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Abstract

Behavioural theories are a generalization of �rst-order theories where the equal-

ity predicate symbol is interpreted by a behavioural equality of objects (and not

by their identity). In this paper we �rst consider arbitrary behavioural equalities

determined by some (partial) congruence relation and we show how to reduce the

behavioural theory of any class of �-algebras to (a subset of) the standard theory

of some corresponding class of algebras. This reduction is the basis of a method

for proving behavioural theorems whenever an axiomatization of the behavioural

equality is provided. Then we focus on the important special case of (partial) ob-

servational equalities where two elements are observationally equal if they cannot

be distinguished by observable computations over some set of input values. We

provide general conditions under which an obvious in�nite axiomatization of the

observational equality can be replaced by a �nitary one and we provide method-

ological guidelines for �nding such �nitary axiomatizations. As a consequence, any

proof system for �rst-order logic can be used to prove the behavioural validity of

�rst-order formulas w.r.t. a given (partial) observational equality.

Keywords: Algebraic speci�cation - Observable behaviour - Theorem proving.

1 Introduction

Behavioural abstraction plays a prominent rôle in formal software development, since it

provides a suitable basis for de�ning adequate correctness concepts (cf. e.g. [9], [17], [15],

[19], [2], [16]). For instance, for proving the correctness of a program with respect to

a given speci�cation, many examples show that it is essential to abstract from internal

implementation details and to rely only on the observable behaviour of the program.

Behavioural correctness concepts can be formalized using a behavioural logic, where

the usual satisfaction relation of �rst-order logic with equality is generalized to a be-

havioural satisfaction relation determined by a (partial) congruence relation on any �-

algebra. The most important examples of behavioural equalities are observational equali-

ties relating any two elements of an algebra which cannot be distinguished by observable



Behavioural Theories and The Proof of Behavioural Properties 2

computations. In the literature there are di�erent de�nitions of observational equali-

ties according to di�erent choices of the inputs values that are allowed for observable

computations. For instance [17] considers the \total" observational equality imposing no

restriction on the input values while in [15] a \partial" observational equality is used

where only observable inputs are allowed for observable computations. Since we consider

arbitrary partial congruence relations both notions are captured by our general concept

of behavioural equality.

For performing correctness proofs in a behavioural framework it is crucial to show that

the axioms of a given speci�cation are behaviourally satis�ed by an implementation. In

other words this means that the axioms of a given speci�cation belong to the behavioural

theory of the implementing speci�cation where the behavioural theory of a class C of

�-algebras is the set of all formulas that are behaviourally satis�ed by all algebras of C.

Unfortunately it is usually di�cult to prove that a formula � belongs to the behavioural

theory of a given class C of �-algebras. The behavioural satisfaction relation does not

even ful�ll the satisfaction condition of institutions. Therefore we are interested in �nd-

ing \nice" characterizations of behavioural theories which allow us to prove behavioural

theorems using standard proof techniques as implemented, for instance, in any available

theorem prover for (standard) �rst-order logic. We split this task into two major parts:

First we show how to reduce for any arbitrary behavioural equality and for any class C

of �-algebras the behavioural theory of C to (a subset of) the standard theory of some

corresponding class of algebras and we show that this reduction is useful for proving

behavioural theorems if an axiomatization of the behavioural equality is provided. Then

we focus on (partial) observational equalities and we provide general conditions under

which an obvious in�nite axiomatization of the observational equality can be replaced by

a �nitary one.

More precisely we proceed as follows. In a �rst step (Section 4) we provide a general

construction (the so-called \lift operator") which introduces explicit predicate symbols

for denoting the behavioural equality. We show that a formula � is behaviourally valid

in all algebras of C if and only if its lifted version L(�) is valid in the standard sense

in all lifted algebras of L(C) (Theorem 24). The usefulness of this characterization of

behavioural theories still depends on the possibility to prove standard theorems over

L(C). Therefore we introduce in Section 5 a general notion of (in�nitary) axiomatization

of the behavioural equality and we show that such an axiomatization allows us to char-

acterize the class L(C) of lifted algebras (Theorem 36). In particular, we see that given

an axiomatizable class C (i.e. C is the model class of a at standard speci�cation) and

given an axiomatization of the behavioural equality then L(C) is axiomatizable as well.

However, we still have the problem that the axiomatization of the behavioural equality

may be given by a set of in�nitary formulas since in concrete examples (as in the case of

observational equalities) only an in�nitary axiomatization may be immediately deduced

from the de�nition of the given behavioural equality. Hence in the next step (Section 6)

we consider �nitary axiomatizations of the behavioural equality with auxiliary hidden

sorts and function symbols and we show that whenever such an axiomatization of the be-

havioural equality for a class C of �-algebras is provided, then one can prove behavioural
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theorems over C using standard proof techniques (Theorem 38 and Example 6).

So far we have elaborated a general framework for the reduction of behavioural the-

ories to standard theories. In the remainder of this work (Section 7 and 8) we study

how a concrete �nitary axiomatization (with hidden part) can be obtained in the case

of (partial) observational equalities. For this purpose we set out from an obvious in�ni-

tary axiomatization of the partial observational equality which says that two elements a

and b are observationally equal if they are denotable by terms which contain only input

variables and if all applications of observable contexts to a and b yield the same re-

sult. Since there are usually in�nitely many terms with input variables and also in�nitely

many observable contexts both properties are easily axiomatizable by in�nitary formulas.

How to �nd a �nitary axiomatization of an observational equality for a given class

C of �-algebras is based on two ideas: On one hand one has to specify the de�nedness

(i.e. denotability by terms with input variables) with the help of new (hidden) predicate

symbols. On the other hand we suggest to reduce the set of all observable contexts to

a smaller set of contexts which is su�cient for describing the observational equality on

all algebras of C. We show that any smaller set of observable contexts which induces a

congruence relation on the algebras of C is appropriate for this purpose (Proposition 41

& Theorem 42). If we can �nd a �nite set of observable contexts with this property we can

immediately derive a �nitary axiomatization of the observational equality. If we can �nd

only an appropriate in�nite subset of the observable contexts then the equality induced

by this in�nite set has to be axiomatized using contexts with hidden function symbols

(Theorem 46). As a last result we show that it is always possible to construct a �nitary

axiomatization with hidden part of any partial observational equality (Proposition 48).

However, since this result relies on a technically complex encoding of the observational

equality it is mainly of theoretical interest.

Finally we show in Section 8 how our method for proving the behavioural validity of

arbitrary �-formulas with respect to a given observational equality can be applied to

various concrete examples.

2 Basic Notions

We assume that the reader is familiar with algebraic speci�cations [7, 22]. The basic con-

cepts and notations that will be used hereafter are briey summarized in this section.

A (many sorted) signature � is a pair (S;F ) where S is a set of sorts and F is a set

of function symbols.

3

To each function symbol f 2 F is associated an arity s

1

: : : s

n

! s

with s; s

1

; : : : ; s

n

2 S. If n = 0 then f is called constant of sort s. A (total) �-algebra

A = ((A

s

)

s2S

; (f

A

)

f2F

) over a signature � = (S;F ) consists of a family of carrier sets

(A

s

)

s2S

and a family of functions (f

A

)

f2F

such that, if f has arity s

1

: : : s

n

! s, then

f

A

is a (total) function from A

s

1

� : : :�A

s

n

to A

s

(if n = 0 then f

A

denotes a constant

3

In this paper we assume that both S and F are �nite.



Behavioural Theories and The Proof of Behavioural Properties 4

object of A

s

). A �-algebra A

0

is a subalgebra of a �-algebra A if A

0

s

� A

s

for all s 2 S

and if for all f 2 F the restriction of f

A

to A

0

is the function f

A

0

. If S

0

� S and F

0

� F

then �

0

= (S

0

; F

0

) is called a subsignature of � = (S;F ). If �

0

is a subsignature of �,

the restriction of a �-algebra A to the subsignature �', denoted by Aj

�

0

, is de�ned by

(Aj

�

0

)

s

= A

s

for each s 2 S

0

and f

Aj

�

0

= f

A

for each f 2 F

0

. Throughout this paper we

always assume that the carrier sets A

s

of a �-algebra A are not empty. �-morphisms are

de�ned as usual. The category of all �-algebras is denoted by Alg(�).

Given an arbitrary S-sorted family X = (X

s

)

s2S

of sets X

s

, T

�

(X) denotes the �-

term algebra freely generated by X, the carrier sets of which are the sets T

�

(X)

s

of terms

of sort s (and with variables in X). In several occasions we will consider a subset In � S

and we will choose X

s

= ; for all s 2 S n In (and X

s

6= ; for all s 2 In). In that case,

due to the non empty carrier set requirement of above, we will always assume that the

signature � is sensible w.r.t. In, i.e. that for all s 2 S nIn (and hence for all s 2 S), there

exists a term t of sort s which is built by function symbols of � and by the variables of

the non-empty sets X

s

with s 2 In. Given a �-algebra A, a valuation � : X ! A is a

family of mappings (�

s

: X

s

! A

s

)

s2S

. Any valuation � : X ! A uniquely extends to a

�-morphism I

�

: T

�

(X)! A, called the interpretation associated to �.

A partial �-congruence on a �-algebra A is a family �

A

= (�

A;s

)

s2S

of partial equiv-

alence relations (i.e. symmetric and transitive relations) �

A;s

on A

s

compatible with the

signature �, i.e. for all f 2 F of arity s

1

: : : s

n

! s, for all a

i

; b

i

2 A

s

i

, if a

i

�

A;s

i

b

i

then

f

A

(a

1

; : : : ; a

n

) �

A;s

f

A

(b

1

; : : : ; b

n

).

4

A �-congruence �

A

is total if for all a in A, a �

A

a,

i.e. all relations �

A;s

are reexive. The \de�nition domain" of a partial congruence �

A

,

denoted by Dom(�

A

), is de�ned by fa 2 A j a �

A

ag and is a subalgebra of A (moreover

the restriction of �

A

to Dom(�

A

) is a total �-congruence on Dom(�

A

)). In the sequel

A=�

A

denotes the quotient algebra of Dom(�

A

) by �

A

.

In the sequel of this paper we assume given an arbitrary but �xed familyX = (X

s

)

s2S

of countably in�nite sets X

s

of variables of sort s 2 S. First-order �-formulas are de�ned

as usual, from equations l = r, the logical connectives :;^;_; : : : and the quanti�ers 8;9.

We will also use in�nitary �-formulas of the form

V

i2I

�

i

and

W

i2I

�

i

, where (�

i

)

i2I

is

a countable family of �-formulas. A �-sentence is a �-formula which contains no free

variable. In the sequel we will use the following abbreviations: For any term t 2 T

�

(X),

Var(t) denotes the set of variables occurring in t, and similarly Var(l; r) for a couple of

terms l; r. Hence a universally quanti�ed equation will be denoted by 8Var(l; r): l = r .

Moreover, FreeVar(�) denotes the set of the free variables of the formula �.

The (standard) satisfaction of a �-formula � (�nitary or not) by a �-algebra A, de-

noted by A j= �, is de�ned as usual in the �rst-order predicate calculus: the predicate

symbol = is interpreted in the carrier sets of the algebra by the set-theoretic equality.

Due to the requirement of non-empty carrier sets, no pathological situations can occur

with respect to the satisfaction relation (cf. [13]).

4

In the sequel, for sake of clarity, we will often omit the subscript s and write a �

A

b instead of

a �

A;s

b.
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A basic (algebraic) speci�cation SP is a tuple h�;Axi where � = (S;F ) is a sig-

nature and Ax is a set of �-sentences, called axioms of SP . The model class of SP ,

denoted by Mod(SP ), is the class of all �-algebras which satisfy the axioms of SP , i.e.

Mod(SP )

def

= fA 2 Alg(�) j A j= � for all � 2 Axg.

A speci�cation language is called ASL-like if to any speci�cation SP is associated

a signature, denoted by Sig(SP ), and a class of models, denoted by Mod(SP ), such

that Mod(SP ) � Alg(Sig(SP )), and if the language contains basic speci�cations as

de�ned above and (at least) an operator + for the combination of speci�cations SP

and SP

0

such that Sig(SP + SP

0

) = Sig(SP ) [ Sig(SP

0

) and Mod(SP + SP

0

) = fA 2

Alg(Sig(SP + SP

0

)) j A j

Sig(SP )

2Mod(SP ) and A j

Sig(SP

0

)

2Mod(SP

0

)g. In the following,

by an ASL-like structured speci�cation SP we always refer to a speci�cation written with

such an ASL-like speci�cation language.

The (standard) theory of a class C � Alg(�) of �-algebras, denoted by Th(C), is

de�ned by Th(C)

def

= f�-formula � j A j= � for all A 2 Cg. In the following C j= � is

an equivalent notation for � 2 Th(C) and similarly SP j= � is an equivalent notation

for � 2 Th(Mod(SP )). Note that we will always consider theories including in�nitary

�-formulas. However it is obvious that all our results remain valid if we restrict to �rst-

order theories, i.e. theories consisting only of �nitary (�rst-order) �-formulas.

In practice it is often useful to consider, instead of arbitrary �-algebras, algebras that

are �nitely generated by a distinguished subset of the function symbols, called construc-

tors. In these algebras all elements can be denoted by a constructor term (which is built

only by constructor symbols and by variables of those sorts for which no constructor is

de�ned). More precisely, such generation principles can be formalized using reachability

constraints as follows:

1. A reachability constraint over a signature � = (S;F ) is a pair R = (S

R

; F

R

) such

that S

R

� S, F

R

� F and for any f 2 F

R

with arity s

1

: : : s

n

! s the sort s

belongs to S

R

. A sort s 2 S

R

is called constrained sort and a function symbol

f 2 F

R

is called constructor symbol (or briey constructor). We assume also that

for each constrained sort s 2 S

R

there exists at least one constructor in F

R

with s

as codomain. (This ensures that � is sensible w.r.t. S

R

.)

2. A constructor term is a term t 2 T

�

0

(X

0

)

s

of sort s 2 S

R

, where �

0

= (S;F

R

),

X

0

= (X

0

s

)

s2S

with X

0

s

= X

s

if s 2 S n S

R

and X

0

s

= ; if s 2 S

R

. The set of

constructor terms is denoted by T

R

.

3. A �-algebra A satis�es a reachability constraint R = (S

R

; F

R

), denoted by A j= R,

if for any s 2 S

R

and any a 2 A

s

, there exists a constructor term t 2 (T

R

)

s

and a

valuation � : X

0

! A such that I

�

(t) = a. (Note that this de�nition is independent

of X because X

s

is countably in�nite for all s 2 S.)

It is important to note that reachability constraints can be expressed by in�nitary sen-

tences:
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Fact 1. Let A be a �-algebra and R = (S

R

; F

R

) be a reachability constraint over �.

