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Abstract

Linear cryptanalysis and di�erential cryptanalysis are the most important meth-

ods of attack against block ciphers. Their e�ciency have been demonstrated

against several ciphers, including the Data Encryption Standard. We prove that

both of them can be considered, improved and joined in a more general statistical

framework. We also show that the very same results as those obtained in the case

of DES can be found without any linear analysis and we slightly improve them

into an attack with theoretical complexity 2

42:9

.

We can apply another statistical attack | the �

2

-cryptanalysis | on the same

characteristics without a de�nite idea of what happens in the encryption process.

It appears to be roughly as e�cient as both di�erential and linear cryptanalysis.

We propose a new heuristic method to �nd good characteristics. It has found an

attack against DES absolutely equivalent to Matsui's one by following a distinct

path.

1 Introduction

Since the proposal of the Data Encryption Standard by the U.S. government, the

scienti�c community concentrated a signi�cant part of its e�orts on its crypt-

analysis [1]. This well-known function encrypts a 64-bits plaintext into a 64-bits

ciphertext using a 56-bits secret key, so that the best attack is expected to have

complexity 2

56

(2

55

if we take into account the complementation property of DES

as in [6]).

A �rst signi�cant result, obtained by Biham and Shamir, gave a general

method for chosen plaintext attacks | the di�erential cryptanalysis [2, 3]. Using

a deep analysis of the internal framework of the function, they try to control a

?

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure, research group a�liated with

the CNRS
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correlated piece of information on several particular plaintexts and recover it by

statistical attacks. The correlated piece of information used is simply a chosen

bit-wise exclusive or di�erence between two texts. The main result of Biham and

Shamir proves, using heuristic arguments, that it is possible to mount an attack

with 2

47

chosen plaintexts.

A second result gave also a general method, called linear cryptanalysis, for

known plaintext attacks. It has been discovered by Matsui who proved that it

is possible to implement an attack against DES with 2

43

known plaintexts [8].

Using another deep analysis of the function, this attack tries to trace a correlation

between one bit of information on the plaintext and one bit of information on

the ciphertext. One more time, the information is obtained linearly with respect

to the exclusive or.

Both methods are bottom-up approachs based on the concept of characteristic.

This is a scenario of the propagation of the correlated piece of information. It is

associated to a probability, which has to be as biased as possible. The goal of the

heuristic arguments consists in �nding e�cient characteristics, �rst analyzing the

linear properties of the substitution boxes, then plugging them into one another

in a such a way that a linear information is leaked throughout the encryption

process. Once this analysis has led to an e�cient characteristic, we only need to

keep which information on the plaintext and the ciphertext is required for the

upper level of the attack.

The success of those methods have focused the attention on the linear prop-

erties of the boxes. In this paper, we try to prove that the linear properties are

not so important. We propose another heuristic approach based on statistics.

We show how to recover an attack similar to Matsui's one without any linear

consideration. We also propose a top-down approach which uni�es linear and

di�erential cryptanalysis. We prove that a simple �

2

test can get the similar re-

sults without knowing precisely what happens (for instance on a black box which

implements a secret encryption function). Those results have already partially

been presented in [9].

Throughout this paper, we use the following notations:

� k is a secret key in the domain K;

� P is a plaintext in the domain P;

� C is a ciphertext in the domain C;

� Enc

k

is an encryption function which maps P to C using key k;

� x ^ y denotes the bitwise and of the bit-strings x and y;

� W (x) is the Hamming weight of the bit-string x;
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� x � y is the dot-product of x and y, that is the parity of W (x ^ y);

� 1

predicate

is 1 if predicate is true, 0 otherwise.

2 Heuristic using projection

2.1 Transition matrix of a projected cipher

In the encryption process, intermediate results of the encryption function can be

arbitrarily ignored and supposed to be uniformly independent of the rest of the

computation. We call this operation projection. After projection, assuming that

the removed inputs are random, each box becomes stochastic, transforming the

leftover inputs into the remaining outputs. Thus, it is possible to compute the

transition matrix of the projected boxes.

