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Abstract

We analyse the security of a cryptographic primitive on the basis of the

geometry of its computation graph. We assume the computation graph of

the primitive to be given whereas the boxes sitting on the vertices of this

graph are unknown and random, i.e. they are black boxes. We formalize

and study a family of attacks which generalize exhaustive search and the

birthday paradox. We establish complexity lower bounds for this family

and we apply it to compression functions based on the FFT network.

Cryptographic primitives for encryption, hashing and pseudo-random gener-

ation are judged according to e�ciency and security. It is a major problem to

prove security in a realistic model, in particular since reasonable complexity lower

bounds seem to be impossible to prove for the model of boolean networks. By

black box cryptanalysis we can prove interesting complexity lower bounds for

a family of attacks that comprises exhaustive search and the birthday paradox.

Black box cryptanalysis complements di�erential and linear cryptanalysis [5, 7]

which analyse particular boxes from the point of view of their non-linearity.

We assume the undirected computation graph G = (V;E) to be given as well

as an interpretation I which associates to each vertex v a random box I(v) which

is uniformly distributed and independent for distinct vertices v. Since all boxes

are random, we cut out the role of particular boxes, and thus we cryptanalyse

the geometry of the computation graph. A solution for the interpretation I is

an assignment of values, in some �nite alphabet Z, to the edges in E that is

compatible with all the boxes I(v). We study resolution algorithms that resolve

the boxes I(v) in some particular order of the vertices. Its complexity is the
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maximal number of local solutions for the subsets of resolved boxes that appear

during the process of resolution. The complexity of the graph G is the minimal of

these complexities over all orders of the vertices (actually we take logarithms to

basis #Z of the cardinalities of these solution sets). We establish lower bounds

on the complexity of computation graphs which in some cases are nearly sharp.

A particular case of black box cryptanalysis has been studied in [11]. This

was done in context with the application to the hash functions based on the

computation graph of the Fast Fourier Transform [10] known as the buttery

graph. Here we prove lower bounds in the general black box cryptanalysis context.

A full formal study is also available in [15].

1 The black box cryptanalysis

1.1 Computation graphs with random boxes

Let G = (V;E) be a �nite, undirected, loop-free graph with vertex set V and edge

set E. For this paper all graphs are �nite and loop-free. A computation along

G associates to each edge a value in some �nite alphabet Z. The box associated

to vertex v de�nes the set of local solutions I(v) � Z

E(v)

for E(v), the set of

edges adjacent to v. Thus I(v) is the set of assignments of values in Z to the

edges in E(v) that are admissible for the box. For the degree d(v) = #E(v)

of vertex v we must have #I(v) � #Z

d(v)

. However, if the box is non-trivial

#I(v) must be smaller than #Z

d(v)

. E.g. if vertex v has i \input edges" then

#I(v) = #Z

i

since the input values determine the output values. We associate

with each vertex v some �xed value for #I(v) and we call df(v) := log

#Z

#I(v)

the degree of freedom of vertex v. In the following all logarithms have the basis

#Z and log means log

#Z

. For a subset U � V we let E(U) denote the set of

edges adjacent to the vertices in U .

De�nition1. A computation graph (G

df

; Z) consists of an undirected graph G =

(V;E), a real valued function df(v) satisfying 0 � df(v) � d(v) and an alphabet

Z. An interpretation I is a map which associates with each vertex v a set I(v) �

Z

E(v)

of local solutions so that df(v) = log#I(v).

The graph G

df

is undirected and so is the computation ow. A solution for

the interpreted computation graph is a tuple t 2 Z

E

, i.e. a tuple on E, rather

than a function mapping inputs to outputs. A tuple t on E is a solution for

G

df

if, for all vertices v, the restriction t

jE(v)

is in I(v). To stress the undirected

nature of G

df

it was called equation graph rather than computation graph in [15].

We are not interested in particular boxes and interpretations, so we consider

random interpretations I. In the following we assume that all probability distri-

butions for I have the following two properties:
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Local uniformity. For all v 2 V and t 2 Z

E(v)

: Pr[t 2 I(v)] = #Z

df(v)�d(v)

.