Then A j= R if and only if A j=

V

s2S

R

GEN

R

s

, where GEN

R

s

is the in�nitary �-sentence

de�ned by GEN

R

s

def

= 8x:s:

W

t2(T

R

)

s

9Var(t): x = t .

According to this fact, speci�cations with �nitary axioms and reachability constraints can

be de�ned as a particular kind of basic speci�cations with in�nitary axioms as follows.

Let � be a signature, R = (S

R

; F

R

) be a reachability constraint over � and Ax be a

set of �nitary �-sentences. Then the triple SP = h�;R;Axi is, by de�nition, the basic

speci�cation h�;Ax [ fGEN

R

s

j s 2 S

R

gi. In the following a speci�cation will be called

smooth if it is built using the + speci�cation-building primitive and speci�cations with

�nitary axioms and reachability constraints. To put emphasis on smooth speci�cations

is justi�ed by the fact that for such speci�cations it is easy to obtain sound proof rules

by combining a sound (and complete) proof system for many-sorted �rst order logic with

equality and structural induction w.r.t. the de�ned constructors.

Example 1. Let us consider the following CONTAINER speci�cation.

spec: CONTAINER

use: ELEM, NAT, BOOL

sort: Container

generated by:

; : ! Container

insert : Elem Container ! Container

operations:

[ : Container Container ! Container

remove : Elem Container ! Container

2 : Elem Container ! Bool

card : Container ! Nat

subset : Container Container ! Bool

axioms:

8S,S':Container, e,e':Elem.

; [ S = S

insert(e,S) [ S' = insert(e,S [ S')

remove(e,;) = ;

remove(e,insert(e,S)) = remove(e,S)

e 6= e' ) remove(e,insert(e',S)) = insert(e',remove(e,S))

e 2 ; = false

[e 2 insert(e',S) = true] , [(e = e') _ (e 2 S = true)]

card(;) = 0

[e 2 S = true] ) card(insert(e,S)) = card(S)

[e 2 S = false] ) card(insert(e,S)) = succ(card(S))

[subset(S,S') = true] , [8e:Elem. (e 2 S = true) ) (e 2 S' = true)]

end CONTAINER.

We do not detail the subspeci�cations ELEM, NAT and BOOL which are the usual ones.

Note that the sort Container is constrained by the constructors ; and insert. Since the
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CONTAINER speci�cation is rather loose, its model class contains, among other algebras,

the algebra of �nite sets of elements, the algebra of �nite multisets of elements, as well

as the algebra of �nite sequences of elements. It is quite easy to show (by structural

induction w.r.t. the constructors ; and insert) that CONTAINER j= S [ ; = S,

5

or that

CONTAINER j= e 2 S [ S' = (e 2 S) j (e 2 S'), but it is important to note that

CONTAINER 6j= insert(x,insert(x,S)) = insert(x,S) and that

CONTAINER 6j= insert(x,insert(y,S)) = insert(y,insert(x,S)). As a consequence,

the CONTAINER speci�cation cannot be considered as a correct implementation of the

usual speci�cation of sets if we require that an implementation satis�es (in the standard

sense) all axioms of the given speci�cation. }

3 Behavioural and Abstractor Speci�cations

Behavioural speci�cations are a generalization of standard speci�cations which allow to

describe the behaviour of data structures and programs with respect to a given (partial)

congruence relation. The essential di�erence to the standard case is that instead of the

set-theoretic equality, the given congruence relation is used for the interpretation of the

equality predicate symbol. Another approach which also allows to relax the standard se-

mantics of algebraic speci�cations are abstractor speci�cations (cf. [19]). In this case an

equivalence relation between algebras is used for abstracting from the (standard) model

class of a speci�cation. In this section we summarize the basic de�nitions and results of

[6] where the relationships between behavioural and abstractor speci�cations are studied.

In the sequel we always assume given a family � = (�

A

)

A2Alg(�)

of (possibly partial)

�-congruences on the algebras of Alg(�) and an equivalence relation � on Alg(�) such

that � is factorizable by �, i.e. for all A;B 2 Alg(�); A � B if and only if A=�

A

and

B=�

B

are isomorphic.

3.1 Behavioural and Abstractor Semantics

We start by generalizing the standard satisfaction relation to a behavioural satisfaction

relation w.r.t. the given family � of partial �-congruences. The idea is to interpret the

variables occurring in a formula not by all values of an algebra A but only by values in

Dom(�

A

), and to interpret the equality predicate symbol by the given partial congruence

relation �

A

instead of the set-theoretic equality. A relationship between the standard

satisfaction relation and the behavioural satisfaction relation is provided in Theorem 20.

De�nition2 (Behavioural satisfaction relation). Let A be a �-algebra. The be-

havioural satisfaction relation w.r.t. �, denoted by j=

�

, is de�ned as follows:

Let l; r 2 T

�

(X)

s

be two terms of sort s, �; be two �-formulas, f�

i

j i 2 Ig be a

countable family of �-formulas and � : X ! Dom(�

A

) be a valuation.

1. A;� j=

�

l = r holds if and only if I

�

(l) �

A

I

�

(r).

5

For sake of simplicity the variables occurring in the equations used in our examples are implicitly

universally quanti�ed.
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2. A;� j=

�

:� holds if and only if A;� j=

�

� does not hold, and A;� j=

�

� ^ holds

if and only if both A;� j=

�

� and A;� j=

�

 hold.

3. A;� j=

�

8x:s:� holds if and only if, for all valuations � : X ! Dom(�

A

) with

�(y) = �(y) for all y 6= x, A;� j=

�

� holds.

4. A;� j=

�

V

i2I

�

i

holds if and only if, for all i 2 I, A;� j=

�

�

i

holds.

5. A j=

�

� if and only if A;� j=

�

�, for all valuations � : X ! Dom(�

A

).

Hence De�nition 2 is quite similar to the de�nition of the standard satisfaction relation,

the main di�erence being for (1) where I

�

(l) = I

�

(r) is replaced by I

�

(l) �

A

I

�

(r). More-

over, it is important to note that valuations have their range in Dom(�

A

) and not in A,

to take into account the fact that �

A

is a partial congruence.

Behavioural speci�cations can be built on top of basic speci�cations as follows, using

the behavioural satisfaction relation for the interpretation of the axioms:

De�nition3 (Behavioural speci�cation). Let SP = h�;Axi be a basic speci�cation.

Then:

1. The expression behaviour SP w.r.t. � is a behavioural speci�cation, of signature

�.

2. The model class of a behavioural speci�cation is de�ned by:

Mod(behaviour SP w.r.t. �)

def

= fA 2 Alg(�) j A j=

�

� for all � 2 Axg.

The notion of \abstractor" was introduced in [19] for describing a speci�cation-building

operation which allows to abstract from the model class of a speci�cation with respect

to a given equivalence relation on the class of all �-algebras:

De�nition4 (Abstractor operator). For any class C � Alg(�), Abs

�

(C) denotes

the closure of C under �, i.e. Abs

�

(C)

def

= fB 2 Alg(�) j B � A for some A 2 Cg.

Abstractor speci�cations can be built on top of arbitrary speci�cations using the abstrac-

tor operator as follows:

De�nition5 (Abstractor speci�cation). Let SP be an arbitrary speci�cation. Then:

1. The expression abstract SP w.r.t. � is an abstractor speci�cation, of signature

Sig(SP ).

2. The model class of an abstractor speci�cation is de�ned by:

Mod(abstract SP w.r.t. �)

def

= Abs

�

(Mod(SP )).

Behavioural speci�cations and abstractor speci�cations are based on the same intention,

namely to allow a more general view of the semantics of speci�cations. This proves to

be especially useful to de�ne implementation relations where implementations may re-

lax (some of) the properties of the given requirement speci�cation (cf. e.g. abstractor
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implementations in [19] or behavioural implementations in [10, 5]; for a survey on imple-

mentation concepts see [16]). [6] provides an in-depth study of the relationships between

both approaches, and in the following of this section we merely recall the central results

that will be used in the sequel of this paper.

The factorizability of the equivalence � by �, which is generally assumed here, is

the technical condition under which meaningful relationships can be established. Fully

abstract algebras play also an essential rôle for the study of the relationships between

behavioural and abstractor speci�cations. Following Milner's notion (cf. [14]), we de�ne

full abstractness with respect to a given family � of �-congruences as follows:

De�nition6 (Fully abstract algebra).

1. A �-algebra A is called fully abstract with respect to � (or briey fully abstract) if

�

A

coincides with the set-theoretic equality over the carrier sets of A. (In particular

�

A

is total.)

2. For any class C � Alg(�) of �-algebras, FA

�

(C) denotes the subclass of the fully

abstract algebras of C, i.e. FA

�

(C)

def

= fA 2 C j A is fully abstractg.

De�nition7 (Regularity). A family � = (�

A

)

A2Alg(�)

of �-congruences is called reg-

ular if, for any �-algebra A, the quotient algebra A=�

A

is fully abstract.

We will see in the sequel that for all our examples, the considered families of partial

�-congruences are regular. We still need two technical de�nitions:

De�nition8 (Behavioural quotient operator). For any class C � Alg(�), C=�

denotes the behavioural quotient of C, i.e. C=�

def

= fA=�

A

j A 2 Cg.

De�nition9 (Behaviour operator). For any class C � Alg(�), the behaviour of C

is de�ned by Beh

�

(C)

def

= Abs

�

(FA

�

(C)).

A central result of [6] is the following characterization of behavioural semantics:

Theorem10. If the family � is regular, then for any basic speci�cation SP we have:

Mod(behaviour SP w.r.t. �) = Beh

�

(Mod(SP )). ut

Theorem 10 provides the necessary basis for a detailed comparison between abstractor

speci�cations and behavioural speci�cations (cf. [6]). Moreover, this result suggests also

how behavioural speci�cations can be built on top of arbitrary speci�cations:

De�nition11 (Behavioural speci�cation { General case). Let SP be an arbitrary

speci�cation. Then:

1. The expression behaviour SP w.r.t. � is a behavioural speci�cation, of signature

Sig(SP ).

2. The model class of a behavioural speci�cation is de�ned by:

Mod(behaviour SP w.r.t. �)

def

= Beh

�

(Mod(SP )).
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Theorem 10 ensures that De�nitions 3 and 11 are consistent with each other (in the

case of a basic speci�cation SP ) provided that the considered family � is regular. In the

sequel we will therefore use the more general De�nition 11. According to Theorem 10, it

is obvious that in general the model class of behaviour SP w.r.t. � is included in the

model class of abstract SP w.r.t. �. In [6] and [5] necessary and su�cient conditions

for the equality of the two model classes are studied. If this is the case we will say that

the speci�cation SP is behaviourally consistent:

De�nition12 (Behavioural consistency). A speci�cation SP is called behaviourally

consistent (w.r.t. �) if Mod(behaviour SP w.r.t. �) =Mod(abstract SP w.r.t. �).

3.2 The Observational Case

The most important examples of partial congruences are observational equalities of ob-

jects. The intuition behind observational equalities is the following one: Two objects of

an algebra are considered to be observationally equal if they cannot be distinguished by

\experiments" with \observable" results. In order to provide the necessary formalization,

we will proceed as follows. First, we will de�ne contexts, which are a special kind of terms

representing the \experiments". Then we will show how a very general notion of contex-

tual equality of objects can be associated to any choice of a set of contexts. In a last step

we de�ne the observational equality of objects we are interested in as a special case of

contextual equalities.

De�nition13 (Context). Let � = (S;F ) be a signature and let X = (X

s

)

s2S

be the

generally assumed family of countably in�nite sets of variables of sort s. Let Z = (fz

s

g)

s2S

be a disjoint S-sorted family of singleton sets.

1. A �-context is a �-term C 2 T

�

(X [ Z) which contains, besides variables in X,

one or many occurrences of exactly one variable z

s

2 Z, called the context variable

of C.

2. By exception, Var(C) will denote the set of variables occurring in C apart from the

context variable of C.

3. C[t] denotes the term obtained by substituting the term t 2 T

�

(X)

s

for the context

variable z

s

(of sort s) of C.

4. Given an arbitrary set of �-contexts C, we denote by C(s) the (possibly empty)

subset of the contexts of C with context variable of sort s.

T

�

(X [ Z) represents the set of all possible experiments (with arbitrary input variables

X). In general we may not want to allow experiments on any values in an algebra A, but

only on those values that can be denoted by a term t, where some restrictions apply to

the variables that may occur in t. More precisely, we will choose a subset of input sorts

In � S, and consider the smallest subalgebra A[X

In

] of A generated by � and X

In

, where

X

In

is the S-sorted family of variables de�ned by (X

In

)

s

= ; if s 62 In and (X

In

)

s

= X

s

if

s 2 In (where X = (X

s

)

s2S

is the generally assumed family of countably in�nite sets of

variables of sort s). This leads to the following de�nition of the (partial) equality relation

associated to a choice of input sorts and a set of �-contexts:
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De�nition14 (Partial contextual equality). Let � = (S;F ) be a signature, In � S

be a set of input sorts, C be an arbitrary set of �-contexts and A be a �-algebra. The

partial contextual equality on A induced by C and In, denoted by �

C;In;A

, is de�ned as

follows:

Let A[X

In

] be the smallest subalgebra of A generated by � and X

In

. The carrier sets of

A[X

In

] are de�ned by A[X

In

]

s

= fa 2 A

s

j there exists a term t 2 T

�

(X

In

)

s

and a

valuation � : X

In

! A such that I

�

(t) = ag.

6

Two elements a; b 2 A

s

of sort s are contextually equal (w.r.t. C and In), denoted by

a �

C;In;A

b, if and only if both a and b belong to A[X

In

]

s

and, for all contexts C 2 C with

context variable z

s

of sort s, for all valuations � : X ! A[X

In

], we have I

�

a

(C) = I

�

b

(C),

where �

a

; �

b

: X [ fz

s

g ! A[X

In

] are the unique extensions of � de�ned by �

a

(z

s

) = a

and �

b

(z

s

) = b.

Note that, if there is no context C 2 C with context variable of sort s, then we have

a �

C;In;A

b, for all a; b 2 A[X

In

]

s

of sort s.

The intuition behind this de�nition is that two elements a and b are contextually equal

w.r.t. a given set C of �-contexts if they belong to the chosen subalgebra A[X

In

] and

if they cannot be distinguished by at least one of the computations represented by the

contexts of C. Note that �

C;In;A

is a family of partial equivalence relations (one for each

sort s 2 S). However, �

C;In;A

is not necessarily a partial congruence relation, i.e. �

C;In;A

is not necessarily compatible with the signature �.