For instance, if a and b are the masks of all remaining inputs and outputs of

an S-box S (that is to say, that we only know the value x ^ a from the input x,

and that we are only interested in the value y^b from the output y), we compute

the matrix of all

T

i;j

= Pr

X uniform

[S(X) ^ b = j=X ^ a = i] :

We use tools from tensorial algebra to compute the transition matrix of a

network of S-boxes: the transition matrix of (x; y) 7! (F (x); G(x)) is the tensorial

product (also called the Kronecker product) of the transition matrix of F and the

transition matrix of G, and the transition matrix of F �G is the matrix-product

of the transition matrices of F and G whenever the output mask of G is the input

mask of F . Assuming that M

i

and M

o

are the masks of the remaining inputs

and outputs of the whole encryption function, we obtain all values

v

x

k

= Pr

P2P ;C=Enc

k

(P )

h

(P ^M

i

; C ^M

o

) = x

i

�

1

q

for all q possible values of x under the heuristic assumption, depending on the

key k. This forms the bias vector V

k

= (v

x

1

k

; v

x

2

k

; : : :) of the distribution of X =

(P ^ M

i

; C ^ M

o

) with respect to the uniform distribution. In the following

sections, we consider a more general X of the form

X = h

3

(h

1

(k); h

2

(P;C))

depending on a small piece of information h

1

(k) on k and a small piece of infor-

mation h

2

(P;C) on the pair (P;C).

2.2 Projection of DES

DES is based on the Feistel scheme illustrated on Figure 1. There are two 32-bits

registers L and R modi�ed at each round by a process which depends on a subkey

k

i

depending on the master key k (see [1]).
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Figure 1: Feistel's scheme with 16 rounds

As an example, we ignore the same 27 bits of the left register of DES and the

same 31 bits of the right one between the second and the �fteenth round (the

reason why we use only the 14 middle rounds will appear in the next Sections).

More precisely, for all masks m

L

and m

R

such that W (m

L

) = 5 and W (m

R

) = 1,

we only keep the information (L

i

^m

L

; R

i

^m

R

) in each round, that is 6 bits of

information. We computed the 2

6

� 2

6

bias vector V

k

(m

L

;m

R

) of

X = (L

1

R

0

^m

L

m

R

; L

8

R

7

^m

L

m

R

):

Experiments shows that the norm jjV

k

(m

L

;m

R

)jj

2

which we call deviation does

not depend signi�cantly on k provided it is large. Thus, trying all the possible

positions of the 6 bits kept, we have found the best choices of the bit positions

the �rst of are:

m

L

m

R

log

2

jjV

k

jj

2

21040081

16

00008000

16

�25:580

21040082

16

00008000

16

�25:583

21040084

16

00008000

16

�25:583

21040088

16

00008000

16

�25:583

21040090

16

00008000

16

�25:583

210400a0

16

00008000

16

�25:583

� � � � � � � � �

This shows that the best choices are exactly those which contain the pattern

m

L

= 21040080

16

m

R

= 00008000

16
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(for which log

2

jjV

k

jj

2

= �24:583) that is the bits used in Matsui's attack [8].

Trying all the 4 and 2 positions achieved an analogous result. Trying all the 3

and 3 positions did not provide any larger deviation.

The best other choice which does not contain Matsui's characteristic is:

m

L

= 04010104

16

m

R

= 00c00000

16

for which log

2

jjV

k

jj

2

= �30:768.

2.3 Information on the key leaked

To see how much V

k

(m

L

;m

R

) depends on k, we studied how many di�erent

vectors we get with di�erent k. Linear cryptanalysis only consider a one-bit long

value X. Thus, the bias vector V

k

has the form (��; �) and there are only two

di�erent vectors (��;��), depending on one bit of information on k. Moreover,

keys which produce the same bit of information are in the same a�ne space with

codimension 1.

More generally, when a characteristic de�ned by (m

L

;m

R

) contains c linear

characteristics, the vector V

k

(m

L

;m

R

) depends on c bits of information on k.

Thus, there are 2

c

di�erent vectors, and keys which produce the same one are in

the same a�ne space with codimension c. To study the nature of the information

on k which inuences the vector, we compute all the a�ne spaces spanned by

random keys which produce the same vector. For instance, with the characteristic

de�ned by

m

L

= 21040080

16

m

R

= 00008000

16

for which log

2

jjV

k

jj

2

= �24:583 the experiment shows 4 di�erent vectors V

k

(m

L

;m

R

).

