows to enumerate the integer

points in the parallellepiped P, as

1

�

Z

+

-combinations of the cuts.

Note that the problem of integer programming can be easily transfered to other

instances of semi-groups. Here, the problem can be transfered to integer and

become an arithmetic issue :

given integers x

1

; : : : ; x

m

, let S = f�

m

i=1

x

z

i

i

with for all i, z

i

2 Zg, what is the

least positive integer � such that for all k 2 S; k

�

can be decomposed as a product

of positive powers of the x

i

?

The mapping is achieved as follows : the basis of R

N

is mapped with the N �rst

prime integers and addition in R

N

becomes multiplication in N.
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6.3 Chv�atal rank

Another concept of integer programming that could be related to Hilbert bases

is the iterative procedure of Chv�atal. Starting with a given polytope, it consists

in �nding cutting planes that do not remove any integer point in the polytope

and to sharpen the shape of the polytope until it is the convex hull of its integer

points. This peeling of the polytope is done in a �nite number of steps which

is characteristic of the starting polytope. It would be interesting to relate this

number to the scale of the cone for instance.

De�nition 6.5 Let P be a polytope in R

n

and let P

?

= Conv(P \Z

n

). The se-

quence of polytopes (P

n

) is de�ned recursively as follows : P

(0)

= P and P

(n+1)

=

fx 2 P

(n)

j a

t

x 6 b for all a 2Z

n

; b 2Zsuch that max

x2P

(n)
(a

t

x) < b+ 1g

(P

n

) is a sequence of decreasing polytopes. The fundamental result of Chv�atal and

Gomory is that there exists an integer r such that for all integers k > r; P

(k)

=

P

?

. The smallest such r is called Chv�atal's rank of P.

For the case of cuts, it is interesting to consider the metric polytope MetP

n

(de�ned by the sole triangle inequalities), for which MetP

?

n

is the cut polytope

CutP

n

. Let r

n

be Chv�atal's rank of MetP

n

. For the same reason as for scale, r

n

is an increasing function of n. It is known that r

3

= r

4

= 0 and that r

5

= 1. The

rank is unknown from n = 6 on. However, a linear lower bound due to Chv�atal,

Cook and Hartman (quoted in [PT 94]) states that r

n

>

1

4

(n� 4).

It is intriguing that the lower bound is asymptotically the same for Chv�atal rank

of the metric polytope and the scale of the cut cone.

Finally, it seems that the general paradigm has not been found yet : the notions

of scale, Chv�atal rank and Hilbert bases give information relevant to the integral

structure of the considered polyhedron but lack an unifying frame.
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7 Proof of theorem 1.

7.1 The structure of the proof

This section is devoted to the overall structure of the proof that K

6

[fd

e

; e 2 Eg

is the Hilbert basis for C

6

and L

6

. As sketched above on page 10, the proof is

performed as follows. Take x a point of the Hilbert basis that is not a cut, we

prove succesively that :

� Step 1. For all vertices i,

{ (i) either T

i;jk

(x) = 0 for j; k 6= i.

{ (ii) or H

ij

(x) 2 f�2;�4g for j 6= i.

Let us denote by T the set of vertices i verifying condition (i) and by H

the set of those verifying condition (ii). V

6

= T [ H.

� Step 2. card(T ) 6 4. Hence card(H) > 2 and up to permutation, we can

take 5; 6 2 H.

� Step 3. H

56

(x);H

65

(x) 2 f�2;�4g.

� Step 4. T

1;56

(x) = T

2;56

(x) = T

3;56

(x) = T

4;56

(x) = 0.

� Step 5. Finally, x = d

56

.

Proof of step 1.

x is in the Hilbert basis without being a cut, so it is a quasi-h point. In particular,

for all i 2 f1; : : : ; 6g; x � �(i) 62 C

6

(otherwise, x could be decomposed as x =

�(i) + y with �(i); y 2 C

6

\ L

6

� f0g).

x� �(i) being out of the cone, there exists a hypermetric facet Hyp(b) such that

Hyp(b)(x� �(i)) = Hyp(b)(x)�Hyp(b)(�(i)) > 0.

Note that one always has Hyp(b)(�(i)) = b

i

(1 � b

i

).

Lemma 1 For all points x 2 L

6

and all hypermetric facets Hyp(b), the following

holds :

Hyp(b)(x) 2 2Z

Proof. Note that for S � V; Hyp(b)(�(S)) =

P

i2S

b

i

(1�

P

i2S

b

i

). Hence, since

P

i2S

b

i

et 1 �

P

i2S

b

i

have opposite parities, Hyp(b)(�(S)) 2 2Z. So for each

point x of the lattice L

6

; Hyp(b)(x) 2 2Z �
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With both these remarks, the following cases can be distinguished for the in-

equality Hyp(b) such that Hyp(b)(x) > Hyp(b)(�(i))

if Hyp(b) = T

i;jk

then Hyp(b)(�(i)) = �2 ) Hyp(b)(x) > 0;

if Hyp(b) = T

j;kl

with j 6= i then Hyp(b)(�(i)) = 0 ) Hyp(b)(x) > 2;

if Hyp(b) = P

kl;mnp

then Hyp(b)(�(i)) 2 f0;�2g ) Hyp(b)(x) > 0;

if Hyp(b) = H

0

k;lm

then Hyp(b)(�(i)) 2 f0;�2g ) Hyp(b)(x) > 0;

if Hyp(b) = H

kl

with k 6= i then Hyp(b)(�(i)) 2 f0;�2g ) Hyp(b)(x) > 0;

if Hyp(b) = H

ij

then Hyp(b)(�(i)) = �6 ) Hyp(b)(x) > �4:

Lemma 2 Heptagonal facets I and II contain no quasi-h points.

