
Département de Mathématiques et Informatique

________________________

________________________

UPERIEURESORMALENECOLE

CNRS URA 1327

Datalog Programs with Arithmetical

Constraints: Hierarchic, Periodic and

Spiralling Least Fixpoints

Laurent FRIBOURG

Hans OLS

�

EN

LIENS - 95 - 26



Datalog Programs with Arithmetical

Constraints: Hierarchic, Periodic and

Spiralling Least Fixpoints

Laurent FRIBOURG

Hans OLS

�

EN

�

LIENS - 95 - 26

November 1995

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : fribourg @dmi.ens.fr

�

Department of Computer and Information Science

Link�oping University

S-58183 Link�oping, Sweden

Adresse �electronique : hanol@ida.liu.se



Datalog Programs with Arithmetical

Constraints: Hierarchic, Periodic and Spiralling

Least Fixpoints

Laurent Fribourg Hans Ols�en

�

L.I.E.N.S

45, rue d'Ulm, 75005 Paris - France

email: fribourg@dmi.ens.fr, olsen@dmi.ens.fr

Abstract

We consider in this report Datalog programs with arithmetical constraints of the following

form:

p(x

0

; y

0

; z

0

):

p(x+ e; y+ �; z + 
)  x � 0; p(x; y; z):

p(x+ �; y + f; z + �)  y � 0; p(x; y; z):

p(x+ �;y + �;z + g)  z � 0; p(x; y; z):

where x

0

; y

0

; z

0

; e; �; 
; �; f; �; �; �; g denote integer constants.

The problem is to �nd an arithmetic formula f(x; y; z) equivalent to the relation p(x; y; z)

de�ned by the above program.

This characterization problem has useful applications in several �elds, like the generation

of lemmas for proving the termination of Prolog programs, the compilation of queries in

Temporal Deductive Databases, or the veri�cation of safety properties in parametric con-

current systems.

We show here that programs of the above form are divided into three classes: the hierar-

chic, periodic and spiralling classes. More than 99% of the programs fall into the hierarchic

and periodic classes and can be characterized by a linear arithmetic formula, unlike pro-

grams of the spiralling class.

R�esum�e

On �etudie dans ce rapport des programmes Datalog avec contraintes arithm�etiques de la

forme:

p(x

0

; y

0

; z

0

):

p(x+ e; y+ �; z + 
)  x � 0; p(x; y; z):

p(x+ �; y + f; z + �)  y � 0; p(x; y; z):

p(x+ �;y + �;z + g)  z � 0; p(x; y; z):

o�u x

0

; y

0

; z

0

; e; �; 
; �; f; �; �; �; g d�esignent des entiers relatifs.

Le probl�eme est de trouver une formule arithm�etique f(x; y; z) �equivalente �a la relation

p(x; y; z) d�e�nie par le programme ci-dessus.

Ce probl�eme de caract�erisation a d'importantes applications dans plusieurs domaines

comme la g�en�eration automatique de lemmes pour d�emontrer la terminaison de pro-

grammes Prolog, la compilation de requêtes r�ecursives en Bases de Donn�ees D�eductives

Temporelles ou la v�eri�cation de propri�et�es de sûret�e dans les syst�emes concurrents param�etr�es.

Nous montrons que les programmes �etudi�es se divisent en trois classes: la classe hi�erar-

chique, p�eriodique et en spirale. Plus de 99% des programmes tombent dans les classes

hi�erarchiques et p�eriodiques, et peuvent être caract�eris�es par une for mule d'arithm�etique

lin�eaire, �a la di��erence des programmes en spirale.

�

On leave from Link�oping University -Sweden.



1 Introduction

We study in this report the least �xpoints associated with Datalog programs with arithmetical

constraints with 2 rules of the form:

p(x

0

; y

0

):

p(x+ e; y + �)  x � 0; p(x; y):

p(x+ �; y + f)  y � 0; p(x; y):

and with 3 rules of the form:

p(x

0

; y

0

; z

0

):

p(x+ e; y + �; z + 
)  x � 0; p(x; y; z):

p(x+ �; y + f; z + �)  y � 0; p(x; y; z):

p(x+ �; y + �; z + g)  z � 0; p(x; y; z):

The matrix

�

e �

� f

�

(resp.

0

@

e � 


� f �

� � g

1

A

) is called the incrementation matrix of the 2-rule

program (resp. 3-rule program).

The analysis of the least �xpoint will be performed according to the sign of the coe�cients

of the corresponding incrementation matrix.

As already seen in [2][4], the analysis for 2-rule Datalog programs can be decomposed into:

1. The class of hierarchic programs, whose matrices contain a line or a column made of

coe�cients of the same sign.

2. The class of periodic programs whose matrices are of the form

�

� +

+ �

�

or

�

+ �

� +

�

The least �xpoint associated to a hierarchic program can be represented as a constant number

(� 3) of straight lines.

The least �xpoint associated to a periodic program can be represented as a repeated pat-

tern (possibly preceded or followed by one straight line).

In both cases, the least �xpoint can be expressed by a linear arithmetic formula.

We will see in this report that the analysis of 3-rule Datalog programs can be decomposed

into:

1. The class of hierarchic programs, which are, roughly speaking, characterized by matrices

containing a line or a column made of coe�cients of the same sign.

2. The class of periodic programs, which are, characterized by matrices containing a subma-

trix

�

� +

+ �

�

or

�

+ �

� +

�

as those below:

0

@

� + �

+ � �

� � �

1

A

0

@

� � +

� � �

+ � �

1

A

0

@

� � �

� � +

� + �

1

A

or their opposite matrices (that is, matrices with opposite signs of the elements).

3. The class of spiralling programs, which are characterized by matrices of the form

0

@

� � +

+ � �

� + �

1

A

0

@

� + �

� � +

+ � �

1

A

1



or their opposite.

The hierarchic Datalog programs for three rules have already been studied in [3][4].

The periodic case was only sketched out in [3][4]. Only the algebraic condition for the ex-

istence of a pattern was given. Nothing was said on the applicability of such a pattern, nor on

the form of the least �xpoint between the origin and the area where the pattern is applicable.

The analysis of such 3-rule periodic programs is carefully done in this report. The analysis

relies on new results found for 2-rule periodic programs, that are also given for the �rst time

in this report.

The identi�cation of the 4 \spiralling" programs is also a new contribution of the present

report. These cases were overlooked in [3][4]. Although these cases cover less than one per cent

of all the cases (4 cases on a total of 512), they are interesting, because they are the only ones

for which the least �xpoints cannot be characterized by a linear arithmetic formula: the least

�xpoint here has a vortical form spiralling around the negative space x < 0 ^ y < 0 ^ z < 0,

before reaching the space x � 0 ^ y � 0 ^ z � 0 where a pattern becomes applicable.

The plan of this report is as follows:

Section 2 gives some preliminaries.

In section 3 we present results for programs with 1 recursive rule.

In section 4 we presnt results for programs with 2 recursive rules.

In section 5 we give a classi�cation of programs with 3 recursive rules.

In section 6 we introduce new mathematical tools based on the pigeon hole principle, to prove

the existence of certain patterns.

In section 7 we study the class 1 of hierachic programs with 3 recursive rules.

In section 8 we study a certain class of periodic programs with 3 recursive rules (class 2).

In section 9 we study another class of periodic programs with 3 recursive rules (class 3).

In section 10 we study the last class of periodic programs with 3 recursive rules (class 4).

Section 11 contains graphical plots of the �xpoints of some example programs representative

of the di�erent classes of programs mentioned.

Section 12 gives a sketch of a proof that that the \spiralling" programs (class 5) cannot be

described in linear arithmetic.

Section 13 recapitulates the main results obtained.

2 Preliminaries

All vectors are columnvectors, unless otherwise stated. To save space we often write hx

1

; : : :x

n

i

T

instead of

0

B

@

x

1

.

.

.

x

n

1

C

A

We allow ! and �! to be components of a vector, where n � !, n � �!, n + ! = ! and

n+ (�!) = �! for all integers n. Also ! + ! = ! and �! + (�!) = �! (! � ! is unde�ned).

By 1

i

we denote the unit vector whose ith component is 1 and all other components are 0. Let

x and y are any vectors with x

1

; : : : ; x

n

and y

1

; : : : ; y

n

as components respectively, then x � y

is de�ned to hold i� x

i

� y

i

for all 1 � i � n. Also x < y holds i� x � y and x 6= y.

If q is a vector with nonnegative components, jqj denotes the sum of its components.

2



2.1 Program Transformations

We consider programs P of the form

p(b):

d

1

: p(�+ k

1

)  (�; c

1

) + a

1

� 0; p(�):

.

.

.

d

n

: p(�+ k

n

)  (�; c

n

) + a

n

� 0; p(�):

where (�; c

i

) denotes the inner product. We consider the recursive rules to be labeled by

d

1

; : : : ; d

n

. Let K be the matrix with k

1

; : : : ; k

n

as row vectors, and let C be the matrix with

c

1

; : : : ; c

n

as row vectors. We call K the incrementation matrix and C the constraint matrix.

First notice that any � that satis�es p(�), must necessarily be of the form

� = b+ q

1

k

1

+ � � �+ q

n

k

n

where 0 � q

i

. Let q be the vector with components q

1

to q

n

. Then

� = K

T

q + b

The constraint (�; c

i

) + a

i

� 0 of the program P thus becomes (K

T

q; c

i

) + �

i

� 0, where

�

i

= (b; c

i

) + a

i

. But since (K

T

q; c

i

) = (q;Kc

i

), by putting '

i

= Kc

i

, we get (q; '

i

) + �

i

� 0.

Thus we construct the new program P

0

p

0

(0):

d

1

: p

0

(q + 1

1

)  (q; '

1

) + �

1

� 0; p

0

(q):

.

.

.

d

n

: p

0

(q + 1

n

)  (q; '

n

) + �

n

� 0; p

0

(q):

A program of the form P

0

is said to be on standard form. We have

Proposition 1:

p(�) , 9q : � = K

T

q + b ^ p

0

(q)

�

Proof:

Follows easily by �xpoint induction. �

Note that the size (the number of components) in q equals the number of recursive rules,

regardless of the number of variables in the original program.

On the other hand, since

� = b+ q

1

k

1

+ � � �+ q

n

k

n

we have

(�; c

i

) + a

i

= (b; c

i

) + a

i

+ q

1

(k

1

; c

i

) + � � �+ q

n

(k

n

; c

i

)

De�ne �

i

for 1 � i � n by

�

i

= Ck

i

and let �

0

be

�

0

= Cb+ a

3



Let x be the vector with x

1

; : : : ; x

n

as components. We construct the program P

00

p

00

(�

0

):

d

1

: p

00

(x+ �

1

)  x

1

� 0; p

00

(x):

.

.

.

d

n

: p

00

(x+ �

n

)  x

n

� 0; p

00

(x):

A program on the form P

00

is said to be on simple form. The relation between a program and

its simple form is not so straightforward as for its standard form. To state the relationship we

need some further notions.

As usual, for languages L

1

and L

2

, denote by L

1

+L

2

the union of L

1

and L

2

and by L

1

L

2

the

set of strings w

1

w

2

where w

1

2 L

1

and w

2

2 L

2

. We de�ne L

n

1

as

L

0

1

= f�g

L

n+1

1

= L

1

L

n

1

where � is the empty string. L

�n

1

is de�ned by

L

�n

1

=

[

i�n

L

i

1

L

�n

1

is de�ned by

L

�n

1

=

[

i�n

L

i

1

and �nally, L

�

1

is de�ned by

L

�

1

=

[

i�0

L

i

1

We identify d

i

with the singleton language fd

i

g. Note that if L

1

is �nite, then L

�n

1

is �nite.

With any program P there is an associated language L

P

constructed as follows: A program

p(b):

d

1

: p(�+ k

1

)  (�; c

1

) + a

1

� 0; p(�):

.

.

.

d

n

: p(�+ k

n

)  (�; c

n

) + a

n

� 0; p(�):

is extended with an extra argument:

p(�; b):

d

1

: p(wd

1

; �+ k

1

)  (�; c

1

) + a

1

� 0; p(w;�):

.

.

.

d

n

: p(wd

n

; �+ k

n

)  (�; c

n

) + a

n

� 0; p(w;�):

The language L

P

is de�ned by

w 2 L

P

, 9� : p(w;�)

Now we have

Proposition 2:

Let P be any program and let P

00

be its simple form. Then

L

P

= L

P

00

4



�

Proposition 3:

Let P be any program and let P

0

be its standard form. Then

L

P

= L

P

0

�

Let w 2 (d

1

+ � � � + d

n

)

�

be any string. Denote by w the vector whose ith component is

the number of occurences in w of the label d

i

.

Proposition 4:

Let P

0

be a program on standard form. Then

p

0

(q) , 9w 2 L

P

0

: q = w

�

These propositions follow easily by induction. Thus we may without loss of generality re-

strict our attention to programs on standard form and simple form.

We refer to � and �

0

as base values since they depend on the base case of the original program.

We denote by � the incrementation matrix of a program on simple form. We have the fol-

lowing relationships between the matrices associated with a program and its standard and

simple forms:

Proposition 5:

Let P be any program with incrementation matrix K and constraint matrix C. Let P

0

be its

standard form and P

00

its simple form. Let � be the incrementation matrix of P

00

.

1. � = KC

T

2. The constraint matrix of P

0

is �

T

.

3. The incrementation matrix of P

0

is the identity matrix (the matrix whose diagonal ele-

ments are 1 and all the others are 0)

4. The constraint matrix of P

00

is the identity matrix.

5. Let w be a string in L

P

, and suppose p(w;�), p

0

(w; q) and p

00

(w; x) hold. then

� = K

T

q + b

x = �

T

q + �

0

�

Informally, the argument q of a program on standard form, counts the number of times each

recursive rule has been used, while the argument x of a program on simple form says which

rules are applicable. Or more graphically, given a string w 2 L

P

for some program P , its

standard form P

0

computes the position in space reached by w considered as a path, while its

simple form P

00

says in wich directions one may continue.

5



We de�ne x

q

by

x

q

= �

T

q + �

0

to indicate the value of the simple program corresponding to a point of the standard program.

Furthermore we have the following

Proposition 6:

Let P be any program with incrementation matrix K. Assume K is invertible. For any given

�, it is decidable wether p(�) holds. �

Proof:

Construct the standard form P

0

of P . Since

p(�) , 9q : � = K

T

q + b ^ p

0

(q)

and since K is invertible, solve the equation

� = K

T

q + b

in q (� is given) and check if p

0

(q) holds. This is done by computing P

0

bottom-up. Either q

will be reached, or one generates points q

0

such that q

0

6� q. The branches in the bottom-up

tree starting from such a point q

0

cannot contain q since every use of of a recursive rule of P

0

increments some component of its argument vector and leaves the other ones untouched. Thus,

these branches are pruned. After at most jqj steps, qmust be reached or all branches are pruned.�

Clearly, if K is not invertible, then there may be in�nitely many q such that � = K

T

q + b

holds for a given �. In this case the argument above does not work. It is not known (to us) if

p(�) is decidable in general for this case. It is decidable if P has at most two recursive rules.

This will be shown later in this report (it is also a consequence of the results in [4]).

2.2 Reachability and Paths

With a program on standard form, we associate a reachability relation

w

! where w is a string

of the language (d

1

+ � � �+ d

n

)

�

. The reachability relation is de�ned as follows:

q

�

! q

q

wd

1

!
(q

0

+ 1

1

)  (q

0

; '

1

) + �

1

� 0 ^ q

w

! q

0

.

.

.

q

wd

n

!
(q

0

+ 1

n

)  (q

0

; '

n

) + �

n

� 0 ^ q

w

! q

0

Strictly, the reachability relation

w

! should be parameterized by the program P

0

. For the

sake of readability we suppress the parameter P

0

. It is always understood that

w

! is associ-

ated with a given program.

We have the following simple relation

Proposition 7:

q

w

! q

0

) q

0

= q + w

�

We sometimes write qw instead of q + w. By jwj we denote the length of a string w. Thus

6



jwj = jwj.

We extend the de�nition of

w

! to languages L � (d

1

+ � � �+ d

n

)

�

and de�ne

q

L

! q

0

, 9w 2 L : q

w

! q

0

We write q

L

1

!
q

0
L

2

!
q

00

instead of q

L

1

!
q

0

^ q

0
L

2

!
q

00

. We have

Proposition 8:

q

L

1

+L

2

!
q

0

,

q

L

1

!
q

0

_

q

L

2

!
q

0

q

L

1

L

2

!
q

0

, 9q

00

: q

L

1

!
q

00 L

2

!
q

0

�

Thus, for �nite languages a linear arithmetic formula can be given by applying the propo-

sition above together with the de�nition of

L

! .

The motivation for introducing

(d

1

+���+d

n

)

�

!

is the following fact:

Theorem 1:

Let P

0

be a program on standard form with recursive rules labeled by d

1

; : : : ; d

n

. Then

0

(d

1

+���+d

n

)

�

!

q , p

0

(q)

�

Corollary:

Let P be any programwith incrementation matrixK, and let

(d

1

+:::+d

n

)

�

!

be the reachability

relation associated with its standard form. Then

p(�) , 9q : � = K

T

q + b ^ 0

(d

1

+:::+d

n

)

�

!

q

�

This report is devoted to giving linear arithmetic formulas characterizing

(d

1

+���+d

n

)

�

!

for some programs of the forms discussed above.

2.3 Paths and Motifs

A string w is refered to as a path. If q

w

! q

0

we say that q

0

is reachable from q by the path w.

We introduce %

w

(q) de�ned by

%

w

(q) , 9q

0

: q

w

! q

0

We say that w is applicable or admissible at q i� %

w

(q) holds. Remember that q

w

! q

0

) q

0

=

q + w, so %

w

(q) could equivalently be de�ned as

%

w

(q) , q

w

! q +w

Theorem 2:

For any path w there exists a vector �

w

(possibly with some components �!), such that

%

w

(q) , x

q

� �

w

7



�

Corollary:

x

q

� x

q

0

) (%

w

(q)) %

w

(q

0

))

�

The de�nition of %

w

(q) is extended to languages L as follows

%

L

(q) , 9w 2 L : %

w

(q)

Given any vector u with nonnegative components, �

u

denotes the (�nite) language of strings w

such that w = u. The set �

u

is called the motif of u. Obviously the following holds

Proposition 9:

q

�

u

!

q

0

) q

0

= q + u

�

Proposition 10:

�

u

1

�

u

2

� �

u

1

+u

2

The converse does not hold in general. �

Let w be any vector with nonegative components, and consider the motif �

w

. Let x = hx; y; zi

T

be the argument vector of a simple program with labels h, v and t, and let q

0

= q + w. If

x

q

= x

q

0

, then x is said to be preserved (or let invariant by �

w

). We say that �

w

is a pattern.

If only two rules is used in �

w

, the pattern is called planar. More speci�cally, in order to dis-

tinguish among planar patterns of di�erent planes, we will refer to �

w

more speci�cally as e.g.

a planar vt-pattern if �

w

� (v + t)

�

.

In particular, for programs with three recursive rules, a pattern that preserves two compo-

nents of the simple program is called a co-pattern (or more simply a pattern).

The derivations in this report of linear arithmetic formulas that characterize the reachabil-

ity relation, turns out to be independent of the base value � (or equivalently �

0

). Strictly the

expressions should thus be parameterized by � as p

(h+v+t)

�

!

�

p

0

. But since � will not occur

as a coe�cient in any of the expressions given (that is n � �

i

where n is a varaible does not

occur, only subexpressions of the form : : :+ �

i

+ : : :), if B(�) is a linear arithmetic relation,

then 9� : B(�) ^ p

(h+v+t)

�

!