Even if �

C;In;A

is not a partial �-congruence, we can consider its \de�nition domain",

denoted by Dom(�

C;In;A

), and de�ned by fa 2 A j a �

C;In;A

ag. Obviously we have

Dom(�

C;In;A

) = A[X

In

].

We are now ready to de�ne (partial) observational equalities. For this, we assume

given a signature � = (S;F ) and a distinguished set Obs � S of observable sorts (which

denote the carrier sets of observable values). Moreover, we assume given a set In � S

of input sorts such that � is sensible w.r.t. In, and we consider the associated family of

set of variables X

In

. Then two objects of an algebra are considered to be observationally

equal if they cannot be distinguished by \experiments" with inputs chosen accordingly

to In and with observable results:

De�nition15 (Observable context and observational equality).

1. The set of all observable contexts, denoted by C

Obs

�

, is de�ned as being the set of

all �-contexts of observable sort s 2 Obs.

2. Let A be a �-algebra. The partial contextual equality on A induced by C

Obs

�

and

In (cf. De�nition 14) is called the (partial) observational equality on A induced by

Obs and In and is denoted by �

Obs;In;A

.

Remark. In the literature (cf. e.g. [6]), the partial observational equality induced by Obs

and In is de�ned in a slightly di�erent way. Instead of considering the observable contexts

C

Obs

�

built from the signature � and arbitrary variables X, one restricts to observable

6

Thereby we assume that � is sensible w.r.t. In (cf. Section 2).
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contexts built from the signature � and variables of an input sort only (i.e. T

�

(X

In

[Z)

is used instead of T

�

(X [ Z) in De�nition 13). Then two elements a; b 2 A

s

of sort

s are observationally equal if and only if both a and b belong to A[X

In

]

s

and, for all

observable contexts C 2 T

�

(X

In

[Z) with context variable z

s

of sort s, for all valuations

� : X

In

! A, we have I

�

a

(C) = I

�

b

(C), where �

a

; �

b

: X

In

[ fz

s

g ! A are the unique

extensions of � de�ned by �

a

(z

s

) = a and �

b

(z

s

) = b. It is fairly obvious that this leads

to a de�nition equivalent to our De�nition 15. However De�nition 15 will prove to be

more convenient in the sequel.

Lemma16. The observational equality �

Obs;In;A

on A is a partial �-congruence (and

Dom(�

Obs;In;A

) = A[X

In

]). ut

The family (�

Obs;In;A

)

A2Alg(�)

of partial observational equalities (which in particular are

partial�-congruences) will be denoted by�

Obs;In

. Most examples studied in the literature

are captured by our de�nition:

{ If we choose In = S, i.e. the elements of all carrier sets can be used as input for

observable computations, then A[X

In

] = A and �

Obs;S;A

is a total congruence on A

which corresponds to the behavioural equality used e.g. in [17] and in [3].

{ If we choose In = Obs, i.e. only values generated from observable ones can be used

as input for observable computations, then �

Obs;Obs;A

is a partial congruence on

A and the resulting behavioural satisfaction relation corresponds to the one used

in [15] for the behavioural satisfaction of equations. The advantage here is that

non-observable junk (i.e. values which are not reachable from the observable ones)

will not be considered for the behavioural satisfaction of formulas and hence cannot

cause problems, for instance, with respect to the correctness of implementations

(cf. e.g. [16]).

We will show in Section 5.2 that the families of observational equalities�

Obs;In

are always

regular.

Lemma17. Let us consider the total observational equality �

Obs;S

induced by a set Obs

of observable sorts. Let A be a �-algebra and 8Var(l; r): l = r be a universally quanti�ed

equation. Let s be the common sort of l and r.

If s is an observable sort, then A j=

�

Obs;S

8Var(l; r): l = r if and only if

A j= 8Var(l; r): l = r.

If s is a non observable sort, then A j=

�

Obs;S

8Var(l; r): l = r if and only if, for all

observable contexts C 2 C

Obs

�

(s), A j= 8Var(C) [Var(l; r): C[l] = C[r]. ut

Remark. Lemma17 is often used in the literature to de�ne directly (i.e. without introduc-

ing explicitly the total observational equality) the behavioural satisfaction of equations.

However the explicit de�nition we have chosen (cf. De�nition 2) is necessary to de�ne the

behavioural satisfaction of arbitrary �-formulas w.r.t. an arbitrary behavioural equality

(this idea is even extended to higher-order logic in [12]). On the other hand, this lemma

suggests that, in the total observational framework, to prove the behavioural satisfaction

of an equation l = r (between non observable terms), it is equivalent to prove the stan-

dard satisfaction of the in�nite set of equations C[l] = C[r], for all C 2 C

Obs

�

(s). Context
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Induction (a specialized version of structural induction) was introduced in [10] as a means

to prove such in�nite sets of equations and has been implemented in the ISAR system

(cf. [1]). Unfortunately proofs by context induction are quite complicated and di�cult to

handle in practice, especially in a �rst-order framework.

Example 2. Let us consider again our CONTAINER speci�cation and assume that the ob-

servable sorts are Elem, Nat and Bool and that all sorts are input sorts. Let �

CONT

denote the corresponding total observational equality. Two objects of sort Container

will be considered as observationally equal if they cannot be distinguished by observable

contexts. Here, all observable contexts (with context variable of sort Container) must

contain either 2, subset or card. If we consider the algebra of �nite sequences of ele-

ments, it is intuitively clear that two distinct sequences will be observationally equal if

they contain the same elements (not necessarily with the same number of occurrences or

in the same order), because these sequences cannot be distinguished by any observable

context. For the same reasons, it is intuitively clear that the two characteristic equa-

tions of sets, insert(x,insert(x,S)) = insert(x,S) and insert(x,insert(y,S)) =

insert(y,insert(x,S)), are behaviourally satis�ed by all models of the CONTAINER

speci�cation. Indeed no observable experiment can distinguish the left and right-hand

sides of these equations. The aim of this paper is to provide a general proof technique to

formally establish that this intuition is right.

Note that the algebra of �nite sequences of elements is not fully abstract (since two dis-

tinct sequences may be observationally equal), while the algebra of �nite sets of elements

is fully abstract. }

We can also de�ne observational abstractions �

Obs;In

associated to the input sorts In and

the observable sorts Obs as follows:

De�nition18 (Observational abstraction). Two �-algebras A and B are called ob-

servationally equivalent w.r.t. Obs and In, denoted by A �

Obs;In

B, if there exists an

S-sorted family of variables Y

In

with (Y

In

)

s

= ; for all s 2 S n In and two valuations

�

A

: Y

In

! A and �

B

: Y

In

! B with surjective mappings �

A;s

: (Y

In

)

s

! A

s

and

�

B;s

: (Y

In

)

s

! B

s

for all s 2 In such that for all terms l; r 2 T

�

(Y

In

)

s

of observable sort

s 2 Obs the following holds: I

�

A

(l) = I

�

A

(r) if and only if I

�

B

(l) = I

�

B

(r) .

We refer the reader to [6] where a more detailed discussion of observational abstractions

is provided as well as a proof of the fact that the observational abstraction �

Obs;In

is

factorizable by the observational equivalence �

Obs;In

.

3.3 Behavioural Theories

According to the generalization of the standard satisfaction relation to the satisfaction

relation with respect to a family � of �-congruences we consider the theory with respect

to � of a given class C of �-algebras.

De�nition19 (Behavioural theory). Let C � Alg(�) be a class of �-algebras. The

behavioural theory of C, denoted by Th

�

(C), is de�ned by:

Th

�

(C)

def

= f�-formula � j A j=

�

� for all A 2 Cg.
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In the following C j=

�

� is an equivalent notation for � 2 Th

�

(C) and similarly SP j=

�

�

is an equivalent notation for � 2 Th

�

(Mod(SP )).

Another central result of [6] is the following theorem which leads to a characterization of

behavioural theories:

Theorem20. For all �-algebras A;B and �-formulas � the following holds:

1. A j=

�

� if and only if A=�

A

j= �.

2. If A � B then A j=

�

� if and only if B j=

�

�.

3. If A is fully abstract then A j=

�

� if and only if A j= �. ut

Corollary 21. For any class C of �-algebras, we have:

1. Th

�

(C) = Th(C=�).

2. Th

�

(Abs

�

(C)) = Th

�

(C).

3. Th

�

(FA

�

(C)) = Th(FA

�

(C)).

4. Th

�

(Beh

�

(C)) = Th

�

(Abs

�

(FA

�

(C))) = Th(FA

�

(C)). ut

In practice it is usually di�cult to prove behavioural theorems due to the generalized sat-

isfaction relation. Although Corollary 21(1) shows that in principle behavioural theories

can be reduced to standard theories this result is of little practical interest because even

if the class C is axiomatizable we have (in general) no straightforward proof system for

the standard theory of the class C=� (since the formation of quotients does not preserve

the validity of arbitrary �-formulas). Therefore we are interested in �nding other char-

acterizations of behavioural theories which allow us to prove behavioural theorems using

standard proof techniques. For this purpose our general strategy is �rst to reduce the

behavioural theory Th

�

(C) of some class C of �-algebras to (a subset of) the standard

theory Th(D) of some other class D of algebras and then to look for an appropriate

axiomatization (or a proof system) for D (provided that an axiomatization or a proof

system for C is given). According to the previous results we know that this strategy

works well in the following case: If C is a class of fully abstract algebras then we know by

Corollary 21(3) that Th

�

(C) = Th(C) i.e. in this case the behavioural theory of C can

be reduced to the standard theory of C. In the next section we derive a similar result for

arbitrary classes C of �-algebras.

4 The Lift Operator

In a �rst step we introduce a \lift" operator which provides an explicit denotation for

the given family � = (�

A

)

A2Alg(�)

of partial �-congruences. For this purpose we use

predicate symbols to denote the equivalence relations.

7

7

We assume the reader to be familiar with the usual notions of predicate symbols and their

interpretations.
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De�nition22 (Lift operator). Given a signature �, a �-algebra A, a class C of �-

algebras and a �-formula � we de�ne their lifted versions as follows:

1. L(�)

def

= � [ f�

s

: s sg

s2S

, i.e. L(�) is the signature � enriched by, for each sort

s in S, a binary predicate symbol �

s

: s s (to denote the behavioural equality). We

will adopt an in�x notation for the binary predicate symbols �

s

, i.e. we write l �

s

r

instead of �

s

(l; r).

2. L(A) is the unique L(�)-algebra extension of A de�ned by:

(a) L(A) j

�

def

= A

(b) For any s in S, �

L(A)

s

def

= �

A;s

,

i.e. for any a; b in L(A)

s

(= A

s

), a �

L(A)

s

b if and only if a �

A;s

b.

3. L(C)

def

= fL(A) j A 2 Cg.

4. L(�)

def

=

h�

V

y:s2FreeVar(�)

D

s

(y)

�

) �

�

i

, where D

s

(y) is an abbreviation for y �

s

y

and �

�

is de�ned by induction on the structure of � as follows:

8

(a) If � is an equation l = r between two terms of sort s, then �

�

is l �

s

r,

(b) (:�)

�

= :(�

�

), (�

1

^�

2

)

�

= (�

�

1

)^ (�

�

2

), (�

1

_�

2

)

�

= (�

�

1

)_ (�

�

2

), and similarly

for in�nite conjunctions and disjunctions,

(c) (8x:s:�)

�

= 8x:s: [D

s

(x)) �

�

].

Note that if � is a closed �-formula then L(�) coincides with �

�

.

De�nition23. Given a class D of L(�)-algebras, we de�ne:

Th

L

(D)

def

= f�-formula � j L(�) 2 Th(D)g.

The following theorem shows that for any class C of �-algebras the behavioural theory of

C consists of all �-formulas � whose lifted version L(�) belongs to the standard theory

of L(C).

Theorem24. For any �-algebra A and �-formula �, A j=

�

� if and only if L(A) j=

L(�). Hence, for any class C of �-algebras, C j=

�

� if and only if L(C) j= L(�), i.e.

Th

�

(C) = Th

L

(L(C)).

The proof of Theorem 24 relies on the following two lemmas:

Lemma25. Let A be a �-algebra and � be a �-formula.

For all valuations � : X ! Dom(�

A

), the following conditions are equivalent:

1. A;� j=

�

�

2. L(A); � j= �

�

3. L(A); � j= L(�)

8

Similar constructions, called relativizations, were used in [23] and recently in [12].
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Proof. Since A and L(A) have the same carrier sets, a valuation from X to Dom(�

A

)

is a special case of a valuation from X to L(A). Moreover, for any valuation � : X !

Dom(�

A

) and any variable y of sort s, we have L(A); � j= D

s

(y). It is therefore trivial

to see that (2) , (3). We prove (1) , (2) by induction on the form of �:

Case l = r: Let � : X ! Dom(�

A

) be an arbitrary valuation. A;� j=

�

l = r i� I

�

(l) �

A

I

�

(r) i� I

�

(l) �

L(A)

s

I

�(r)

(where s is the sort of l and r) i� L(A); � j= l �

s

r i�

L(A); � j= (l = r)

�

.

Case :�, � ^  , : : : : For formulas of the form :�, � ^  and � _  the result follows

directly from the induction hypothesis. This is also true for in�nite conjunctions

and disjunctions.

Case 8x:s:�: Let � : X ! Dom(�

A

) be an arbitrary valuation. A;� j=

�

8x:s:� i�, for

all valuations � : X ! Dom(�

A

) with �(y) = �(y) if y 6= x, A;� j=

�

� i� (by

induction hypothesis) for all valuations � : X ! Dom(�

A

) with �(y) = �(y) if

y 6= x, L(A); � j= �

�

i� (justi�cation given below) for all valuations  : X ! L(A)

with (y) = �(y) if y 6= x, L(A);  j= D

s

(x) ) �

�

i� L(A); � j= 8x:s:[D

s

(x) ) �

�

]

i� L(A); � j= (8x:s:�)

�

.

We still have to justify the central step. Hence we must prove that the two following

conditions are equivalent:

(a) For all valuations � : X ! Dom(�

A

) with �(y) = �(y) if y 6= x, L(A); � j= �

�

(b) For all valuations  : X ! L(A) with (y) = �(y) if y 6= x,

L(A);  j= D

s

(x)) �

�

The direction (b) ) (a) is obvious, since L(A); � j= D

s

(x). To prove the other

direction, assume (a) holds and let  : X ! L(A) be an arbitrary valuation with

(y) = �(y) if y 6= x.

Case (x) 2 Dom(�

A

): Then in (a) we can take � =  and we are done.