This lemma comes from the fact that these facets are simplices (so the decompo-

sition of a point as a linear combination of cuts of this face is unique) and from

an argument on linear dependencies in the lattice L

6

[DL 94].

Lemma 3 Pentagonal facets contain no quasi-h points.

With lemma 3 (which will be proved in section 7.2) and the fact that for all

hypermetric facet, Hyp(b)(x) 6 0 (since x 2 C

6

), the only possibilities left for the

facet separating x� �(i) from the cone are

� either T

i;jk

(x) = 0 for vertices j; k 6= i,

� or H

ij

(x) 2 f�2;�4g for j 6= i. �

Proof of step 2

The proof fo this step requires a few lemmas which will be proved in section 7.2.

Lemma 4 8e 2 E; x

e

> 1.

Lemma T 1 There exist no distinct i; j; k such that T

i;jk

(x) = T

j;ik

(x) = 0.

Lemma T 2 There exist no distinct i; j; k; l;m such that T

i;jk

(x) = T

j;lm

(x) = 0.

Lemma T 3 There exist no distinct i; j; k; l; n such that T

i;kl

(x) = T

j;ln

(x) = 0.

Lemma T 4 There exist no distinct i; j; l;m; n such that T

i;jk

(x) = T

l;mn

(x) = 0.

Suppose card(T ) > 5 and consider two cases :
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� case 1. There exists i; j; k 2 T , such that T

i;jk

(x) = 0.

Up to permutation, we may assume that T

1;23

(x) = 0 and 4; 5 2 T .

So there exists e; f; g 2 E such that T

2;e

(x) = T

3;f

(x) = T

4;g

(x) = 0.

By Lemma T2, g 62 f15; 16g.

By Lemma T3, g 62 f35; 36; 25; 26g.

By Lemma T4, g 6= 56.

Hence, g 2 f12; 13; 23g.

{ case 1.1. g = 13 (the case g = 12 is symmetrical).

T

1;23

(x) = T

4;13

(x) = 0.

By Lemma T1, e 6= 13 and f 62 f12; 14g.

By Lemma T2, e 62 f45; 46; 56g and f 62 f25; 26; 45; 46; 56g.

By Lemma T3, e 62 f15; 16; 35; 36g.

Hence, e 2 f14; 34g and f 2 f15; 16; 24g.

� case 1.1.1. e = 14. By Lemma T3, f 62 f15; 16g, so f = 24.

Thus T

1;23

(x) = T

2;14

(x) = T

3;24

(x) = T

4;13

(x) = 0.

Adding these four equalities gives x

24

= 2(x

34

+ x

21

) + x

24

.

Hence x

34

= x

21

= 0, which is forbidden by Lemma 4.

� case 1.1.2. e = 34. By Lemma T2, f 62 f15; 16g, so f = 24.

Thus T

2;34

(x) = T

3;24

(x) = 0 which is forbidden by Lemma T1.

{ case 1.2. g = 23. T

1;23

(x) = T

4;23

(x) = 0.

Vertices 4 and 5 play similar roles, so by case 1.1, T

5;23

(x) = 0.

By Lemma T1, e 62 f12; 34; 35g and f 62 f12; 24; 25g.

By Lemma T2, e; f 62 f14; 15; 16; 45; 46; 56g.

So, e = 36 and f = 26, which leads to

T

2;36

(x) = T

3;26

(x) = 0, which is forbidden by Lemma T1.

� case 2. There exists no triple i; j; k 2 T , such that T

i;jk

(x) = 0. So, atleast

one vertex is not in T . Up to permutation, we may assume that 1 62 T ,

and that T

2;13

(x) = 0.

Vertices 3,4,5 and 6 being in T , there exists e; f; g; h 2 f12; 13; 14; 15; 16g;

such that T

4;e

(x) = T

5;f

(x) = T

6;g

(x) = T

3;h

(x) = 0.

By Lemma T3, e; f; g 2 f12; 13g.

{ If e = f = g = 13 then, Lemma T1 forbids all possibilities for h.

{ Hence, one among e; f; g is 12, say e = 12.

By Lemma T2, h 62 f15; 16g and by Lemma T1, h 6= 12. So h = 14.

Thus, T

2;13

(x) = T

3;14

(x) = T

4;12

(x) = 0.

Adding these three equalities gives x

13

= x

23

+ x

24

+ x

34

+ x

13

.

Hence x

23

= x

24

= x

34

= 0, which is forbidden by Lemma 4. �
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Proof of step 3

There exist two heptagonal I facets H

ij

and H

kl

such that H

ij

(x);H

kl

(x) 2

f�2;�4g. The three following lemmas will be proved in the section 7.2.

Lemma H 1 there exist no distinct i; j; k such that H

ik

(x);H

jk

(x) 2 f�2;�4g.

Lemma H 2 there exist no distinct i; j; k; l such that H

ij

(x);H

kl

(x) 2 f�2;�4g.

Lemma H 3 there exist no distinct i; j; k such that H

ij

(x);H

jk

(x) 2 f�2;�4g.