�

p

0

is also a linear arithmetic relation. Therefore we suppress

the parameter.

Note that we do not say that the reachability relation does not depend on the base value,

only that our arguments do not assume a �xed value.

3 Programs with One Recursive Rule

To give an expression for

d

�

1

!

associated with programs with one recursive rule, is straight-

forward.

8



Theorem 3:

Consider the program P

0

on standard form:

p

0

(0):

d

1

: p

0

(q + 1

1

)  (q; '

1

) + �

1

� 0; p

0

(q):

and let

d

�

1

!

be its associated reachability relation. Then

q

d

�

1

!

q

0

, q = q

0

_

0

B

B

B

B

@

9n � 0 : q

0

= q + n � 1

1

^

(q; '

1

) + �

1

� 0

^

(q

0

� 1

1

; '

1

) + �

1

� 0

1

C

C

C

C

A

�

Proof:

Follows easily by induction and the fact that either

(q; '

1

) + �

1

� 0 ) (q + 1

1

; '

1

) + �

1

� 0

or

(q + 1

1

; '

1

) + �

1

� 0 ) (q; '

1

) + �

1

� 0

�

The expression for

d

�

1

!

is general, but if one knows that that

(q; '

1

) + �

1

� 0 ) (q + 1

1

; '

1

) + �

1

� 0

it can be simpli�ed to

q

d

�

1

!

q

0

, q = q

0

_

0

@

9n � 0 : q

0

= q + n � 1

1

^

(q; '

1

) + �

1

� 0

1

A

and if one knows that

(q + 1

1

; '

1

) + �

1

� 0 ) (q; '

1

) + �

1

� 0

it can be simpli�ed to

q

d

�

1

!

q

0

, q = q

0

_

0

@

9n � 0 : q

0

= q + n � 1

1

^

(q

0

� 1

1

; '

1

) + �

1

� 0

1

A

For any given program, the direction of the implication above is decidable an can be precom-

puted to get a simpler expression for

d

�

1

!

.

Actually, the formula for programs with one recursive rule is a special case of the formula

for motifs.

Theorem 4:

Let w be any vector with nonnegative components and let �

w

be its associated motif. Then

q

�

�

w

!

q

0

, q = q

0

_ 9n � 1 :

0

@

q

0

= q + nw

^

80 � n

0

< n : %

�

w

(q + n

0

w)

1

A

9



holds. �

If

%

�

w

(q + n

0

w) ) %

�

w

(q + (n

0

+ 1)w)

or

%

�

w

(q + (n

0

+ 1)w) ) %

�

w

(q + n

0

w)

holds, then

80 � n

0

< n : %

�

w

(q + n

0

w)

collapses to

%

�

w

(q)

or

%

�

w

(q + (n� 1)w)

respectively. The formula for programs with one recursive rule can be considered as the formula

for reachability by a motif where the motif is given by � = fd

1

g.

Note that

�

80 � n

0

< n : %

�

w

(q + n

0

w)

�

,

0

@

%

�

w

(q)

^

%

�

w

(q + (n� 1)w)

1

A

holds in general.

4 Programs with Two Recursive Rules

Programs with two recursive rules was allready treated in [2][4]. We present here a uniform

analysis along a di�erent line (the programs need not be divided into di�erent classes) which is

slightly more general in the sence that the proof does not depend on linear integer arithmetic,

but only on some general properties of the functions and the constraints.

4.1 General Analysis

In this section we derive a linear arithmetic formula de�ning

(h+v)

�

!

associated with the

program

p(x

0

; y

0

):

h : p(x+ e; y + �)  x � 0; p(x; y):

v : p(x+ �; y + f)  y � 0; p(x; y):

We will work only with its standard form

p

0

(0; 0):

h : p

0

(p+ 1

h

)  (p; '

h

) + �

h

� 0; p(p):

v : p(p+ 1

v

)  (p; '

v

) + �

v

� 0; p(p):

where '

h

= he; �i

T

, '

v

= h�; fi

T

. We use the labels h and v for \horizontal" and \vertical"

respectively. By abuse of notation we also let h and v be variables denoting positions on the

horizontal and vertical axes. Thus a point p is a vector hh; vi

T

.

10



Lemma 1:

The constraints of the program above are monotonic. That is, either

(p:'

i

) + �

i

� 0 ) (p + 1

j

:'

i

) + �

i

� 0

or

(p+ 1

j

:'

i

) + �

i

� 0 ) (p; '

i

) + �

i

� 0

holds, for all i = h; v and j = h; v. �

we use the convention

ph = p+ 1

h

pv = p+ 1

v

We say that when p

0

= ph, then p

0

is the result of making a horizontal move from (or applying

rule h to) p, and similarly for p

0

= pv

Lemma 2:

Applications of rules are commutative:

phv = pvh

�

The construction of a formula for

(h+v)

�

!

actually relies only on lemmas 1 and 2. Therefore

the construction applies to more general constraints than (p:'

i

) + �

i

� 0. To emphasize this

generality (and simplify notation), in this section we write '

i

(p) instead of (p:'

i

) + �

i

� 0.

The intuition behind the formula is illustrated in �gures 1, 2 and 3. The path from a

p
v

h

(h+v)

v

*

*

p

+
-

-
+

y=0

x=0

Figure 1

point p to p

0

is viewed as consisting of two parts: It begins with a sequence of applications of

both rules and ends with a sequence of applications of a single rule, or it begins with a single

rule followed by using both rules, or it consists of a sequence of applications of a single rule

followed by a sequnce of applications of the other rule. These parts are characterized sepa-

rately by linear arithmetic formulas, and the formula for the reachability relation is obtained

11



+
-

y=0

-
+

x=0

(h+v) *

p

v

h

*h
p

Figure 2

by \concatenating" them. Thus, the formula R(p; p

0

) for reachability in two dimensions will,

in its full generality, be of the form

R(p; p

0

) , 9q; q

0

:

0

@

p

h

�

!
q

_

p

v

�

!
q

1

A

^ r

hv

(q; q

0

) ^

0

@

q

0
h

�

!
p

0

_

q

0
v

�

!
p

0

1

A

where r

hv

(q; q

0

) is a relation characterising reachability in the region where both rules are ap-

plicable. The rest of this section will be devoted mostly to the construction of r

hv

(q; q

0

) (note

that we do not characterize all admissible paths, only reachable points). The basic idea behind

v

h

p

*h

v*

y=0

x=0
-

+

+
-

p

Figure 3

the de�nition of r

hv

(p; p

0

) is based on the observation that the area de�ned by '

h

(p) ^ '

v

(p)

is convex in some sence, and that (rough
y speaking) all paths inside this area are admis-

sible. Thus, if two points p and p

0

satisfy '

h

(p) ^ '

v

(p) and '

h

(p

0

) ^ '

v

(p

0

) (that is, both

12



points lie inside the area) and if p � p

0

, then there exists an admissible path from p to p

0

.

This gives the intuition of the construction, but it is not true as a matter of fact. We will

de�ne three predicates s(p), e(p; p

0

) and c(p; p

0

), where the �rst relation yields an over approxi-

mation of the set of reachable points, and the latter two cut away points that are not reachable.

First, the set '

h

(p) ^ '

v

(p) is actually too small, so we de�ne an extension of this set as

s(p),

'

h

(p) ^ '

v

(p � 1

v

)

_

'

h

(p � 1

h

) ^ '

v

(p)

Figure 4 shows the set de�ned by '

h

(p)^'

v

(p) and also illustrates why this set is too small. The

p

x=0

y=0

+
-

+
-

p

(h+v)*

Figure 4

point p

0

is reachable from p by a path in (h+ v)

�

allthough neither p nor p

0

belongs to the set.

The area s(p) is illustrated in �gure 5 and it is seen that p and p

0

belongs to this extended set.

Lemma 3:

Let s(p) hold. Then

1. If '

h

(q)) '

h

(q + 1

h

) holds, then '

h

(p) holds.

2. If :'

h

(q)) :'

h

(q + 1

h

) holds, then '

h

(p � 1

h

) holds.

The analogous statement for v is also true. �

Proof:

Consider the �rst property. Since s(p) holds, '

h

(p) _ '

h

(p � 1

h

) must hold. Assume, :'

h

(p).

Then '

h

(p � 1

h

) must hold. But since '

h

(q)) '

h

(q + 1

h

), it follows that '

h

(p) holds, which

is a contradiction. Thus '

h

(p) must hold. The proof of the second property is similar. �

The set de�ned by s(p) is not always connected in the sence that there may exist points p

and p

0

such that s(p), s(p

0

) and p � p

0

hold, but p

0

is not reachable from p. Figures 6 and

13



p

p

(h+v)*

x=0

y=0

+
-

+
-

Figure 5

9 illustrates two such situations. We introduce two predicates to take care of this problem.

De�ne

e(p; p

0

), 8p

00

: p � p

00

� p

0

^ :'

h

(p

00

) ^ :'

v

(p

00

))

0

@

'

v

(h

p

; v

p

00

)

_

'

h

(h

p

00

; v

p

)

1

A

The intuitive meaning of the predicate e(p; p

0

) is illustrated in �gure 6. The idea is that for

p

0

to be reachable from p, there must exist a path u or u

0

that \goes around" any point p

00

between p and p

0

for which :'

h

(p

00

) ^ :'

v

(p

00

) holds. In the �gure, the pre�xes of w are the

only admissible paths starting at p and w ends at p

00

. Thus, p

0

is not reachable from p, and it

is seen in the �gure that e(p; p

0

) is not satis�ed since '

h

(h

p

00

; v

p

) _ '

v

(h

p

; v

p

00

) is not satis�ed.

That a simple predicate as e(p; p

00

) is su�cient for expressing such an a priori complicated

property is due to the fact that the constraints satisfy lemma 1 and because we are working

in only two dimensions. In �gure 7 the lines has been slightly shifted so that no point p

00

between p and p

0

satis�es :'

h

(p

00

) ^ :'

v

(p

00

) so e(p; p

0

) holds, and clearly p

0

is reachable from

p

0

. Figure 8 illustrates a situation where e(p; p

0

) is satis�ed even though a point p

00

between p

and p

0

satis�es :'

h

(p

00

)^:'

v

(p

00

). In this case '

h

(h

p

00

; v

p

) holds and the path u is admissible.

Lemma 4:

Let e(p; p

0

) and :e(p+ 1

h

; p

0

) hold. Then

9p

00

: p+ 1

h

� p

00

� p

0

^

0

B

B

B

B

@

:'

h

(h

p

00

; v

p

00

) ^ :'

v

(h

p

00

; v

p

00

)

^

:'

h

(h

p

00

; v

p

)

^

'

v

(h

p

; v

p

00

) ^:'

v

(h

p

+ 1; v

p

00

)

1

C

C

C

C

A

holds. The analogous statement is also true when e(p; p

0

) and :e(p+ 1

v

; p

0

) hold. �

Proof:

Follows immediately from the de�nition. �
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p

p

p

p-
+

-
+

p

x=0

x<0

y<0

w

u

u

y=0

p(h    ,v  )

p(h  ,v    )

Figure 6

p

-
+

-
+

x=0

y=0

p

w

Figure 7

p

pp

p
-

+
y=0

x=0

+

-

p

y<0

x>0

u

(h  ,v   )p

(h    ,v  )p

Figure 8
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Lemma 5:

Let e(p; p

0

) and :e(p+ 1

h

; p

0

) hold. Then

1. :'

v

(q)) :'

v

(q + 1

h

)

2. If s(p + 1

h

) holds, then :'

v

(q)) :'

v

(q + 1

v

)

�

Proof:

1. From lemma 4 we get '

v

(h

p

; v

p

00

) ^ :'

v

(h

p

+ 1; v

p

00

). Lemma 1 immediately yields the

statement.

2. From s(p+1

h

) we get '

v

(p+1

h

)_'

v

(p+1

h

�1

v

). That is, '

v

(h

p

+1; v

p

)_'

v

(h

p

+1; v

p

�1).

But by lemma4, :'

v

(h

p

+1; v

p

00

) holds, and since v

p

� v

p

00

, lemma1 yields the statement.

�

Lemma 6:

Let e(p; p

0

), :e(p+ 1

h

; p

0

) and s(p + 1

h

) hold. Then :s(p

0

) must hold. �

Proof:

By lemma 4 there exists some p + 1

h

� p

00

� p

0

such that :'

v

(h

p

00

; v

p

00

) ^ :'

h

(h

p

00

; v

p

00

) ^

:'

h

(h

p

00

; v

p

) holds. By s(p + 1

h

) we have '

h

(h

p

; v

p

) _ '

h

(h

p

+ 1; v

p

), so from :'

h

(h

p

00

; v

p

)

and lemma 1, :'

h

(q) ) :'

h

(q + 1

h

) must be true. By lemma 5, :'

v

(q) ) :'

v

(q + 1

h

) So

if v

p

00

= v

p

0

, from the two implications above, and from :'

v

(h

p

00

; v

p

00

) ^ :'

h

(h

p

00

; v

p

00

) we get

:'

v

(h

p

0

; v

p

0

) ^ :'

h

(h

p

0

; v

p

0

), so :s(p

0

) must hold. If on the other hand v

p

00

< v

p

0

, since by

lemma 5, :'

v

(q) ) :'

v

(q + 1

h

) and :'

v

(q) ) :'

v

(q + 1

v

) hold, from :'

v

(h

p

00

; v

p

00

) it must

follow that :'

v

(p

0

) ^ :'

v

(p

0

� 1

v

), and consequently, :s(p

0

) must hold. �

De�ne

c(p; p

0

), 8p

00

: p � p

00

� p

0

^ '

h

(p

00

) ^ '

v

(p

00

))

0

@

'

h

(p

00

� 1

h

)

_

'

v

(p

00

� 1

v

)

1

A

The intuition behind the predicate c(p; p

0

) is illustrated in �gure 9. It essentially says that the

area de�ned by p � p

00

� p

0

^ s(p

00

) must be \wide" enough to allow for a path to be included

in it.

Lemma 7:

Consider p and p

0

where p � p

0

and h

p

6= h

p

0

. Then

1. c(p; p

0

)) c(p + 1

h

; p

0

)

2. c(p; p

0

)) c(p; p

0

� 1

h

)

�

Proof:

Follows immediately from the de�nition. �
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p

p

p   -1 h

p   -1 v

+

-

-
+

x=0

y=0

p

y<0

x<0

Figure 9

Now we de�ne the reachability relation r

hv

(p; p

0

) as

r

hv

(p; p

0

), p = p

0

_

0

B

B

B

B

@

p � p

0

^

s(p) ^ s(p

0

)

^

e(p; p

0

) ^ c(p; p

0

)

1

C

C

C

C

A

We �rst prove soundness of this relation. That is, if r

hv

(p; p

0

) holds there endeed exists an

admissible path from p to p

0

:

r

hv

(p; p

0

) ) p

(h+v)

�

!

p

0

This is stated in lemma 17 which is preceeded by several technical lemmas. Soundness of

p

(h+v)

�

!

p

0

then immediately follows from lemma 8.

Lemma 8:

Assume p � p

0

, h

p

< h

p

0

, r

hv

(p; p

0

) and :r

hv

(p+ 1

h

; p

0

). Then :s(p + 1

h

) must hold. �

Proof:

:r

hv

(p+ 1

h

; p

0

) implies

p 6= p

0

^

0

B

B

B

B

@

p + 1

h

6� p

0

_

:s(p+ 1

h

) _ :s(p

0

)

_

:e(p+ 1

h

; p

0

) _ :c(p+ 1

h

; p

0

)

1

C

C

C

C

A

Since p � p

0

and h

p

< h

p

0

hold, p + 1

h

6� p

0

cannot be true. By r

hv

(p; p

0

) we have s(p

0

) and

c(p; p

0

), and by lemma 7, c(p+ 1

h

; p

0

) holds. So :s(p+1

h

)_:e(p+ 1

h

; p

0

) must hold. Suppose

s(p + 1

h

) was true, then :e(p + 1

h

; p

0

) must hold. By r

hv

(p; p

0

) we have e(p; p

0

). But then, by

lemma 6, :s(p

0

) must hold, which is a contradiction. Thus, :s(p+ 1

h

) holds. �
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Lemma 9:

Assume s(p) and :'

v

(p). Then

1. '

v

(p� 1

v

)

2. :'

v

(q)) :'

v

(q + 1

v

)

�

Proof:

1. Follows immediately from the de�nition of s(p).

2. Follows from lemma 1 and from '

v

(p� 1

v

) ^ :'

v

(p).

�

Lemma 10:

Assume :s(p + 1

h

) and '

h

(p). Then :'

v

(p+ 1

h

) holds. �

Proof:

Follows immediately from the de�nition of s(p). �

Lemma 11:

Let e(p; p

0

), :'

h

(p+ 1

h

) and :'

v

(p + 1

h

) hold. Then '

v

(p) must hold. �

Proof:

Follows immediately from the de�nition of e(p; p

0

). �

Lemma 12:

Let p � p

0

, v

p

< v

p

0

, s(p

0

), :'

v

(p) and :'

v

(q)) :'

v

(q+ 1

v

) hold. Then '

v

(q)) '

v

(q+ 1

h

)

must hold. �

Proof:

By lemma 3, '

v

(p

0

� 1

v

) must hold. But since :'

v

(q) ) :'

v

(q + 1

v

) is true, it cannot be

the case that h

p

= h

p

0

, because :'

v

(p) would then imply :'

v

(p

0

� 1

v

). Thus h

p

< h

p

0

. It

cannot be the case that :'

v

(q) ) :'

v

(q + 1

h

), because then :'

v

(p

0

� 1

v

) would hold. Thus,

by lemma 1, '

v

(q)) '

v

(q + 1

h

) must hold. �

Lemma 13:

Consider p � p

0

such that h

p

< h

p

0

and v

p

< v

p

0

, and let s(p), s(p

0

), :s(p + 1

h

), '

h

(p) and

e(p; p

0

) hold. Then '

v

(p) must hold. �

Proof:
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Assume, by contradiction, that :'

v

(p) holds. By lemma 10, :'

v

(p + 1

h

) holds. Assume

:'

h

(p + 1

h

). By lemma 11, '

v

(p) holds, which contradicts the assumption of :'

v

(p). Thus

'

h

(p + 1

h

) holds. By lemma 9, :'

v

(q) ) :'

v

(q + 1

v

) is true, and then by lemma 12,

'

v

(q) ) '

v

(q + 1

h

) holds. But by lemma 9, '

v

(p � 1

v

) holds, so '

v

(p + 1

h

� 1

v

) is true.

But since '

h

(p + 1

h

) and '

v

(p + 1

h

� 1

v

) then are true, s(p + 1

h

) must be true, which is a

contradiction. Thus, '

v

(p) must be true. �

Lemma 14:

Consider p � p

0

such that h

p

< h

p

0

and v

p

< v

p

0

, and assume r

hv

(p; p

0

), :r

hv

(p + 1

h

; p

0

) and

'

h

(p). Then '

v

(p) must be true. �

Proof:

By r

hv

(p; p

0

) we have s(p), s(p

0

) and e(p; p

0

). By lemma 8 we get :s(p+1

h

). The result follows

then immediately from lemma 13. �

De�ne

d(p; p

0

) = jp

0

� pj

Thus, d(p; p

0

) is the Manhattan distance between the two points (it is assumed that p � p

0

).