Case (x) 62 Dom(�

A

): Then L(A);  6j= D

s

(x), hence L(A);  j= D

s

(x)) �

�

. ut

Lemma26. Let A be a �-algebra and � be a �-formula. The following conditions are

equivalent:

1. For all valuations � : X ! Dom(�

A

): L(A); � j= L(�)

2. For all valuations � : X ! L(A): L(A); � j= L(�)

Proof. The direction (2) ) (1) is obvious. To prove (1) ) (2), assume (1) holds and let

� : X ! L(A) be an arbitrary valuation.

Case �(y) 2 Dom(�

A

) for all y 2 Freevar(�): Then there exists a valuation � : X !

Dom(�

A

) with �(y) = �(y) for all y 2 FreeVar(�). By assumption L(A); � j= L(�).

But then we conclude that L(A); � j= L(�) since � and � coincide on all free

variables of �.
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Case �(y) 62 Dom(�

A

) for some y 2 Freevar(�): Then L(A); � 6j=

V

y:s2FreeVar(�)

D

s

(y)

and therefore L(A); � j= L(�) (by de�nition of L(�)). ut

Proof of Theorem 24. Let A be a �-algebra and � a �-formula.A j=

�

� i� (by de�nition)

for all valuations � : X ! Dom(�

A

), A;� j=

�

� i� (by Lemma 25) for all valuations

� : X ! Dom(�

A

), L(A); � j= L(�) i� (by Lemma 26) for all valuations � : X ! L(A),

L(A); � j= L(�) i� (by de�nition) L(A) j= L(�). ut

Remark. LetC be a class of fully abstract �-algebras. By Theorem 24 we have Th

�

(C) =

Th

L

(L(C)). Moreover, Th

L

(L(C)) = Th(C) because for any fully abstract algebra A,

A j= � if and only if L(A) j= L(�). Hence we obtain in this particular case again our

previous result Th

�

(C) = Th(C).

Theorem 24 provides a means for reducing the set of behavioural theorems over an ar-

bitrary class C of �-algebras to a set of standard theorems over a corresponding class

L(C) of L(�)-algebras. However, the usefulness of this reduction still depends on the

possibility to perform proofs of standard theorems over L(C). Since L(C) is constructed

on top of C by introducing a denotation for the behavioural equality we claim that for

proving standard theorems over L(C) we need, on one hand, a proof system for proving

standard theorems over C (in the best case C is axiomatizable) and, on the other hand,

we need an axiomatization of the behavioural equality which will be considered in the

next sections.

Example 3. We can apply Theorem 24 to various classes of algebras of special interest:

1. Let C =Mod(SP ) be the model class of a basic speci�cation SP = h�;Axi. Then,

by Theorem 24, Th

�

(Mod(SP )) = Th

L

(L(Mod(SP ))) and we will see in the next

section that L(Mod(SP )) can be axiomatized with the help of an axiomatization of

the behavioural equality.

More generally, if SP is an ASL-like structured speci�cation (cf. Section 2) we will

see that L(Mod(SP )) can be expressed by a speci�cation of the ASL-like language

as soon as an axiomatization of the behavioural equality is provided (cf. Theorem 36

and Theorem 38).

2. Let C = Abs

�

(C

0

) for some class C

0

of �-algebras. Then an immediate appli-

cation of Theorem 24 would lead to Th

�

(Abs

�

(C

0

)) = Th

L

(L(Abs

�

(C

0

))). But

even if C

0

is axiomatizable there is no simple proof system for Abs

�

(C

0

) and hence

also not for L(Abs

�

(C

0

)). However, in this case we know, by Corollary 21(2), that

Th

�

(Abs

�

(C

0

)) = Th

�

(C

0

) and hence we can apply Theorem 24 to C

0

instead of

Abs

�

(C

0

). Thus we obtain Th

�

(Abs

�

(C

0

)) = Th

�

(C

0

) = Th

L

(L(C

0

)). Hence for

abstractor speci�cations we have:

Th

�

(Mod(abstract SP w.r.t.�)) = Th

�

(Mod(SP )) = Th

L

(L(Mod(SP ))), i.e. this

case can be reduced to the case considered in Part 1 of the example.

3. Let C = Beh

�

(C

0

) for some class C

0

of �-algebras. Then an application of The-

orem 24 would lead to Th

�

(Beh

�

(C

0

)) = Th

L

(L(Beh

�

(C

0

))) which again is not

a useful reduction. However we know, by Corollary 21(4), that Th

�

(Beh

�

(C

0

)) =



Behavioural Theories and The Proof of Behavioural Properties 18

Th(FA

�

(C

0

)). Hence in this case we are interested in an axiomatization of full ab-

stractness. In particular, for behavioural speci�cations we have:

Th

�

(Mod(behaviour SP w.r.t. �)) = Th(FA

�

(Mod(SP ))).

(Note that in this case we do not actually use Theorem 24 but rather Corollary

21(4).)

4. Let C be a class of �-algebras such that Abs

�

(C) = Beh

�

(C) (see [6] for simple

necessary and su�cient conditions). Then we have:

Th

�

(C) = Th

�

(Abs

�

(C)) = Th

�

(Beh

�

(C)) = Th(FA

�

(C)). }

5 Axiomatization of the Behavioural Equality

In the previous section we have shown how to replace the behavioural theory of some

given class C of �-algebras by (a subset of) the standard theory of another related class

of algebras. The next step is to provide a characterization of this class of algebras in

terms of an axiomatization of the behavioural equality.

De�nition27 (Axiomatization of the behavioural equality). An axiomatization

of the behavioural equality � is an S-sorted family Beh = (Beh

s

(x

s

; y

s

))

s2S

of (pos-

sibly in�nitary) �-formulas, where x

s

and y

s

are the only free variables, of sort s,

of Beh

s

(x

s

; y

s

), such that, for any �-algebra A, any sort s in S and any valuation

� : fx

s

; y

s

g ! A, A;� j= Beh

s

(x

s

; y

s

) if and only if �(x

s

) �

A

�(y

s

).

Whenever such an axiomatization exists, we say that the behavioural equality � is ax-

iomatizable.

In the following, we assume given an axiomatization (Beh

s

(x

s

; y

s

))

s2S

of the behavioural

equality �.

Remark. Let A be a �-algebra and a; b 2 A

s

be two arbitrary elements of sort s. Let

� : fx

s

; y

s

g ! A be the valuation de�ned by �(x

s

) = a and �(y

s

) = b. Since A and

L(A) have the same carrier sets, � can be considered as a valuation from fx

s

; y

s

g to

L(A) as well. Then a �

A

b i� L(A); � j= x

s

�

s

y

s

i� A;� j= Beh

s

(x

s

; y

s

). Moreover, if

a; b 2 Dom(�

A

) then � has its range in Dom(�

A

) and in that case the above are further

equivalent to A;� j=

�

x

s

= y

s

. This remark is the basis of most proofs of this section.

Example 4 (Observational equality).

1. The total observational equality �

Obs;S

induced by a set Obs of observable sorts (cf.

Section 3.2) is axiomatized by the following in�nitary formulas:

Beh

s

(x

s

; y

s

)

def

=

V

C2C

Obs

�

(s)

8Var(C): C[x

s

] = C[y

s

] .

Note that if s is an observable sort then Beh

s

(x

s

; y

s

) is equivalent to x

s

= y

s

, since

then the trivial context z

s

belongs to C

Obs

�

(s). Hence for observable elements the

observational equality coincides with the set-theoretic equality, as required.

2. The partial observational equality �

Obs;In

induced by a set Obs of observable sorts

and a set In of input sorts (cf. Section 3.2) is axiomatized by the following in�nitary

formulas:
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Beh

s

(x

s

; y

s

)

def

= Def

s

(x

s

) ^Def

s

(y

s

)^

V

C2C

Obs

�

(s)

8Var(C):DEF(Var(C))) C[x

s

] = C[y

s

],

where Def

s

(x

s

) is an abbreviation for

W

t2T

�

(X

In

)

s

9Var(t): x

s

= t

and DEF(Var(C)) stands for

V

v

s

0

2Var(C)

Def

s

0

(v

s

0

) .

Note that if s is an input sort, then Beh

s

(x

s

; y

s

) is equivalent to:

V

C2C

Obs

�

(s)

8Var(C):DEF(Var(C))) C[x

s

] = C[y

s

] .

If s is an observable sort then Beh

s

(x

s

; y

s

) is equivalent to:

Def

s

(x

s

) ^Def

s

(y

s

) ^ x

s

= y

s

.

Moreover, Beh

s

(x

s

; x

s

) is always equivalent to Def

s

(x

s

). }

Before we come back to the general case of lifted algebras in Section 5.3 we will consider

the usefulness of an axiomatization of the behavioural equality in the case of fully abstract

algebras.

5.1 Case of Fully Abstract Algebras

The following proposition provides an obvious characterization of full abstractness in

terms of an axiomatization of the behavioural equality.

Proposition28 (Characterization of fully abstract algebras). A �-algebra A is

fully abstract if and only if, for all s in S, A j= 8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

= y

s

].

Proof.

=): Assume that A is fully abstract and let � : fx

s

; y

s

g ! A be an arbitrary valuation.

A;� j= x

s

= y

s

i� �(x

s

) = �(y

s

) i� (since A is fully abstract) �(x

s

) �

A

�(y

s

) i�

(by De�nition 27) A;� j= Beh

s

(x

s

; y

s

).

Hence A j= 8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

= y

s

].

(=: Assume that A j= 8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

= y

s

]. Let a; b 2 A

s

and

� : fx

s

; y

s

g ! A be the valuation de�ned by �(x

s

) = a and �(y

s

) = b. Then a = b

i� A;� j= x

s

= y

s

i� (by assumption) A;� j= Beh

s

(x

s

; y

s

) i� a �

A

b. Hence A is

fully abstract. ut

From Proposition 28 we directly deduce the following result which says that for any class

C of �-algebras the subclass of the fully abstract algebras of C can be characterized using

an axiomatization of the behavioural equality. This fact will be used when considering the

particular case of behavioural theories of behavioural speci�cations (cf. Example 5(3)).

Theorem29. Let FA

Beh

be the �-sentence de�ned by:

FA

Beh

def

=

V

s2S

8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

= y

s

].

Then for any class C of �-algebras, FA

�

(C) = C \Mod(h�;FA

Beh

i).

In particular, if we consider the model class of some ASL-like structured speci�cation SP

of signature �, we have FA

�

(Mod(SP )) =Mod(SP + h�;FA

Beh

i). ut
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5.2 Invariance and Regularity

The results for fully abstract algebras are the basis for the characterization of behavioural

theories of behavioural speci�cations since in this case we have:

Th

�

(Mod(behaviour SP w.r.t. �)) = Th(FA

�

(Mod(SP ))).

However remember that the De�nitions 3 and 11 of behavioural speci�cations coincide

for basic speci�cations only if the given family � is regular. The aim of this section is

to point out that whenever an axiomatization of the behavioural equality is provided

one can characterize the regularity of � by a certain property (called invariance) of this

axiomatization.

De�nition30 (Invariant formula). A formula � is called invariant w.r.t. � if, for any

�-algebra A and valuation � : X ! Dom(�

A

), A;� j=

�

� if and only if A;� j= �.

Remark. If � is closed then, due to Theorem 24, � is invariant if and only if � and L(�)

are equivalent formulas w.r.t. all lifted algebras L(A). In particular, in the special case of

partial observational equalities induced by a set Obs of observable sorts and a set In of

input sorts, formulas built with the logical connectives, quanti�ers and equations between

observable terms (i.e. terms of an observable sort) with variables of input sorts only are

invariant formulas.

The following lemmas will be used for proving the characterization of regularity given in

Proposition 33.

Lemma31. The axiomatization of the behavioural equality � is invariant if and only if,

for any �-algebra A and any sort s in S, A j=

�

8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

= y

s

].

Proof. Let A be a �-algebra and � : X ! Dom(�

A

) be an arbitrary valuation.

=): A;� j=

�

Beh

s

(x

s

; y

s

) i� (by invariance) A;� j= Beh

s

(x

s

; y

s

) i� �(x

s

) �

A

�(y

s

) i�

A;� j=

�

x

s

= y

s

.

(=: A;� j=

�

Beh

s

(x

s

; y

s

) i� (by assumption) A;� j=

�

x

s

= y

s

i� A;� j= Beh

s

(x

s

; y

s

).

Hence the axiomatization is invariant. ut

Lemma32. The axiomatization of the behavioural equality � is invariant if and only if,

for any �-algebra A and any sort s in S, A=�

A

j= 8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

= y

s

].

Proof. Follows from Theorem 20(1) and Lemma 31. ut

Proposition33. The behavioural equality � is regular if and only if its axiomatization

is invariant.

Proof. By de�nition, the behavioural equality� is regular if and only if, for any �-algebra

A, A=�

A

is fully abstract. According to Proposition 28 and Lemma 32, this is equivalent

to the invariance of the axiomatization. ut

It is therefore easy to show that the observational equality �

Obs;In

induced by a set

Obs of observable sorts and a set In of input sorts is always regular (cf. Example 4).

In the following we always assume that the family � is regular or equivalently that the

axiomatization of the behavioural equality is invariant.
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5.3 General Case

We will now generalize the results obtained for fully abstract algebras to the lifting

operator. In a �rst step we obtain an appropriate characterization of lifted algebras.

Proposition34 (Characterization of lifted algebras). Let B be an arbitrary L(�)-

algebra. Then B 2 L(Alg(�)) (i.e. B is a lifted algebra) if and only if, for all s 2 S,

B j= 8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

�

s

y

s

] .

Proof. Let A be a �-algebra. Since A and L(A) have the same carrier sets, it is not nec-

essary to distinguish between valuations from fx

s

; y

s

g to A and valuations from fx

s

; y

s

g

to L(A). In the following we will denote such valuations by � : fx

s

; y

s

g ! A;L(A).

=): Assume B 2 L(Alg(�)) and let A 2 Alg(�) such that B = L(A).

Let � : fx

s

; y

s

g ! A;L(A) be an arbitrary valuation. L(A); � j= Beh

s

(x

s

; y

s

)

i� (since Beh

s

(x

s

; y

s

) is a �-formula) A;� j= Beh

s

(x

s

; y

s

) i� (by De�nition 27)

�(x

s

) �

A

�(y

s

) i� (by De�nition 22) �(x

s

) �

L(A)

s

�(y

s

) i� L(A); � j= x

s

�

s

y

s

.

Hence B j= 8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

�

s

y

s

].