Thus, the key space is partitioned into 4 classes, and we can prove that each class

spans an a�ne space with codimension 2. We already know that Matsui's linear

characteristic de�nes one bit of information on k which is computed linearly:

Parity

0

@

M

i2f3;5;7;9;11;13;15g

k

i

^ 0000000020000000

8

�

M

i2f4;8;12g

k

i

^ 0400000000000000

8

1

A

:

We have found another bit of information which inuences the vector:

Parity

0

@

M

i2f2;4;6;8;10;12;14g

k

i

^ 0400000000000000

8

1

A

:

Using Matsui's notations, those bits are respectively

k

3

[22]� k

4

[44]� k

5

[22]� k

7

[22]� k

8

[44]� k

9

[22]

�k

11

[22]� k

12

[44]� k

13

[22]� k

15

[22]
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and

k

2

[44]� k

4

[44]� k

6

[44]� k

8

[44]� k

10

[44]� k

12

[44]� k

14

[44]

With the characteristic de�ned by

m

L

= 04010104

16

m

R

= 00c00000

16

we observed 16 di�erent classes. We observed that keys in the same class spanned

an a�ne space with codimension 4. Thus, this characteristic uses 4 linear bits

on k.

3 Statistical cryptanalysis

3.1 Model of the attack

In the model of the attack

1

, the concept of characteristic de�nes three hash

functions:

� h

1

: K ! L where L is a small space with cardinality ` (the aim of the

cryptanalysis is to obtain probabilistic information on k

0

= h

1

(k));

� h

2

: P � C ! S where S is the sample space with cardinality s which only

contains useful information for the analysis;

� h

3

: L � S ! Q where Q is a space with cardinality q.

For a random sample S = h

2

(P;C) coming from random P and C = Enc

k

(P ), we

let X = h

3

(k

0

; S), k

0

= h

1

(k). Basically,X is a piece of information depending on

the intermediate results in the encryption. For the purpose of the cryptanalysis,

X should be both

� computable with small pieces of information on (P;C) and k, namely S and

k

0

,

� and su�ciently biased for X = h

2

(k

0

; S) (where k

0

= h

1

(k)) to be statis-

tically distinguishable from the distribution of h

2

(K;S) comming from a

wrong guess K 6= k

0

.

The principle of the attack consists in seeking for the good k

0

which makes the

distribution of all the observedX deviate signi�cantly from a smooth distribution.

In the example of DES, h

3

is a mask over messages obtained after the �rst round

and before the last round, and h

1

and h

2

give the information required to compute

it.

We assume that we can use several independent samples S = h

2

(P;C), given

that P follows a given distributionH in the domainP and such that C = Enc

k

(P )

1

This model appears to be similar to Harpes's partitioning cryptanalysis [5].
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with the unknown k. The attack is a known or chosen plaintext attack depending

on whether H corresponds to an available real plaintext distribution or not. It

may be a ciphertext only attack when S is computable from C. For all candidates

K to k

0

= h

1

(k), we can compute a candidate X = h

3

(K;S) to h

3

(k

0

; S). The

main idea of the attack consists in assuming that we can distinguish K = k

0

from

K 6= k

0

by a statistical measurement � on the observed distribution. In most

cases, for K = k

0

, this distribution will look less regular than for K 6= k

0

. The

attack proceeds in four phases:

� Counting Phase. Collect several random samples S

i

= h

2

(P

i

; C

i

), i =

1; : : : ; n. This consists in counting all occurrences of all the possible values

of S in s counters.

� Analysis Phase. For each of the ` candidates K, count all the occurrences

in allX

i

= h

3

(K;S

i

) and give it a markM using the statistic �(X

1

; : : : ;X

n

).

Hereafter n

x

denotes (for a given K) the number of samples such that

h

3

(K;S

i

) = x.

� Sorting Phase. Sort all the candidates K using their marks M

K

.

� Searching Phase. Exhaustively try all keys following the sorted list of all

the candidates.