Lemma 15:

Consider p � p

0

, and assume '

h

(p), '

v

(p), :'

h

(p+ 1

v

) and :'

v

(p+ 1

h

). Then

8p

0

: p � p

0

^ p 6= p

0

^ c(p; p

0

))

0

@

:'

h

(p

0

)

_

:'

v

(p

0

)

1

A

�

Proof:

Induction over d(p; p

0

). For the base case, assume d(p; p

0

) = 1. Then p

0

= p+1

h

, in which case

:'

v

(p+ 1

h

) holds, or p

0

= p+ 1

v

, in which case :'

h

(p+ 1

v

) holds. For the induction hypoth-

esis, assume the statement is true for all p

0

such that d(p; p

0

) = n, and consider any p

00

with

d(p; p

00

) = n+ 1 (where 1 � n), and c(p; p

00

) hold. First note that since '

h

(p) and :'

h

(p+ 1

v

)

hold, by lemma 1, :'

h

(q) ) :'

h

(q + 1

v

). Similarly :'

v

(q) ) :'

v

(q + 1

h

) holds. There are

three possibilities: h

p

= h

p

00

^ v

p

< v

p

00

, h

p

< h

p

00

^ v

p

= v

p

00

or h

p

< h

p

00

^ v

p

< v

p

00

. Consider

the case when h

p

= h

p

00

^ v

p

< v

p

00

. Since :'

h

(p+1

v

) and :'

h

(q)) :'

h

(q+1

v

) hold, clearly

:'

h

(p

00

) must hold. Analogously, the lemma holds also for the case when h

p

< h

p

00

^ v

p

= v

p

00

.

Thus we may assume that h

p

< h

p

00

^ v

p

< v

p

00

holds. Suppose, by contradiction, that

'

h

(p

00

)^'

v

(p

00

) was true, and consider p

00

�1

h

. Since h

p

< h

p

00

, d(p; p

00

�1

h

) = n. By lemma 7,

c(p; p

00

� 1

h

) holds, and since :'

v

(q)) :'

v

(q + 1

h

) and '

v

(p

00

) hold, '

v

(p

00

� 1

h

) must hold.

By the induction hypothesis then, :'

h

(p

00

� 1

h

) must hold. Next consider p

00

� 1

v

. By the

symmetric reasoning we get that :'

v

(p

00

� 1

v

) must hold. Thus :'

h

(p

00

� 1

h

) ^ :'

v

(p

00

� 1

v

)

holds. But this contradicts the assumption that c(p; p

00

) holds. Thus it must be the case that

:'

h

(p

00

) _ :'

v

(p

00

). �

Lemma 16:

Consider p � p

0

such that h

p

< h

p

0

and v

p

< v

p

0

, and assume r

hv

(p; p

0

), '

h

(p), '

v

(p) and

:r

hv

(p+ 1

h

; p

0

). Then r

hv

(p+ 1

v

; p

0

) is true. �

Proof:
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Suppose, by contradiction, that :r

hv

(p + 1

v

; p

0

) holds. Two applications of lemma 8 yields

:s(p+1

h

) and :s(p+1

v

) (by symmetry lemma 8 holds both for p+1

h

and p+1

v

). :s(p+1

h

)

yields (by de�nition)

:'

h

(p+ 1

h

) _ :'

v

(p+ 1

h

� 1

v

)

^

:'

h

(p) _ :'

v

(p+ 1

h

)

and :s(p+ 1

v

) yields

:'

h

(p+ 1

v

) _:'

v

(p)

^

:'

h

(p+ 1

v

� 1

h

) _ :'

v

(p+ 1

v

)

'

h

(p) and '

v

(p) then yields :'

h

(p+ 1

v

) and :'

v

(p + 1

h

). By lemma 1,

:'

h

(q)) :'

h

(q + 1

v

)

and

:'

v

(q)) :'

v

(q + 1

h

)

must then hold. But from r

hv

(p; p

0

), we get s(p

0

), which by de�nition implies '

h

(p

0

)^'

h

(p

0

�1

h

)

and '

v

(p

0

) ^ '

v

(p

0

� 1

v

). So by lemma 1

'

h

(q)) '

h

(q + 1

h

)

and

'

v

(q)) '

v

(q + 1

v

)

must be true. But by lemma 3 then, '

h

(p

0

)^'

v

(p

0

) holds. Since, as noted above, '

h

(p)^'

v

(p)

and :'

h

(p+ 1

v

) ^ :'

v

(p+ 1

h

) hold, and since r

hv

(p; p

0

) yields c(p; p

0

), lemma 15 applies and

says that :'

h

(p

0

) _ :'

v

(p

0

) holds, which contradicts '

h

(p

0

) ^ '

v

(p

0

). Thus the assumption

:r

hv

(p+ 1

v

; p

0

) must be false. �

Lemma 17:

Assume r

hv

(p; p

0

). Then there exists an admissible path w such that p

w

! p

0

. �

Proof:

Induction over d(p; p

0

). The base case when d(p; p

0

) = 0 is trivial. For the induction hypothesis,

assume that for all p and p

0

such that d(p; p

0

) = n and r

hv

(p; p

0

), there exists an admissible

path w such that p

w

! p

0

. Consider any p

00

with d(p

00

; p

0

) = n + 1 and r

hv

(p

00

; p

0

). There are

three cases: h

p

00

< h

p

0

^ v

p

00

= v

p

0

, h

p

00

= h

p

0

^ v

p

00

< v

p

0

or h

p

00

< h

p

0

^ v

p

00

< v

p

0

. Consider

the �rst case. By r

hv

(p

00

; p

0

) we have s(p

00

) and s(p

0

), which means that '

h

(p

00

) _ '

h

(p

00

� 1

h

)

and '

h

(p

0

) _ '

h

(p

0

� 1

h

) hold. Now, '

h

(q) must be true for all p

00

� q � p

0

� 1

h

, otherwise

:'

h

(q) ) :'

h

(q + 1

h

) would hold by lemma 1, and consequently :'

h

(p

0

) ^ :'

h

(p

0

� 1

h

)

would be the case. But then h

n+1

is an admisible path such that p

00

h

n+1

!

p

0

. The case when

h

p

00

= h

p

0

^ v

p

00

< v

p

0

is treated analogously. Thus we may assume that h

p

00

< h

p

0

^ v

p

00

< v

p

0

.

By r

hv

(p

00

; p

0

) we have s(p

00

), which yields '

h

(p

00

) _ '

v

(p

00

). Suppose that '

h

(p

00

) holds. Then

an h-move is admissible, and since h

p

00

< h

p

0

, d(p

00

+ 1

h

; p

0

) = n. If r

hv

(p

00

+ 1

h

; p

0

) is true, by

the induction hypothesis there exists an admissible path w such that (p

00

+ 1

h

)

w

! p

0

holds,

but then hw is an admissible path such that p

00 hw

! p

0

and we're done. Suppose on the other

hand that :r

hv

(p

00

+ 1

h

; p

0

) holds. By lemma 14, '

v

(p

00

) is true. Thus a v-move is admissible.

Since v

p

00

< v

p

0

, d(p

00

+ 1

v

; p

0

) = n, and by lemma 16, r

hv

(p

00

+ 1

v

; p

0

) is true. By the induction

hypothesis then, there exists a admissible path w such that (p

00

+ 1

v

)

w

! p

0

holds, but then
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vw is an admissible path such that p

00
vw

! p

0

. This concludes the proof. �

Theorem 5:

Assume R(p; p

0

). Then there exists an admissible path w such that p

w

! p

0

. �

Proof:

Follows immediately from lemma 17 and proposition 8. �

Comleteness of R(p; p

0

) is mutch simpler. The idea is to show that all admissible paths in-

side the s-area are captured by the r

hv

(p; p

0

)-relation. Completeness of R(p; p

0

) then follows

by observing that any point where an admissible path changes direction must lie in the s-area,

so r

hv

(p; p

0

) connects the points of the �rst and the last change of direction, and p

h

�

!
p

0

and

p

v

�

!
p

0

characterises the pre�x and su�x of the path.

Lemma 18:

Assume s(p) and p

w

! p

0

for some w. Then c(p; p

0

) is true. �

Proof:

Induction over the length of w. If w = �, the statement is trivially true. For the induction

hypothesis, assume the lemma is true for w. That is, For all points p � p

0

� pw (with p 6= p

0

)

such that '

h

(p

0

) ^ '

v

(p

0

) is true, '

h

(p

0

� 1

h

) _ '

v

(p

0

� 1

v

) holds. Consider w

0

= wh. When

we move one step horizontally, the only new points that must be considered, are those p

00

such

that h

pw

0
= h

p

00

and v

p

� v

p

00

� v

pw

0
. So it is enough to show that every such point that

satis�es '

h

(p

00

) ^ '

v

(p

00

) must also satisfy '

h

(p

00

� 1

h

) _ '

v

(p

00

� 1

v

). Since w

0

is admissible,

'

h

(pw

0

� 1

h

) is true. Consider any p

00

such as mentioned above and assume :'

h

(p

00

� 1

h

).

By lemma 1, '

h

(q) ) '

h

(q + 1

v

) must hold, otherwise '

h

(pw

0

� 1

h

) would not be true. Also

'

h

(q) ) '

h

(q + 1

h

) must hold, otherwise '

h

(p

00

) would not be true. But from s(p) we get

'

h

(p) _'

h

(p� 1

h

), so for all points q such that p � q, we have that '

h

(q) holds. This contra-

dicts the assumption that :'

h

(p

00

� 1

h

) holds. So '

h

(p

00

� 1

h

) must be true. The case when

w

0

= wv is treated analogously. �

Lemma 19:

Assume s(p), s(p

0

) and p

w

! p

0

for some path w. Then e(p; p

0

) is true. �

Proof:

Induction over length of the path. The statement is trivially true when w = �. For the induction

hypothesis assume the statement is true for pw. Consider w

0

= wh and let p

wh

! p

0

. When

we move one step horizontally, the only new points that must be considered, are those p

00

such

that h

p

0

= h

p

00

and v

p

� v

p

00

� v

p

0

. So it is enough to show that every such point that satis�es

:'

h

(p

00

) ^ :'

v

(p

00

) must also satisfy '

v

(h; v

00

) _ '

h

(h

00

; v) Consider such a point p

00

. Since by

s(p

0

), '

h

(p

0

)_'

v

(p

0

), clearly v

p

00

< v

p

0

. But then, by lemma 1, '

v

(q)) '

v

(q+1

v

), must hold.

By s(p) and lemma 3 we thus get '

v

(p) and so '

v

(h; v

00

) must hold. The case when w

0

= wv

is treated analogously. �

Lemma 20:

Assume s(p), s(p

0

) and p

w

! p

0

for some path w. Then r

hv

(p; p

0

) is true. �
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Proof:

If w = � then p = p

0

, so r

hv

(p; p

0

) is true. If w 6= �, Then claerly p � p

0

. Lemma 18 and

lemma 19 together with the assumptions s(p) and s(p

0

) yields the result. �

Theorem 6:

Assume p

w

! p

0

for some admissible path w. Then R(p; p

0

) holds. �

Proof:

For any path w it is clearly true that w = u

1

u

2

u

3

where u

1

2 (h

�

+ v

�

), u

2

2 (h + v)

�

and

u

3

2 (h

�

+ v

�

). If w = � the theorem is trivially true. Let u

1

be the longest pre�x belong-

ing to (h

�

+ v

�

). If w 6= � then u

1

6= � since w at least must begin with h, say. Since w is

admissible, '

h

(p) must be true, and since u

1

ends with h, '

h

(pu

1

� 1

h

) also must be true.

Clearly pu

1

= p + n � 1

h

for some n, so p

h

�

!
(pu

1

) holds. If u

2

u

3

= �, the theorem follows

trivially. Suppose u

2

u

3

6= �. Let u

3

be the longest su�x belonging to (h

�

+ v

�

). If u

2

= �,

u

3

2 v

�

must hold, and the theorem follows by similar reasoning as above. Suppose u

2

6= �.

Then u

3

6= � since u

2

must end with some move, and this belongs to (h

�

+ v

�

). u

2

must begin

with v, otherwise u

1

would not be the longest path of h

�

. Since w is admissible, '

v

(pu

1

) must

hold. This, together with '

h

(pu

1

� 1

h

), yields s(pu

1

). Suppose that u

2

ends with h, say. Then

'

h

(pu

1

u

2

� 1

h

) holds, and u

3

must begin with v, so '

v

(pu

1

u

2

) holds, and thus s(pu

1

u

2

) holds.

By lemma 20, r

hv

(pu

1

; pu

1

u

2

) holds. Finaly, since '

v

(pu

1

u

2

) and '

v

(pu

1

u

2

u

3

� 1

v

) holds,

(pu

1

u

2

)

v

�

!
(pu

1

u

2

u

3

) holds. This concludes the proof. �

Note that the whole proof only uses the properties stated in lemma 1 and lemma 2. The

expression given for the least �xpoint can therefore be addapted to more general situations

than mereley linear integer arithmetic with one linear constraint. Conjunctions, nonlinear con-

straints, reals e.t.c. can be allowed as long as lemma 1 and lemma 2 are satis�ed. For instance,

any constraints of the form f

i

(h

p

; v

p

) � 0, where i = h; v, is allowed for functions f

i

that are

monotonic in both arguments. The construction is limited, however, to two recursive rules.

4.2 Alternated incrementation matrices

In this section we consider programs of the form

p(x

0

; y

0

):

h : p(x+ e; y + �)  x � 0; p(x; y):

v : p(x+ �; y + f)  y � 0; p(x; y):

That is, we restrict our attention to programs of linear integer arithmetic. More speci�cally,

we focus on programs which have \alternated incrementation matrices", i.e., matrices with a

negative diagonal and a positive antidiagonal, or the opposite. For a point p = hh; vi

T

, the

corresponding variables x

p

and y

p

are de�ned by x

p

= eh+ �v + �

h

and y

p

= �h + fv + �

v

.

4.2.1 negative diagonal

Consider a program with the signs of the matrix given by

� =

�

�e �

� �f

�

where e; f > 0 and �; � � 0. Depending on the values of the coe�cients, this corresponds to

one of the situations illustrated in �gures 10 and 11. Consider two points p and p

0

, and denote

by x

p

, y

p

, x

p

0

and y

p

0

the x and y values associated with the points.
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x= -e

y= -f

p

h

v

x=0

y=0
+

+
-

-

p

Figure 10

y= -f

x= -e

v

h

+

-

-

x=0

y=0

+

p

Figure 11
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Proposition 11:

8p; p

0

; x

p

; y

p

; x

p

0

; y

p

0

:

0

@

x

p

� �e

^

y

p

� �f

1

A

^ p

(h+v)

�

!

p

0

)

0

@

x

p

0

� �e

^

y

p

0

� �f

1

A

�

Proof:

Follows easily by �xpoint induction. �

By looking at �gures 10 and 11, this can be interpreted as that one can never move very

far away from the cone once it has been reached. Note the special case illustrated in �gures 12

and 13 (�gure 12 is the same situation as that illustrated in �gure 6). The �gures 11 and 12

1

y= -f

x= -e

1

2
p

-
+

-
+

x=0

y=0

p

p

Figure 12

shows the situation when

�

�

�

�

�e �

� �f

�

�

�

�

< 0

That is, the area de�ned by '

h

(p) ^ '

v

(p) diverge. This means that if one starts in a point

su�ciently far up to the right, there is an in�nite path starting at this point. In �gure 12 it is

seen that there are only �nitely many points reachable from p

1

since it lies too far to the left.

This is formalized in the following proposition.

Proposition 12:

Let

�

�

�

�

�e �

� �f

�

�

�

�

� 0

and let e; f > 0. Consider the point p. If �x

p

+ ey

p

� 0 or fx

p

+ �y

p

� 0, then there exists an

in�nite path starting from p. �
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Proof:

We give the proof for the case when �x

p

+ ey

p

� 0. The proof of the case when fx

p

+ �y

p

� 0

holds is similar. When we apply an h-step we add �e to x and � to y, and when we apply a

v-step we add �f to y and � to x. It is enough if we can show that for all w 2 (h + v)

�

, if

hx

0

; y

0

i

T

= hx

p

; y

p

i

T

+ �

T

w then x

0

� 0 or y

0

� 0. That is, no matter how we walk, at least

one next step can be taken. Assume to the contrary that for some w with h

w

horizontal steps

and v

w

vertical steps,

x

p

� eh

w

+ �v

w

< 0

y

p

+ �h

w

� f

w

< 0

holds. Then

�x

p

+ ey

p

� (ef � ��)v

w

< 0

must hold. But by assumption, �x

p

+ ey

p

� 0 and

ef � �� =

�

�

�

�

�e �

� �f

�

�

�

�

� 0

hold, which is a contradiction (since v

w

� 0). �

The converse of this theorem does not hold. We observe that if �x + ey < 0, 0 � y and

�e � x hold, then �e � x < 0 and 0 � y < �. Similarly, fx+ �y < 0, 0 � x and �f � y hold,

then �f � y < 0 and 0 � x < �. Thus, there are only �nitely many classes of points for which

�e � x ^ �f � y and such that there are only �nitely many paths starting at these points

(two points p and p

0

belong to the same class i� x

p

= x

p

0

and y

p

= y

p

0

).

The properties �x+ ey � 0 and fx + �y � 0 are invariant under the assumption that

�

�

�

�

�e �

� �f

�

�

�

�

� 0

since then the inequalities says that v � v

0

and h � h

0

respectively (for some constants h

0

and

v

0

), and this property is clearly preserved.

For the special case when the matrix of the program has the form

�

�e �

� �f

�

where e; f > 0 and �; � � 0, the expression for the �xpoint can be given in more \compiled"

form. We distinguish the situations when the determinant is strictly positive, and when it is

negative or zero.

4.2.2 positive determinant

Consider �rst the situation when

�

�

�

�

�e �

� �f

�

�

�

�

> 0

and e; f > 0, which is illustrated in �gures 10 and 13. Consider �gure 10. The point p

0

=

hh

p

0

; v

p

0

i

T

is given by a solution to

�e � �eh

p

0

+�v

p

0

+�

h

< 0

�f � �h

p

0

�fv

p

0

+�

v

< 0

p

0

� p
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or equivalently

�e � x

p

0

< 0

�f � y

p

0

< 0

p

0

� p

(For �gure 13 the points p and p

0

are p

1

and p

0

1

, or p

2

and p

0

2

respectively). The set of inequalities

above has a �nite number of solutions and always has at least one solution when p satis�es

E(p) , 9n :

�

x

p

+n� � 0

y

p

�nf � �f

�

_

�

x

p

�ne � �e

y

p

+n� � 0

�

or equivalently

E(p) , 9n :

fx

p

+�y

p

� �fe �f�

_

�x

p

+ey

p

� �fe �e�

That is, p is to the left of and/or below an area (a set of points) where �e � x < 0 and

�f � y < 0.