With these three lemmas, the only possibility left for these two facets is to have

H

ij

(x);H

ji

(x) 2 f�2;�4g for some pair of vertices (i; j). Up to permutation, we

can assume H

56

(x);H

65

(x) 2 f�2;�4g. �

Proof of step 4

The purpose of this step is to locate x on its minimal face. We have H

56

(x) > �4

and H

65

(x) > �4. The addition of both inequalities gives :

4x

56

� 3

4

X

i=1

(x

5i

+ x

6i

) + 2

X

16i;j64

x

ij

> �8

which can be rewritten as P

56; 123

(x)+P

56; 124

(x)+P

56; 134

(x)+P

56; 234

(x) > �8.

By Lemma 3, x is on no pentagonal facet.

So, P

56; 123

(x) = P

56; 124

(x) = P

56; 134

(x) = P

56; 234

(x) = �2 and H

5;6

(x) =

H

6;5

(x) = �4.

Let us examine vertex 1 : By Lemmas H1, H2 and H3, 8i; H

1;i

(x);H

i;1

(x) < 4.

So, 1 2 T (and similarly 2; 3 and 4 are in T ). Hence, T

1;e

(x) = T

2;f

(x) = 0 for

some edges e and f .

Up to permutation, we may assume that e 2 f23; 25; 56g.

Suppose T

1;56

(x) < 0. Then, e 2 f23; 25g.

� case 1: e = 23.

�2 = P

56;123

(x) + T

1;23

(x) = T

1;56

(x) + T

5;23

(x) + T

6;23

(x).

So T

1;56

(x) = �2 and T

5;23

(x) = T

6;23

(x) = 0.

By Lemma T1, f 62 f13; 35; 36g.

By Lemma T2, f 62 f14; 15; 16; 45; 46; 56g.

Thus, f = 34, and consequently T

2;34

(x) = 0. A similar argument for vertex

3 gives T

3;24

(x) = 0, which is contradictory with Lemma T1.
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� case 2: e = 25.

�2 = P

56;123

(x) + T

1;25

(x) = T

6;23

(x) + T

5;13

(x) + T

1;56

(x).

So T

1;56

(x) = �2 and T

5;13

(x) = T

6;23

(x) = 0, which is forbidden by Lemma

T3.

Hence, T

1;56

(x) = 0 and similarly, T

2;56

(x) = T

3;56

(x) = T

4;56

(x) = 0. �

Proof of step 5

This last step of the proof is devoted to �nding the coordinates of x from its

minimal face.

Substracting to a pentagonal inequality P

56;123

; P

56;124

; P

56;134

or P

56;234

three of

the triangle inequalities T

1;56

; T

2;56

; T

3;56

and T

4;56

, gives

8

>

>

>

<

>

>

>

:

�2x

56

+ x

12

+ x

13

+ x

23

= �2;

�2x

56

+ x

13

+ x

14

+ x

34

= �2;

�2x

56

+ x

23

+ x

24

+ x

34

= �2;

�2x

56

+ x

12

+ x

14

+ x

24

= �2:

which implies,

8

>

>

>

<

>

>

>

:

a := x

12

= x

34

;

b := x

13

= x

24

;

c := x

14

= x

23

;

d := 1 +

a+b+c

2

= x

56

:

H

56

(x) = �4 implies that

P

4

i=1

x

5i

+ 2

P

4

i=1

x

6i

= 6d and

H

65

(x) = �4 implies that

P

4

i=1

x

6i

+ 2

P

4

i=1

x

5i

= 6d.

Hence,

P

4

i=1

x

5i

=

P

4

i=1

x

6i

= 2d, d'o�u x

15

+ x

35

= x

26

+ x

46

.

The minimal face of x contains the 16 following cuts :

x =

X

S2F

�

S

�(S)

with F = f5; 6; 15; 16; 25; 26; 35; 36; 45; 46; 125; 126; 135; 136; 145; 146g

Set �

1

:= �

15

+ �

16

; �

2

:= �

25

+ �

26

; �

3

:= �

35

+ �

36

; �

4

:= �

45

+ �

46

;



12

:= �

125

+ �

126

; 

13

:= �

135

+ �

136

; 

14

:= �

145

+ �

146

.

Expressing the coordinates of x in terms of the � and the  gives

a = �

1

+ �

2

+ 

13

+ 

14

= �

3

+ �

4

+ 

13

+ 

14

;

b = �

1

+ �

3

+ 

12

+ 

14

= �

2

+ �

4

+ 

12

+ 

14

;

c = �

1

+ �

4

+ 

12

+ 

13

= �

2

+ �

3

+ 

12

+ 

13

:

So,

8

>

>

>

<

>

>

>

:

� := �

1

= �

2

= �

3

= �

4

;



12

= d � � � a� 1;



13

= d � � � b� 1;



14

= d � � � c� 1:

Moreover, since d =

P

�

S

; �

5

+ �

6

+ � = 1.

The equality x

15

+x

35

= x

26

+x

46

implies that 2�

5

+�

15

+�

25

+�

35

+�

45

= �+1.
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Finally, the evenness condition from section 2.1. (x 2 L

6

) on triangles (1,2,5),

(1,3,5) and (1,4,5) gives :

"

2

= �

5

+ �

35

+ �

45

� �

125

� � 2Z;

"

3

= �

5

+ �

25

+ �

45

� �

135

� � 2Z;

"

4

= �

5

+ �

25

+ �

35

� �

145

� � 2Z:

x can be represented in terms of these integer parameters.

x = "

2

(�(126) � �(125))

+ "

3

(�(136) � �(135))

+ "

4

(�(146) � �(145))

+ a=2 (�(136) + �(146)� �(126))

+ b=2 (�(126) + �(146)� �(136))

+ c=2 (�(126) + �(136) � �(146))

+ �(6) + �(15) � �(16)

This decomposition leaves only a few points to examine, since for all i, "

i

2

f�1; 0; 1g and a; b; c 2 f2; ::; 9g with a+ b+ c 6 16. We checked by computer

that d

56

was the only point of the cone of this form that was quasi-h. �
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7.2 Proof of technical results.