(=: Assume B j= 8x

s

; y

s

:s: [Beh

s

(x

s

; y

s

), x

s

�

s

y

s

] . Let A = B j

�

. We prove that

B = L(A). For this it is enough to show that for all s 2 S and for all a; b in

B

s

(= A

s

= L(A)

s

), a �

B

s

b i� a �

L(A)

s

b. Let � : fx

s

; y

s

g ! B;A;L(A) be the

valuation de�ned by �(x

s

) = a and �(y

s

) = b. Then a �

B

s

b i� B;� j= x

s

�

s

y

s

i� B;� j= Beh

s

(x

s

; y

s

) i� A;� j= Beh

s

(x

s

; y

s

) i� a �

A

b i� a �

L(A)

s

b. Hence

B = L(A). ut

This proof suggests that, symmetrically to the semantic lifting induced by a behavioural

equality �, we can de�ne an \axiomatic lifting" of algebras induced by a family of appro-

priate formulas. Indeed this \axiomatic lifting" can be de�ned for any �

1

-algebra, using

�

1

-formulas, where � � �

1

:

9

De�nition35 (Axiomatic lifting of algebras). Let �

1

be a signature such that � �

�

1

, and let �

L

1

def

= L(�) [ �

1

. Let � = (�

s

)

s2S

be an S-sorted family of arbitrary �

1

-

formulas, and assume that each �

s

has exactly two free variables, say x

s

and y

s

, of sort

s 2 S. Let BEH

�

be the �

L

1

-sentence de�ned by BEH

�

def

=

V

s2S

8x

s

; y

s

:s: [�

s

, x

s

�

s

y

s

] .

Then for any �

1

-algebra A, there exists a unique �

L

1

-algebra, denoted by E

L

�

(A), such

that:

10

1. E

L

�

(A)j

�

1

= A .

2. E

L

�

(A) j= BEH

�

.

E

L

�

(A) is called the axiomatic lifting of A induced by the family �.

For any class C of �

1

-algebras, let E

L

�

(C)

def

= fE

L

�

(A) j A 2 Cg.

9

The motivations for using a larger signature �

1

will become clear in the next section when we

consider axiomatizations with hidden parts.

10

Since the sentence BEH

�

de�nes unambiguously the interpretation of the predicate symbol �

s

, for

each s 2 S.
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Remark. Note that E

L

�

(C) = f�

L

1

-algebra B j B 2 Mod(h�

L

1

;BEH

�

i) and Bj

�

1

2 Cg. In

particular, if we consider the model class of some ASL-like structured speci�cation SP of

signature �

1

, we have E

L

�

(Mod(SP )) =Mod(SP + h�

L

1

;BEH

�

i).

According to Proposition 34, we can directly conclude that the axiomatic lifting induced

by any axiomatization of the behavioural equality coincides with the semantic lifting

de�ned in De�nition 22.

Theorem36. Let BEH

Beh

be the L(�)-sentence induced by the axiomatization Beh of

the behavioural equality. For any �-algebra A and any class C of �-algebras, the following

holds:

1. L(A) = E

L

Beh

(A) .

2. L(C) = E

L

Beh

(C) .

In particular, if we consider the model class of some ASL-like structured speci�cation SP

of signature �, we have L(Mod(SP )) =Mod(SP + hL(�);BEH

Beh

i). ut

5.4 Application to Various Classes of Algebras

We can apply the previous theorems to various classes of algebras of special interest.

Example 5. Let SP be an arbitrary ASL-like structured speci�cation of signature �. Then,

according to Theorems 24, 29 and 36, and to Example 3, we have:

1. SP j=

�

� if and only if (SP + hL(�);BEH

Beh

i) j= L(�).

2. abstract SP w.r.t. � j=

�

� if and only if (SP + hL(�);BEH

Beh

i) j= L(�).

3. behaviour SP w.r.t. � j=

�

� if and only if (SP + h�;FA

Beh

i) j= �.

4. Assume that SP is behaviourally consistent w.r.t. �. Then SP j=

�

� i�

abstract SP w.r.t. � j=

�

� i� behaviour SP w.r.t. � j=

�

� i�

(SP + h�;FA

Beh

i) j= � . }

As shown by Example 5, the combination of the results of Sections 4 and 5 allows us to

characterize behavioural theories in terms of standard theories using an axiomatization

Beh of the behavioural equality. In particular, we have seen how we can axiomatize

fully abstract algebras (through FA

Beh

) and lifted algebras (through BEH

Beh

). However,

in general these axiomatizations are in�nitary ones. To perform proofs is therefore still

di�cult. One possibility is to replace these in�nitary sentences by in�nitary proof rules

(such as context induction in the particular case of the total observational equality)

and to show that the resulting proof system is sound and complete (cf. [11]). Another

possibility, studied in the next sections, is to �nd special (but general enough) cases where

the in�nitary axiomatization can be replaced by a �nitary one.
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6 Finitary Axiomatization of the Behavioural

Equality

In practice it is in general simple to �nd an in�nitary axiomatization of the behavioural

equality (indeed in the observational framework this axiomatization is directly deduced

from the de�nition of the observational equality). Unfortunately it is usually di�cult to

�nd a �nitary axiomatization of � which for any �-algebra A is equivalent to the in-

�nitary one. But since we are always interested in the behavioural theory of some given

class C of �-algebras we do not really need a �nite axiomatization of the behavioural

equality for any arbitrary �-algebra but rather just for the algebras in the class C we

are interested in.

In the most simple cases, it turns out that, provided the class C we are interested

in satis�es some simple property expressed by a �nitary sentence, we can �nd a �nitary

axiomatization of the behavioural equality for the algebras belonging to C (cf. Section

7, Corollary 43). In general, however, it may be necessary to introduce additional hidden

sorts and function symbols that will prove useful in getting rid of the in�nitary axiom-

atization. This idea leads to the notion of �nitary axiomatization with hidden part as

formalized below. We still assume given a signature � = (S;F ) and a regular family �

of partial �-congruences.

De�nition37 (Finitary axiomatization with hidden part). Let C be a class of �-

algebras.

1. Let HID be a speci�cation with �nitary axioms plus reachability constraints

of the form h�

H

;R

H

;Ax

H

i, with � � �

H

, which de�nes hidden sorts (possibly

constrained) and hidden function symbols.

2. Let HBeh = (HBeh

s

(x

s

; y

s

))

s2S

be an S-sorted family of �nitary �

H

-formulas,

where x

s

and y

s

are the only free variables, of sort s, of HBeh

s

(x

s

; y

s

).

3. Let Ext

H

(C)

def

= f�

H

-algebra A

H

j A

H

2Mod(HID) and A

H

j

�

2 Cg.

(HID;HBeh) is called a �nitary axiomatization with hidden part of the behavioural equal-

ity � with respect to the class C of �-algebras if the following conditions are satis�ed:

(i) All �-algebras A 2 C can be extended to (at least) an algebra A

H

2 Mod(HID),

with A

H

j

�

= A, i.e. Ext

H

(C)j

�

= C .

(ii) For any �

H

-algebra A

H

2 Ext

H

(C), E

L

HBeh

(A

H

)j

L(�)

= L(A

H

j

�

) .

(Remember that E

L

HBeh

(A

H

) denotes the axiomatic lifting of A

H

induced by HBeh,

cf. De�nition 35.)

If this is the case, HID will be called the hidden part of the �nitary axiomatization.

Remark. Our terminology is consistent with De�nition 27 for the following reason. Let

A 2 C be a �-algebra. Then, according to the condition (i), there exists at least one �

H

-

algebra A

H

2Mod(HID) such that A

H

j

�

= A (and A

H

2 Ext

H

(C)). Then the condition

(ii) implies that E

L

HBeh

(A

H

)j

L(�)

= L(A), which means that for any sort s 2 S and any

valuation � : fx

s

; y

s

g ! A

H

, A

H

; � j= HBeh

s

(x

s

; y

s

) if and only if �(x

s

) �

A

�(y

s

) .
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Some comments may help to provide a better understanding of the de�nition above:

1. The main goal is to replace the family Beh of in�nitary formulas Beh

s

(x

s

; y

s

)

by a family HBeh of �nitary formulas HBeh

s

(x

s

; y

s

). Then obviously the induced

formula BEH

HBeh

(cf. De�nition 35) will be a �nitary formula as well (since we

assume that S is �nite). Intuitively BEH

HBeh

will characterize some lifted algebras

(as the formula BEH

Beh

does for all algebras, cf. Theorem 36).

2. It is a standard idea to use auxiliary hidden sorts and function symbols to replace

formulas expressed in some logic by \equivalent" formulas expressed in a less pow-

erful one (cf. e.g. [21]). It is therefore natural to introduce the hidden part HID in

our axiomatization.

3. The �nitary axiomatization is \adequate" for the class C if HID is a conservative

extension of C (cf. condition (i)) and if moreover for all algebras in C extended ac-

cordingly to HID, the �nitary axiomatizationHBeh is \equivalent" to Beh (cf. con-

dition (ii)).

4. In the most simple cases no hidden part is necessary, i.e. we can choose HID equal to

h�; ;; ;i. Then Ext

H

(C) = C and HBeh is simply a family of �nitary �-formulas.

In that case (h�; ;; ;i;HBeh) is a �nitary axiomatization of the behavioural equality

with respect to a given class C of �-algebras if and only if, for any�-algebra A 2 C,

E

L

HBeh

(A) = L(A) .

It is obvious that the results obtained in the previous section carry over to �nitary

axiomatizations with hidden part. The following theorem provides a summary.

Theorem38. Let (HID;HBeh) be a �nitary axiomatization with hidden part of the be-

havioural equality � with respect to a class C of �-algebras, where HID = h�

H

;R

H

;Ax

H

i.

Then we have:

1. Let FA

HBeh

be the following �nitary �

H

-sentence:

FA

HBeh

def

=

V

s2S

8x

s

; y

s

:s: [HBeh

s

(x

s

; y

s

), x

s

= y

s

] .

FA

�

(C) = (Ext

H

(C) \Mod(h�

H

;FA

HBeh

i))j

�

.

2. L(C) = (E

L

HBeh

(Ext

H

(C)))j

L(�)

.

3. In particular, if we consider the model class of some ASL-like structured speci�cation

SP of signature �, then Ext

H

(Mod(SP )) =Mod(SP +HID), and the condition (i)

of De�nition 37 means that HID is a conservative extension of SP , i.e.

Mod(SP +HID)j

�

=Mod(SP ). Hence we have:

(a) FA

�

(Mod(SP )) =Mod(SP +HID + h�

H

;FA

HBeh

i)j

�

.

(b) L(Mod(SP )) =Mod(SP + HID+ h�

L

H

;BEH

HBeh

i)j

L(�)

.

It is important to note that if SP is a smooth speci�cation, then the speci�cations

SP +HID, SP +HID+ h�

H

;FA

HBeh

i, SP +HID+ h�

L

H

;BEH

HBeh

i are smooth as

well (cf. Section 2).



Behavioural Theories and The Proof of Behavioural Properties 25

4. In particular, if there is no hidden part, i.e. HID = h�; ;; ;i, and if we still consider

the model class of some ASL-like structured speci�cation SP of signature �, then

the condition (i) of De�nition 37 is trivially satis�ed, and we have:

(a) FA

�

(Mod(SP )) =Mod(SP + h�;FA

HBeh

i) .

(b) L(Mod(SP )) =Mod(SP + hL(�);BEH

HBeh

i) . ut

Example 6. Let (HID;HBeh) be a �nitary axiomatization with hidden part of the be-

havioural equality � with respect to the model class of some ASL-like structured speci�-

cation SP of signature �. Then the combination of Theorems 24 and 38 shows that, for

any �-formula �:

1. SP j=

�

� i� (SP +HID + h�

L

H

;BEH

HBeh

i) j= L(�) .

2. abstract SP w.r.t. � j=

�

� i� (SP +HID + h�

L

H

;BEH

HBeh

i) j= L(�) .

3. behaviour SP w.r.t. � j=

�

� i� (SP +HID + h�

H

;FA

HBeh

i) j= � .

4. Assume that SP is behaviourally consistent w.r.t. �. Then SP j=

�

� i�

abstract SP w.r.t. � j=

�

� i� behaviour SP w.r.t. � j=

�

� i�

(SP +HID+ h�

H

;FA

HBeh

i) j= � . }

As shown in Example 6, once a �nitary axiomatization (with hidden part) of the be-

havioural equality is provided, we can use \standard" proof techniques to prove the

behavioural validity of some formula with respect to a given smooth speci�cation (or

with respect to the behavioural or abstractor speci�cation built on top of a smooth spec-

i�cation). The aim of the next section is to explain how one can �nd adequate �nitary

axiomatizations with hidden part in the particular case of observational equalities.

7 Axiomatization of the Observational Equality

We will now focus on observational equalities, and we assume given a signature � =

(S;F ), a set Obs of observable sorts and a set In of input sorts. X

In

is the S-sorted

family of variables de�ned by (X

In

)

s

= ; if s 62 In and (X

In

)

s

= X

s

if s 2 In (where

X = (X

s

)

s2S

is the generally assumed family of countably in�nite sets of variables of

sort s). The problem to be solved is to �nd a �nitary axiomatization of the observational

equality �

Obs;In

(w.r.t. a given class C of �-algebras). Remember that for any �-algebra

A, the de�nition domain Dom(�

Obs;In;A

) of �

Obs;In;A

is equal to A[X

In

], the smallest

subalgebra of A generated by � and X

In

.

Let us consider again the axiomatization of �

Obs;In

given in Example 4:

Beh

s

(x

s

; y

s

)

def

= Def

s

(x

s

) ^Def

s

(y

s

) ^

V

C2C

Obs

�

(s)

8Var(C):DEF(Var(C))) C[x

s

] = C[y

s

],

where Def

s

(x

s

) is an abbreviation for

W

t2T

�

(X

In

)

s

9Var(t): x

s

= t

and DEF(Var(C)) stands for

V

v

s

0

2Var(C)

Def

s

0

(v

s

0

) .

It is clear that we have two distinct reasons for obtaining in�nitary formulas: on one

hand we must consider an in�nite set of observable contexts C

Obs

�

which represents the
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in�nitely many experiments with observable results, and this leads to the in�nitary con-

junction

V

C2C

Obs

�

(s)

� � � ; on the other hand we must only consider values that are denotable

by a term t 2 T

�

(X

In

), and this leads to the in�nitary disjunctions

W

t2T

�

(X

In

)

s

� � � . A

natural idea to get rid of the �rst cause of in�nitary axiomatization is to check whether,

under some conditions, it would be enough to consider some adequate �nite set of observ-

able contexts instead of the in�nite set of all observable contexts. Indeed, if successful,

this idea would be enough to solve our problem in the special case of the total observa-

tional equality.

In general, however, it is clear that this idea will not be powerful enough. First, if we

consider a partial observational equality, we must still face the in�nitary Def

s

(:) parts.

Moreover, it is not always possible to consider only a �nite subset of observable contexts.

In these cases we must �nd an appropriate hidden part to obtain a �nitary axiomatization

of the observational equality �

Obs;In

.