Moreover, all solutions are comparable so there exists a unique minimal solution. Therefore

the function p

0

(p), which returns the minimal solution to the inequalities above, is well de-

�ned whenever E(p) holds. The point p

0

must be chosen as p

0

= p

0

(p). Figure 13 shows that

it is essential to choose the minimal solution since in this �gure both p

0

1

and p

0

2

are solutions

allthough p

0

2

is not reachable from p

1

. The set of inequalities consisting of the two �rst rows has

only �nitely many solutions since by assumption the determinant is strictly positive. Thus, the

solutions may be precomputed (for �xed �

h

and �

v

). The fact that all solutions are comparable

is due to the signs of the matrix

�

�e �

� �f

�

and is not true in general. For p the set Q

p

(q) de�ned by

Q

p

(q) , x

q

� �e ^ y

q

� �f ^ p � q � p

0

(p)

characterizes all reachable points q above p that lies \close to" the positive cone (q is to the

left of and below the intersection x = �e, y = �f . Note that there does not necessarily exist

an integer point p

0

such that x

p

0

= �e and y

p

0

= �f .). This is illustrated by the shaded areas

in �gures 10 and 13. The set of points reachable from p is characterised by the formula

R

p

(q) , (E(p) ^ Q

p

(q))

_

9n :

0

@

0 � x

p

^ �e � x

q

^ q = p+ n � 1

h

_

0 � y

p

^ �f � y

q

^ q = p + n � 1

v

1

A

_

q = p

The second disjunct covers the points on a horizontal or vertical line starting at p. 9n : q =

p+ n � 1

h

can also be expressed as

fx

q

+�y

q

� fx

p

+�y

p

�x

q

+ey

q

= �x

p

+ey

p
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y= -f

x= -e

2p

1p

2p

x=0

y=0
+

+
-

-

p1

Figure 13

and 9n : q = p+ n � 1

v

as

fx

q

+�y

q

= fx

p

+�y

p

�x

q

+ey

q

� �x

p

+ey

p

4.2.3 negative determinant

Consider the second case when

�

�

�

�

�e �

� �f

�

�

�

�

� 0

and e; f > 0, which is illustrated in �gures 11 and 12. Consider �gure 11. There is an in�nite

path starting at p i� there are no solutions to

�e � �eh

p

0

+�v

p

0

+�

h

< 0

�f � �h

p

0

�fv

p

0

+�

v

< 0

p

0

� p

Otherwise p

0

is the minimal solution (see �gure 12: There is an in�nite path leaving p

2

but

only �nite paths leaving p

1

, since there is a solution p

0

1

� p

1

to the inequalities above, but no

solution p

0

2

� p

2

). If the determinant is strictly negative, the inequalities of the �rst two rows

have only �nitely many solutions (for �xed �

h

and �

v

). If a solution exists, the set Q

p

(q) is

de�ned exactly as above and if no solution exists it is de�ned by

Q

p

(q) , x

q

� �e ^ y

q

� �f ^ p � q

(which may be seen as though the point p

0

lies at in�nity: p

0

= h1;1i

T

). If

�

�

�

�

�e �

� �f

�

�

�

�

< 0

p � q may alternatively be expressed as

fx

p

+�y

p

� fx

q

+�y

q

�x

p

+ey

p

� �x

q

+ey

q

The set Q

p

(q) for the case when no solution p

0

exists is illustrated by the shaded area in

�gures 11 (In �gure 12 there is a solution p

0

1

� p

1

but no solution p

0

2

� p

2

. The shaded areas

shows Q

p

(q) for the two cases.) The set of points R

p

(q) reachable from p is de�ned as before.
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4.2.4 positive diagonal

Let us now consider programs with the signs of the matrix given by

� =

�

e ��

�� f

�

where �; � > 0 and e; f � 0. Depending on the values of the coe�cients, this corresponds to

one of situations illustrated in �gures 14 and 16. As before we consider two cases depending

on the sign of the determinant.

4.2.5 negative determinant

Consider the case when

�

�

�

�

e ��

�� f

�

�

�

�

< 0

which is illustrated in �gure 14. Consider the inequations

µ0     x <

λ
<

<_0     y <

_

pv

h

+

+
-

-

y=0

x=0

p

Figure 14

0 � eh

p

0

��v

p

0

+�

h

< �

0 � ��h

p

0

+fv

p

0

+�

v

< �

p

0

� p

or equivalently

0 � x

p

0

< �

0 � y

p

0

< �

p

0

� p

A unique minimal solution p

0

always exists when p satis�es

E(p) , x

p

� 0 ^ y

p

� 0

Thus, the function p

0

(p), which returns the minimal solution to the above set of inequations, is

well de�ned for p such that E(p). Since the determinant is strictly negative, the inequations of

the �rst two rows have �nitely many solutions. The set

Q

p

(q) , x

q

� 0 ^ y

q

� 0 ^ p � q � p

0

(p)
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characterizes all points q below p

0

(p) that are reachable from p. This set is illustrated by the

shaded area in �gure 14. When p satis�es E(p), all points reachable from p can be reached by

starting from some point in Q

p

(q) and walking any number of steps horizontally or vertically.

Thus, p

00

is reachable from p i�

9q; n : Q

p

(q) ^

0

@

p

00

= q + n � 1

h

_

p

00

= q + n � 1

v

1

A

It is easily seen that this is equivalent to

p � p

00

^

0

@

h

p

00

� h

p

0

(p)

_

v

p

00

� v

p

0

(p)

1

A

which is illustrated by the shaded area in �gure 15. Alternatively, h

p

00

� h

p

0

(p)

may be expressed

as

fx

p

0

(p)

+�y

p

0

(p)

� fx

p

00

+�y

p

00

and v

p

00

� v

p

0

(p)

as

�x

p

0

(p)

+ey

p

0

(p)

� �x

p

00

+ey

p

00

It means that p

00

is in the complementary region located at the right and above p

0

. The set of

λ
<

<_0     y <

_0     x < µ

pv

h

+

+
-

-

y=0

x=0

p

Figure 15

points reachable from p is characterised by the formula

R

p

(q) ,

0

@

E(p) ^ p � q ^

0

@

h

q

� h

p

0

(p)

_

v

q

� v

p

0

(p)

1

A

1

A

_

9n :

0

@

0 � x

p

^ q = p+ n � 1

h

_

0 � y

p

^ q = p+ n � 1

v

1

A

_

q = p
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where 9n : q = p+ n � 1

h

may also be expressed as

fx

q

+�y

q

� fx

p

+�y

p

�x

q

+ey

q

= �x

p

+ey

p

and 9n : q = p+ n � 1

v

as

fx

q

+�y

q

= fx

p

+�y

p

�x

q

+ey

q

� �x

p

+ey

p

4.2.6 positive determinant

Consider the second case when

�

�

�

�

e ��

�� f

�

�

�

�

� 0

which is illustrated in �gure 14. The inequations

2

1

1

µ0     x <_<

λ0     y <_<

p

p

p

y=0 -

x=0
+

-

+

Figure 16

0 � eh

p

0

��v

p

0

+�

h

< �

0 � ��h

p

0

+fv

p

0

+�

v

< �

p

0

� p

may or may not have solutions. In �gure 16 there is a solution p

0

1

� p

1

, but no solution p

0

2

� p

2

.

When a solution exists there exists a unique minimal solution so p

0

(p) is well de�ned as before.

When no solution exists we de�ne p

0

(p) = h1;1i

T

. Thus, with Q

p

(q) de�ned as before, the

shaded areas in �gure 17 illustrates this set for the cases when a solution exists and when it

does not exist. As before, the set of points p

00

reachable from p when E(p) holds is given by

p � p

00

^

0

@

h

p

00

� h

p

0

(p)

_

v

p

00

� v

p

0

(p)

1

A

which reduces to p � p

00

when p

0

(p) = h1;1i

T

. That is, the whole plane above p is �lled when

the inequalities above have no solutions. This is illustrated by the shaded areas in �gure 17.

With the convention that p

0

(p) = h1;1i

T

when no solutions exist, the set of points reachable

from any point p is given by R

p

(q) as de�ned for the case when the determinant is negative.
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1

2

1

µ_

0     y <

<
_ λ

0     x <
<

p

p

p

y=0 -

x=0
+

-

+

Figure 17

5 Programs with Three Recursive Rules

In the rest of the report, we focus on programs with three recursive rules:

p(x

0

; y

0

; z

0

):

h : p(x+ e; y + �; z + 
)  x � 0; p(x; y; z):

v : p(x+ �; y + f; z + �)  y � 0; p(x; y; z):

t : p(x+ �; y + �; z + g)  z � 0; p(x; y; z):

The behaviour for such programs are far more complicated than for programs with only two

recursive rules.

Proposition 13:

Knowing the least �xpoint (lfp) of a program with the associated matrix �, one can infer the

lfp of the program with associated matrix ��. �

Proof:

Brie
y, consider a rule of a program P :

0 : p(x

0

; x

0

):

.

.

.

i : p(x+ k

i

; x

0

)  x

i

� 0; p(x; x

0

):

.

.

.

31



By turning the program \backwards", one gets

0 : p

0

(x

0

; x

0

):

.

.

.

i : p

0

(x; x

0

� k

i

)  x

0

i

� k

i

� 0; p

0

(x; x

0

):

.

.

.

which computes the same relation, but the coe�cients has changed signs. (See [1] for a de-

tailed investigation of such program transformations and the relationships between theire least

�xpoints.) �

Proposition 14:

The lfp of a program, the associated matrix � of which contains a fully negative row (a row

made of 3 negative coe�cients), is known. (see [4] pp. 139-152). �

Proposition 15:

The lfp of a program, the associated matrix � of which contains a fully negative column (a

column made of 3 negative coe�cients) and a row containing 2 positive coe�cients, is known.

(see [4] pp. 139-152). �

Proposition 16:

The lfp of a program with associated matrix � of one of the following forms:

0

@

+ + �

� � +

� � �

1

A

0

@

+ � +

+ � �

� + �

1

A

0

@

� + �

� � +

+ � +

1

A

0

@

� � +

+ � �

� + +

1

A

0

@

� + �

� + +

+ � �

1

A

0

@

� � +

+ + �

� + �

1

A

is known (see [4] pp. 139-152). �

Proposition 17:

Any matrix (or its negative form) falls into one of the following classes:

(a) matrix with a fully negative row

(b) matrix with a fully negative column and a row containing two positive coe�cients

(c) matrix of the form

0

@

+ + �

� � +

+ � �

1

A

0

@

+ � +

+ � �

� + �

1

A

0

@

� + �

� � +

+ � +

1

A

(d) matrix of the form

0

@

� � +

+ � �

� � +

1

A

0

@

+ � �

� � +

+ � �

1

A

0

@

� + �

� � +

� � +

1

A
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0

@

� � +

� + �

� + �

1

A

0

@

� + �

� + �

+ � �

1

A

0

@

+ � �

+ � �

� + �

1

A

(e) matrix with (at least) one minor associated with a diagonal element of the form

�

� +

+ �

�

That is, a matrix of the form

0

@

� + �

+ � �

� � �

1

A

0

@

� � +

� � �

+ � �

1

A

0

@

� � �

� � +

� + �

1

A

(f) matrix of the form

0

@

+ + �

� + +

+ � +

1

A

0

@

+ � +

+ + �

� + +

1

A

�

From propositions 13 to 17 it follows that the matrices for which the associated lfp are (a

priori) unknown, are matrices of type (e) and (f) of proposition 17.

Programs, the associated matrices of which are of types (a) to (d) of proposition 17, will

in this report be refered to as programs of class 1, and those described by case (f) as class 5.

In the rest of this report, we mainly focus on matrices of type (e).

The three subcases of form (e) correspond one-by-one too three elements of the diagonals

(chosen for the associated minors). The corresponding least �xpoints are identical up to a

permutation of variables x, y, and z. Therefore we will focus on matrices of the form

0

@

� � �

� � +

� + �

1

A

We will suppose furthermore that the determinant of the submatrix (the minor) is nonnull.

The matrices of type (e) are subdivided into three classes:

class 2:

This class contains the following 6 matrices (but two of them have already been treated else-

where):

0

@

� + +

� � +

� + �

1

A

[For a matrix such as the one above, the associated lfp is known by proposition 15]

0

@

� + �

� � +

+ + �

1

A

0

@

� + �

� � +

� + �

1

A

0

@

� � +

+ � +

� + �

1

A

0

@

� � +

� � +

� + �

1

A
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0

@

� � �

� � �

� � �

1

A

[By proposition 14, the lfp associated with a matrix of the last of the above forms, is known.]

class 3:

This class contains the following 6 matrices:

0

@

� + +

+ � +

+ + �

1

A

0

@

� + +

+ � +

� + �

1

A

0

@

� + +

� � +

+ + �

1

A

0

@

� + �

+ � +

� + �

1

A

0

@

� + �

+ � +

+ + �

1

A

0

@

� � +

� � +

+ + �

1

A

class 4:

This class contains the following 13 matrices (but two of them have already been treated

elsewhere):

0

@

+ + +

� � �

� � �

1

A

[By taking the negative of the matrix above, one obtaines a matrix with a fully negative row.

By proposition 14, the associated lfp is known.]

0

@

+ + �

+ � +

+ + �

1

A

0

@

+ + �

+ � +

� + �

1

A

0

@

+ + �

� � +

+ + �

1

A

0

@

+ + �

� � +

� + �

1

A

0

@

+ � +

+ � +

+ + �

1

A

0

@

+ � +

+ � +

� + �

1

A

0

@

+ � +

� � +

+ + �

1

A

0

@

+ � +

� � +

� + �

1

A

0

@

+ � �

+ � +

+ + �

1

A

[By taking the negative of a matrix of this last form, one obtains a matrix with a fully negativ

column and a row containing two possitive coe�cients. By proposition 15, the associated lfp is

known.]

0

@

+ � �

+ � +

� + �

1

A

0

@

+ � �

� � +

+ + �

1

A

0

@

+ � �

� � +

� + �

1

A

6 The Pigeon-Hole Principle

The analysis of programs with three recursive rules is not as straightforward as for 2-rule pro-

grams. In this section we derive a tool for computing certain patterns that exists within the

lfp of some classes of programs. The idea is to show that there is a �nitie family of (in�nite)

sets of points, and that a su�ciently long path of some particular form must visit a set of the

family at least twice. This yields a solution to a set of equations from which a corresponding

motif may be computed.
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We denote by �

xy

(�; �

0

), �

xz

(�; �

0

) or �

yz

(�; �

0

) the set of pairs hx; yi � h�; �

0

i, hx; zi � h�; �

0

i

or hy; zi � h�; �

0

i, respectively. By [�

xy

(�; �

0

)] we denote the set of points p such that

hx

p

; y

p

i 2 �

xy

(�; �

0

) (and similarly for the other sets). We write p

�

xy

(�;�

0

)

to indicate that

p 2 [�

xy

(�; �

0

)].

By �

xyz

(�; �

0

; �

00

) we denote the set of triples hx; y; zi � h�; �

0

; �

00

i. We use the same con-

ventions as above for p

�

xyz

(�;�

0

;�

00

)

and [�

xyz

(�; �

0

; �

00

)].

Lemma 21:

Consider a matrix of the form

� =

0

@

� � 


� f �

� � g

1

A

where no assumptions are made on f , g, � or 
. Let � = minf0; fg and �

0

= minf0; gg. Suppose

p

(h+v+t)

�

!

p

0

for some p and p

0

.

1. If � � 0 _ 
 < 0, then

9q 2 �

yz

(�; �

0

) : p

(h+t)

�

(h+v)

�

!

q

h

�

t(h+v+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

!

p

0

where h

�

t(h+ v + t)

�

can be replaced by t(h+ v + t)

�

in the case where � � 0.

2. If � < 0 _ 
 � 0, then

9q 2 �

yz

(�; �

0

) : p

(h+v)

�

(h+t)

�

!

q

0
h

�

v(h+v+t)

�

!

p

0

_

p

(h+v)

�

(h+t)

�

!

p

0

where h

�

v(h + v + t)

�

can be replaced by v(h + v + t)

�

in the case where 
 � 0.

�

Proof:

We give the proof for the case when � � 0 _ 
 < 0. The other case is identical.

Since

p

(h+v+t)

�

!

p

0

) 9q : p

(h+t)

�

(h+v)

�

!

q

(h+v+t)

�

!

p

0

it is enough to prove

p

(h+t)

�

(h+v)

�

!

q

(h+v+t)

�

!

p

0

)

0

@

9q

0

2 �

yz

(�; �

0

) : p

(h+t)

�

(h+v)

�

!

q

h

�

t(h+v+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

!

p

0

1

A

This follows easily by induction on n from the following implication

p

(h+t)

�

(h+v)

�

!

q

(h+v+t)

n

!

p

0

)

0

B

B

B

B

@

n = 0 ^ q = p

0

_

9q

0

2 �

yz

(�; �

0

) : p

(h+t)

�

(h+v)

�

!

q

h

�

t(h+v+t)

�

!

p

0

_

9q

0

: p

(h+t)

�

(h+v)

�

!

q

0
(h+v+t)

n�1

!

p

0

1

C

C

C

C

A
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Consider points p, q and p

0

such that p

(h+t)

�

(h+v)

�

!

q

(h+v+t)

n

!

p

0

for some n. The case

when n = 0 is trivial, so assume n > 0. Then q

w

! p

0

for some w 2 (h + v + t)

�

with

jwj = n > 0. There are three cases: w = hw

0

, w = vw

0

and w = tw

0

for some w

0

2 (h+ v + t)

�

with jw

0

j = n � 1. If w = hw

0

or w = vw

0

, then clearly p

(h+t)

�

(h+v)

�

!

q

h+v

! q

0
w

0

!

p

0

which implies p

(h+t)

�

(h+v)

�

!

q

0
(h+v+t)

n�1

!

p

0

and we're done. Suppose therefore that w =

tw

0

. Now, p

u

! q for some u 2 (h + t)

�

(h + v)

�

. If u contains no v-move, as above we

then have p

(h+t)

�

(h+v)

�

!

q

0
(h+v+t)

n�1

!

p

0

for some q

0

. Thus assume u = u

0

vh

�

for some

u

0

2 (h + t)

�

(h + v)

�

. We have the situation illustrated in �gure 18. Consider the point q

00

q

q

u

u

w
w

p

q

p

h

t

h

v

Figure 18

such that p

u

0

v

!

q

00

. Clearly minff; 0g � y

q

00

and 0 � z

q

. If � � 0, then minff; 0g � y

q

since

an h-move increases y. Thus q 2 [�

yz

(�; �

0

)]. If 
 < 0, then 0 � z

q

00

since an h-move decreases

z. Thus q

0

2 [�

yz

(�; �

0

)].

We have q

t(h+v+t)

�

!

p

0

and q

0
h

�

t(h+v+t)

�

!

p

0

. This concludes the proof. �

Corollary:

Consider a matrix of the form

� =

0

@

e � �

� � �

� � g

1

A

where no assumptions are made on e, g, � or �. Let � = minf0; eg and �

0

= minf0; gg. Suppose

p

(h+v+t)

�

!

p

0

for some p and p

0

.

1. If � � 0 _ � < 0, then

9q 2 �

xz

(�; �

0

) : p

(v+t)

�

(h+v)

�

!

q

v

�

t(h+v+t)

�

!

p

0

_

p

(v+t)

�

(h+v)

�

!

p

0

where v

�

t(h+ v + t)

�

can be replaced by t(h+ v + t)

�

in the case where � � 0.
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2. If � < 0 _ � � 0, then

9q 2 �

xz

(�; �

0

) : p

(h+v)

�

(v+t)

�

!

q

v

�

h(h+v+t)

�

!

p

0

_

p

(h+v)

�

(v+t)

�

!

p

0

where v

�

h(h+ v + t)

�

can be replaced by h(h+ v + t)

�

in the case where � � 0.

�

Corollary:

Consider a matrix of the form

� =

0

@

e � �

� f �

� � �

1

A

where no assumptions are made on e, f , � or �. Let � = minf0; eg and �

0

= minf0; fg. Suppose

p

(h+v+t)

�

!

p

0

for some p and p

0

.

1. If � � 0 _ � < 0, then

9q 2 �

xy

(�; �

0

) : p

(h+t)

�

(v+t)

�

!

q

t

�

h(h+v+t)

�

!

p

0

_

p

(h+t)

�

(v+t)

�

!

p

0

where t

�

h(h+ v + t)

�

can be replaced by h(h+ v + t)

�

in the case where � � 0.