Independence. The sets I(v) are independent for distinct vertices v.

Examples of possible distributions are

� the uniform distribution over all I so that I(v) is a subset of Z

E(v)

with

#I(v) = #Z

df(v)

;

� the uniform distribution over all I so that I(v) de�nes a function of edge

values of some df(v) edges in E(v) to the other d(v)� df(v) edge values;

� the uniform distribution over all I so that I(v) de�nes a multipermutation

on Z

E(v)

, see [14, 15].

With a computation graph G

df

having vertex set V we associate its quadratic

form in ZZ[V ] which we also denote G

df

and which is de�ned by the symmetric

matrix

G

df

v;w

=

8

>

<

>

:

�

1

2

if v 6= w and fv;wg 2 E

df(v) if v = w

0 otherwise:

We identify a subset U � V with the vector in f0; 1g

V

that assigns to vertex v

the value 1 i� v 2 U , and thus G

df

(U) =

P

v;w2U

G

df

v;w

. Let Int(U) = ffv;wg 2

E j v;w 2 Ug be the set of interior edges of U . It can easily be seen that

G

df

(U) =

X

v2U

df(v)�#Int(U) = #E(U) +

X

v2U

(df(v)� d(v))

where the latter equality comes from

P

v2U

d(v) = #E(U) + #Int(U).

If df(v) =

1

2

d(v) holds for all vertices v then for any subset U of vertices

G

df

(U) equals to half the number of edges of the perimeter of U (i.e. the edges

between U and V � U). We call this the locally invertible case as all the boxes

look like permutations with the same number of inputs and outputs.

1.2 Resolution and complexity of a computation graph

For two subsets E

0

; E

00

� E of edges and corresponding sets of tuples X

0

� Z

E

0

,

X

00

� Z

E

00

we de�ne the join

X

0

./ X

00

= ft 2 Z

E

0

[E

00

j t

jE

0
2 X

0

; t

jE

00
2 X

00

g

to be the set of all tuples t on E

0

[ E

00

with restrictions to E

0

in X

0

and to E

00

in X

00

. This operation ./ is similar to the join used in the relational database
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theory. The join is associative and commutative and the set of global solutions

on E turns out to be the join of all I(v).

We extend the interpretation I to arbitrary subsets of vertices using that the

join is associative and commutative. For U � V let I(U) be the join of all I(v)

with v 2 U , i.e.

I(U) = ft 2 Z

E(U)

j t

jE(v)

2 I(v) for all v 2 Ug :

I(U) is the set of local solutions for U . Obviously I(U [ W ) = I(U) ./ I(W )

holds for arbitrary subsets U and W of vertices.

A (resolution) algorithm speci�es the order of all the ./ operations starting

from the I(v) with v 2 V . We describe such an algorithm as a term with ./

and all the v in V . E.g. the term (v

1

./ v

2

) ./ (v

3

./ v

4

) means that we �rst

form I(v

1

) ./ I(v

2

), I(v

3

) ./ I(v

4

) and then the join of these two sets. There is

a natural notion of subterm, the above term has the subterms v

1

./ v

2

; v

3

./ v

4

.

We write B � A if B is subterm of A.

De�nition2. A (resolution) algorithm A for the graph G is a term A with ./

and all v in V . Its length is the number of subterms of A, including A and all

v 2 V .

For an arbitrary subterm B of an algorithm A let V (B) denote the set of

vertices occuring in B. So I(V (B)) is the result or the set of local solutions of

the subterm B.

We de�ne the logarithmic complexity C

I

(A) of an algorithm A to be the

maximal logarithmic size of the result of a subterm B � A:

C

I

(A) = log max

B�A

#I(V (B)) :

The logarithmic complexity roughly corresponds to a work load #Z

C

I

(A)

. Count-

ing only the size of the largest intermediate result is justi�ed since the length

of algorithms will be small and the costs for a join operation corresponds to the

cardinality of the operands.

The average complexity C(A

df

) of algorithm A is de�ned to be

C(A

df

) = log Exp

I

max

B�A

#I(V (B)) :

As the distribution of I is locally uniform with r the expected value Exp

I

depends

on df and so does C(A

df

).