The space complexity is O(s+`) since we need s counters for all S = h

2

(P;C) and

` registers for all candidates K. The time complexity is O(n) for the Counting

Phase, O(s`) for the Analysis Phase and O(` log `) for the Sorting Phase. The

average complexity of the Searching Phase, which depends on the expected rank

of the good candidate in the sorted list, will be discussed below. Typically, the

bottleneck computations are the Counting Phase and the Searching Phase, and

we need to study the trade-o� between them: we need many samples to expect

the good candidate to have a high rank, but not too many to be able to count

them.

3.2 Analysis of the attack

We make several approximations which might be justi�ed by heuristic arguments

in concrete examples. We recall that H denotes the distribution of the random

plaintext source.

Approximation 1. If K 6= h

1

(k), the distribution h

3

(K;H) of

X = h

3

(K;h

2

(P;Enc

k

(P )))

is a distribution D which does not depend on K.

7
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Figure 2: Decreasing of the normal law

Approximation 2. If K = h

1

(k), the distribution of X is a distribution D

0

which is independent on D.

Typically, D is the uniform distribution in the domain Q with cardinality q. We

call deviation between D and D

0

the value

d

2

(D;D

0

) =

v

u

u

t

X

x

�

Pr

X2D

0

[X = x]� Pr

X2D

[X = x]

�

2

:

The accurate analysis depends on the choice of the statistic �, but we give

here the outline of the analysis. We denote � and � (resp. �

0

and �

0

) the mean

and the standard deviation of �(X

1

; : : : ;X

n

) all X

i

following the distribution D

(resp. D

0

). In the rest of this paper, we make another Approximation.

Approximation 3. We have � � �

0

and � 6� �

0

.

The mark M

K

of K is de�ned to be

M

K

=

�(h

3

(K;S

1

); : : : ; h

3

(K;S

n

))� �

�

so, the standard deviation of any mark is 1, the expected mark of a wrong can-

didate is 0, and the expected mark of the good candidate is � =

�

0

��

�

which will

be called the e�ciency of the attack. In real applications, Approximation 3 may

corresponds to a �rst order approximation.

Let

�(t) =

1

p

2�

Z

t

�1

e

�

t

2

2

dt:

be the normal distribution function. In the following, the sentence \the distribu-

tion of M is asymptotically normal" means that

Pr

"

M �E(M)

�(M)

< t

#

! �(t)

when the number of samples is large.
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Theorem 1. Under the Approximations and if the distribution of all M

K

are

asymptotically normal, the average complexity of the Searching Phase tends to

N

`

+

�

N �

N

`

�

�

�

��=

p

2

�

where N is the number of keys k.

This will be practically approximated by N:�

�

��=

p

2

�

.

Proof. The mark of the good candidate k

0

= h

1

(k) with samples S

1

; : : : ; S

n

is

M

k

0

=

�(h

3

(k

0

; S

1

); : : : ; h

3

(k

0

; S

n

))� �

�

which is approximately normal, with mean � and standard deviation 1. The mark

of any wrong candidate K 6= h

1

(k) is

M

K

=

�(h

3

(K;S

1

); : : : ; h

3

(K;S

n

))� �

�

which is approximately standardized and normal. M

k

0

and M

K

are indepen-

dent by Approximation 2, so

M

k

0

�M

K

��

p

2

is standardized and normal. Thus, the

probability that the M

k

0

is less than M

K

is �

�

��=

p

2

�

. The rank of k

0

is

1 +

X

K

1

M

k

0

<M

K

so the expected rank of k

0

is 1 + (` � 1):�

�

��=

p

2

�

and the average complexity

of the Searching Phase is obtained multiplying this by

N

`

. ut

The decreasing of �

�

��=

p

2

�

is illustrated on the table on Figure 2.

3.3 The use of several characteristics

It is possible to use several characteristics C

i

(or the same one several times) with

e�ciency �

i

for i = 1; : : : ; c using a trick analog to the one analyzed by Kaliski

and Robshaw [7]. We get lists of several candidates so that each full key K have

marks M

i

K

. We let

�� =

v

u

u

t

c

X

i=1

�

i

2

(1)

and we de�ne the general mark

M

K

=

c

X

i=1

�

i

��

M

i

K

:

We can do the exhaustive search following the general marks. It is easy to

prove that the Theorem 1 remains valid if we replace � by �� when all M

i

K

are

independent. Thus, it is possible to slightly improve the best known linear attack

on DES collecting a huge number of less e�cient characteristics.