2. If � < 0 _ � � 0, then

9q 2 �

xy

(�; �

0

) : p

(v+t)

�

(h+t)

�

!

q

t

�

v(h+v+t)

�

!

p

0

_

p

(v+t)

�

(h+t)

�

!

p

0

where t

�

v(h + v + t)

�

can be replaced by v(h + v + t)

�

in the case where � � 0.

�

Proof:

Follows from lemma 21 by permutation of h, v and t. �

Lemma 21 and its corollaries says that after at most two changes of planes, either xy, xz

or yz cannot be very negative.

The next lemma is a slight generalization of proposition 11.

Lemma 22:

Consider a matrix of the form

� =

0

@

� � �

� f �

� � g

1

A

where �; � � 0 and no assumptions are made on f or g. Let � = minf0; fg and �

0

= minf0; gg.

Then

p 2 [�

yz

(�; �

0

)] ^ p

(v+t)

�

!

p

0

) p

0

2 [�

yz

(�; �

0

)]
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must hold. �

Corollary:

Consider a matrix of the form

� =

0

@

e � 


� � �

� � g

1

A

where 
; � � 0 and no assumptions are made on e or g. Let � = minf0; eg and �

0

= minf0; gg.

Then

p 2 [�

xz

(�; �

0

)] ^ p

(h+t)

�

!

p

0

) p

0

2 [�

xz

(�; �

0

)]

must hold. �

Corollary:

Consider a matrix of the form

� =

0

@

e � �

� f �

� � �

1

A

where �; � � 0 and no assumptions are made on e or f . Let � = minf0; eg and �

0

= minf0; fg.

Then

p 2 [�

xy

(�; �

0

)] ^ p

(h+v)

�

!

p

0

) p

0

2 [�

xy

(�; �

0

)]

must hold. �

Proof:

Follows from lemma 22 by permutation of h, v and t. �

Lemma 22 and its corollaries says that (under the stated conditions) �

xy

(�; �

0

) is an invari-

ant for all paths in the hv-plane (and the corresponding statements for the ht- and vt-planes).

Lemma 23:

Consider a matrix of the form

� =

0

@

� � 


� f �

� � g

1

A

where �; � � 0 and no assumptions are made on f , g, � or 
. Let � = minf0; fg, �

0

= minf0; gg.

Assume p

(h+v+t)

�

!

p

0

for some points p and p

0

where p 2 [�

yz

(�; �

0

)]. We have:

1. If � � 0 ^ 
 � 0, then

9q 2 �

yz

(�; �

0

) : p

h+v+t

! q

(h+v+t)

�

!

p

0

_

p = p

0

2. If � � 0 ^ 
 < 0, then

9q 2 �

yz

(�; �

0

) :

0

@

p

v+t

! q

(h+v+t)

�

!

p

0

_

p

h(h+v)

�

!

q

t(h+v+t)

�

!

p

0

1

A

_

p

(h+v)

�

!

p

0
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3. If � < 0 ^ 
 � 0, then

9q 2 �

yz

(�; �

0

) :

0

@

p

v+t

! q

(h+v+t)

�

!

p

0

_

p

h(h+t)

�

!

q

v(h+v+t)

�

!

p

0

1

A

_

p

(h+t)

�

!

p

0

4. If � < 0 ^ 
 < 0, then

9q 2 �

yz

(�; �

0

) :

0

B

B

B

B

B

@

p

v+t

! q

(h+v+t)

�

!

p

0

_

p

h(h+v)

�

v

!

q

h

�

t(h+v+t)

�

!

p

0

_

p

h(h+t)

�

t

!

q

h

�

v(h+v+t)

�

!

p

0

1

C

C

C

C

C

A

_

p

(h+v)

�

+(h+t)

�

!

p

0

�

Proof:

Follows by an easy adaptation of the proof of lemma 21 and using lemma 22 by which �

yz

(�; �

0

)

is invariant under (v + t)

�

-paths. �

The motivation for this lemma is that we will construct an algorithm that searches for cer-

tain points in �

yz

(�; �

0

) starting from a point in �

yz

(�; �

0

). The lemma above allows us to

restrict the form of the paths that needs be considered. Furthermore, we will use the fact that

very restricted paths are su�cient to derive bounds on the search to guarantee termination.

For completeness, we state the obvious corollaries to lemma 23.

Corollary:

Consider a matrix of the form

� =

0

@

e � 


� � �

� � g

1

A

where �; 
 � 0 and no assumptions are made on e, g, � or �. Let � = minf0; eg, �

0

= minf0; gg.

Assume p

(h+v+t)

�

!

p

0

for some points p and p

0

where p 2 [�

xz

(�; �

0

)]. We have:

1. If � � 0 ^ � � 0, then

9q 2 �

xz

(�; �

0

) : p

h+v+t

! q

(h+v+t)

�

!

p

0

_

p = p

0

2. If � � 0 ^ � < 0, then

9q 2 �

xz

(�; �

0

) :

0

@

p

h+t

! q

(h+v+t)

�

!

p

0

_

p

v(h+v)

�

!

q

t(h+v+t)

�

!

p

0

1

A

_

p

(h+v)

�

!

p

0
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3. If � < 0 ^ � � 0, then

9q 2 �

xz

(�; �

0

) :

0

@

p

h+t

! q

(h+v+t)

�

!

p

0

_

p

v(v+t)

�

!

q

h(h+v+t)

�

!

p

0

1

A

_

p

(v+t)

�

!

p

0

4. If � < 0 ^ � < 0, then

9q 2 �

xz

(�; �

0

) :

0

B

B

B

B

B

@

p

h+t

! q

(h+v+t)

�

!

p

0

_

p

v(h+v)

�

h

!

q

v

�

t(h+v+t)

�

!

p

0

_

p

v(v+t)

�

t

!

q

v

�

h(h+v+t)

�

!

p

0

1

C

C

C

C

C

A

_

p

(h+v)

�

+(v+t)

�

!

p

0

�

Corollary:

Consider a matrix of the form

� =

0

@

e � �

� f �

� � �

1

A

where �; � � 0 and no assumptions are made on e, f , � or �. Let � = minf0; eg, �

0

= minf0; fg.

Assume p

(h+v+t)

�

!

p

0

for some points p and p

0

where p 2 [�

xy

(�; �

0

)]. We have:

1. If � � 0 ^ � � 0, then

9q 2 �

xz

(�; �

0

) : p

h+v+t

! q

(h+v+t)

�

!

p

0

_

p = p

0

2. If � � 0 ^ � < 0, then

9q 2 �

xz

(�; �

0

) :

0

@

p

h+v

! q

(h+v+t)

�

!

p

0

_

p

t(h+t)

�

!

q

v(h+v+t)

�

!

p

0

1

A

_

p

(h+t)

�

!

p

0

3. If � < 0 ^ � � 0, then

9q 2 �

xy

(�; �

0

) :

0

@

p

h+v

! q

(h+v+t)

�

!

p

0

_

p

t(v+t)

�

!

q

h(h+v+t)

�

!

p

0

1

A

_

p

(v+t)

�

!

p

0
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4. If � < 0 ^ � < 0, then

9q 2 �

xy

(�; �

0

) :

0

B

B

B

B

B

@

p

h+v

! q

(h+v+t)

�

!

p

0

_

p

t(h+t)

�

h

!

q

t

�

v(h+v+t)

�

!

p

0

_

p

t(v+t)

�

v

!

q

t

�

h(h+v+t)

�

!

p

0

1

C

C

C

C

C

A

_

p

(h+t)

�

+(v+t)

�

!

p

0

�

Proof:

Follows from lemma 23 by permutation of h, v and t. �

Lemma 24:

Consider a matrix of the form

� =

0

@

e � �

� f �

� � g

1

A

where �; � � 0 and no assumptions are made on e, f or g. Let � = minf0; eg, �

0

= minf0; fg

and �

00

= minf0; gg. Then

p 2 [�

yz

(�

0

; �

00

)] ^ p

(h+v+t)

�

!

p

0

)

0

@

9q 2 �

xyz

(�; �

0

; �

00

) : p

(v+t)

�

!

q

h(h+v+t)

�

!

p

0

_

p

(v+t)

�

!

p

0

1

A

must hold. �

Corollary:

Consider a matrix of the form

� =

0

@

e � 


� f �

� � g

1

A

where 
; � � 0 and no assumptions are made on e, f or g. Let � = minf0; eg, �

0

= minf0; fg

and �

00

= minf0; gg. Then

p 2 [�

xz

(�; �

00

)] ^ p

(h+v+t)

�

!

p

0

)

0

@

9q 2 �

xyz

(�; �

0

; �

00

) : p

(h+t)

�

!

q

v(h+v+t)

�

!

p

0

_

p

(h+t)

�

!

p

0

1

A

must hold. �

Corollary:

Consider a matrix of the form

� =

0

@

e � �

� f �

� � g

1

A
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where �; � � 0 and no assumptions are made on e, f or g. Let � = minf0; eg, �

0

= minf0; fg

and �

00

= minf0; gg. Then

p 2 [�

xy

(�; �

0

)] ^ p

(h+v+t)

�

!

p

0

)

0

@

9q 2 �

xyz

(�; �

0

; �

00

) : p

(h+v)

�

!

q

t(h+v+t)

�

!

p

0

_

p

(h+v)

�

!

p

0

1

A

must hold. �

Proof:

Follows from lemma 24 by permutation of h, v and t. �

Lemma 24 and its corollaries says (under the stated conditions) that starting from a point

in [�

xy

(�; �

0

)], when a t-move is applied, one must be in [�

xyz

(�; �

0

; �

00

)] (and the corresponding

statements for [�

xz

(�; �

00

)] and

[�

yz

(�

0

; �

00

)]).

Lemma 24 and its �rst corollary has the following consequence: Consider a matrix of the

form

� =

0

@

e � 


� f �

� � g

1

A

where �; 
; �; � � 0 and no assumptions are made on e, f or g. Let � = minf0; eg, �

0

=

minf0; fg and �

00

= minf0; gg. If p 2 [�

yz

(�

0

; �

00

)] and

p

(h+v+t)

�

!

p

0

for some p and p

0

, then there exists a sequence of points p

0

, p

1

, : : :, p

n

such

that p

i

2 �

xyz

(�; �

0

; �

00

) and

p

(v+t)

�

!

p

0

h(h+t)

�

!

p

1

v(v+t)

�

!

p

2

h(h+t)

�

!

p

3

: : : p

n

(v+t)

�

!

p

0

This is illustrated in �gure 19. Consider more speci�cally the matrix

p

p
0 p

1

p
p2

3

p
n

p

Figure 19
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� =

0

@

�e �� 


�� �f �

� � g

1

A

where e; �; �; �; f; �; 
; � � 0 and no assumptions are made on g. If p

(h+v+t)

�

!

p

0

and p and

p

0

are not in the same hv-plane, then there exists a sequence of points in �

xyz

(�; �

0

; �

00

) such

that

p

(v+t)

�

!

p

0

h

�

t(h+t)

�

!

p

1

v

�

t(v+t)

�

!

p

2

h

�

t(h+t)

�

!

p

3

: : : p

n

(v+t)

�

!

p

0

or

p

(h+t)

�

!

p

0

v

�

t(v+t)

�

!

p

1

h

�

t(h+t)

�

!

p

2

v

�

t(v+t)

�

!

p

3

: : : p

n

(h+t)

�

!

p

0

That is, the sequence of planes does not degenerate to p

(h+v)

�

!

p

0

. This can be seen since

p

(h+v)

�

!

p

0

, p

h

�

v

�

+v

�

h

�

!
p

0

, so any sequence of ht- and vt-moves that do not contain

any t-move, collapses.

We will be interested in dividing the set [�

yz

] into subsets in some way. Given a family of

sets, say fM

i

g such that [�

yz

] =

S

M

i

, it is obvious that the lemmas and their corollaries

above hold when [�

yz

] is replaced by

S

M

i

(the same is true for [�

xy

], [�

xz

] et.c.). In particular

we introduce the two sets, [


yz

] and [�

yz

], such that [�

yz

] = [


yz

][ [�

yz

] and which are de�ned

as follows:

We de�ne

�

xy

(d; d

0

) = fhx; yi : hx; yi 2 �

xy

(�; �

0

) ^ x < d ^ y < d

0

g

�

xz

(d; d

0

) = fhx; zi : hx; zi 2 �

xz

(�; �

0

) ^ x < d ^ z < d

0

g

�

yz

(d; d

0

) = fhy; zi : hy; zi 2 �

yz

(�; �

0

) ^ y < d ^ z < d

0

g

It is clear that the sets �

xy

(d; d

0

), �

xz

(d; d

0

) and �

yz

(d; d

0

) are �nite. We will refer to pairs

in a set �

yz

(d; d

0

) as pigeon-holes. By [�

yz

(d; d

0

)] we denote the set of points p such that

hy

p

; z

p

i 2 �

yz

(d; d

0

) (and analogously for the other sets).

The motivation for introducing these sets is that we will construct a sequence of points

p

0

(h+v+t)

�

!

p

1

� � �p

r�1

(h+v+t)

�

!

p

r

such that p

i

2 [�

yz

(d; d

0

)] for all 0 � i � r. By the

pigeon-hole principle, for su�ciently large r, we must have hy

p

i

; z

p

i

i = hy

p

j

; z

p

j

i for some

0 � i < j � r. This yields a solution to a set of equations which can be exploited for giving an

expression for the least �xpoint.

We also introduce sets 


xy

(d; d

0

), 


xz

(d; d

0

) and 


yz

(d; d

0

) de�ned by




xy

(d; d

0

) = fhx; yi : hx; yi 2 �

xy

(�; �

0

) ^ (x � d _ y � d

0

)g




xz

(d; d

0

) = fhx; zi : hx; zi 2 �

xz

(�; �

0

) ^ (x � d ^ z � d

0

)g




yz

(d; d

0

) = fhy; zi : hy; zi 2 �

yz

(�; �

0

) ^ (y � d ^ z � d

0

)g

For a point p 2 [


yz

(d; d

0

)], some simple reasoning often applies to characterize the points reach-

able from p. The required property or transformation usually fails for points in [�

yz

(d; d

0

)].

But since �

yz

(d; d

0

) is �nite and the elements are known, special arguments may be applied

and repeated a bounded number of times before some pattern must arize.

It is obvious that the de�nitions of the 
- and �-sets implies that [�

yz

(�; �

0

)] = [


yz

(d; d

0

)] [

[�

yz

(d; d

0

)] (and the analogous for the other sets).

Strictly, the sets �

yz

(d; d

0

) and 


yz

(d; d

0

) should be parameterized by � and �

0

. We will supress

the parameters � , �

0

, d and d

0

when they are understood from the context.
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6.1 Derivation of Bounds

In this section we will answer the question (for some matrices) of how long a path must be to

be guaranteed to be able to reach some point in [�

yz

], starting from [�

yz

].

Let us restrict our attention to matrices of the form

� =

0

@

� � 


� �f �

� � �g

1

A

where f; g; �; � � 0 and no assumptions are made on � or 
. We will throughout this section

consider [�

yz

(�f;�g)], so we dropp the parameters and write [�

yz

]. Thus if a point p is in

[�

yz

], then �f � y

p

and �g � z

p

.

We state a re�nement of lemma 23 and its corollaries.

Lemma 25:

Consider the matrix

� =

0

@

� � 


� �f �

� � �g

1

A

where f; g; �; � � 0 and no assumptions are made on � or 
. Assume

p

(h+v+t)

�

!

p

0

for some points p and p

0

where p 2 [�

yz

(d; d

0

)] (remember that [�

yz

] = [�

yz

] [

[


yz

] and [�

yz

] \ [


yz

] = ;).

1. If � � 0 ^ 
 � 0, then

9q 2 �

yz

: p

h+v+t

! q

(h+v+t)

�

!

p

0

_

p = p

0

2. If � � 0 ^ 
 < 0, then

9q 2 �

yz

: p

v+t

! q

(h+v+t)

�

!

p

0

_

9q 2 �

yz

: q � p+ s

0

^ p

h(h+v)

�

!

q

t(h+v+t)

�

!

p

0

_

9q 2 


yz

: p

h(h+v)

�

!

q

t(h+v+t)

�

!

p

0

_

p

(h+v)

�

!

p

0

where s

0

= hh

0

; v

0

; 0i

T

and h

0

= d

(��f�fg)�(�d+fd

0

)

��+f


e + 1 if

�

�

�

�

� 


�f �

�

�

�

�

< 0

and h

0

= d

(�d�fd

0

)�(��f�fg)

��+f


e + 1 if

�

�

�

�

� 


�f �

�

�

�

�

> 0

and where v

0

= d

d+�h

0

f

e + 1.
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3. If � < 0 ^ 
 � 0, then

9q 2 �

yz

: p

v+t

! q

(h+v+t)

�

!

p

0

_

9q 2 �

yz

: q � p+ s

0

^ p

h(h+t)

�

!

q

v(h+v+t)

�

!

p

0

_

9q 2 


yz

: p

h(h+t)

�

!

q

v(h+v+t)

�

!

p

0

_

p

(h+t)

�

!

p

0

where s

0

= hh

0

; 0; t

0

i

T

and h

0

= d

(�gf��g)�(gd+�d

0

)

�(��g��
)

e + 1 if

�

�

�

�

� 


� �g

�

�

�

�

> 0

and h

0

= d

(gd+�d

0

)�(�gf��g)

�(��g��
)

e+ 1 if

�

�

�

�

� 


� �g

�

�

�

�

< 0

and where t

0

= d

d

0

+�h

0

g

e + 1.

4. If � < 0 ^ 
 < 0, then

9q 2 �

yz

: p

v+t

! q

(h+v+t)

�

!

p

0

_

9q 2 �

yz

: q � p+ s

0

^ p

h(h+v)

�

v

!

q

h

�

t(h+v+t)

�

!

p

0

_

9q 2 


yz

: p

h(h+v)

�

v

!

q

h

�

t(h+v+t)

�

!

p

0

_

9q 2 �

yz

: q � p+ s

0

0

^ p

h(h+t)

�

t

!

q

h

�

v(h+v+t)

�

!

p

0

_

9q 2 


yz

: p

h(h+t)

�

t

!

q

h

�

v(h+v+t)

�

!

p

0

_

p

(h+v)

�

+(h+t)

�

!

p

0

where s

0

= hh

0

; v

0

; 0i

T

, h

0

= d

�f�d

�

e + 1 and v

0

= d

d

f

e + 1, and where s

0

0

= hh

0

0

; 0; t

0

0

i

T

,

h

0

0

= d

�g�d

0




e+ 1 and t

0

0

= d

d

0

g

e + 1.

�

Proof:

If �; 
 � 0, by lemma 23, [�

yz

] is invariant for all paths, so in this case the search for a point in

[�

yz

] will succeed after one step in any direction. Actually 


yz

is also an invariant, so it follows

that starting from [�

yz

], going one step in any direction will either yield a new point in [�

yz

]

or no such point will ever be reached.

Assume � � 0 ^ 
 < 0 and consider a point p 2 [�

yz

(d; d

0

)]. Then �f � y

p

< d and

�g � z

p

< d

0

. By lemma 23, we need only consider paths of the form h(h + v)

�

since a v- or

a t-move applied to p leads directly to a point in [�

yz

]. Consider �y

p

+ fz

p

. Since p 2 [�

yz

],
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we have ��f � fg � �y

p

+ fz

p

< �d+ fd

0

. Suppose p

(h+v)

�

!

p

0

for some point p

0

. Then for

some h and v,

y

p

0

= y

p

+�h �fv

z

p

0

= z

p

+
h +�v

and thus

�y

p

0

+ fz

p

0

= �y

p

+ fz

p

+(�� + f
)h (1)

From equation 1 we see that the sum �y

p

0

+ fz

p

0

only depends on the number of h-moves in an

(h+ v)

�

-path (that is, the sum is invariant under v

�

-paths). Furthermore, since � � 0, �f � y

is an invariant under (h + v)

�

-paths. So if �y

p

0

+ fz

p

0

< ��f � fg, then z

p

0

< �g and thus

p

0

62 [�

yz

] and no sequence of v-moves will lead to a point in [�

yz

] (and consequently in [�

yz

]).