Let the complexity C(G

df

) of a computation graph G

df

be the minimum of

C(A

df

) over all algorithms A for G

df

.

In most of cases, we are only interested in getting one solution of G

df

. If

there are many solutions we can decrease the complexity by restricting the res-

olution process to random subsets of all the I(v). Thus, for a given mapping
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u v w x

y

z

Figure 1: A powerful non-linear algorithm.

df

0

lower than df and a given interpretation I of (G

df

; Z), we consider a random

sub-interpretation I

df

0

and a distribution de�ned by picking independently and

uniformly random subsets I

df

0

(v) of I(v) of size #Z

df

0

(v)

. This means to consider

an computation graph with df

0

instead of df. Note that the construction of I

df

0

preserves local uniformity and independence. In the following we will consider

computation graphs with only one expected solution.

This formalization of black box cryptanalysis generalizes the use of exhaustive

search and the birthday paradox locally on the intermediate values. Trying to

solve exhaustively f(x) = a for a given function f with the unknown x is formal-

ized by the algorithm a

0

./ f

1

. (Here, degrees of freedom df(v) are denoted by

a superscript on v). Trying to �nd one solution of f(x; y) = a picking x and y

at random can be formalized by a

0

./ f

1

too, where the degree of freedom of f

2

has been decreased. Also, the use of the birthday paradox to get one solution of

f(x) = g(y) can be formalized by f

1

2

./ g

1

2

.

In [11] we only considered linear resolution algorithms i.e. algorithms of

the form v

1

./ (v

2

./ (: : :)). It is tempting to believe that linear algorithms

are already most powerful and that nothing can be gained from non-linear ones.

The following counterexample shows this is not the case. Consider the network

of �gure 1 representing the computation graph of a supposed one-way function

which maps 6 inputs u, v, w, x, y and z onto 6 outputs, all 24-bits long. The

direction of the edges in �gure 1 indicates the underlying network for computing

the function. It is straightforward to imagine a linear attack to invert the function

with logarithmic complexity 3, that is within work load 2

72

: guessing u, w and y

by exhaustive search, one can solve the leftmost third of the graph from u and w
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and get v and x, then the rightmost third from w and y and get z, then check if

this is really a solution of the whole graph. It is easy to see that 3 is the lowest

complexity for linear algorithms. On the other hand, one can solve the leftmost

third from u and w and independently solve the rightmost third from w and y

then join the two sets of partial solutions to get a set with rank 2 and check

whether it contains a global solution. This is done with a logarithmic complexity

2, that is with work load 2

48

.

1.3 An approximative expression for the complexity

Lemma 3. Every subset U � V of vertices satis�es log Exp

I

#I(U) = G

df

(U) .

Proof. We note that Exp

I

#I(U) =

P

t

Pr[t 2 I(U)] where the sum is over all

tuples t on E(U). The event ft 2 I(U)g is the intersection of all the independent

events ft

jE(v)

2 I(v)g for v 2 U . There are #Z

#E(U)

many tuples on E(U). Local

uniformity and independence of the distribution for I yields

log Exp

I

#I(U) = #E(U) +

X

v2U

(df(v)� d(v))

which, as we have already seen, equals to G

df

(U). ut

Theorem 4. Every algorithm A for G

df

with length jAj satis�es

max

B�A

G

df

(V (B)) � C(A

df

) � log jAj + max

B�A

G

df

(V (B)) :

Proof. By the de�nition of C(A

df

), and since a maximum of non-negative values

is lower than their sum we have

C(A

df

) = log Exp

I

max

B�A

#I(V (B)) � log Exp

I

X

B�A

#I(V (B))

= log

X

B�A

Exp

I

#I(V (B)) � log(jAj �max

B�A

Exp

I

#I(V (B)))

= log jAj + max

B�A

log Exp

I

#I(V (B)) = log jAj + max

B�A

G

df

(V (B))

where the last equality comes from Lemma 3.