Proof of Lemma 3

Let x be a point of cone and the lattice, on the facet Hyp(1; 1; 1;�1;�1; 0). This

facet is spanned by 19 cuts : �(S) for S 2 F with :

G = f2; 3; 24; 25; 34; 35; 234; 235; 2345g and F = G [ fS [ f6g for S 2 Gg [ f6g

Thus, x =

P

S2F

�

S

�(S). The dimension of this facet is 14, hence the variables

�

346

; �

356

; �

2346

; �

2356

and �

23456

can be taken as free variables. For given coor-

dinates of x, all other 14 parameters can be expressed by means of these �ve

variables :

B

0

B

B

B

B

B

B

@

�

346

�

356

�

2346

�

2356

�

23456

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

��

246

��

256

�

6

��

2

��

36

1

C

C

C

C

C

C

A

+N (?)

where N =

0

B

B

B

B

B

B

@

C

1

46

C

1

56

C

1

23

� C

6

23

�P

12;456

(x)

C

1

36

1

C

C

C

C

C

C

A

(with the notation C

k

ij

= �

1

2

T

k;ij

(x))

and B =

0

B

B

B

B

B

B

@

1 0 1 0 1

0 1 0 1 1

0 0 1 1 1

1 1 0 0 1

1 1 1 1 1

1

C

C

C

C

C

C

A

Since x is in the lattice, the right hand vector N is integral. Moreover, the

following equations link these coe�cients by pairs. Here again, all right hand

side terms are integral.

�

24

+ �

246

= C

4

13

;

�

25

+ �

256

= C

5

13

;

�

34

+ �

346

= C

4

12

;

�

35

+ �

356

= C

5

12

;

�

234

+ �

2346

= C

5

23

;

�

235

+ �

2356

= C

4

23

;

�

2345

+ �

23456

= C

1

45

;

�

2

+ �

26

= C

2

45

;

�

3

+ �

36

= C

3

45

:

These equations determine uniquely the 14 other coe�cients from the 5 free

variables. Moreover, one can note that if these 5 free variables take integral

values, then all �

S

are integers.
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The matrix B is totally unimodullar. It is indeed one of the two 5 � 5 matrices

found by Bixby that are totally unimodullar without being a network matrix (It is

proved in [Se 80] that any totally unimodullar matrix can always be decomposed

as a combination of network matrices and these two special matrices found by

Bixby).

Since B is totally unimodullar, so is the matrix

0

B

B

B

@

I

�I

B

�B

1

C

C

C

A

. Hence, for all quadruple

of integer vectors (a,b,c,d), the polythedron de�ned by

(

a 6 x 6 b

c 6 Bx 6 d

is integral

(its vertices are integral). Here, let us consider the polytope :

0

B

B

B

B

B

B

@

0

0

0

0

0

1

C

C

C

C

C

C

A

6

0

B

B

B

B

B

B

@

�

346

�

356

�

2346

�

2356

�

23456

1

C

C

C

C

C

C

A

6

0

B

B

B

B

B

B

@

C

4

12

C

5

12

C

5

23

C

4

23

C

1

45

1

C

C

C

C

C

C

A

and

0

B

B

B

B

B

B

@

C

1

46

� C

4

13

C

1

56

� C

5

13

C

1

23

� C

6

23

�P

12;456

(x)� C

2

45

C

1

36

� C

3

45

1

C

C

C

C

C

C

A

6 B

0

B

B

B

B

B

B

@

�

346

�

356

�

2346

�

2356

�

23456

1

C

C

C

C

C

C

A

6

0

B

B

B

B

B

B

@

C

1

46

C

1

56

M

�P

12;456

(x)

C

1

36

1

C

C

C

C

C

C

A

The �rst set of lower bounds compels �

346

; �

356

; �

2346

; �

2356

and �

23456

to be

positive. Via the equations by pairs, the �rst set of upper bounds compels

�

34

; �

35

; �

234

; �

235

and �

2345

to be positive. Via the equation (?), the second

set of upper bounds compels �

246

; �

256

; �

2

and �

36

to be positive. Finally, via the

equation (?) and the equations by pairs, the second set of lower bounds compels

�

24

; �

25

; �

6

; �

23

and �

3

to be positive.

Hence, each point of this polyhedron corresponds exactly to a R

+

-realization of

x. So, for M large enough, this polyhedron is not empty. If M is a large enough

integer, this polyhedron is a non empty integer polyhedron, so it contains a for-

tiori an integer point. So there exists a R

+

-realization of x such that the 5 free

coe�cients are integer. This corresponds to a Z

+

-realization of x. So x is not

quasi-h. �

Proof a Lemma 4

Suppose that there exists e such that x

e

= 0. Up to permutation, suppose that

e = 56. Then, the triangular inequalities T

5;i6

(x) and T

6;i5

(x) respectively imply
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that x

i5

6 x

i6

and x

i6

6 x

i5

. Thus, 8i 2 f1; 2; 3; 4g; x

i5

= x

i6

.