And if �y

p

0

+ fz

p

0

� �fd + fd

0

, then p

0

cannot be in �

yz

and no sequence of v-moves will lead

to a point in [�

yz

].

There are two cases to consider: (�� + f
) < 0 and (�� + f
) > 0.

Assume (�� + f
) < 0. Since �y

p

+ fz

p

< �d+ fd

0

, after at most h

0

= d

(��f�fg)�(�d+fd

0

)

��+f


e+ 1

(not necessarily consecutive) h-moves [�

yz

] and thus [�

yz

] cannot be reached by any (h+ v)

�

-

path. Since y

p

< d and a v-move decreases y by �f , h

0

horizontal moves will make at most

v

0

= d

d+�h

0

f

e + 1 v-moves possible. Thus, if p

w

! p

0

for some w 2 (h + v)

�

, and p

0

2 [�

yz

],

then w � hh

0

; v

0

; 0i

T

.

Assume (��+f
) > 0. Since �y

p

+fz

p

� ��f �fg, after at most h

0

= d

(�d�fd

0

)�(��f�fg)

��+f


e+1

(not necessarily consequtive) h-moves, �y

p

+ fz

p

� �d+ fd

0

must hold and thus, any (h + v)

�

that leads to [�

yz

], must lead to [


yz

]. Thus, if p

w

! p

0

for some w 2 (h+ v)

�

, and p

0

2 [�

yz

],

then w � hh

0

; v

0

; 0i

T

, where v

0

is determined as above.

For the case when � < 0 ^ 
 � 0 one consider paths of the form (h + t)

�

and reasons

with the sum gy

p

+ �z

p

. If p

(h+t)

�

!

p

0

for some points p 2 [�

yz

(d; d

0

)] and p

0

, then for some

h and t,

y

p

0

= y

p

+�h +�t

z

p

0

= z

p

+
h �gt

and thus

gy

p

0

+ �z

p

0

= gy

p

+ �z

p

�(��g � �
)h (2)

By a similar reasoning as above, if p

w

! p

0

for some w 2 (h + t)

�

, and p

0

2 [�

yz

], then w �

hh

0

; v

0

; 0i

T

where h

0

= d

(�gf��g)�(gd+�d

0

)

�(��g��
)

e+1 if (��g��
) > 0 and h

0

= d

(gd+�d

0

)�(�gf��g)

�(��g��
)

e+

1 if (��g � �
) < 0, and where t

0

= d

d

0

+�h

0

g

e + 1.

Consider now the case when � < 0 ^ 
 < 0. By lemma 23, (h + v)

�

- or (h + t)

�

-paths

must be considered. But since now all (h+v)

�

-paths decrease y and all (h+ t)

�

-paths decrease

z, if p 2 [�

yz

] (which means that y

p

< d and z

p

< d

0

), then after at most h

0

= d

�f�d

�

e + 1

horizontal moves (not necessarily consequtive), y

p

0

< �f so [�

yz

] will not reachable by any

(h + v)

�

-path, and similarly after at most h

0

0

= d

�g�d

0




e + 1 horizontal moves (not necessarily

consequtive), z

p

0

< �g [�

yz

] will not reachable by any (h+ t)

�

-path. is guaranteed to hold (so

p

0

62 [�

yz

]). It is also clear that no more than v

0

= d

d

f

e + 1 vertical moves can be made in a

(h + v)

�

-path, and no more than t

0

0

= d

d

0

g

e + 1 transversal moves can be made in a (h + t)

�

-

path. Thus, if p

w

! p

0

for some points p; p

0

2 [�

yz

], then w � hh

0

; v

0

; 0i

�

if w 2 (h + v)

�

and

w � hh

0

0

; 0; t

0

0

i

�

if w 2 (h+ t)

�

.
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This concludes the proof. �

Note that lemma 25 does not cover the situation when the relevant subdeterminant for the

di�erent cases is zero. At present, we have no means of treating such programs.

We also stress an important point. The derivation of the bounds does not depend on the

fact that all pairs hy; zi that satisfy �f � y < d ^ �g � z < d

0

actually belongs to �

yz

. What

is important is that all pairs in �

yz

satisfy �f � y < d ^ �g � z < d

0

for some d and d

0

. But

this is true for any �nite subset of �

yz

. This is important, since choosing the elements in �

yz

cleverly, the number of elements may be dramatically reduced.

For completeness we state the corollaries to lemma 25 obtained by permutation of h, v and t.

Corollary:

Consider the matrix

� =

0

@

�e � 


� � �

� � �g

1

A

where e; g; �; 
 � 0 and no assumptions are made on � or �. Assume

p

(h+v+t)

�

!

p

0

for some points p and p

0

where p 2 [�

xz

(d; d

0

)].

1. If � � 0 ^ � � 0, then

9q 2 �

xz

: p

h+v+t

! q

(h+v+t)

�

!

p

0

_

p = p

0

2. If � � 0 ^ � < 0, then

9q 2 �

xz

: p

h+t

! q

(h+v+t)

�

!

p

0

_

9q 2 �

xz

: q � p+ s

0

^ p

v(h+v)

�

!

q

t(h+v+t)

�

!

p

0

_

9q 2 


xz

: p

v(h+v)

�

!

q

t(h+v+t)

�

!

p

0

_

p

(h+v)

�

!

p

0

where s

0

= hh

0

; v

0

; 0i

T

and v

0

= d

(�
e�eg)�(
d+ed

0

)

�
+e�

e+ 1 if

�

�

�

�

�e 


� �

�

�

�

�

> 0

and v

0

= d

(
d�ed

0

)�(�
e�fg)

�
+e�

e + 1 if

�

�

�

�

�e 


� �

�

�

�

�

< 0

and where h

0

= d

d+�v

0

e

e+ 1.
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3. If � < 0 ^ � � 0, then

9q 2 �

xz

: p

h+t

! q

(h+v+t)

�

!

p

0

_

9q 2 �

xz

: q � p+ s

0

^ p

v(v+t)

�

!

q

h(h+v+t)

�

!

p

0

_

9q 2 


xz

: p

v(v+t)

�

!

q

h(h+v+t)

�

!

p

0

_

p

(v+t)

�

!

p

0

where s

0

= h0; v

0

; t

0

i

T

and v

0

= d

(�ge��g)�(gd+�d

0

)

�(��g���)

e + 1 if

�

�

�

�

� �

� �g

�

�

�

�

> 0

and v

0

= d

(gd+�d

0

)�(�ge��g)

�(��g���)

e+ 1 if

�

�

�

�

� �

� �g

�

�

�

�

< 0

and where t

0

= d

d

0

+�v

0

g

e + 1.

4. If � < 0 ^ � < 0, then

9q 2 �

xz

: p

h+t

! q

(h+v+t)

�

!

p

0

_

9q 2 �

xz

: q � p+ s

0

^ p

v(h+v)

�

h

!

q

v

�

t(h+v+t)

�

!

p

0

_

9q 2 


xz

: p

v(h+v)

�

h

!

q

v

�

t(h+v+t)

�

!

p

0

_

9q 2 �

xz

: q � p+ s

0

0

^ p

v(v+t)

�

t

!

q

v

�

h(h+v+t)

�

!

p

0

_

9q 2 


xz

: p

v(v+t)

�

t

!

q

v

�

h(h+v+t)

�

!

p

0

_

p

(h+v)

�

+(v+t)

�

!

p

0

where s

0

= hh

0

; v

0

; 0i

T

, v

0

= d

�e�d

�

e + 1 and h

0

= d

d

e

e + 1, and where s

0

0

= h0; v

0

0

; t

0

0

i

T

,

v

0

0

= d

�g�d

0

�

e + 1 and t

0

0

= d

d

0

g

e + 1.

�

Corollary:

Consider the matrix

� =

0

@

�e � �

� �f �

� � �

1

A

where e; f; �; � � 0 and no assumptions are made on � or �. Assume

p

(h+v+t)

�

!

p

0

for some points p and p

0

where p 2 [�

xy

(d; d

0

)].

1. If � � 0 ^ � � 0, then

9q 2 �

xy

: p

h+v+t

! q

(h+v+t)

�

!

p

0

_

p = p

0
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2. If � � 0 ^ � < 0, then

9q 2 �

xy

: p

h+v

! q

(h+v+t)

�

!

p

0

_

9q 2 �

xy

: q � p+ s

0

^ p

t(h+t)

�

!

q

v(h+v+t)

�

!

p

0

_

9q 2 


xy

: p

t(h+t)

�

!

q

v(h+v+t)

�

!

p

0

_

p

(h+t)

�

!

p

0

where s

0

= hh

0

; 0; t

0

i

T

and t

0

= d

(��e�eg)�(�d+ed

0

)

��+e�

e + 1 if

�

�

�

�

�e �

� �

�

�

�

�

< 0

and t

0

= d

(�d�ed

0

)�(��e�eg)

��+e�

e + 1 if

�

�

�

�

�e �

� �

�

�

�

�

> 0

and where h

0

= d

d+�t

0

e

e + 1.

3. If � < 0 ^ � � 0, then

9q 2 �

xy

: p

h+v

! q

(h+v+t)

�

!

p

0

_

9q 2 �

xy

: q � p+ s

0

^ p

t(v+t)

�

!

q

h(h+v+t)

�

!

p

0

_

9q 2 


xy

: p

t(v+t)

�

!

q

h(h+v+t)

�

!

p

0

_

p

(v+t)

�

!

p

0

where s

0

= h0; v

0

; t

0

i

T

and t

0

= d

(�fe��f)�(fd+�d

0

)

�(��f���)

e + 1 if

�

�

�

�

� �f

� �

�

�

�

�

< 0

and t

0

= d

(fd+�d

0

)�(�fe��f)

�(��f���)

e + 1 if

�

�

�

�

� �f

� �

�

�

�

�

> 0

and where v

0

= d

d

0

+�t

0

f

e + 1.
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4. If � < 0 ^ � < 0, then

9q 2 �

xy

: p

h+v

! q

(h+v+t)

�

!

p

0

_

9q 2 �

xy

: q � p+ s

0

^ p

t(h+t)

�

h

!

q

t

�

v(h+v+t)

�

!

p

0

_

9q 2 


xy

: p

t(h+t)

�

h

!

q

t

�

v(h+v+t)

�

!

p

0

_

9q 2 �

xy

: q � p+ s

0

0

^ p

t(v+t)

�

v

!

q

t

�

h(h+v+t)

�

!

p

0

_

9q 2 


xy

: p

t(v+t)

�

v

!

q

t

�

h(h+v+t)

�

!

p

0

_

p

(h+t)

�

+(v+t)

�

!

p

0

where s

0

= hh

0

; 0; t

0

i

T

, t

0

= d

�e�d

�

e + 1 and h

0

= d

d

e

e + 1, and where s

0

0

= h0; v

0

0

; t

0

0

i

T

,

t

0

0

= d

�f�d

0

�

e + 1 and v

0

0

= d

d

0

f

e + 1.

�

6.2 Pigeon-Hole Graph

In this section we show how to construct a �nite graph describing the reachability relation

between points in [�

yz

]. Each node in the graph represents a (possibly in�nite) set of points

p, and the links are labeled with relative positions in hvt-coordinates of points of the sets rep-

resented by the nodes in the graph.

We de�ne the graph and the algorithm for [�

yz

]. It is obvious how it is done for [�

xz

] and [�

xy

].

De�nition 1:

A p-graph G is a pair h�

yz

;	i where �

yz

is the set of vertices and 	 is a set of labeled

edges (triples). The interpretation of the graph is the following (remember that p 2 [�

yz

] i�

hy

p

; z

p

i 2 �

yz

): If hhy; zi; hy

0

; z

0

i; hh; v; ti

T

i 2 	 then

hy

p

; z

p

i = hy; zi ^ p

0

= p+

0

@

h

v

t

1

A

) hy

p

0

; z

p

0

i = hy

0

; z

0

i

�

It is clear from the de�nition that if there is a cycle in the graph, then the sum of the la-

bels along the cycle is a solution to the equations

y : �h �fv +�t = 0

z : 
h +�v �gt = 0

We will later in this section discuss the relation between the graph and solutions to the equa-

tions above.

We will now present an algorithm for computing the graph above. The idea is simply that

for each pair hy; zi 2 �

yz

, we search exhaustively for pairs hy

0

; z

0

i 2 �

yz

, reachable by paths of

the restricted form h+ v + t, v + t + (h + v)

�

or v + t + (h + t)

�

depending on the signs of �

and 
, and such that the paths are bounded by s

0

(and s

0

0

when � < 0 ^ 
 < 0). See lemma 25.
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We present the algorithm for the case when � � 0 ^ 
 < 0. It is obvious how it should

be changed for the other cases.

Let 	(y; z) = fhhy; zi;  ; �h: hhy; zi;  ; �h2 	g. Then

	 =

[

hy;zi2�

	(y; z)

The set 	(y; z) are all links in the graph that leaves the node hy; zi and it is computed as

follows:

	(y; z) := ;; % No pigeon-hole has yet

% been reached

If y � 0 and hy � f; z + �i 2 �

yz

then

	(y; z) := 	(y; z) [ fhhy; zi; hy � f; z + �i; h0; 1; 0i

T

ig

% When moving one v-step,

% �f is added to y and

% � is added to z.

If z � 0 and hy + �; z � gi 2 �

yz

then

	(y; z) := 	(y; z) [ fhhy; zi; hy + �; z � gi; h0; 0; 1i

T

ig

% When moving one t-step,

% � is added to y and

% �g is added to z.

If hy + �; z + 
i 2 �

yz

then

	(y; z) := 	(y; z) [ fhhy; zi; hy + �; z + 
i; h1; 0; 0i

T

ig

% When moving one h-step,

% � is added to y and

% 
 is added to z.

elseif hy + �; z + 
i 62 


yz

then % Do not investigate

% points in [


yz

].

E := fhhy + �; z + 
i; h1; 0; 0i

T

i; % The set of nodes to be

% investigated.

while E 6= ; do

choose any hhy

0

; z

0

i; hh

0

; v

0

; t

0

i

T

i 2 E ;

E := E � fhhy

0

; z

0

i; hh

0

; v

0

; t

0

i

T

ig;

if hh

0

; v

0

; t

0

i

T

� s

0

then % The search bound has not

% been reached.

If hy

0

+ �; z

0

+ 
i 2 �

yz

then

	(y; z) := 	(y; z) [ fhhy; zi; hy

0

+ �; z

0

+ 
i; hh

0

+ 1; v

0

; t

0

i

T

ig

% When moving one h-step,

% � is added to y and

% 
 is added to z.

elseif hy

0

+ �; z

0

+ 
i 62 


yz

then % Do not investigate

% points in [


yz

].

E := E [ fhhy

0

+ �; z

0

+ 
i; hh

0

+ 1; v

0

; t

0

i

T

i;

% New point to investigate.

If y � 0 and hy

0

� f; z

0

+ �i 2 �

yz

then

	(y; z) := 	(y; z) [ fhhy; zi; hy

0

� f; z

0

+ �i; hh

0

; v

0

+ 1; t

0

i

T

ig

% When moving one v-step,

% �f is added to y and

% � is added to z.
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elseif hy

0

� f; z

0

+ �i 62 


yz

then % Do not investigate

% points in [


yz

].

E := E [ fhhy

0

� f; z

0

+ �i; hh

0

; v

0

+ 1; t

0

i

T

i;

% New point to investigate.

od;

By lemma 25, we must �rst search one step verticaly and transversally. Then the search con-

tinue with h(h + v)

�

-paths until the bound has been reached.

Note that points in �

yz

or 


yz

are not investigated. Note also that there is no test to wether

the paths investigated are actually admissible. The tests for y � 0 and z � 0 are used merely

to reduce the search space since, by de�nition, all points in a set represented by a node in the

graph has the same associated y and z values, so if in the algorithm above y < 0, for example,

then a v-move can never be applied, so no points are lost. But the x-value may di�er for dif-

ferent points with the same y- and z-values. Therefore no test on the x-value in the algorithm.

The admissibility of a path will be taken care of in the construction that follows. However,

such a test could be incorporated in the algorithm above as an optimisation to avoid computing

things twice.

Example 1:

Consider the matrix

� =

0

@

�1 2 �3

�1 �5 7

13 4 �4

1

A

Let us choose �

yz

to be the following set of pairs:

�

yz

= fhy; zi;�5 � y < 0 ^ �4 � z < 0g

[

fh�4; 0i; h�5; 0i; h�5; 1i; h�5;2i; h�5;3ig

We see that if hy; zi 2 �

yz

, then �5 � y < 1 and �4 � z < 4 (with a good marginal) so d = 1

and d

0

= 4. There are 25 pigeon holes. The matrix above falls into case three of lemma 25, and

the upper right determinant is

�

�

�

�

� 


�f �

�

�

�

�

=

�

�

�

�

2 �3

�5 7

�

�

�

�

= �1 < 0

so the limit h

0

is given by

h

0

= d

�35� 20� 7� 20

�1

e + 1 = 83

v

0

= d

1 + 2 � 83

7

e + 1 = 25

Thus

s

0

= h83; 25; 0i

T

Figures 20 and 21 shows parts of the search space of the algorithm for some pigeon holes.

Numbers inside ellipses correspond to pairs in �

yz

and numbers inside rectangles correspond

to 
yz. Figure 22 shows a \compressed" reachability graph (It is the transitive closure of

the original graph where some points have been removed. We have done so in this example

for illustration to reduce the number of nodes). Note that there are three simple cycles. Note

also that the lengths of the simple cycles measured as the sum of the labels along the path, all

equals h8; 4; 1i

T

. This is because the equations

y = �h �fv +�t = 0

z = �
h +�v �gt = 0
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-1,-4 1,-7 3,-10 5,-13

-2,-3 0,-6

7,-16 9,-19 11,-22 13,-25 15,-28

2,-9 4,-12 6,-15 8,-18 10,-21

-5,1 -3,-2 -1,-5 1,-8

-4,-1
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-3,-3 -1,-6 1,-9
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-5,0

-1,-4

-3,-3

Figure 21

has a unique minimal solution when

�

�

�

�

� �


�f �

�

�

�

�

< 0

In case when

�

�

�

�

� �


�f �

�

�

�

�

> 0

the equations lack solutions, which means that the graph would have no cycles. The �xpoint

-4,0

-5,1-5,3

-5,2

-5,0

  0

  3

  1

  0

  5

  2
  0

  1

  1

  0

  2

  1

  0

  5

  2

  3

  2

  1

  4

  8

  1

10

  4

  0

  1

  1

  1

  0

  7

  3

Figure 22

computed with base value h�13;�5; 0i

T

is shown in �gure 23 �
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Figure 23

6.3 Linear arithmetic expressions for reachability between pigeon-

hole points

Let us make the following observation:

�

�

�

�

�f �

� �g

�

�

�

�

;

�

�

�

�

� 


�f �

�

�

�

�

and

�

�

�

�

� 


� �g

�

�

�

�

are all nonnull i� all solutions hh; v; ti to

y : �h �fv +�t = 0

z : 
h +�v �gt = 0

(3)

satis�es h 6= 0, v 6= 0 and t 6= 0.