The �rst inequality of the claim is straightforward by Lemma 3. ut

As an immediate consequence of Theorem 4 the expression

C

0

(G

df

) := min

A

max

B�A

G

df

(V (B))

is a close approximation for the complexity C(G

df

). Interestingly C

0

(G

df

) does

not depend on the alphabet Z. Now Theorem 4 implies the

Corollary 5. C

0

(G

df

) � C(G

df

) � log ` + C

0

(G

df

), where ` is the length of

an optimal algorithm.
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1.4 The spectral approach

We consider a locally invertible graph G

1

2

d

so that df(v) =

1

2

d(v). Its quadratic

form turns out to have properties similar to the Laplacian operator. In this

context, lower bounds on the complexity can be proven in a similar way as in the

expander graphs theory using a well-known link with the spectral values [12, 2, 1].

In this section let G be an undirected graph with n vertices and let �

1

� : : : �

n

be the eigenvalues of the quadratic form G

1

2

d

.

Lemma 6. If the graph G is connected then �

1

= 0; �

2

> 0, and every set U of

c vertices satis�es G

1

2

d

(U) � �

2

c (1� c=n).

Proof. 0 is an eigenvalue since G

1

2

d

(U) = 0 holds for all connected components

U of G. The fact that the quadratic form is positive and that �

2

> 0, if G is

connected, is an easy algebra exercise left to the reader. We note that �

2

is the

smallest eigenvalue of the quadratic form in the hyperplane V

?

orthogonal to the

set V of all the vertices (i.e. the vector having all coordinates 1).

For an orthonormal basis of eigenvectors v

1

; : : : ; v

n

with v

1

=

1

p

n

V we have

(the dot � denotes the scalar product)

G

1

2

d

(U) =

n

X

i=1

�

i

(U � v

i

)

2

� �

2

n

X

i=2

(U � v

i

)

2

= �

2

((U � U) � (U � v

1

)

2

):

Now, the claim follows from U � U = c and U � v

1

=

c

p

n

. ut

Then we get a lower bound:

Theorem 7. If the graph G is connected then C(G

1

2

d

) �

2�

2

9

n .

Proof. Let A be an algorithm for G

1

2

d

such that C

0

(G

1

2

d

) = max

B�A

G

1

2

d

(V (B)).

Lemma 6 yields C

0

(G

1

2

d

) � max

B�A

�

2

#(V (B))(1 �#(V (B))=n). Let x be an

arbitrary integer between 0 and n = #V . Every minimal subterm B with the

property that #(V (B)) � x also satis�es #(V (B)) � 2x since it can best be the

join of two subterms which each contain x � 1 vertices. For such a subterm we

have

#(V (B))(1�#(V (B))=n) � min

x�y�2x

y(1� y=n)

and thus by Corollary 5

C(G

1

2

d

) � C

0

(G

1

2

d

) � max

0�x�n

min

x�y�2x

�

2

y(1� y=n) =

2�

2

9

n: ut
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1.5 The symmetric approach

Similarly, we can apply a theorem due to Babai and Szegedy [4] used in context

with Cayley graphs. We reformulate it in our context and refer to [4] for the

proof. Let G be an arbitrary undirected, edge-transitive graph with n vertices,

let d be the harmonic mean of the degrees of the vertices and let � be the average

distance between two vertices.

Lemma 8. Every set U of c vertices satis�es G

1

2

d

(U) �

d

2�

c

�

1�

c

n

�

.

We remind that a graph is edge-transitive if every edge can be mapped onto

any other one by the action of a graph automorphism. In such a graph, the

vertices can only have one or two possible degrees. For two degrees d

1

and d

2

,

the harmonic mean is

2

1=d

1

+1=d

2

.

Then, a straightforward application of the proof of Theorem 7 to Lemma 8

shows:

Theorem 9. Every undirected, edge-transitive graph G satis�es C(G

1

2

d

) �

d

9�

n.

2 Parallel FFT hashing

Two previous proposals of a cryptographic hash function based on the FFT net-

work [8, 9] have been broken in [3, 13]. Then, by a joint e�ort, a family of hash

function based on the same graph has been proposed in [10] and discussed in [11].

We will now prove the conjectures announced in the latter paper. Interestingly,

the FFT network has been used by Massey for the SAFER encryption function

[6].