Let ~x be the projection of x on K

5

(the graph induced by vertices 1 to 5). The

set of cuts K

5

forms a Hilbert basis, so ~x can be decomposed as

~x =

X

S�V

5

n

S

�(S)

Set y =

P

T�V

6

n

0

T

�(T ) with n

0

S[f6g

= n

S

and n

0

S

= 0 for 6 62 S. Thus x = y and

x is not quasi-h. �

Proof of Lemma T1

T

i;jk

(x) = 0 implies x

jk

6 x

ik

+ x

ij

. T

j;ik

(x) = 0 implies x

ik

6 x

ij

+ x

jk

.

Thus x

jk

6 2x

ij

+ x

jk

, so x

ij

= 0, which is forbidden by Lemma 4. �

Another technical lemma is necessary to the proof of Lemma T2.

Lemma T 5 There exist no distinct i; j; k; l andm such that T

i;jk

(x) = T

i;lm

(x) =

0.

Proof of Lemma T5

1

3                 4

2                                                        5

+                                         +
-             -

-                                -

Figure 1: The situation of Lemma T5

Suppose that T

1;23

(x) = T

1;45

(x) = 0. Then, x is on a face de�ned by 17 cuts, i.e.

x =

X

S2F

�

S

�(S)

with F = f2; 3; 4; 5; 6; 24; 25; 34; 35; 26; 36; 46; 56; 124; 125; 134; 135g

Moreover,

T

1;24

(x) 2 2Z) "

24

:= �

24

+ �

135

2Z,

T

1;34

(x) 2 2Z) "

34

:= �

34

+ �

125

2Z,

T

1;25

(x) 2 2Z) "

25

:= �

25

+ �

134

2Z,

T

1;35

(x) 2 2Z) "

35

:= �

35

+ �

124

2Z,

T

2;45

(x) 2 2Z) "

2

:= �

2

+ �

26

2Z,

28



T

3;45

(x) 2 2Z) "

3

:= �

3

+ �

36

2Z,

T

4;23

(x) 2 2Z) "

4

:= �

4

+ �

46

2Z,

T

5;23

(x) 2 2Z) "

5

:= �

5

+ �

56

2Z,

T

2;16

(x) 2 2Z) �

2

:= �

2

+ �

24

+ �

25

2Z,

T

3;16

(x) 2 2Z) �

3

:= �

3

+ �

34

+ �

35

2Z,

T

4;16

(x) 2 2Z) �

4

:= �

4

+ �

24

+ �

34

2Z,

T

5;16

(x) 2 2Z) �

5

:= �

5

+ �

25

+ �

35

2Z,

T

6;45

(x) 2 2Z)  := �

6

+ �

26

+ �

36

2Z.

These integer parameters entirely de�ne x :

x

12

= "

2

+ "

24

+ "

25

,

x

13

= "

3

+ "

34

+ "

35

,

x

14

= "

4

+ "

24

+ "

34

,

x

15

= "

5

+ "

25

+ "

35

,

x

16

=  + "

4

+ "

5

� �

4

� �

5

+ "

24

+ "

25

+ "

34

+ "

35

,

x

23

= "

2

+ "

3

+ "

24

+ "

25

+ "

34

+ "

35

,

x

24

= "

2

+ "

4

+ "

25

+ "

34

,

x

25

= "

2

+ "

5

+ "

24

+ "

35

,

x

26

=  + "

4

+ "

5

� "

2

� �

4

� �

5

+ 2�

2

+ "

34

+ "

35

,

x

34

= "

3

+ "

4

+ "

35

+ "

24

,

x

35

= "

3

+ "

5

+ "

34

+ "

25

,

x

36

=  + "

4

+ "

5

� "

3

� �

4

� �

5

+ 2�

3

+ "

24

+ "

25

,

x

45

= "

4

+ "

5

+ "

24

+ "

25

+ "

34

+ "

35

,

x

46

=  + �

4

� �

5

+ "

5

+ "

25

+ "

35

,

x

56

=  + �

5

� �

4

+ "

4

+ "

24

+ "

34

.

This leads to 2

11

3

5

points, and we checked by enumeration on a computer that

none of them was quasi-h. �

Proof of Lemma T2

1

2                               3

4                         5+

+

----

--

-

-

Figure 2: The situation of Lemma T2
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Suppose that T

1;23

(x) = T

2;45

(x) = 0. Then, x is on a face de�ned by 17 cuts, i.e.

x =

X

S2F

�

S

�(S)

with F = f3; 4; 5; 6; 13; 24; 25; 34; 35; 36; 46; 56; 124; 125; 134; 135; 136g

The evenness condition (x is in the cut lattice) on triangles T

3;14

(x); T

3;24

(x) and

T

2;15

(x) brings :

8

>

<

>

:

�

3

+ �

35

+ �

36

+ �

124

2Z

�

3

+ �

24

+ �

35

+ �

36

+ �

124

+ �

135

+ �

136

2Z

�

24

+ �

135

2Z

So, �

163

2Z, and subsequently �

136

= 0.