From now on we assume

�

�

�

�

�f �

� �g

�

�

�

�

< 0

and that the determinants above are nonzero.

Lemma 26:

If

�

�

�

�

� 


�f �

�

�

�

�

6= 0 and

�

�

�

�

� 


� �g

�

�

�

�

6= 0

and the equations (3) have solutions, then

�

�

�

�

� 


�f �

�

�

�

�

< 0 and

�

�

�

�

� 


� �g

�

�

�

�

> 0

�
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Proof:

From (3) we get

(��+ f
)h = (fg � ��)t

(��+ f
)v = �(��g � �
)t

It is immediatelly seen that the signs of the determinants are necessary for h, v and t to have

the same signs. �

Corollary:

If � � 0 ^ 
 > 0 or � > 0 ^ 
 � 0 then (3) has no solutions. �

If (3) has solutions, it has in�nitely many. Since we assume that all subdeterminants are

nonzero, all solutions to (3) are comparable. That is, if � and �

0

are solutions, either � � �

0

or

�

0

� �.

A cycle in the graph yields a nontrivial solution to (3). By the pigeon-hole principle, a (simple)

cycle cannot be longer than j�

yz

j. Furthermore, the derivation above of the bounds h

0

on the

number of horizontal steps from a pigeon hole to the next, yields a bound j�

yz

jh

0

on the total

length of an hvt-path corresponding to the cycle. Thus there exists a unique maximal solution

corresponding to the maximum of the sums along all simple cycles. Note that several simple

cycles may have the same sum. Also note that (3) may have solutions even though there are

no cycles in the graph. This may happen when � < 0 and 
 < 0 for instance. Of course, when

(3) has no solutions, there cannot be any cycles.

Lemma 27:

Consider the matrix

� =

0

@

� � 


� �f �

� � �g

1

A

where f; g; �; � � 0 and no assumptions are made on � or 
. Let � be the sum of the labels

along a simple cycle in the graph with maximum sum of labels, and let � be the motif of �. If no

cycle exists let � = 0 and � the empty language. Consider a point p 2 [�

yz

]. If p

(h+v+t)

�

!

p

0

for some point p

0

2 [�

yz

], then one of the following holds:

p

(h+v+t)

�k

�

�

(h+v+t)

�k

!

p

0

where k = j�

yz

j � (js

0

j+ 1) and s

0

is given by lemma 25 under the proper assumptions on the

signs of submatrices. �

Proof:

From any q 2 [�

yz

], it is su�cient to walk a path of length at most js

0

j + 1 to reach another

point q

0

2 [�

yz

] since either a single h, v or t move su�ces, or a (h + v)

�

- or (h+ t)

�

-path of

length js

0

j su�ces (depending on the signs of the coe�cients by lemma 25).

Since there are no more then j�

yz

j elements in �

yz

, a path of length at most j�

yz

j � (js

0

j+ 1)

can be taken before entering a cycle. Since � is a multiple of every cycle, any number of appli-

cations of any cycle is a multiple of � plus some residue path. After any number of applications

of cycles, some extra pigeon-holes may be visited before p

0

is reached. The length of this tail

together with the residue, cannot exceed j�

yz

j � (js

0

j+1), otherwise a new cycle must have been

entered.

Thus, from p a path of the form (h + v + t)

�k

su�ces to reach a cycle. Then some path

of the form �

�

may be applied, followed again by a path of the form (h+ v + t)

�k

to leave the
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cycle su�ces to reach any reachable point p

0

2 [�

yz

]. �

The proof of lemma 27 does not actually depend on an explicit construction of the pigeon-

hole graph. It only depends on the bounds given in lemma 25 and the size of �

yz

, since �

can be taken as the motif associated with the largest solution � to (3), such that j�j � k.

However, the formula obtained this way is unnecessarily large, as suggested by example 1

where k = j�

yz

j � (js

0

j + 1) = 25 � (108 + 1) = 2725 but all simple cycles in the graph satisfy

j�j = 8 + 4 + 1 = 13. For simplicity (h + v + t)

�k

is used in the expression to guarantee that

all reachable pigeon-hole points are covered, but in practice (h + v + t)

�k

should be replaced

by (�

1

+ � � �+ �

n

)

�k

0

where k

0

= j�

yz

j and �

i

are the motifs associated with the labels of the

edges in the graph, just as for the cycles. As noted above, the construction of the motifs can

be incorporated in the graph construction algorithm. The explicit construction of the graph

can thus be considered as a way of searching for relevant solutions to the equations

y +�h �fv +�t = y

0

z +
h +�v �gt = z

0

where hy; zi; hy

0

; z

0

i 2 �

yz

.

Theorem 7:

Consider the matrix

� =

0

@

� � 


� �f �

� � �g

1

A

where f; g; �; � � 0 and no assumptions are made on � or 
. Let � be the sum of the labels

along a simple cycle in the graph with maximum sum of labels, and let � be the motif of �. If

no cycle exists let � = 0 and � the empty language. Assume p

(h+v+t)

�

!

p

0

for some points p

and p

0

. Then

1. If � � 0 ^ 
 � 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

!

p

0

_

9q 2 [


yz

] : p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

!

q

(h+v+t)

�

!

p

0

2. If � � 0 ^ 
 < 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

!

p

0

_

9q 2 [


yz

] : p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

!

q

(h+v+t)

�

!

p

0

3. If � < 0 ^ 
 � 0, then

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

!

p

0

_

9q 2 [


yz

] : p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

!

q

(h+v+t)

�

!

p

0

4. If � < 0 ^ 
 < 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

!

p

0

_

9q 2 [


yz

] : p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

!

q

(h+v+t)

�

!

p

0

_

9q 2 [


yz

] : p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

!

q

(h+v+t)

�

!

p

0
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where k = j�

yz

j � (js

0

j+ 1) and s

0

is given by lemma 25 under the proper assumptions on the

signs of submatrices. �

Proof:

Follows by combining lemmas 21, 25 and 27. �

6.4 An observation

Consider �gure 24. Let � be the motif associated with a solution � = hh

�

; v

�

; t

�

i

T

to the

q

t

h

v

q+n

q

p

π

ξ

ξ

Figure 24

equations

y = �h �fv +�t = 0

z = �
h +�v �gt = 0

and assume that the motif is applicable at a point p. Also assume that � increases x. Suppose

that after a number of applications of � it is possible to reach a point q

0

such that there exists

an in�nite path in the vt-plane, �, leaving q

0

. Since the motif keeps y = 0 and z = 0, and

increases x, it is possible to continue to apply the motif. After some number of applications,

the plane � will be crossed at a point q

00

= q + n � �, say. But since q

00

� q

0

, there must be

an in�nite path in the plane � leaving q

00

as well. Now, q

00

is a point of the path in � that is

repeated, and � keeps y = 0 and z = 0, thus there must be an in�nite path in the vt-plane

leaving the point q. So either one can walk in�nitely in the vt-plane starting from some point

p

0

such that p � p

0

� p+ �, or no such point can be reached by iterating the motif �.

Assume that the solution � decreases x. This situation is shown in �gure 25. Suppose
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q

q

t

h

vp

q

π

ξ
q+nξ

Figure 25

that after a number of applications of � one reaches a point q

00

= q+n �� such that by a number

of h-moves, h

q

00

say, a point q

0

can be reached for which there is an in�nite path in the vt-plane

leaving q

0

. Since � decreases x, x

q

� x

q

00

so h

q

00

h-moves can be applied at q to reach q

000

. Since

� lets y = 0 and z = 0, we have that y

q

= y

q

00

and z

q

= z

q

00

and thus y

q

000

= y

q

0

and z

q

000

= z

q

0

,

so there must exist an in�nite path leaving q

000

. So either one can walk in�nitely in the vt-plane

starting from some point p

0

+m � 1

h

for some m such that p � p

0

� p+ �, or no such point can

be reached by iterating the motif �.

7 Class 1

We include in this class the programs corresponding to cases a to d of proposition 17. That

is, the class of 3-rule programs treated in [4]. We call this class hierarchic because there is one

rule of the program that has priority over the other ones. Every admissible path is contained

in at most four planes. In this section we give examples of programs from each of these types.

The �gures depict all the possible paths associated with the nondeterministic application of

all the rules. The orientation of the �gures in terms of h, v and t is:

6

-




�

h

t

v

7.1 case a

� =

0

@

�4 �2 �1

2 �1 �3

�1 3 1

1

A
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Starting with the base value h�1;�4; 3i

T

one gets the �xpoint ploted in �gure 26. Every point

is reachable by a path of the form (t + v)

�

h

�

(t+ v)

�

.

0 0.5 1 1.5 2 2.5 3
0

1
2

3
4

5
6

7
8

90

5

10

15

Figure 26

7.2 case b

� =

0

@

�4 2 �1

2 �1 �3

1 3 �1

1

A

Starting with the base value h�1;�4; 3i

T

one gets the �xpoint ploted in �gure 27. Every point

is reachable by a path of the form t

�

(h + v)

�

.

7.3 case c

� =

0

@

4 �2 1

2 �1 �3

�1 3 �1

1

A

Starting with the base value h�1;�4; 3i

T

one gets the �xpoint ploted in �gure 28. Every point

is reachable by a path of the form (t + v)

�

h

�

t

�

v

�

(h+ t)

�

.

7.4 case d

� =

0

@

�4 �2 1

2 �1 �3

�1 �3 1

1

A

Starting with the base value h4; 4; 4i

T

one gets the �xpoint ploted in �gure 29. Every point is

reachable by a path of the form v

�

h

�

t

�

v

�

h

�

t

�

v

�

.
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Figure 27

0 5 10 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

Figure 28

60



0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 29

8 Class 2

First let us make the following simple observation: Consider a point p




yz

2 [


yz

] and some point

p

0

such that p




yz

� p

0

. Then there exists a point q such that p




yz

(v+t)

�

!

q, p

0

= q+ hh; v; ti

T

and either v = 0 or t = 0 (which is illustrated in �gures 30 and 31 respectively). This is

p

q

Figure 30

true since there exists an in�nite path leaving p




yz

in the vt-plane, so at some point along this

path either v

q

= v

p

0

or t

q

= t

p

0

must hold. Thus by moving in the vt-plane starting from p




yz

,

either the ht- or the hv-plane of p

0

will be crossed.

In this section we always assume

�

�

�

�

�f �

� �g

�

�

�

�

6= 0
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p

q

Figure 31

where e; f; g > 0 and �; � � 0. In order to �x the ideas, we will assume as a matter of fact

�

�

�

�

�f �

� �g

�

�

�

�

< 0

(The case where the subdeterminant is strictly positive can be treated similarly).

Remember that, by proposition 12, if �y

p

+ gz

p

� 0 _ gy

p

+ �z

p

� 0 then there is an in�nite

path in the vt-plane starting at p. Then if d and d

0

are chosen su�ciently large, p 2 [


yz

(d; d

0

)]

will guarantee that �y

p

+ gz

p

� 0 _ gy

p

+ �z

p

� 0 holds.

Lemma 28:

Consider a program with the matrix

� =

0

@

�e � �


� �f �

� � �g

1

A

where 
 � 0. Let p




yz

2 [


yz

] and p

0

be points such that p




yz

(h+v+t)

�

!

p

0

and x

p

0

� 0.

Assume also that there is a point q such that p




yz

(v+t)

�

!

q and p

0

= q+ hh; 0; ti

T

for some h

and t. Then q

t

�

h

�

!
p

0

(and therefore p




yz

(v+t)

�

h

�

!

p

0

). �

Proof:

Since p




yz

(h+v+t)

�

!

p

0

, either p




yz

(h+v)

�

!

p

0

or p




yz

(h+v+t)

�

t(h+v)

�

!

p

0

must hold. The

�rst case is trivial, so assume the second case holds. Then there exists a point q

0

= hh

q

0

; v

q

0

; t

q

0

i

T

,

such that p




yz

(h+v+t)

�

!

q

0
t(h+v)

�

!

p

0

. Then z

q

0

� 0 must hold. But then z

q

00

� 0 must

hold, where q

00

= hh

q

0

; v

p

0

; t

q

0

i

T

, since a v-move increases z. But then z

q

000

� 0 must hold,

where q

000

= hh

p




yz

; v

p

0

; t

q

0

i

T

, since an h-move decreases z. Finaly then z

q

� 0 must hold,

where q = hh

p




yz

; v

p

0

; t

q

i

T

, since a t-move decreases z (note that by assumption h

p

= h

q

and

v

p

0

= v

q

). Therefore q

t

�

!
q

000

. Since x

p

0

� 0 and an h-move decreases x, x

q

000

� 0 and hence

q

000
h

�

!
p

0

. We get q

t

�

!
q

000
h

�

!
p

0

. That is, q

t

�

h

�

!
p

0

. The situation is illustrated in �g-

ure 32. �

Lemma 29:

Consider a program with the matrix

� =

0

@

�e � �

� �f �

�� � �g

1

A
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p

q q

q

p

q

Figure 32

where � � 0. Let p




yz

2 [


yz

] and p

0

be points such that p




yz

(h+v+t)

�

!

p

0

and x

p

0

� 0.

Assume also that there is a point q such that p




yz

(v+t)

�

!

q and p

0

= q+ hh; 0; ti

T

for some h

and t. Then q

h

�

t

�

h

�

!
p

0

. �

Proof:

The proof is similar to that of lemma 28. Consider �gure 33.

p
q

q

q

p

q

Figure 33

x

q

� x

q

000

� x

q

00

� x

p

0

� 0.

z

q

000

� z

q

00

� z

q

0

� 0. �

Lemma 30:
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Consider a program with the matrix

� =

0

@

�e �� �

� �f �

� � �g

1

A

where � � 0. Let p




yz

2 [


vt

] and p

0

be points such that p




yz

(h+v+t)

�

!

p

0

and x

p

0

� 0.

Assume also that there is a point q such that p




yz

(v+t)

�

!

q and p

0

= q+ hh; v; 0i

T

for some h

and v. Then q

v

�

h

�

!
p

0

. �

Proof:

The proof is similar to that of lemma 28. Consider �gure 34.

p

p

q

q

qq

Figure 34

x

q

000

� x

p

0

� 0.

y

q

� y

q

000

� y

q

00

� y

q

0

� 0. �

Lemma 31:

Consider a program with the matrix

� =

0

@

�e � �

�� �f �

� � �g

1

A

where � � 0. Let p




yz

2 [


yz

] and p

0

be points such that p




yz

(h+v+t)

�

!

p

0

and x

p

0

� 0.

Assume also that there is a point q such that p




yz

(v+t)

�

!

q and p

0

= q+ hh; v; 0i

T

for some h

and v. Then q

h

�

v

�

h

�

!
p

0

. �

Proof:

The proof is similar to that of lemma 28. Consider �gure 35.

x

q

� x

q

000

� x

q

00

� x

p

0

� 0.

y

q

000

� y

q

00

� y

q

0

� 0. �

Corollary:
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p

p

q

q

q

q

Figure 35

Let p




yz

2 [


yz

] and p

0

be points such that p




yz

(h+v+t)

�

!

p

0

and x

p

0

� 0. Then either

p




yz

(v+t)

�

h

�

t

�

h

�

!

p

0

or p




yz

(v+t)

�

h

�

v

�

h

�

!

p

0

holds in the following cases (where �; 
; �; � �

0):

� =

0

@

�e �� �


� �f �

� � �g

1

A

(by lemmas 28 and 30),

� =

0

@

�e � �


�� �f �

� � �g

1

A

(by lemmas 28 and 31),

� =

0

@

�e �� �

� �f �

�� � �g

1

A

(by lemmas 29 and 30),

� =

0

@

�e � �

�� �f �

�� � �g

1

A

(by lemmas 29 and 31). �

Finally note, that if p




yz

w

! p

00

for some path w 2 (h + v + t)

�

and some point p

00

, then

w 2 (v + t)

�

or w 2 (h + v + t)

�

h(v + t)

�

hold (since if h is used, it must somewhere in w

be used for the last time) and thus p




yz

(v+t)

�

!

p

00

or p




yz

(h+v+t)

�

!

p

0 h(v+t)

�

!

p

00

where

clearly x

p

0

� 0 hold. But then, by the above corollary, p




yz

(v+t)

�

h

�

t

�

h

�

!

p

0
h(v+t)

�

!

p

00

or p




yz

(v+t)

�

h

�

v

�

h

�

!

p

0
h(v+t)

�

!

p

00

holds depending on the signs of the coe�cients. In ei-

ther of the cases when w 2 (v + t)

�

or w 2 (h + v + t)

�

h(v + t)

�

, we must then have

p




yz

(v+t)

�

h

�

t

�

h

�

(v+t)

�

!

p

00

or p




yz

(v+t)

�

h

�

v

�

h

�

(v+t)

�

!

p

00

for any point p

00

such that p




yz

w

! p

00

.

We are now in the position to give expressions for the full reachability relations for the matrices

discussed so far.
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Theorem 8:

In the matrices below �; 
; �; � � 0 holds, and proper assumptions are made on signs of

subdeterminants. Consider two points p and p

0

such that p

(h+v+t)

�

!

p

0

. Then

1. for

� =

0

@

�e �� �


� �f �

� � �g

1

A

we have

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

v

�

h

�

(v+t)

�

!

p

0

or

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

v

�

h

�

(v+t)

�

!

p

0

2. for

� =

0

@

�e � �


�� �f �

� � �g

1

A

we have

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

v

�

h

�

(v+t)

�

!

p

0

3. for

� =

0

@

�e �� �

� �f �

�� � �g

1

A

we have

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

t

�

h

�

(v+t)

�

!

p

0

4. for

� =

0

@

�e � �

�� �f �

�� � �g

1

A

we have

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

t

�

h

�

(v+t)

�

!

p

0

where � and k are given by theorem 7 �

Proof:

Follows from the corollary above and theorem 7. �

Note that the �rst case where all elements of the top row of the matrix are negative, actu-

ally belongs to class 1 (case (a) of proposition 17).
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9 Class 3

In this section we consider matrices (not belonging to class 2) of the form

� =

0

@

�e � �

� �f �

� � �g

1

A

where e; f; g; �; � > 0,

�

�

�

�

�f �

� �g

�

�

�

�

6= 0

As a matter of fact we assume

�

�

�

�

�f �

� �g

�

�

�

�

< 0

but the case where the subdeterminant is strictly positive can be treated similarly.

We investigate reachability p




yz

(h+v+t)

�

!

p

0

under the assumption that p




yz

2 [


yz

(d; d

0

)] for

su�ciently large d and d

0

that guarantees that a planar vt-pattern is applicable, and x

p

0

� 0.

We distinguish two subclasses in class 3: the subclass where there is at least one planar vt-

pattern that makes x strictly increase, and the subclass where both planar vt-patterns make x

decrease (or let invariant).

9.1 increasing vt-pattern

Throughout this subsection we assume that at least one planar vt-pattern makes x strictly

increase. That is, for a matrix

� =

0

@

�e � 


� �f �

� � �g

1

A

we assume

�g + �� > 0

or

�� + �f > 0

Lemma 32:

Consider the matrix

� =

0

@

�e � 


� �f �

� � �g

1

A

where �; 
 � 0 (we make no assumptions on � and �),

�

�

�

�

�e 


� �g

�

�

�

�

6= 0 and

�

�

�

�

�e �

� �f

�

�

�

�

6= 0

Consider two points p




yz

and p

0

such that p




yz

62 [�

yz

], p

0

62 [�

xz

], p

0

62 [�

xy

] and x

p

0

� 0.

Then p




yz

(h+v+t)

�

!

p

0

i� one of the following holds.