Let G

k;s

be the graph de�ned by the set of vertices

V = fv

i;j

; 0 � i < 2

k�1

; 0 � j � sg

and the set of edges

E = ffv

i;j

; v

i;j+1

g; fv

i;j

; v

i�2

jmodk�1

;j+1

g; 0 � i < 2

k�1

; 0 � j < sg:

G

k;s

is roughly the graph of the FFT network for 2

k

values extended to s+1 layers.

Considering all vertices as boxes with two inputs coming from a lower layer and

two outputs going to a higher layer, this corresponds to a function with 2

k

inputs

entering in layer 0 and 2

k�1

outputs going out from layer s. Given two message

blocksm and m

0

with 2

k�1

values, we let the ith value of each block enter to vertex

v

i;0

and write the �rst output of v

i;s

as the ith value of the output string h. The

mapping (m;m

0

) 7! h de�nes a compression function (see the example of G

3;2

illustrated on �gure 2). Thus, we propose to study the family of the compression

functions de�ned by G

k;s

and a distribution of interpretations I de�ning boxes

8



v

0;0

v

1;0

v

2;0

v

3;0

v

0;1

v

1;1

v

2;1

v

3;1

v

0;2

v

1;2

v

2;2

v

3;2

Figure 2: The G

3;2

compression functions family.

on the vertices. In [10], it is suggested to use the uniform distribution on all the

multipermutations. As the purpose of the present paper is to study the graph

properties we refer to the original papers for more informations.

For all the possible I which make a function, we need to de�ne (s + 1)2

k�1

boxes. Choosing an alphabet with cardinality q, the number of bits to encode

the input is n = 2

k

log q whereas the length of the description of the function

(that is the interpretation) is (s + 1)2

k

q

2

log q. The family is quite huge, but

we hope to �nd an interesting smaller sub-family in which the following analysis

will be possible too. For instance if we take the same box for all the vertices i; j

and concatenate these boxes with independent random permutations along the

inner edges of G

k;s

we decrease the length of the interpretation to s

2k

log q! and

we preserve local uniformity and independence. The aim of this study is to �nd

the minimal s for optimal security in context with black box cryptanalysis.

The one-wayness of the compression function relies on the hardness of �nding,

for given m and h, one m

0

such that (m;m

0

) 7! h. It is formalized by the

computation graph G

k;s

together with

df : v

i;j

7!

(

1 if j = 0 or j = s

2 otherwise

as one input of all v

i;0

and one output of all v

i;s

are already known that is with

df =

1

2

d. The exhaustive search consists in joining all v

i;0

to guess m

0

and joining

successively all the other vertices layer by layer. This has complexity 2

k�1

. So,

we are interested in the ratio C(G

1

2

d

k;s

)=2

k�1

.
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2.1 The upper bounds

Theorem 1. For k � 1 � s � 2k � 2 we have C

�

G

1

2

d

k;s

�

� 2

k�2

(1 + 2

2�s

).

Thus, for s < 2k � 2 there is an attack faster than exhaustive search. We

conjecture that this inequality is in fact an equality for s = 2k � 2, that is to say

the exhaustive search is the best black box attack on G

k;2k�2

.

Proof. First we show that C

�

G

1

2

d

k;k�1

�

� 2

k�2

. For this we guess the �rst 2

k�2

inputs, that is we join the �rst 2

k�2

vertices v

i;0

. This allows to compute half

of the edges, namely all edges adjacent to v

i;j

for i < 2

k�2

. Then, the degree

of freedom of all v

i;k�1

becomes 0, so that we can compute the other half edges

backward and solve the graph. This has complexity 2

k�2

.

We can do similar things on G

k;s

: we guess the �rst 2

k�2

inputs and solve half

of the vertices from layer 0 to layer k � 1. Then, all connected subgraphs from

layer k � 1 to layer s are isomorphic to G

k

0

;k

0

�1

with k

0

= s � k + 2 which can

iteratively be solved within a complexity 2

k

0

�2

= 2

s�k

. After having solved all of

these subgraphs, the backward processing in G

k;s

�nishes the resolution within

complexity 2

k�2

+ 2

k�s

. ut

In the following sections, we show how to apply the di�erent approaches to

�nd lower bounds. Finally, we prove that the ratio for s = 2k�2 is lower bounded

by a constant

2

3

.