7.1 Using a Smaller Set of Observable Contexts

Before we consider more concretely how to construct a hidden part in order to obtain

a �nitary axiomatization of the observational equality, we will �rst provide a general

characterization of �nitary axiomatizations of the observational equality. This character-

ization will point out that under some conditions it is enough to axiomatize a contextual

equality (cf. De�nition 14) with respect to some (smaller) subset C of the set C

Obs

�

of all

observable contexts.

For this purpose we will assume that De�nition 27 is generalized in a straightfor-

ward way to axiomatizations of contextual equalities. Then, if C is an arbitrary set of �-

contexts, we know (cf. Example 4) that the partial contextual equality�

C;In

induced by C

and In is axiomatized by the S-sorted family of formulas Beh

C

= (Beh

C

s

(x

s

; y

s

))

s2S

, with

Beh

C

s

(x

s

; y

s

)

def

= Def

s

(x

s

) ^Def

s

(y

s

) ^

V

C2C(s)

8Var(C):DEF(Var(C))) C[x

s

] = C[y

s

],

where Def

s

(x

s

) is an abbreviation for

W

t2T

�

(X

In

)

s

9Var(t): x

s

= t

and DEF(Var(C)) stands for

V

v

s

0

2Var(C)

Def

s

0

(v

s

0

) .

In a �rst step we will study some su�cient conditions under which the contextual

equality induced by a set C of �-contexts and a set In of input sorts coincides with the

observational equality �

Obs;In

.

Lemma39. Let A be a �-algebra and �

A

be an arbitrary partial congruence on A.

If Dom(�

A

) = Dom(�

Obs;In;A

)(= A[X

In

]) and if �

A

\coincides" with the set-theoretic

equality on the carrier sets of all observable sorts, i.e. for all a; b 2 Dom(�

A

)

s

, with

s 2 Obs, we have a �

A

b if and only if a = b, then �

A

� �

Obs;In;A

.

Proof. Let a, b be two elements of A

s

, for some sort s 2 S, and assume that a �

A

b. Then

both a and b belong to A[X

In

]. Since �

A

is a partial congruence (hence is compatible

with the signature �), we have, for any observable context C 2 C

Obs

�

(s) and for any

valuation � : X ! A[X

In

], I

�

a

(C) �

A

I

�

b

(C), where �

a

; �

b

: X [ fz

s

g ! A[X

In

] are

the unique extensions of � de�ned by �

a

(z

s

) = a and �

b

(z

s

) = b, where z

s

is the context
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variable of C. Since C is an observable context, both I

�

a

(C) and I

�

b

(C) belong to the

carrier set of some observable sort. But since we have assumed that �

A

\coincides" with

the set-theoretic equality on the carrier sets of the observable sorts, I

�

a

(C) �

A

I

�

b

(C)

implies I

�

a

(C) = I

�

b

(C), hence we have a �

Obs;In;A

b. Therefore �

A

� �

Obs;In;A

. ut

Remark. Indeed it is easy to prove that the set of all partial congruences on A which have

A[X

In

] as de�nition domain and which \coincide" with the set-theoretic equality on each

observable sort is a complete lattice, the smallest element of which is the restriction of

the set-theoretic equality to A[X

In

], the greatest element being the observational equality

�

Obs;In;A

.

Lemma40. Let C � C

Obs

�

be an arbitrary subset of observable �-contexts such that, for

any observable sort s 2 Obs, z

s

2 C and let A be a �-algebra. Then �

C;In;A

= �

Obs;In;A

if and only if �

C;In;A

is a partial �-congruence.

Proof. First note that, according to De�nition 14, Dom(�

C;In;A

) = A[X

In

]. Assume that

�

C;In;A

is a partial �-congruence. Since C � C

Obs

�

, obviously we have �

Obs;In;A

� �

C;In;A

.

To prove that �

C;In;A

� �

Obs;In;A

, by Lemma 39, it is enough to prove that �

C;In;A

\coincides" with the set-theoretic equality for each carrier set of an observable sort. But

this holds since C contains by assumption all the \trivial" contexts z

s

when s is an

observable sort. The converse direction is trivial. ut

Using the last lemma we can infer necessary and su�cient conditions under which the

family of formulasBeh

C

is \equivalent" to the axiomatization of the observational equality

�

Obs;In

.

Proposition41 (Criteria for using a smaller set of contexts). Let C � C

Obs

�

be an

arbitrary subset of observable �-contexts such that, for any observable sort s 2 Obs,

z

s

2 C. Let Beh and Beh

C

be the respective axiomatizations of �

Obs;In

and �

C;In

. For

any �

H

-algebra A

H

, with � � �

H

, the following two conditions are equivalent:

1. E

L

Beh

C

(A

H

) = E

L

Beh

(A

H

)

2. E

L

Beh

C

(A

H

) j= CONG

�

�

where CONG

�

�

is the �nitary L(�)-sentence de�ned by CONG

�

�

def

=

V

f2F

CONG

�

f

, where

for each function symbol f 2 F of arity s

1

: : : s

n

! s, the sentence CONG

�

f

is de�ned by:

CONG

�

f

def

= 8x

1

; y

1

:s

1

; : : : ; x

n

; y

n

:s

n

:

h�

V

1�i�n

x

i

�

s

i

y

i

�

) f(x

1

; : : : ; x

n

) �

s

f(y

1

; : : : ; y

n

)

i

.

Proof.

1) 2: Is obvious since Beh is the axiomatization of the (partial) �-congruence �

Obs;In

,

hence E

L

Beh

(A

H

) j= CONG

�

�

.

2) 1: Assume that E

L

Beh

C

(A

H

) j= CONG

�

�

. But then, since Beh

C

is an axiomatization

of the contextual equality �

C;In

, we know that �

C;In;A

H

j

�

is a partial �-congruence,

and using Lemma 40 we conclude that �

C;In;A

H

j

�

=�

Obs;In;A

H

j

�

. Hence

E

L

Beh

C

(A

H

j

�

) = E

L

Beh

(A

H

j

�

), and therefore E

L

Beh

C

(A

H

) = E

L

Beh

(A

H

) . ut
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From Proposition 41 we can infer the following characterization of �nitary axiomatiza-

tions of the observational equality �

Obs;In

. Intuitively this characterization says that for

axiomatizing the observational equality �

Obs;In

, it is enough to axiomatize some contex-

tual equality �

C;In

, provided that �

C;In;A

is a partial �-congruence for all algebras A in

the class C of interest.

Theorem42 (Characterization of �nitary axiomatizations of �

Obs;In

). Let C be

a class of �-algebras, and let (HID;HBeh) be as in De�nition 37. (HID;HBeh) is a

�nitary axiomatization with hidden part of the observational equality �

Obs;In

with respect

to the class C of �-algebras if and only if the following conditions are satis�ed:

1. Ext

H

(C)j

�

= C .

2. For any �

H

-algebra A

H

2 Ext

H

(C), E

L

HBeh

(A

H

) j= CONG

�

�

.

3. There exists a (possibly in�nite) set C � C

Obs

�

of observable �-contexts which con-

tains, for any observable sort s 2 Obs, the trivial context z

s

and such that, for any

�

H

-algebra A

H

2 Ext

H

(C), E

L

HBeh

(A

H

) = E

L

Beh

C

(A

H

), where Beh

C

is the axiomati-

zation of the contextual equality �

C;In

.

Proof. It is obviously enough to show that the condition (ii) of De�nition 37 is equivalent

to the conditions (2) and (3). Let Beh be the axiomatization of the observational equality

�

Obs;In

and let A

H

2 Ext

H

(C).

=): Assume that E

L

HBeh

(A

H

)j

L(�)

= L(A

H

j

L(�)

). Then E

L

HBeh

(A

H

)j

L(�)

= E

L

Beh

(A

H

j

L(�)

)

and therefore E

L

HBeh

(A

H

) = E

L

Beh

(A

H

). Hence Condition (2) is obviously satis�ed.

On the other hand Condition (3) is trivially satis�ed as well by choosing C = C

Obs

�

.

(=: Assume that the conditions (2) and (3) hold. Then E

L

HBeh

(A

H

) j= CONG

�

�

and

E

L

HBeh

(A

H

) = E

L

Beh

C

(A

H

), for some C � C

Obs

�

with z

s

2 C for all s 2 Obs. Hence

E

L

Beh

C

(A

H

) j= CONG

�

�

and therefore, by Proposition 41, E

L

Beh

C

(A

H

) = E

L

Beh

(A

H

).

Hence E

L

HBeh

(A

H

) j

L(�)

= E

L

Beh

(A

H

) j

L(�)

= E

L

Beh

(A

H

j

L(�)

) = L(A

H

j

L(�)

), i.e. the

condition (ii) of De�nition 37 holds. ut

The following corollary shows that any �nite set C � C

Obs

�

of observable �-contexts

(which contains, for any observable sort s 2 Obs, the trivial context z

s

) induces a �nitary

axiomatization of the total observational equality �

Obs;S

w.r.t. any class C for which the

contextual equality �

C;S

is a �-congruence.

Corollary 43. Let C be a class of �-algebras and let C � C

Obs

�

be a �nite set of ob-

servable �-contexts such that, for any observable sort s 2 Obs, z

s

2 C. Let TBeh be the

S-sorted family of �nitary �-formulas de�ned by:

TBeh

s

(x

s

; y

s

)

def

=

V

C2C(s)

8Var(C): C[x

s

] = C[y

s

] .

TBeh is a �nitary axiomatization (with an empty hidden part) of the total observational

equality �

Obs;S

with respect to the class C of �-algebras if and only if we have:

E

L

TBeh

(C) j= CONG

�

�

.

Proof. The family TBeh is obviously an axiomatization of the total contextual equality

�

C;S

(cf. Example 4). Hence the corollary is a direct consequence of Theorem 42. ut
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The above corollary solves our problem in the simplest cases, i.e. when we consider a total

observational equality and when, moreover, we can �nd a �nite subset C of observable �-

contexts such that the class C of �-algebras we are interested in is such that E

L

TBeh

(C) j=

CONG

�

�

: in this case we can immediately apply Theorem 38(4). If it is not possible to

�nd a convenient �nite subset C, or if we consider a partial observational equality, then

we must use an adequate hidden part to obtain a suitable �nitary axiomatization.

7.2 Hidden Part for the Observational Equality

The aim of this subsection is to explain how to �nd a �nitary axiomatization (HID;HBeh)

with hidden part of the partial observational equality �

Obs;In

w.r.t. some class C of �-

algebras. In a �rst step we must get rid of the in�nitary Def

s

(:) parts. For this we suggest

to use auxiliary hidden predicate symbols D

H;s

axiomatized in such a way that D

H;s

(x

s

)

holds if and only if Def

s

(x

s

) holds. In a second step we must get rid of the in�nitary

conjunctions over observable contexts. The previous subsection suggests to replace the

set of all observable contexts by some smaller subset C. However, if we cannot �nd a

convenient �nite subset C, then we still have in�nitary conjunctions over the contexts of

C. In that case we suggest to use auxiliary hidden function symbols that will intuitively

provide the same observations than C, and to use a �nite set C

H

of observable contexts

built with the help of these hidden function symbols.

Let us �rst explain how a family of �nitary formulas is induced by the predicate

symbols D

H;s

and by the choice of a �nite set of contexts C

H

.

De�nition44. Let �

H

be a signature such that � � �

H

, and such that for each sort

s 2 S, there exists a unary predicate symbol D

H;s

of domain s in �

H

. Let C

H

be an

arbitrary �nite set of �

H

-contexts (with variables in X

H

, where X

H

= (X

H;s

)

s2S

H

is

the generally assumed family of countably in�nite sets of variables of sort s 2 S

H

). The

S-sorted family of �nitary �

H

-formulas induced by the predicate symbols D

H;s

and the

contexts C

H

, denoted by HBeh[D

H

; C

H

], is de�ned by:

HBeh[D

H

; C

H

]

s

(x

s

; y

s

)

def

= D

H;s

(x

s

) ^D

H;s

(y

s

)^

V

C

H

2C

H

(s)

8Var(C

H

):DEF

H

(Var(C

H

))) C

H

[x

s

] = C

H

[y

s

],

where DEF

H

(Var(C

H

)) stands for

V

v

s

0

2Var(C

H

);s

0

2S

D

H;s

0

(v

s

0

) .

Remark. Note thatHBeh[D

H

; C

H

] is not in general the axiomatization of some contextual

equality.

Theorem 42 provides an abstract characterization of �nitary axiomatizations of the ob-

servational equality �

Obs;In

, which is valid for any couple (HID;HBeh). However, if we

know that we are going to use the familyHBeh[D

H

; C

H

] induced by the predicate symbols

D

H;s

and a �nite set of contexts C

H

, we can derive more precise conditions.

Proposition45 (Criteria for the hidden part). Let C be an arbitrary set of �-con-

texts and let Beh

C

be the axiomatization of the contextual equality �

C;In

. Let �

H

be a

signature such that � � �

H

, and such that for each sort s 2 S, there exists a unary pred-

icate symbol D

H;s

of domain s in �

H

. Let C

H

be an arbitrary �nite set of �

H

-contexts

(with variables in X

H

). Let HBeh[D

H

; C

H

] be the S-sorted family of �nitary �

H

-formulas
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induced by the predicate symbols D

H;s

and the contexts C

H

.

For any �

H

-algebra A

H

, E

L

HBeh[D

H

;C

H

]

(A

H

) = E

L

Beh

C

(A

H

) if the following three conditions

are satis�ed:

(i) For each sort s 2 S and any value a 2 (A

H

)

s

, D

A

H

H;s

(a) if and only if there exists a

term t 2 T

�

(X

In

) and a valuation � : X

In

! A

H

such that I

�

(t) = a.

(ii) For each sort s 2 S, for each �

H

-context C

H

2 C

H

(s), for each valuation � : X

H

!

A

H

such that D

A

H

H;s

0

(�(v

s

0

)) for all s

0

2 S and all v

s

0

2 X

H;s

0

, there exists a �-context

C 2 C(s) and a valuation � : X ! A

H

with D

A

H

H;s

0

(�(v

s

0

)) for all s

0

2 S and all

v

s

0

2 X

s

0

, such that, for any value a 2 (A

H

)

s

with D

A

H

H;s

(a), I

�

a

(C) = I

�

a

(C

H

),

where I

�

a

and I

�

a

are the unique extensions of I

�

and I

�

respectively de�ned by

I

�

a

(z

s

) = a and I

�

a

(z

s

) = a.