9



�

s

�

s

Rounds 2; : : : ; 15

F

?

� �

??

F

?

- -

? ?

f9 04 00 81

21 04 00 80

01 04 00 80

01 04 00 80

00 00 80 00

00 00 80 00

00 00 00 00

00 01 f8 00

?

?

00 00 00 00 77 00 00 00

77 00 00 00 00 00 00 00

Figure 3: Matsui's characteristic

4 Di�erential approach

For a given nonzero a, the statistic �

di�

counts the number of sample pairs

(X

i

;X

j

) such that X

i

�X

j

= a:

�

di�

(X

1

; : : : ;X

n

) =

n

X

i;j=1

1

X

i

�X

j

=a

=

X

x�y=a

n

x

n

y

:

For vectors a coming from a di�erential characteristic, a heuristic analysis from

Biham and Shamir enables to approximate (for i 6= j)

Pr

X

i

;X

j

2D

0

[X

i

�X

j

= a]� Pr

X

i

;X

j

2D

[X

i

�X

j

= a] = �:

Theorem 2. If D is uniform over Q, the e�ciency of the attack using �

di�

is

� � n

q

q

2(q � 1)

� � n

q

q

2(q � 1)

(d

2

(D;D

0

))

2

:

Proof. We have �

0

� � = n(n� 1)� and

� =

q

n(n � 1)

q

2(q � 1)

q

so we get �. Using Cauchy-Schwarz's Inequality, we have

j�j =

�

�

�

�

�

�

X

x�y=a

v

x

k

v

y

k

�

�

�

�

�

�

� (d

2

(D;D

0

))

2

where v

x

k

is de�ned in Section 2. ut
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5 Linear approach

5.1 Linear cryptanalysis

For a given nonzero a, the statistic �

lin

counts the number of samples X

i

such

that the dot product X

i

� a is zero:

�

lin

=

n

X

i=1

1

X

i

�a=0

=

X

x�a=0

n

x

:

For vectors a coming from a linear characteristic, a heuristic analysis fromMatsui

enables to approximate

Pr

X

i

2D

0

[X

i

� a = 0]� Pr

X

i

2D

[X

i

� a = 0] = �:

Theorem 3. If D

0

is uniform over Q, the attack using �

lin

, which is asymptoti-

cally normal, is

� =

p

n:2� �

p

nq:d

2

(D;D

0

):

This Theorem will be proved in a more general form below.

5.2 Matsui's attack against DES

As illustrated by Figure 3, Matsui's characteristic is de�ned by

k

0

=

 

k

1

^ 0000000077000000

8

k

16

^ 7700000000000000

8

!

S =

 

L

0

R

0

^ 010400800001f800

16

L

8

R

8

^ f904008100008000

16

!

X =

 

L

1

^ 01040080

16

L

8

R

7

^ 2104008000008000

16

!

with the notations used in Section 2 and where L

1

, L

8

and R

7

are computed

from P = (L

0

; R

0

) and C = (L

8

; R

8

) using k [8]. It is easy to see that k

0

and S are su�cient to compute X. For reasons related to the structure of F ,

the masks on the subkeys are coded in octal while the masks on the message

registers are coded in hexadecimal. We have ` = 2

12

(this is the number of

candidates K), s = 2

19

(number of possible samples S) and q = 2

8

. The bias is

approximated by tricky heuristic arguments to j�j = 1:19 � 2

�21

. Using n = 2

43

,

we have � = 3:37. Therefore, using two such characteristics as Matsui did (that is

using it together with its reversed characteristic obtained by exchanging the left

and the right masks), the global e�ciency is given by the Equation (1) and the

exhaustive search gets its complexity improved by a factor �(�3:37) = 2

�11:4

.