2.2 The lower bounds

2.2.1 Use of the spectral approach.

We use the notation introduced in sections 1.4 and 2.

Lemma 2. �

2

�

G

1

2

d

k;s

�

=

(

4 sin

2
�

2(2k�1)

if k � s < 2k � 1

4 sin

2 �

2(s+1)

if 2k � 1 � s:

The proof involves insipid tricky calculus which are not relevant here. It can be

found in [15]. Then Theorem 7 implies:

Corollary 3. C

�

G

1

2

d

k;s

�

� 2

k�1

8

<

:

8(s+1)

9

sin

2
�

2(2k�1)

if k � s < 2k � 1

8(s+1)

9

sin

2 �

2(s+1)

if 2k � 1 � s:

This suggests to use s = 2k � 1 to get optimal security. The lower bound of the

ratio is here equivalent to

2�

2

9s

.
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2.2.2 Use of the symmetric approach.

Though G

k;s

is not edge-transitive, it is possible to use the symmetric approach for

the case s = k. If we contract layers 0 and 1 following the rule that adjacent edges

are merged, we get the same result (i.e. isomorphic) as if we add symmetrical

edges between the �rst and the last edges of G

k�1;2k�5

. The obtained graph

G

0

k�1;2k�5

turns out to be edge-transitive for k � 3. This graph has degree d = 4.

Its average distance is given in [15]:

Lemma 4. The average distance of G

0

k�1;2k�5

is at least

3

2

(k � 2).

This allows to prove a technical corollary we mention for completeness:

Corollary 5. Letting C

lin

�

G

1

2

d

k;k

�

denote the linear complexity of G

1

2

d

k;k

, that is

C

lin

�

G

1

2

d

k;k

�

= min

A

C(A

df

)

for all linear algorithm A, we obtain for k � 3

C

lin

�

G

1

2

d

k;k

�

�

2

k�1

3

 

1 �

�

1

k � 2

�

2

�

3 +

2

2

k�2

�

2

!

:

This establishes the lower bound

1

3

for the ratio. Unfortunately, we could not

prove a similar result for the general complexity following this approach.

Proof. (sketch) Any linear algorithm A can be rewritten without increasing its

complexity into an algorithm such that for any subtermB which involves a vertex

v

i;j

for j = 0, 1, s � 1 or s, every of the other vertices which are merged with

v

i;j

are either already involved in B or will all be joined immediately after. In

such an algorithm, there is at least one out of four consecutive subterms B which

has all of its merged classes complete, i.e. closed with respect to merging. Let

B

0

be the merged image of such a B in G

0

k�1;2k�5

. The completeness property

of B implies G

k;k

(B) = G

0

k�1;2k�5

(B

0

). Thus, using the Babai-Szegedy theorem

together with the previous lemma, we obtain

G

1

2

d

k;k

(V (B)) �

4

3(k � 2)

#(V (B

0

))

 

1�

#(V (B

0

))

(2k � 4)2

k�2

!

:

Noticing that

#(V (B))� 3 � 2

k�1

� #(V (B

0

)) � #(V (B)):

and that at least one out of four consecutiveB satis�es the completeness property,

we obtain the result. ut
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2.2.3 Use of the ow approach.

In the particular case of the graph G

k;2k�2

, we can make an independent method

dedicated to this graph based on the min-cut max-ow theorem.

Lemma 6. Let V

0

and V

s

be respectively the �rst and the last layer of G

k;2k�2

.

For every function r from V

0

[ V

s

to ZZ such that jr(v)j � 2 and

P

v

r(v) = 0

there exists a ow f with source s, that is to say a function from the set

�

E , the

set of directed edges, to ZZ such that for all v and w:

1. f(v;w) = �f(w; v),

2. jf(v;w)j � 1,

3.

P

u

f(u; v) =

(

r(v) if v 2 V

0

[ V

s

0 otherwise.