Hence, T

1;45

(x) = �2(�

13

+ �

136

) = 0, which is forbidden by Lemma T5. �

Proof of Lemma T3

1                          4

2                         3                         5
+                           +

-               -         -              -

Figure 3: The situation of Lemma T3

Suppose that T

1;23

(x) = T

5;34

(x) = 0. Then x is on a face de�ned by 17 cuts, i.e.

x =

X

S2F

�

S

�(S)

with F = f2; 3; 4; 6; 12; 13; 24; 26; 35; 36; 45; 46; 123; 124; 135; 245; 345g

Moreover,

T

1;25

(x) 2 2Z) "

13

:= �

13

+ �

245

2Z,

T

5;14

(x) 2 2Z) "

35

:= �

35

+ �

124

2Z,

T

1;34

(x) 2 2Z) "

12

:= �

12

+ �

345

2Z,

T

5;23

(x) 2 2Z) "

45

:= �

45

+ �

123

2Z,

T

2;14

(x) 2 2Z) "

2

:= �

2

+ �

26

2Z,

T

3;15

(x) 2 2Z) "

3

:= �

3

+ �

36

2Z,

T

4;25

(x) 2 2Z) "

4

:= �

4

+ �

46

2Z,

T

6;34

(x) 2 2Z) �

2

:= �

6

+ �

26

+ �

345

2Z,

T

6;23

(x) 2 2Z) �

4

:= �

6

+ �

46

+ �

123

2Z,

T

5;36

(x) 2 2Z) 

45

:= �

45

+ �

36

+ �

245

2Z,
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T

5;46

(x) 2 2Z) 

35

:= �

35

+ �

46

+ �

135

2Z,

T

1;26

(x) 2 2Z) 

13

:= �

13

+ �

26

+ �

135

2Z,

T

1;36

(x) 2 2Z) 

12

:= �

12

+ �

36

+ �

124

2Z,

P

15;234

(x) = �2(�

24

+ �

135

) 2 2Z

�

. So �

24

+ �

135

= 1.

These parameters entirely de�ne x :

x

12

= "

2

+ "

13

+ 1,

x

13

= "

3

+ "

35

+ "

12

,

x

14

= "

4

+ "

12

+ "

13

+ "

45

+ 1,

x

15

= "

12

+ "

13

+ "

35

+ "

45

,

x

16

= 

12

+ 

13

+ �

4

,

x

23

= "

2

+ "

3

+ "

12

+ "

13

+ "

35

+ 1,

x

24

= "

2

+ "

4

+ "

12

+ "

45

,

x

25

= "

2

+ "

12

+ "

35

+ "

45

+ 1,

x

26

= 

12

� 

13

+ "

2

+ "

13

+ �

4

+ 1,

x

34

= "

3

+ "

4

+ "

13

+ "

35

+ "

45

+ 1,

x

35

= "

3

+ "

13

+ "

45

,

x

36

= 

13

� 

12

+ "

3

+ "

12

+ "

35

+ �

4

,

x

45

= "

4

+ "

35

+ 1,

x

46

= 

45

� 

35

+ "

4

+ "

35

+ �

2

+ 1,

x

56

= 

35

+ 

45

+ �

2

.

This leaves 2

13

3

2

to examine and we checked that none of them was quasi-h. �

Proof of Lemma T4

1                                         4

2                        3              5                         6
+                                          +

-                -                       -               -

Figure 4: The situation of Lemma T4

Suppose that T

1;23

(x) = T

4;56

(x) = 0. Then x is on a face de�ned by 17 cuts, i.e.

x =

X

S2F

�

S

�(S)

with F = f2; 3; 5; 6; 12; 13; 25; 26; 35; 36; 45; 46; 123; 125; 126; 135; 136g

Moreover,

T

1;24

(x) 2 2Z) �

13

+ �

135

+ �

136

2Z,

31



T

1;25

(x) 2 2Z) �

13

+ �

25

+ �

136

2Z,

T

1;26

(x) 2 2Z) �

13

+ �

26

+ �

135

2Z.

Thus �

25

= �

125

and �

26

= �

1

36. Set "

2

:= �

13

+ �

25

+ �

26

,

Similarly, �

35

= �

125

and �

36

= �

126

. Set

"

3

:= �

12

+ �

35

+ �

36

2Z,

"

5

:= �

46

+ �

25

+ �

35

2Z,

"

6

:= �

45

+ �

26

+ �

36

2Z.

T

2;14

(x) 2 2Z) �

2

+ �

25

+ �

26

2Z,

Thus �

2

= �

13

and similarly �

3

= �

12

, �

5

= �

46

and �

6

= �

45

.

T

1;56

2 2Z) "

1

:= �

12

+ �

13

+ �

123

2Z.

This leads to the following decomposition :

x

12

= 2"

2

, x

13

= 2"

3

, x

45

= 2"

5

, x

46

= 2"

6

,

x

23

= 2("

2

+ "

3

); x

56

= 2("

5

+ "

6

),

x

14

= x

15

= x

16

=

24

= x

25

= x

26

= x

34

= x

35

= x

36

= "

1

+ "

5

+ "

6

.

Hence, the "

i

fully characterizae x.

8i; "

i

2 f0; 1; 2g and by Lemma 4, "

2

; "

3

; "

5

; "

6

> 0. This leaves 2

6

= 64 points

to examine and we checked that none of them was quasi-h. �

The proofs of Lemma H1, H2 and H3 requires a last technical lemma :

Lemma T 6 There exist no distinct i; j; k and l such that T

i;jk

(x) = T

i;kl

(x) =

T

i;jl

(x) = 0

Proof of Lemma T6

2                                         4

3

1

+ +

+

-
---

-
-

Figure 5: The situation of Lemma T6

Suppose that T

1;23

(x) = T

1;24

(x) = T

1;34

(x) = 0. Then x is on a face de�ned by

15 cuts, i.e.

x =

X

S2F

�

S

�(S)

with F = f2; 3; 4; 5; 6; 25; 26; 35; 36; 45; 46; 56; 256; 356; 456g

Moreover,

T

2;16

(x) 2 2Z, so �

2

+ �

25

2Z,

32



T

2;15

(x) 2 2Z, so �

2

+ �

26

2Z. Thus, �

25

= �

26

.