The complexity of the Searching Phase is evaluated to 2

44:6

. (Matsui's experiment

would have yielded complexity 2

43

, so Theorem 1 may be a little pessimistic, but

we notice that the approximation � �

p

nqd

2

(D;D

0

) = 3:78 yields complexity

2

42:38

.)

11



Experiment 1 2 3 4 5 6 7 8 9 10

Matsui's attack 1 280 1 2 59 10 12 35 1 4

linear mark #1 1 46 1 2 205 48 8 58 2 4

linear mark #2 1 46 1 2 204 81 11 59 2 4

linear mark #3 1 100 1 2 205 48 8 60 2 6

linear mark #4 1 100 1 2 206 80 11 57 2 6

linear mark #5 1 45 1 2 103 79 8 58 2 4

linear mark #6 1 44 1 2 104 48 11 58 2 6

linear mark #7 1 101 1 2 104 48 11 57 2 6

linear mark #8 1 100 1 2 103 80 8 57 2 4

P

(linear marks)

2

1 68 1 2 140 57 10 55 2 6

�

2

attack 100 2221 516 197 435 1294 3667 2389 335 1320

Figure 4: Experiment of attacks on 8-rounds DES

5.3 Generalized linear test

We can generalize Matsui's statistic by any linear one using suitable a

x

:

�

glin

=

n

X

i=1

a

X

i

=

X

x

a

x

n

x

:

Theorem 4. �

glin

is asymptotically normal. The best e�ciency is obtained with

a

x

= v

x

k

. If D is uniform over Q, it is

� =

p

nq:d

2

(D;D

0

):

Proof. We have

�

0

� � = n

X

x

a

x

v

x

k

and

� =

p

n

s

X

x

(a

x

� �a)

2

Pr

X2D

[X = x]

where �a =

P

x

a

x

Pr

X2D

[X = x]. �

glin

is asymptotically normal, due to the central

limit Theorem [4]. Thus, we have

�

2

= n

(

P

x

a

x

v

x

k

)

2

P

x

(a

x

� �a)

2

Pr

X2D

[X = x]

:

The Theorem comes from Cauchy-Schwarz's Inequality in the particular case

where we have Pr

X2D

[X = x] =

1

q

. ut

12



The problem of using the best linear statistic is similar to the problem of

linear cryptanalysis, where we have to guess a vector a coming from a linear

characteristic. Here, we have to bet on the transition matrix to get all a

x

. If there

are only few possible transition matrices, we use the sum of the squares of all the

linear marks as a new statistic, which turns out to be almost as e�cient as the

best one. (The reason why we use the sum-of-squares is that the di�erent marks

are linearly dependent, so a linear mean would be suject to strange cancellations.)

5.4 A slight improvement of Matsui's attack

For Matsui's symmetrized characteristic which is de�ned by

h

1

(k) =

 

k

1

^ 0000000077000000

8

k

16

^ 7700000000000000

8

!

h

2

(P;C) =

 

L

0

R

0

^ 210400800001f800

16

L

8

R

8

^ f904008100008000

16

!

h

3

(k

0

; S) =

 

L

1

R

0

^ 2104008000008000

16

L

8

R

7

^ 2104008000008000

16

!

we have s = 2

20

, ` = 2

12

and q = 2

10

. Using the heuristic with projections,

the deviation has been approximated to d

2

(D;D

0

) � 2

�24:58

. Hence, using 2

42:93

known plaintext/ciphertext couples (instead of 2

43:00

, which is 5% larger), we

obtain � = 3:69. With two such characteristics, the exhaustive search is improved

by a factor �(�3:69) = 2

�13:14

and the Searching Phase gets a complexity 2

42:86

.

Since o�-line exhaustive search is cheaper than getting a new sample, we can

a�ord 2

42

known plaintexts which gives � = 3:78 then 2

56

:�(�3:78) = 2

47:93

: 2

42

known plaintexts enables to �nd the key within a 2

48

average complexity.

For eight-rounds DES, Matsui announced 1:49� 2

17

knwon plaintexts, but it

was to get the same complexity than for sixteen-rounds DES in the exhaustive

search, that is 2

43

. Here, we have d

2

(D;D

0

) � 2

�11:86

, so, with 2

17

known plain-

texts, we have � = 3:11 and the exhaustive search has complexity 2

56

:�(�3:11) =

2

45:93

with two characteristics. (With 2

18

known plaintexts, the same computation

yields complexity 2

38:50

.) This attack has been implemented.