(iii) For each sort s 2 S, for each �-context C 2 C(s), for each valuation � : X ! A

H

such that D

A

H

H;s

0

(�(v

s

0

)) for all s

0

2 S and all v

s

0

2 X

s

0

, there exists a �

H

-context

C

H

2 C

H

(s) and a valuation � : X

H

! A

H

with D

A

H

H;s

0

(�(v

s

0

)) for all s

0

2 S and

all v

s

0

2 X

H;s

0

, such that, for any value a 2 (A

H

)

s

with D

A

H

H;s

(a), I

�

a

(C

H

) = I

�

a

(C),

where I

�

a

and I

�

a

are the unique extensions of I

�

and I

�

respectively de�ned by

I

�

a

(z

s

) = a and I

�

a

(z

s

) = a.

Proof. Let A

H

be an arbitrary �

H

-algebra. From (i) we can conclude that for any sort

s 2 S and any valuation � : fx

s

g ! A

H

, A

H

; � j= D

H;s

(x

s

) if and only if A

H

; � j=

Def

s

(x

s

). Using this fact together with the conditions (ii) and (iii) we can infer that, for

any sort s 2 S and any valuation � : fx

s

; y

s

g ! A

H

, A

H

; � j= HBeh[D

H

; C

H

]

s

(x

s

; y

s

) if

and only if A

H

; � j= Beh

C

s

(x

s

; y

s

). Hence E

L

HBeh[D

H

;C

H

]

(A

H

) = E

L

Beh

C

(A

H

). ut

The combination of Theorem 42 and Proposition 45 leads to the following criteria for

�nite axiomatizations of the observational equality �

Obs;In

.

Theorem46 (Criteria for �nitary axiomatizations of �

Obs;In

). Let C be a class of

�-algebras. Let HID be a speci�cation with �nitary axioms plus reachability constraints

of the form h�

H

;R

H

;Ax

H

i, with � � �

H

, such that for each sort s 2 S, there exists

a unary predicate symbol D

H;s

of domain s in �

H

. Let C

H

be an arbitrary �nite set of

�

H

-contexts (with variables in X

H

). Let HBeh[D

H

; C

H

] be the S-sorted family of �nitary

�

H

-formulas induced by the predicate symbols D

H;s

and the contexts C

H

.

(HID;HBeh[D

H

; C

H

]) is a �nitary axiomatization with hidden part of the observational

equality �

Obs;In

with respect to the class C of �-algebras if the following conditions are

satis�ed:

1. Ext

H

(C)j

�

= C .

2. For any �

H

-algebra A

H

2 Ext

H

(C), E

L

HBeh[D

H

;C

H

]

(A

H

) j= CONG

�

�

.
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3. There exists a (possibly in�nite) set C � C

Obs

�

of observable �-contexts which con-

tains, for any observable sort s 2 Obs, the trivial context z

s

and such that any

�

H

-algebra A

H

2 Ext

H

(C) satis�es the three conditions (i), (ii) and (iii) of Propo-

sition 45 (w.r.t. C). ut

Theorem 46 provides the key for constructing a �nitary axiomatization of the observa-

tional equality�

Obs;In

with respect to a given classC of �-algebras. Indeed the conditions

(1), (2) and (3) can be considered as proof obligations. Condition (1) requires that all

algebras in C can be extended to a model of the speci�cation HID, i.e. HID does not

introduce any \confusion" on the algebras of C. Condition (2) requires that the relation

axiomatized by the formulasHBeh[D

H

; C

H

] is a �-congruence and condition (3) provides

a criterion for this relation to coincide with the contextual equality induced by some set

C of �-contexts and the input sorts In. It is important to note that if C

H

consists only

of �-contexts then the condition (3) reduces to the condition (i) of Proposition 45. If,

moreover, we consider the total observational equality �

Obs;S

then condition (2) remains

the only proof obligation (cf. Corollary 43). In general, however, one has to check the

three conditions (i), (ii) and (iii) of Proposition 45. In particular conditions (ii) and (iii)

look rather technical; in concrete examples however it turns out that both conditions can

be checked quite easily because one has only to relate contexts of C

H

to contexts of C and

vice versa.

In the remainder of this section we will show that, for any partial observational equal-

ity �

Obs;In

and any class C of �-algebras, it is always possible to construct a �nitary

axiomatization with hidden part of �

Obs;In

w.r.t. C. The idea is to encode the observable

�-contexts and the �-terms with input variables in the hidden part, and to specify the

application of contexts and the interpretation of terms by corresponding hidden function

symbols. However, it should be clear that (at least) the encoding of the contexts is so

complex that this result is of purely theoretical interest. In practice it is both more e�-

cient and simpler to de�ne an ad hoc hidden part and to discharge the proof obligations

provided in Theorem 46.

De�nition47 (General encoding of de�nition domains and contexts). Let � =

(S;F ) be a signature, Obs � S be a set of observable sorts and In � S be a set of

input sorts. The speci�cation HID[�;Obs; In] = h�

H

;R

H

;Ax

H

i, with �

H

= (S

H

; F

H

),

is de�ned by:

1. Let Ar[�]

def

= fs

0

! s j s; s

0

2 S and there exists (at least) a �-context of sort s

with context variable of sort s

0

g.

2. S

H

is equal to S plus:

(a) for each sort s 2 S n In, a new sort T [s].

(b) for each s

0

! s 2 Ar[�], a new sort Ct[s

0

! s].

3. F

H

is equal to F plus:
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Function symbols for the encoding of de�nition domains:

(a) for each function symbol f 2 F of arity s

1

: : : s

n

! s, with s 62 In, a new

function symbol T [f ] of arity �

1

s

1

: : : �

n

s

n

! T [s], with �

i

s

i

= s

i

if s

i

2 In and

�

i

s

i

= T [s

i

] otherwise.

(b) for each sort s 2 S n In, a new function symbol I[s] of arity T [s]! s.

(c) for each sort s 2 S, a new unary predicate symbol D

H;s

of domain s.

Function symbols for the encoding of �-contexts:

(d) for each sort s 2 S, a new constant Ct[z

s

] of sort Ct[s! s].

(e) for each non constant function symbol f 2 F of arity s

1

: : : s

n

! s, for each

i 2 f1; : : : ; ng and for each sort s

0

2 S such that s

0

! s

i

2 Ar[�], a new

function symbol Ct[f; i; s

0

] of arity �

1

s

1

: : : Ct[s

0

! s

i

] : : : �

n

s

n

! Ct[s

0

! s],

with �

j

s

j

= s

j

if s

j

2 In and �

j

s

j

= T [s

j

] otherwise.

(f) for each s

0

! s 2 Ar[�], a new function symbol apply

s

0

!s

of arity

Ct[s

0

! s] s

0

! s.

4. R

H

= (S

R

; F

R

) is de�ned by:

(a) S

R

def

= S

H

n S .

(b) F

R

def

= fT [f ] j f 2 Fg [ fCt[z

s

] j s 2 Sg [

fCt[f; i; s

0

] j f 2 F of arity s

1

: : : s

n

! s; n > 0; s

0

! s

i

2 Ar[�]g .

5. Ax

H

is the union of:

Axioms for the encoding of de�nition domains:

(a) for each sort s 2 SnIn and for each T [f ], the (implicitly universally quanti�ed)

equation: I[s](T [f ](x

1

; : : : ; x

n

)) = f(�

1

x

1

; : : : ; �

n

x

n

),

with �

i

x

i

= x

i

if s

i

2 In and �

i

x

i

= I[s

i

](x

i

) otherwise.

(b) for each sort s 2 S n In, the sentence 8x

s

:s:D

H;s

(x

s

), 9y

s

:T [s]: I[s](y

s

) = x

s

.

(c) for each sort s 2 In, the sentence 8x

s

:s:D

H;s

(x

s

) .

Axioms for the encoding of �-contexts:

(d) for each sort s 2 S, the sentence 8x

s

:s: apply

s!s

(Ct[z

s

]; x

s

) = x

s

.

(e) for each s

0

! s 2 Ar[�] and for each Ct[f; i; s

0

] the (implicitly universally

quanti�ed) equation:

apply

s

0

!s

(Ct[f; i; s

0

](x

1

; : : : ; c

i

; : : : ; x

n

); x

s

0

) =

f(�

1

x

1

; : : : ; apply

s

0

!s

i

(c

i

; x

s

0

); : : : ; �

n

x

n

),

where �

j

x

j

= x

j

if s

j

2 In and �

j

x

j

= I[s

j

](x

j

) otherwise.

Proposition48. Let HID[�;Obs; In] be as in De�nition 47. Let C

H

be the set of �

H

-

contexts de�ned by C

H

def

= fapply

s

0

!s

(ctx; z

s

0

) j s

0

! s 2 Ar[�] such that s 2 Obs; s

0

2 S;

ctx is an arbitrary but �xed variable of sort Ct[s

0

! s] and z

s

0

is the context variable of

sort s

0

g . Let HBeh[D

H

; C

H

] be the S-sorted family of �nitary �

H

-formulas induced by
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the predicate symbols D

H;s

and the contexts C

H

.

Then (HID[�;Obs; In];HBeh[D

H

; C

H

]) is a �nitary axiomatization of the observational

equality �

Obs;In

with respect to any class C of �-algebras.

Proof. We must show that the three conditions of Theorem 46 are satis�ed. It is easy

to show that any �-algebra A can be extended to a model of HID[�;Obs; In] by a

straightforward construction, i.e. condition (1) is satis�ed. Condition (2) is trivially sat-

is�ed if we show that condition (3) holds with respect to the set C

Obs

�

of all observable

contexts. To prove this, we must check that the conditions (i), (ii) and (iii) of Proposi-

tion 45 are satis�ed w.r.t. the set of all observable �-contexts C

Obs

�

and any �

H

-algebra

A

H

2Mod(HID[�;Obs; In]). Let A

H

2Mod(HID[�;Obs; In]).

Proof of (i): W.l.o.g. let s 2 S n In. We have the following lemmas:

Lemma49. For all values T [a] 2 (A

H

)

T [s]

there exists a term t 2 T

�

(X

In

) and a

valuation � : X

In

! A

H

such that I[s]

A

H

(T [a]) = I

�

(t).

(Proof by induction on the generators of the sort T [s].)

Lemma50. For any term t 2 T

�

(X

In

) and any valuation � : X

In

! A

H

, there

exists a value T [a] 2 (A

H

)

T [s]

such that I[s]

A

H

(T [a]) = I

�

(t).

(Proof by structural induction on T

�

(X

In

).)

From Lemmas 49 and 50 we conclude that for any value a 2 (A

H

)

s

the following

holds: D

A

H

H;s

(a) i� (using the axioms de�ning D

H;s

) there exists T [a] 2 (A

H

)

T [s]

such

that I[s]

A

H

(T [a]) = a i� (by Lemmas 49 and 50) there exists a term t 2 T

�

(X

In

)

and a valuation � : X

In

! A

H

such that I

�

(t) = a.

Proof of (ii): Let s

0

2 S be arbitrary. We have to consider �

H

-contexts of the form

apply

s

0

!s

(ctx; z

s

0

) with s 2 Obs. Condition (ii) can now be easily derived from the

following lemma:

Lemma51. For all sorts Ct[s

0

! s] 2 S

H

and for all values a

H

2 (A

H

)

Ct[s

0

!s]

there exists a �-context C of sort s with context variable z

s

0

and a valuation � :

X ! A

H

with D

A

H

H;s

00

(�(v

s

00

)) for all s

00

2 S and all v

s

00

2 X

s

00

such that for any

value a 2 (A

H

)

s

0

we have I

�

a

(C) = I

�

a

(apply

s

0

!s

(ctx; z

s

0

)) where �

a

(ctx) = a

H

,

�

a

(z

s

0

) = a and �

a

(z

s

0

) = a.

(Proof by induction on the generators of the sort Ct[s

0

! s]. Note that Lemma 51

is formulated for arbitrary sorts s, not only for observable ones, which allows to use

the necessary induction hypotheses.)

Proof of (iii): Condition (iii) follows from another lemmawhich is symmetric to Lemma 51

and can be proved by induction on the structure of arbitrary (observable or not)

�-contexts. ut
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8 How to Prove Behavioural Properties: Examples

In this section we discuss general guidelines for proving behavioural properties with re-

spect to an observational equality �

Obs;In

and we show how to apply the results obtained

in the previous sections to various examples.

In the following we assume given a signature � = (S;F ), a set Obs of observable

sorts, a set In of input sorts, and an arbitrary speci�cation SP of signature �. We want

to prove that SP j=

�

Obs;In

�, for some �-formula �.

The results obtained in the previous sections lead to the following method:

1. Select an appropriate subset C of C

Obs

�

(which contains the trivial contexts z

s

for

s 2 Obs).

2. If In 6= S then de�ne an appropriate hidden part with predicate symbols D

H;s

(for

any s 2 S).

3. If C is in�nite then complete the hidden part as needed and select some �nite set

of contexts C

H

(built with hidden function symbols). Otherwise let C

H

= C.

4. Consider the S-sorted family of �nitary formulas HBeh[D

H

; C

H

] induced by the

predicate symbols D

H;s

(if applicable) and the contexts C

H

.

5. Check that:

(a) The resulting hidden part HID is a conservative extension of SP .

(b) (SP +HID + h�

L

H

;BEH

HBeh[D

H

;C

H

]

i) j= CONG

�

�

.

(c) The criteria for the hidden part given in Proposition 45 are satis�ed (w.r.t.

the selected set of contexts C).

6. Once these steps are done (once for all), Theorem 38 implies that SP j=

�

Obs;In

� if

and only if (SP +HID + h�

L

H

;BEH

HBeh[D

H

;C

H

]

i) j= L(�), for any �-formula �.

Hence it is clear that the selection of an adequate subset C of C

Obs

�

is a crucial step in

the method. In particular, if we succeed in �nding a convenient �nite set C, then the

de�nition of the hidden part is considerably simpli�ed (it is enough to introduce the

predicate symbols D

H;s

) and the checks to be done are much easier to discharge. But

even if the selected set C is in�nite, it is important to understand that the subsequent

steps will be much easier if we consider a strict subset of C

Obs

�

instead of the set of all

observable contexts. In the next subsection we explain how in general such a set C can

be easily deduced from the speci�cation we are interested in. Then we provide various

examples which show how our method can be applied.
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8.1 Crucial Contexts

The problem now is to �nd an adequate subset C of C

Obs

�

, and if possible a �nite subset

C. Remember that observable contexts represent experiments with observable results. A

typical (simple) experiment will start by some computations involving mainly non ob-

servable values and providing non observable results, then there will be a computation

providing an observable result, possibly followed by more computations over observable

values (more complex experiments will be arbitrary combinations of these simple ones).