Similarly, �

35

= �

36

and �

45

= �

46

.

T

2;34

(x)� T

2;16

(x) 2 2Zso �

26

+ �

256

2Z. Thus, �

256

= �

2

.

Similarly, �

356

= �

3

and �

456

= �

4

.

T

6;34

(x) 2Z, so �

6

+ �

26

+ �

56

+ �

256

2Z, so �

6

+ �

56

2Z

Similarly, �

5

+ �

56

2Zand so, �

5

= �

6

.

T

5;16

(x) 2 2Zso "

5

+ "

25

+ "

35

+ "

45

2Z.

Set "

2

= �

2

+ �

26

; "

3

= �

3

+ �

36

; "

4

= �

4

+ �

46

,

" = �

5

+ �

56

and � = "

5

+ "

25

+ "

35

+ "

45

.

The coordinates of x can be expressed in terms of these integer parameters :

x

12

= 2"

2

; x

13

= 2"

3

; x

14

= 2"

4

.

Since the coordinates of x are strictly positive (Lemma 4), "

2

= "

3

= "

4

= 1.

x

15

= x

16

= x

25

= x

26

= x

35

= x

36

= x

45

= x

46

= 3 + ",

x

23

= x

24

= x

34

= 4,

x

56

= 2�.

There are six possibilities since � 2 f1; 2; 3g and " 2 f0; 1g.

� if � = 1; x = �(25) + �(26) + �(3) + �(356) + �(4) + �(456) + "�(56).

� if � = 2; x = �(25) + �(26) + �(35) + �(36) + �(4) + �(456) + "�(56).

� if � = 3; x = �(25) + �(26) + �(35) + �(36) + �(45) + �(46) + "�(56).

So, in all cases, x has a Z

+

realization, and consequently, x is not quasi-h. �

Proof of Lemma H1

Suppose that H

1;2

(x);H

6;1

(x) 2 f�2;�4g. By addition,

H

1;2

(x)+H

6;1

(x) = P

16;234

(x)+T

1;34

(x)+T

1;45

(x)+T

1;35

(x)+T

6;12

(x)�2x

26

> �8

By Lemma 4, �2x

26

6 �2 and by Lemma 3, P

16;234

(x) 6 �2.

So, for atleast two of the triangles appearing in this inequality, the equality holds

.

� T

6;12

(x) = T

1;ij

(x) = 0, with i; j 2 f3; 4; 5g is forbidden by Lemma T2.

� T

1;34

(x) = T

1;45

(x) = T

1;35

(x) = 0 is forbidden by Lemma T6.

� Hence, up to a permutation of vertices 3,4 and 5, T

1;34

(x) = T

1;45

(x) =

0; T

1;35

(x) = T

6;12

(x) = �2 and x

26

= 1.

Lemma T3 forbids T

6;25

(x) = 0 or T

2;56

(x) = 0. Thus, T

2;56

(x); T

6;25

(x) 6

�2.

Hence x

56

6 x

25

� 1 and x

25

6 x

56

� 1 which is incompatible. �
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Proof of Lemma H2

Suppose that H

2;1

(x);H

6;1

(x) 2 f�2;�4g. So

�8 6 H

2;1

(x) +H

6;1

(x) = P

12; 345

(x) + P

16; 345

(x)� 4x

26

6 �2 � 2 � 4 = �8

Thus, P

12;345

(x) = P

16;345

(x) = �2 and x

26

= 1.

This edge x

26

constrains certain triangular inequalities. Indeed, for all i 2

f1; 3; 4; 5g; x

i2

+ 1 > x

i6

and x

i6

+ 1 > x

i2

.

The evenness condition implies that x

i6

� x

i2

= "

i

2 f�1;+1g

P

16; 345

(x) = P

12; 345

(x) impies that "

1

= "

3

+ "

4

+ "

5

.

Up to permutation, we can set "

1

= "

3

= "

4

= 1 and "

5

= �1. Hence,

T

6;12

(x) = T

6;23

(x) = T

6;24

(x) = T

2;56

(x) = 0

Let us examine vertex 1: suppose that 1 2 T . Then T

1;e

(x) = 0 for an edge

e 2 E.

By Lemma T5, e 62 f23; 24; 25; 26; 36g,

By Lemma T1, e 62 f34; 35; 45g,

By Lemma T6, e 62 f46; 56g,

By Lemma T3, e 6= 26.

There are no possibilities left for e, so 1 62 T .

By Lemma H1 implies H

1;i

(x) < �4; 8i 2 f2; 3; 4; 5; 6g, so 1 62 H. Hence, x is

neither in T nor in H, which is impossible. �

Proof of Lemma H3

Supposons that H

1;2

(x); H

6;5

(x) 2 f�2;�4g. The proof will contain three steps:

We will �rst prove that one of the two equalities T

6;12

(x) = 0 and T

1;56

(x) = 0

holds. Then, we will deduce that vertices 3 and 4 are in T . Finally, with the

lemmas about triangles, a contradiction will be raised.

step 1. The following decomposition holds :

H

1;2

(x) +H

6;5

(x) = T

1;34

(x) + T

6;34

(x) + T

6;12

(x) + T

1;56

(x) + 2X > �8

with

X = T

6;12

(x) + T

2;56

(x) + x

26

� x

15

= T

5;12

(x) + T

1;56

(x) + x

15

� x

26

Without loss of generality, we can suppose that x

15

> x

26

.