Proof. Let fv

i;j

; v

i

0

;j+1

g be an edge with j + 1 � k � 1. We de�ne

f(v

i;j

; v

i

0

;j+1

) =

1

2

Mean

v

i

00

;0

r(v

i

00

;0

)

where the arithmetic mean is taken over all vertices v

i

00

;0

such that there exists a

straight path in G

k;2k�2

from v

i

00

;0

to v

i;j

. f(v

i;j

; v

i

0

;j+1

) is thus equal to half the

mean of all r(v

i

00

;0

) the incoming ow in v

i;j

from previous layers which is equally

spread into its two outgoing edges. Hence, the incoming ow in all v

i;k�1

will be

a constant. De�ning f(v

i

0

;j+1

; v

i;j

) = �f(v

i;j

; v

i

0

;j+1

), it is easy to show that the

above three conditions are satis�ed for all edges before the layer k � 1.

Similarly, for j � k� 1, we de�ne f(v

i;j

; v

i

0

;j+1

) to be the half of the incoming

ow in v

i

0

;j+1

from the next layers starting at V

s

. The conditions are satis�ed

for all edges after the layer k � 1. The ow coming from all the upper layers

to the layer k � 1 is also equally spread into all the vertices. Then, due to the

condition that the sum of all r(v) is 0, the third condition is also satis�ed in the

layer k � 1. ut

Using the previous lemma we show:

Lemma 7. For any set U in G

k;2k�2

, if c = #(U \ (V

0

[ V

s

)) where V

0

is the

�rst layer and V

s

is the last one, we have G

1

2

d

k;2k�2

(U) � 2

k�1

� j2

k�1

� cj.

Proof. We note that G

1

2

d

k;2k�2

(U) = G

1

2

d

k;2k�2

(V �U) (this comes from the fact that

V is in the kernel of the quadratic form). Thus, eventually replacing U by V �U ,

we can assume c � 2

k�1

. Now, for v 2 V

0

[V

s

, we can de�ne r(v) to be 2 if v 2 U

and r(v) = �

2c

2

k

�c

otherwise. Since s veri�es the conditions of the lemma, there

exists a ow with source s, hence with capacity 2c. We note that 2G

1

2

d

k;2k�2

(U) is

equal to the cardinality of the border of A, which is a cut for the ow. Hence,

the min-cut max-ow theorem says 2G

1

2

d

k;2k�2

(U) � 2c. ut
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Corollary 8. C

�

G

1

2

d

k;2k�2

�

�

2

3

2

k�1

:

Proof. In a similar way than in the proof of the theorem 7, we get

C

�

G

1

2

d

k;2k�2

�

� max

0�x�2

k

min

x�y�2x

�

2

k�1

� j2

k�1

� xj

�

which is equal to

2

3

2

k�1

. ut

A similar method applied on G

k;k�1

(basically, in taking only V

0

into account

in the source of the ow) enables to prove:

Corollary 9. C

�

G

1

2

d

k;k�1

�

�

1

3

2

k�1

:

This con�rms the partial result obtained by the symmetric approach.

These results establish a constant ratio between the upper bounds and the

lower bounds. Actually, the same method applied in the linear case proves the

equality between the bounds which proves the conjecture in [11]. We conjecture

that the upper bounds are still the real complexities in the general case for s =

2k � 2. It shows one has to choose s = 2k � 2 to get the optimal security for the

G

k;s

compression function family.

3 Possible extensions and conclusion

The analysis on cryptographic primitives proposed here can be extended in a

more general context. To allow several edge-domains to exist together in the

same primitive, we can add the notion of edge-degree of freedom in the de�nition

of the computation graphs. This would be the logarithm (in any basis) of the

cardinality of the domain. We mention all the results still hold if we replace d(v)

by the sum of all the adjacent edge-degrees. We can also allow the value of an

edge to be involved in more than two di�erent vertices replacing the notion of

graph by the notion of hypergraph.

We have proposed a new frame for the study of the security of cryptographic

primitives based on a computation graph. We showed that the complexity of

resolving a computation graph is related to the local expansion properties of the

graph. This theory enables to prove the one-wayness of a family of compression

functions with respect to the black box attacks. It can be applied to the compres-

sion functions based on the FFT network. It turns out that the function is the

most secure possible (in context with the black box cryptanalysis) for a doubled

FFT network, that is for s = 2k � 2.
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