The crucial idea is that intuitively only the step going from non observable values to

observable ones is critical. Hence our intuition suggests that, in addition to the trivial

observable contexts, it could be enough to consider the \crucial contexts" of the form

f(x

1

; : : : ; x

k�1

; z

s

k

; x

k+1

; : : : ; x

n

), with f 2 F of arity s

1

: : : s

k�1

s

k

s

k+1

: : : s

n

! s, s 2 Obs

and s

k

2 S n Obs. If the contextual equality induced by these crucial contexts is a �-

congruence (for the algebras in the classC we are interested in), then using Proposition 41

we know that it is �ne to replace the in�nite set of all observable contexts C

Obs

�

by the

�nite set of the \crucial contexts".

It should be clear that the selection of the \crucial contexts" is mainly a starting

point. As we will see in the examples described in the next subsections, in some cases

the set of the \crucial contexts" is not optimal (i.e. an even smaller set of contexts is

adequate), while in other cases the set of the \crucial contexts" is not adequate (i.e. we

have to select a larger, in�nite set of contexts). However, from our experience, the set of

the \crucial contexts" is always a very useful starting point and when not adequate it

provides nevertheless the \right intuition" about which set of contexts C must be selected.

8.2 The CONTAINER Example

Let us consider again the CONTAINER speci�cation introduced in Examples 1 and 2. The

observable sorts are fElem, Nat, Boolg and all sorts are input sorts (i.e. we consider

the total observational equality).

We are interested in proving behavioural properties of the CONTAINER speci�cation.

But before note that we can apply some obvious simpli�cations. First, the observational

equality we consider is a total one. Moreover, on observable sorts the observational equal-

ity coincides with the set-theoretic equality, hence the predicate symbols �

s

are not nec-

essary when s is an observable sort. This means that we can considerably simplify the

lifting of formulas, the axiomatizations of the observational equality and the induced for-

mulas BEH by using just one predicate symbol �

Cont

(for sake of clarity we abbreviate

the sort Container by Cont).

Here the set of the \crucial contexts" is fe 2 z

Cont

, card(z

Cont

), subset(S,z

Cont

),

subset(z

Cont

,S), z

Bool

, z

Nat

, z

Elem

g. However, intuitively here the \crucial context"

e 2 z

Cont

is enough to observe containers, and the other observing operations (card and

subset) do not observe \more" than the operation 2 does. Hence we will select the set

C = fe 2 z

Cont

, z

Bool

, z

Nat

, z

Elem

g of observable contexts.
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Since we consider the total observational equality, this leads directly to the following

formula TBeh

Cont

(S,S') (cf. Corollary 42):

TBeh

Cont

(S,S')

def

= [8e:Elem. e 2 S = e 2 S'] .

The corresponding axiomatization is the sentence BEH

Cont

:

8S,S':Container. ([8e:Elem. e 2 S = e 2 S'] , S �

Cont

S') .

The formula CONG

�

�

is (after some obvious simpli�cations):

8e:Elem, S,S',S1,S1':Container.

[(S �

Cont

S') ^ (S1 �

Cont

S1') )

insert(e,S) �

Cont

insert(e,S') ^

(S [ S1) �

Cont

(S' [ S1') ^

remove(e,S) �

Cont

remove(e,S') ^

card(S) = card(S') ^

subset(S,S1) = subset(S',S1') ]

Let CONTAINER

�

def

= (CONTAINER+ hSig(CONTAINER) [ f�

Cont

g;BEH

Cont

i).

In a �rst step we must check that CONTAINER

�

j= CONG

�

�

, which is not di�cult.

It is then very easy to prove that:

CONTAINER

�

j= insert(e,insert(e,S)) �

Cont

insert(e,S)

and that CONTAINER

�

j= insert(e,insert(e',S)) �

Cont

insert(e',insert(e,S))

which means that the two corresponding equations are behaviourally valid in the model

class of the CONTAINER speci�cation. This means as well that this speci�cation can be

considered as a correct behavioural implementation of sets.

8.3 The STACK Example

Let us consider the following STACK speci�cation.

spec: STACK

use: ELEM

sort: Stack

generated by:

empty : ! Stack

push : Elem Stack ! Stack

operations:

pop : Stack ! Stack

top : Stack ! Elem

axioms:

8S:Stack, e:Elem.

pop(empty) = empty

pop(push(e,S)) = S

top(push(e,S)) = e

end STACK.
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We assume that all sorts are input sorts (i.e. we consider the total observational

equality) and that the sort Elem is observable. We are interested in proving behavioural

properties of stacks. Similarly to the CONTAINER example, we can apply obvious simpli�-

cations and use just one predicate symbol �

Stack

.

Here the set of the \crucial contexts" is reduced to ftop(z

Stack

), z

Elem

g. It is clear

that the context top(z

Stack

) is not enough to observe stacks: two stacks may have the

same top element without being observationally equal. Intuitively two stacks must be

considered as observationally equal if the elements stored in the stacks are the same (and

they are stored in the same order). This can be checked by looking �rst to the top element,

then pop the stacks and look again to the top element, etc. until both stacks are (simul-

taneously) empty.Hence we will select the set C = ftop(pop

n

(z

Stack

)) j n 2 INg[fz

Elem

g.

Since we select an in�nite set of observable contexts, we must �nd an adequate hidden

part HID and a set of contexts C

H

to be used instead of C itself. But the selected set C

of observable contexts is simple enough to suggest the following solution. Let HID be the

speci�cation:

HID

def

= NATP + hSig(STACK) [ Sig(NATP) [ ftopn : Nat Stack ! Elemg,

f8S:Stack, x:Nat.

topn(0,S) = top(S)

topn(s(x),S) = topn(x,pop(S))gi

whereby it is assumed that NATP is a monomorphic speci�cation of Peano's natural num-

bers having IN as model. Let C

H

def

= ftopn(x,z

Stack

), z

Elem

g.

Since we consider the total observational equality, we do not need any hidden predi-

cate symbol, and we obtain as resulting formula HBeh[C

H

]

Stack

(S,S'):

[8x:Nat. topn(x,S) = topn(x,S')] .

The corresponding axiomatization is the sentence BEH

Stack

:

8S,S':Stack. ([8x:Nat. topn(x,S) = topn(x,S')] , S �

Stack

S') .

The formula CONG

�

�

is (after some obvious simpli�cations):

8e:Elem, S,S':Stack.

[(S �

Stack

S') )

push(e,S) �

Stack

push(e,S') ^

pop(S) �

Stack

pop(S') ^

top(S) = top(S') ]

Now let STACK-IMPL be a speci�cation (of signature Sig(STACK)) which is supposed to

describe a concrete implementation of stacks (for instance by means of arrays and point-

ers). Let STACK-IMPL-H

�

def

= (STACK-IMPL+HID+ hSig(HID) [ f�

Stack

g;BEH

Stack

i).

Obviously condition (3) of Theorem 46 holds (independently of the choice of the speci�-

cation STACK-IMPL), since to any context topn(x,z

Stack

) and any valuation � : fxg ! IN

corresponds the context top(pop

�(x)

(z

Stack

)) (and reciprocally).
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Hence, if HID is a conservative extension of the STACK-IMPL speci�cation and if more-

over STACK-IMPL-H

�

j= CONG

�

�

, we can apply Theorem 46, and as a consequence we

know that, for any formula �:

STACK-IMPL j=

�

Obs;S

� if and only if STACK-IMPL-H

�

j= L(�).

This means that for checking that the speci�cation STACK-IMPL is indeed a be-

havioural implementation of STACK, it is then enough to show that, for all STACK axioms

�, STACK-IMPL-H

�

j= L(�).

8.4 The LIST Example

As a last example we will consider a classical implementation of sets by non redundant

lists. Let us �rst consider the following LIST speci�cation:

spec: LIST

use: ELEM, BOOL

sort: List

generated by:

empty : ! List

cons : Elem List ! List

operations:

head : List ! Elem

tail : List ! List

2 : Elem List ! Bool

insert : Elem List ! List

remove : Elem List ! List

axioms:

8L,L':List, e,e':Elem.

head(cons(e,L)) = e

tail(empty) = empty

tail(cons(e,L)) = L

e 2 empty = false

[e 2 cons(e',L) = true] , [(e = e') _ (e 2 L = true)]

insert(e,empty) = cons(e,empty)

[e 2 L = true] ) insert(e,L) = L

[e 2 L = false] ) insert(e,L) = cons(e,L)

remove(e,empty) = empty

remove(e,cons(e,L)) = L

e 6= e' ) remove(e,cons(e',L)) = cons(e',remove(e,L))

end LIST.

First note that remove just removes the �rst occurrence of an element. Hence it is clear

that LIST 6j= e 2 remove(e,L) = false.
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We are now interested in studying the behaviour of lists if we forget the operations

cons, head and tail. (Indeed, to use lists for an implementation of sets, we must �rst

forget these operations and in addition perform an appropriate renaming, but we will

not take this renaming into account here for sake of simplicity.) Formally, we consider

the signature �-Set de�ned by ��Set

def

= Sig(LIST) n fcons; head; tailg, and we con-

sider the speci�cation LIST-RESTR de�ned by LIST-RESTR

def

= restrict LIST to �-Set.

LIST-RESTR has exactly �-Set as signature, and its model class is de�ned (as usual) by

Mod(LIST-RESTR)

def

= fAj

��Set

j A 2Mod(LIST)g.

The behavioural theory of LIST-RESTR will now be studied w.r.t. the partial ob-

servational equality �

Obs;Obs

induced on �-Set-algebras by Obs = fElem, Boolg. This

observational equality is a family of partial �-Set-congruences. Indeed, since our aim is

to prove that LIST-RESTR is a correct behavioural implementation of SET, it is important

not to choose List as an input sort, since we must only consider lists built with empty,

insert and remove for the behavioural satisfaction of the SET axioms (only these lists

actually represent sets).

The set of the \crucial contexts" is C = fe 2 z

List

, z

Bool

, z

Nat

, z

Elem

g, and looks

�ne enough to be selected.

Since we consider a partial observational equality �

Obs;Obs

, we must �nd an adequate

hidden part HID with a predicate symbol D

H;List

. (Note that as for the previous ex-

amples we apply obvious simpli�cations and use just one predicate symbol �

List

in the

lifting; similarly we need predicate symbols D

H;s

for non input sorts s only, hence here

only for the sort List.) Since the selected set of contexts is �nite there is no need for

contexts built with auxiliary hidden function symbols.

The rôle of the predicate symbol D

H;List

is to denote the lists built with the �-Set

operations (and observable values), i.e. the lists built with empty, insert and remove

(and not with cons or tail). Intuitively it is clear that these lists are exactly the lists

with no duplicates. Hence it is quite obvious that the following hidden part HID should

be adequate:

HID

def

= h��Set[ fnodup : Listg,

f8L:List. nodup(L) , (8e:Elem. e 2 remove(e,L) = false)gi.

We obtain as resulting formula HBeh[nodup; C]

List

(L,L'):

[nodup(L) ^ nodup(L') ^ (8e:Elem. e 2 L = e 2 L')] .

The corresponding axiomatization is the sentence BEH

List

:

8L,L':List.

([nodup(L) ^ nodup(L') ^ (8e:Elem. e 2 L = e 2 L')] , L �

List

L') .

In particular we can infer: 8L:List. nodup(L), L �

List

L .
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The formula CONG

�

��Set

is (after some obvious simpli�cations):

8e:Elem, L,L':List.

[(L �

List

L') )

insert(e,L) �

List

insert(e,L') ^

remove(e,L) �

List

remove(e,L') ]

Let LIST-RESTR-H

�

def

= (LIST-RESTR +HID + hSig(HID) [ f�

List

g;BEH

List

i)

and let LIST-H

�

def

= (LIST+HID+ hSig(HID) [ f�

List

g;BEH

List

i).

It is obvious that HID is a conservative extension of the LIST-RESTR speci�cation (indeed

it is also a conservative extension of the LIST speci�cation). To check that LIST-RESTR-H

�

j= CONG

�

��Set

, it is equivalent to check that LIST-H

�

j= CONG

�

��Set

, which is not dif-

�cult. Then we must check that the condition (3) of Theorem 46 holds, i.e. that the

condition (i) of Proposition 45 is satis�ed. This follows from an easy proof by induction

w.r.t. T

��Set

(X

fElem;Boolg

)

List

.

Hence we can apply Theorem 46, and as a consequence we know that, for any �-Set-

formula �, LIST-RESTR j=

�

Obs;Obs

� if and only if LIST-RESTR-H

�

j= L(�) if and only if

LIST-H

�

j= L(�).

For instance, to prove that:

LIST-RESTR j=

�

Obs;Obs

insert(e,insert(e',L)) = insert(e',insert(e,L))

and that LIST-RESTR j=

�

Obs;Obs

e 2 remove(e,L) = false

it is equivalent to prove that (remember that nodup(L) is equivalent to L�

List

L):

LIST-H

�

j= nodup(L)) insert(e,insert(e',L)) �

List

insert(e',insert(e,L))

and that LIST-H

�

j= nodup(L)) e 2 remove(e,L) = false

which is not di�cult. This indeed is the crucial step required to conclude that the LIST

speci�cation can be considered as a correct behavioural implementation of sets.

9 Conclusion

In the literature several approaches formalize behavioural correctness concepts by intro-

ducing some kind of behavioural semantics (cf. e.g. [9], [17], [15], [18], [2], [16]). The

main drawback of these approaches is that they either do not provide a proof-theoretical

framework or suggest technically complicated proof techniques which are only of lim-

ited interest for practical applications (cf. the context induction principle in [10] or the

correspondence relation in [20]). In this paper we have developed a proof theoretical

framework for checking the behavioural validity of arbitrary �-formulas (�nitary or not).

We have shown that in the case of partial observational equalities this framework leads

to a method that allows us to prove observational theorems using any arbitrary theorem

prover for standard �rst-order logic. For concrete examples we have successfully proved

observational theorems with the Larch Prover LP (cf. [8]).

The most important application of our proof technique is the veri�cation of the cor-

rectness of behavioural implementations. Thereby a speci�cation SP -I is called a be-
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havioural implementation of a given basic speci�cation SP w.r.t. a set Obs of observable

sorts and a set In of input sorts if the models of SP -I (restricted to the signature of

SP ) satisfy w.r.t. the observational equality �

Obs;In

all axioms of SP . In [5] we have ex-

tended this notion of behavioural implementation to structured speci�cations and we have

investigated proof rules that allow us to establish the correctness of behavioural imple-

mentations of structured speci�cations in a modular way. Since we know that behavioural

semantics is in many cases the same but (at most) more restrictive than abstractor se-

mantics (for \factorizable" abstractors) these proof rules are also correct for abstractor

implementations in the sense of [19]. As a consequence of our results it is an objective of

future work to built an environment for proving behavioural theorems and behavioural

implementations on top of some existing theorem prover such as e.g. the Larch Prover.
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