Suppose that T

6;12

(x) < 0. Thus, since H

1;2

(x) + H

6;5

(x) > �8, at least two

among the triangle equalities T

1;34

(x); T

6;34

(x) and T

1;56

(x) hold.

Lemma T2 forbids T

6;34

(x) = T

1;56

(x) = 0.

Lemma T5 forbids T

1;34

(x) = T

1;56

(x) = 0.

Thus, T

1;56

(x) = T

6;12

(x) = �2 and T

1;34

(x) = T

6;34

(x) = T

2;56

(x) = 0 which is

forbidden by Lemma T2.

So T

6;12

(x) = 0 or (the symmetric case, when x

15

6 x

26

), T

1;56

(x) = 0.
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Step 2. Suppose that 3 2 H.

By Lemma H1, H

3;2

(x); H

3;5

(x) < �4.

By LemmaH2, H

3;1

(x); H

3;6

(x) < �4. Thus, H

3;4

(x) 2 f�2;�4g. The argument

used in step 1 on H

1;2

and H

5;6

or H

5;6

and H

3;4

(instead of H

1;2

and H

3;4

) brings

respectively that T

1;34

(x) = 0 or T

3;12

(x) = 0; T

1;56

(x) = 0 or T

5;12

(x) = 0 and

T

3;56

(x) = 0 or T

5;34

(x) = 0.

Lemma T2 forbids T

1;56

(x) = T

3;12

(x) = 0.

Lemma T5 forbids T

1;56

(x) = T

1;34

(x) = 0,

Thus, T

1;56

(x) < 0 and T

5;12

(x) = 0

Lemma T2 forbids T

5;12

(x) = T

3;56

(x) = 0,

Lemma T5 forbids T

5;12

(x) = T

5;34

(x) = 0.

There are no possibilities left. Hence, 3 2 T , and for the same reasons, 4 2 T .

Step 3. Since 3; 4 2 T , there exist edges e and f such that T

3;e

(x) = T

4;f

(x) = 0

Suppose (as in step 1) that x

15

> x

26

and thus, T

6;12

(x) = 0.

By Lemma T2, T

1;34

(x) < 0 and Lemma T4 implies that T

5;34

(x) < 0.

By Lemma T2, e 62 f46; 56g.

By Lemma T3, e 62 f14; 15; 24; 25g.

By Lemma T4, e 6= 45. Thus, e 2 f12; 16; 26g. Similarly, f 2 f12; 16; 26g.

Moreover, Lemma T3 forbids e 6= f . Hence, only three cases remain:

� if e = f = 12. By Lemma T2, T

1;56

(x); T

2;56

(x) < 0.

Thus, H

1;2

(x) + H

5;6

(x) 6 �2 � 2 + 0 � 2 + 2(0 � 2 + 0) = �10 which is

impossible.

� if e = f = 16. By Lemma T3, T

2;56

(x) < 0. if T

1;56

(x) < 0, the same

argument as above would lead to a contradiction, so T

1;56

(x) = 0.

Let us now consider vertices 2 and 5 and let us prove that either 2 or 5

belongs to T . Suppose that 2; 5 2 H.

By Lemma H1, H

5;1

(x);H

5;2

(x);H

5;3

(x);H

5;4

(x) < �4.

Thus, H

5;6

(x) 2 f�2;�4g. Similarly, H

2;1

(x) 2 f�2;�4g.

The Step 1 implies that T

2;56

(x) = 0 or T

5;12

(x) = 0.

But T

2;56

(x) < 0 and Lemma T3 forbids T

5;12

(x) = 0 (since T

3;16

(x) = 0).

So either 2 or 5 belongs toT . Thus T

2;g

(x) = 0 for an edge g 2 E or

T

5;h

(x) = 0 for an edge h 2 E.

Lemma T3 forbids g 2 f13; 14; 15; 36; 46; 56g and h 62 f24; 34; 36; 46g.

Lemma T2 forbids g 2 f34; 35; 45g and h 62 f12; 13; 14; 23; 26g.

Lemma T1 forbids that g = 16 and h = 16.

There are no possiblities left neither for g nor for h.

� If e = f = 26. By Lemma T3, T

1;56

(x) < 0.

If T

2;56

(x) < 0, then H

1;2

(x)+H

5;6

(x) 6 �2�2+0�2+2(0�2+0) = �10

which is impossible. Thus, T

2;56

(x) = 0.
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Consider vertex 5. Suppose 5 2 H.

By Lemma H1, H

5;1

(x);H

5;2

(x);H

5;3

(x);H

5;4

(x) < �4. Thus, H

5;6

(x) 2

f�2;�4g. Step 1 implies that either T

1;56

(x) = 0 or T

5;12

(x) = 0. We

already know that T

1;56

(x) < 0, and Lemma T3 forbids T

5;12

(x) = 0 (since

T

3;26

(x) = 0). Thus, 5 2 T . Hence, T

5;g

(x) = 0 for some edge g 2 E.

By Lemma T3, g 62 f12; 13; 14; 16; 23; 24g.

By Lemma T2, g 62 f34; 36; 46g.

By Lemma T1, g 6= 26.

There are no possibilities left for g. �
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