Experiments show there are only eight kinds of bias vector V

K

. We use as a

statistic the sum-of-the-squares of the eight marks obtained with the eight cor-

responding linear statistics. With the only characteristic de�ned in this Section,

we have ` = 2

12

candidates and the rank of the good candidate in the sorted list

should be 1 + `:�(��=

p

2) on average. For n = 2

17

samples, we have � = 3:11

so the average rank should be 57:86. Ten random experiments yielded ranks il-

lustrated on Figure 4. We put ranks obtained by Matsui's mark, by each of the

eight linear marks, by the sum-of-squares of the linear marks, and by the �

2

mark

we will present on next Section. This shows the use of the best linear statistic

13



slightly improves Matsui's attack. It also con�rms that the �

2

attack is a little

less e�cient than the other attacks, as we will prove.

6 �

2

cryptanalysis

The deviation from the uniform distribution in a domain with cardinality q can

be tested using the �

2

test [4]:

�

�

2
=

q

n

X

x

 

n

x

�

n

q

!

2

=

q

n

X

x

n

x

2

� n:

Theorem 5. Under the hypothesis, the e�ciency of the attack using �

�

2
is

� � n

q

q

2(q � 1)

(d

2

(D;D

0

))

2

:

Proof. For bad candidates, the statistic �

�

2
tends to the �

2

distribution with

q � 1 degrees of freedom: � = q � 1 and � =

q

2(q � 1). When the degree of

freedom is large, this distribution can be approximated by a normal one.

Let

�

0

�

2

=

q

n

X

x

 

n

x

�

n

q

� nv

x

k

!

2

:

�

0

�

2

is a kind of �

2

statistic such that

E(�

0

�

2

) = q � 1� q(d

2

(D;D

0

))

2

:

So, we have

�

�

2
= �

0

�

2

+ 2d

2

(D;D

0

):

p

qn�

glin

� nq(d

2

(D;D

0

))

2

where �

glin

is the best standardized linear test (i.e. with E(�

glin

) = 0 and

�(�

glin

) = 1). So, we have

�

0

= q � 1 + (n� 1)q(d

2

(D;D

0

))

2

which allows to compute �. ut

A straightforward consequence of this Theorem is that with the same character-

istic and the same number a plaintext/ciphertext couples, the �

2

cryptanalysis is

more e�cient than the di�erential cryptanalysis (which is a quadratic statistic).

Using this statistic, we do not need to have a precise idea of which information

is leaked throughout Enc, such as what would have been done in linear or dif-

ferential cryptanalysis using a particular vector a. Here, we use a characteristic,

and if there exists a powerful subcharacteristic according to linear of di�erential

14



cryptanalysis, the �

2

test is able to detect it and to use it to distinguish the good

k

0

.

For instance, we can try Matsui's symmetrized characteristic with the �

2

cryptanalysis. We have q = 2

10

and d

2

(D;D

0

) � 2

�24:58

. Using 2

46:2

known

plaintexts (9 times as Matsui does), we get � = 2:90. Here the �

2

variable is

approximately normal. So, using two such characteristics, we get the average

complexity 2

56

:�(�2:90) = 2

46:9

.

7 Conclusion

We have shown that di�erential and linear cryptanalysis can be viewed in a more

statistical approach. It is possible to join the e�orts of several characteristics to

improve them. Both attacks can be improved using an additional information,

that is the vector of all v

x

k

. Conversely, with less knowledge about the charac-

teristic (that is without the precise knowledge of which bits of the input and the

output play a role and what happens in between), the �

2

cryptanalysis performs

an attack which is roughly as e�cient.

To prove that the linear aspects of di�erential or linear cryptanalysis are not

unavoidable, we presented a new heuristic method which has produced the same

attack than Matsui's. This leads to new directions in cryptanalysis. We hope

that this new approach and the experiments presented in this paper will motivate

further investigations in the use of statistic experiments in cryptanalysis.
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