1. p




yz

(v+t)

�

h

�

(vh

�

+th

�

)

�k

!

p

0

for some k (depending only on the coe�cients of �).
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2. p




yz

(v+t)

�

(h+t)

�

!

p

0

3. p




yz

(v+t)

�

(h+v)

�

!

p

0

�

Proof:

The proof is a case analysis with respect to the signs of � and �.

Consider the case when �; � � 0. Without loss of generality one may assume that

p




yz

(v+t)

�

!

p

00




yz

h(h+v+t)

�

!

p

0

for some p

00

(that is, the path from p




yz

to p

0

contains at least one h-move, the other case is

trivial). This is illustrated in �gures 36 and 37 respectively. Since p




yz

2 [


yz

], it must be

p

q

p

q

p

q

Figure 36

p

q

p

q

p

q

Figure 37

the case that p

00




yz

2 [


yz

], so both patterns in the vt-plane can be applied to p

00




yz

, and in par-

ticular the one that makes x increase. Call this pattern �

vt

. Suppose there exists a point q




yz
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such that p

00




yz

�

�k

vt

(v+t)

�k

0

!

q




yz

for some k and some k

0

� j�

vt

j, and p

0

= q




yz

+ hh

0

; v

0

; t

0

i

T

where either v

0

= 0 (�gure 36) or t

0

= 0 (�gure 37).

Assume v

0

= 0. Since q




yz

2 [


yz

], �g � z

q




yz

holds, and since 0 � x

p

00




yz

and �

vt

makes

x strictly increase, after at least k applications of �

vt

followed by a path (v + t)

�k

0

, d � x

q




yz

holds for some d such that 
x

q




yz

+ ez

q




yz

� 
d � eg � 0 or gx

q




yz

+ �z

q




yz

� gd � �g � 0

holds. Thus q




yz

2 [


yz

]. Either p




yz

(v+t)

�

!

p

00
h(h+v)

�

!

p

0

, in which case reachability is

trivial, or p




yz

(v+t)

�

!

p

00
h(h+v+t)

�

t

!

q

0
(h+v)

�

!

p

0

for some q

0

. Consider the second case.

Then z

q

0

� �g must hold. Since a v-move increases z, z

q

00

� �g must hold for some q

00

such

that q

00

�

h

p

0

(see 36). But since an h-move increases z, z

p

0

� �g must hold. By assumption,

x

p

0

� 0 and p

0

62 [�

xz

], so p

0

2 [


xz

]. Thus q

(h+t)

�

!

p

0

, and thus p




yz

(v+t)

�

(h+t)

�

!

p

0

.

If v

0

= 0 but p

00




yz

�

�k

vt

(v+t)

�k

0

!

q




yz

does not hold, the di�erence between p

00




yz

and p

0

in

terms of vt-moves is bounded by �

k

vt

. Therefore p

00




yz

h

�

(vh

�

+th

�

)

�k

!

p

0

. k is chosen so that

0

B

B

B

B

B

@

x

p

00




yz

� 0

^

z

p

00




yz

� �g

^

p

00




yz

�

�k

vt

(v+t)

�k

0

!

q




yz

1

C

C

C

C

C

A

)

0

@


x

q




yz

+ ez

q




yz

� 0

_

gx

q




yz

+ �z

q




yz

� 0

1

A

This is possible since �

vt

strictly increases x. Thus p




yz

(v+t)

�

h

�

(vh

�

+th

�

)

�k

!

p

0

.

Assume t

0

= 0 (see �gure 37). The treatment is analogous to the case when v

0

= 0:

x

q




yz

� x

p

00




yz

+ d � d,

v

q




yz

� �f , so q




yz

2 [


xy

],

x

p

0

� 0,

y

p

0

� y

q

00

� y

q

0

� �f , so p

0

2 [


xy

] since p

0

62 [�

xy

] and thus q




yz

(h+v)

�

!

p

0

so p




yz

(v+t)

�

(h+v)

�

!

p

0

.

Consider the case when � � 0 and � � 0. This is illustrated in

�gures 38 and 39

Consider �gure 38 which illustrates the situation when v

0

= 0. We get:

x

q




yz

� x

p

00




yz

+ d � d,

z

q




yz

� �g, so q




yz

2 [


xz

],

x

p

0

� 0,

z

p

0

� z

q

00

� z

q

0

� �g, so p

0

2 [


xz

] since p

0

62 [�

xz

] and thus q




yz

(h+t)

�

!

p

0

.

Consider �gure 39 which illustrates the situation when t

0

= 0. We get:

y

q

000

� y

q

00

� y

q

0

� �f ,

x

q




yz

� x

q

000

� x

q

00

� x

p

0

� 0.

If q

000

�

h

p

0

, then q




yz

h

�

!
p

0

. If not, then y

q

000

� 0 and thus q




yz

h

�

v

�

h

�

!
p

0

. Note that there

is no assumption p

0

62 [�

xy

] needed here.

Consider the case when � � 0 and � � 0. This is illustrated in �gures 40 and 41

Consider �gure 40 which illustrates the situation when v

0

= 0. We get:

z

q

000

� z

p

0

� z

q

00

� z

q

0

� �g,

x

q




yz

� x

q

000

� x

p

0

� 0,

and thus q




yz

h

�

t

�

!
p

0

(since if 0 > z

q

000

then q




yz

�

h

p

0

so q




yz

h

�

!
p

0

). No assumption
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p

q

p

q

p

q

Figure 38

p

p

q
q

q

p

q

Figure 39

p

p

q

q
q

p

q

Figure 40
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p

0

62 [�

ht

] is needed.

Consider �gure 41 which illustrates the situation when t

0

= 0. We get:

p

q

p

q

p

q

Figure 41

x

q




yz

� x

p

00




yz

+ d � d,

y

q




yz

� �f , so q




yz

2 [


xy

],

x

p

0

� 0,

y

p

0

� y

q

00

� y

q

0

� �f , so p

0

2 [


xy

] since p

0

62 [�

xy

] and thus q




yz

(h+t)

�

!

p

0

. �

Lemma 33:

Consider the matrix

� =

0

@

�e �� 


� �f �

� � �g

1

A

where �; 
; � � 0 (no constraints on �) and

�

�

�

�

�e 


� �g

�

�

�

�

6= 0

Consider two points p




yz

and p

0

such that p




yz

62 [�

yz

], p

0

62 [�

xz

] and x

p

0

� 0.

Then p




yz

(h+v+t)

�

!

p

0

i� one of the following holds.

1. p




yz

(v+t)

�

h

�

(vh

�

+th

�

)

�k

!

p

0

for some k (depending only on the coe�cients in �).

2. p




yz

(v+t)

�

(h+t)

�

!

p

0

3. p




yz

(v+t)

�

(h+v)

�

!

p

0

�

Proof:

Analogous to the proof of lemma 32. Consider �gure 42 which illustrates the situation when

v

0

= 0. We get:

x

q




yz

� x

p

00

+ d � d,
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p

q

p

q

p

q

Figure 42

z

q

� �g, so q




yz

2 [


xz

].

x

p

0

� 0,

z

p

0

� z

q

00

� z

q

0

� �g, so p

0

2 [


xz

] since p

0

62 [�

xz

], and thus q




yz

(h+t)

�

!

p

0

.

Consider �gure 43 which illustrates the situation when t

0

= 0. We get:

p

p

q

q
q

p

q

Figure 43

x

q

000




yz

� x

p

0

� 0,

y

q

� y

q

000

� y

q

00

� y

q

0

� �f , and thus q




yz

v

�

h

�

!
p

0

(since if 0 > y

q

000

then q




yz

�

h

p

0

so

q




yz

h

�

!
p

0

). No assumption p

0

62 [�

xz

] is needed. �

Lemma 34:

Consider the matrix

� =

0

@

�e � �


� �f �

� � �g

1

A

72



where �; 
; � � 0 (no constraints on �) and

�

�

�

�

�e �

� �f

�

�

�

�

6= 0

Consider two points p




yz

and p

0

such that p




yz

62 [�

yz

], p

0

62 [�

xy

] and x

p

0

� 0.

Then p




yz

(h+v+t)

�

!

p

0

i� one of the following holds.

1. p




yz

(v+t)

�

h

�

(vh

�

+th

�

)

�k

!

p

0

for some k (depending only on the coe�cients in �).

2. p




yz

(v+t)

�

(h+t)

�

!

p

0

3. p




yz

(v+t)

�

(h+v)

�

!

p

0

�

Proof:

Analogous to the proof of lemma 32. Consider �gure 44 which illustrates the situation when

p

p

q

q

q

p

q

Figure 44

v

0

= 0. We get:

x

q

000




yz

� x

p

0

� 0,

z

q

� z

q

000

� z

q

00

� z

q

0

� �g, and thus q




yz

t

�

+h

�

!
p

0

(since if 0 > z

q

000

then q




yz

�

h

p

0

so

q




yz

h

�

!
p

0

). No assumption p

0

62 [�

xy

] is needed.

Consider �gure 45 which illustrates the situation when t

0

= 0. We get:

x

q




yz

� x

p

00

+ d � d,

y

q

� �f , so q




yz

2 [


xz

].

x

p

0

� 0,

y

p

0

� y

q

00

� y

q

0

� �f , so p

0

2 [


xy

] since p

0

62 [�

xy

] and thus q




yz

(h+v)

�

!

p

0

. �

As for class 2, if p




yz

w

! p

00

for some point p

00

where w 2 (h + v + t)

�

, and if an h-move

occurs in w, then there is a point p

0

such that h is applied for the last time at p

0

. Thus x

p

0

� 0

and p

0
h(v+t)

�

!

p

00

.

We summarize the results of this subsection as
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p

q

p

q

p

q

Figure 45

Theorem 9:

For the matrix of lemma 32 the reachability relation is given by

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(v+t)

�

(h+t)

�

(v+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(v+t)

�

(h+v)

�

(v+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(v+t)

�

!

p

0

for the matrix of lemma 33 the reachability relation is given by

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

(h+t)

�

(v+t)

�

!

p

0

_

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

(h+v)

�

(v+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(v+t)

�

!

p

0

and for the matrix of lemma 34 the reachability relation is given by

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

(h+t)

�

(v+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

(h+v)

�

(v+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(v+t)

�

!

p

0

for some �, k, and k

0

(depending only on the matrix coe�cients). �

Proof:

Follows by combining lemmas 32, 33 and 34 with theorem 7. �
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9.2 decreasing vt-pattern

Consider the matrix

� =

0

@

�e �� 


�� �f �

� � �g

1

A

where �; 
; �; � � 0 and where both planar vt-patterns make x decrease. That is

��g + �� � 0

and

��� + �f � 0

Consider a path w ending at a point p

0

and starting from some point p




yz

. The path can be

represented (by considering it backwards from the end to the beginning) as a sequence:

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; � � � p

0

r

; p

r

where p

i

(v+t)

�

!

p

0

i

for all 0 � i � r and p

0

i+1

(h+t)

�

!

p

i

for all 0 � i � r�1 and such that for

no p

i+1

, p

0

i+1

, p

i

and p

0

i

, p

i+1

(h+v)

�

!

p

i

or p

0

i+1

(h+v)

�

!

p

0

i

holds. We say that the sequence

is not degenerate (see lemma 24 and its corollaries, section 6). Furthermore we have

x

p

i

� �e; y

p

i

� 0; z

p

i

� �g

x

p

0

i

� 0; y

p

0

i

� �f; z

p

0

i

� �g

This is illustrated in �gure 46.

p
0

p
1

2

0
p

p
1

p
2

p
p

3

p
r

p
r

Figure 46
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Lemma 35:

Let us consider a path w represented, as above, under the form

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; � � � p

0

r

; p

r

Then the path w can be transformed into a path w

0

represented as the sequence

p

0

0

; q

0

; q

0

1

; q

1

; q

0

2

; � � � q

s�1

; q

0

s

such that

1. q

0

(v+t)

�

!

p

0

0

2. q

i

(v+t)

�

!

q

0

i

for all 1 � i � s � 1

3. q

0

i+1

(h+t)

�

!

q

i

for all 0 � i � s � 1

4. (y

q

i

� d

1

_ x

q

i

� d

0

) ^ z

q

i

� d

2

or x

q

0

i+1

� m ^ z

q

0

i+1

� n for all 0 � i � s � 1

5. q

0

s

= p

r

For some constants d

0

, d

1

, d

2

, m and n. �

Proof:

part 1

In the �rst part of the proof we show the existence of a point q

0

which is vt-connected to p

0

0

(q

0

(v+t)

�

!

p

0

0

) and such that y

q

0

� d

1

_ x

q

0

� d

0

and z

q

0

� d

2

.

Let us consider the beginning of the sequence (that is, the end of the path)

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; � � �

Let us recall that

x

p

0

� �e; y

p

0

� 0; z

p

0

� �g

One assumes furthermore that y

p

0

> d

1

(k

1

; k

2

) ^ x

p

0

> d

0

(k

1

; k

2

) or z

p

0

> d

2

(k

1

; k

2

), where

d

0

(k

1

; k

2

), d

1

(k

1

; k

2

) and d

2

(k

1

; k

2

) are values that depend on some constants k

1

and k

2

that

will be explained later on. We sometimes write d

0

, d

1

and d

2

instead of d

0

(k

1

; k

2

), d

1

(k

1

; k

2

)

and d

2

(k

1

; k

2

). Intuitively, k

1

is a lower bound which guarantees that a point p belongs to 


yz

whenever x

p

� k

1

and z

p

� �g. The constant k

2

is a lower bound that guarantees that the

point q

0

is in 


yz

.

Consider a point q

0

2 [


vt

] such that q

0

(v+t)

�

!

p

0

and that satis�es

1. k

1

� x

q

0

2. k

2

� y

q

0

< k

0

2

(� d

1

)

3. �g � z

q

0

< � (� d

2

)
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1

p
1

2

p

p

0
q

0

0
p

0
q

p

Figure 47

(see �gure 47)

In this part we show that such a point q

0

exists under the assumption that x

p

0

> d

0

(k

1

; k

2

) ^

y

p

0

> d

1

(k

1

; k

2

) or z

p

0

> d

2

(k

1

; k

2

).

Assume x

p

0

> d

0

^ y

p

0

> d

1

. There exists a point p

00

0

such that p

0

t

�

!
p

00

0

and

x

p

00

0

� x

p

0

� d

0

; y

p

00

0

� y

p

0

� d

1

; 0 > z

p

0

� �g

Starting from p

00

0

, one moves backwards along the vt-pattern that keeps z invariant, thus

reaching a point q

0

. Moving along the pattern, �g � z < � holds in every point and thus

�g � z

q

0

< � (� d

2

). Also, moving backwards from p

00

0

along the pattern makes x (globally)

increase or let invariant, so that the value of x is always kept greater than x

p

00

0

� � (for some

constant �). Since x

p

00

0

� d

0

, the point q

0

satis�es x

q

0

� x

p

00

0

� � � d

0

� � � k

1

. (The latter

inequality holds by taking a su�ciently large value as for d

0

). (see �gure 48). It is clear that

if p

0

is in the shaded area, then q

0

(v+t)

�

!

p

0

. Furthermore, if ��t � y

p

0

then p

0

lies in the

shaded area (if p

0

2 [


vt

]). Take d

1

to be ��t, and its value is given by d

1

= k

2

+ (�� � fg)j.

Then k

2

� y

q

0

(< k

2

+(�� �fg) < d

2

) is guaranteed to hold. If k

2

is chosen su�ciently large,

q

0

must belong to [


yz

].

Assume z

p

0

> d

2

. One moves transversally as much as possible, thus reaching a point

p

00

0

. The value d

2

has been chosen so that y

p

00

0

is guaranteed to be greater than d

1

and su�-

ciently large to ensure that q

0

(v+t)

�

!

p

0

(This is illustrated by the shaded area in �gure 48.

The �gure shows a situation that violates this criterion. p

0

is not reachable from q

0

since it

does not lie above q

0

.). Since f > 0 by assumption, the line y = 0 cannot be parallel to

the v-axis, and since the determinant fg � �� is not zero, the lines y = 0 and z = 0 are

not parallel. Therefore it is possible to choose d

2

su�ciently large to ensure that p

0

lies in the
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t∆

q
0

t∆

p
0

0
p

z=0

y=0

+
-

-
+

t

v

j

Figure 48

shaded area of �gure 49. The rest proceeds as above. Thus we have proved the existence of q

0

.

0

0
p

p
0

v∆

q

z=0

+
-

t

v

j

y=0
+
-

Figure 49

We now distinguish two cases depending on whether p

1

� q

0

or not.

part 2 p

1

� q

0

We suppose p

1

� q

0

. The situation is illustrated in �gure 47. We show that in such a case, one

can connect p

1

to q

0

. The interest of the constructions lies in the fact that q

0

is \small" in y

and z.
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Let us show that if x

p

0

1

> m or z

p

0

1

> n (together with the assumption that y

p

0

> d

1

(k

1

; k

2

) or

z

p

0

> d

2

(k

1

; k

2

)), there exists a point q

0

0

such that

1

1. q

0

0

(h+t)

�

!

q

0

2. p

1

(v+t)

�

!

q

0

0

Start at q

0

and walk backwards horizontally until the vt-plane of p

1

and p

0

1

is intersected in a

point q

00

0

. Since p

1

� q

0

, it must be that p

1

� q

00

0

. By going backwards transversally (down),

one will reach a point q

0

0

such that p

1

(v+t)

�

!

q

00

0

(v+t)

�

!

p

0

1

. This is shown in �gure 50. Note

that p

0

1

can always be reached from p

1

by a path such as the one represented by the solid line

in the �gure.

Assume x

p

0

1

> m. We have x

q

000

0

� x

p

0

1

> m (see �gure 50) since a t-move increases x.

q

p

q

1

0

0

1

p

z=0

y=0

+
-

-
+

t

q
0

v

Figure 50

Since the vt-pattern that keeps z invariant decreases x, by going backwards along the path

x

q

0

0

� k

1

holds if m is chosen su�ciently large. Since also z

q

0

0

� �g and q

0

0

� q

0

, we have, for

su�ciently large k

1

, that q

0

0

(h+t)

�

!

q

0

(recall that x

q

0

� k

1

and z

q

0

� �g).

Assume z

p

0

1

> n. Since x

p

0

1

� 0, if n is large enough, su�ciently many t-moves to make

x

q

000

0

> m can be made. The rest follows as above.

We have shown that when (x

p

0

> d

0

^ y

p

0

> d

1

) _ z

p

0

> d

2

and x

p

0

1

> m _ z

p

0

1

> n, the

path represented by the sequence

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; p

2

; � � � ;

can be replaced by a path represented by

p

0

0

; q

0

; q

0

0

; p

1

; p

0

2

; p

2

; � � �

with y

q

0

� d

1

and z

q

0

� d

2

.

Let us now consider the case where p

1

6� q

0

. We distinguish the cases corresponding to di�erent

1

As for d

1

and d

2

, we denote by m and n constants that depend on k

1

; k

2

.
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signs of the determinant eg � �
, and show that, in both cases, one can reduce the number of

planes that connect p

0

2

to p

0

0

.

part 3 eg � �
 < 0

The situation is illustrated in �gure 51. Remember that we assume x

p

0

1

> m _ z

p

0

1

> n and

y

p

0

> d

1

_ z

p

0

> d

2

.

By moving horizontally from p

1

as much as possible (p

1

h

�

!
p

00

1

) one reaches a point p

00

1

such

that z

p

00

1

� z

p

1

� k

1

. If k

1

is su�ciently large, p

00

1

is in [


xz

]. It is then possible to walk in the

ht-plane along the planar pattern that keeps x invariant. One thus goes from p

00

1

to a point q

00

0

at the intersection of the vt-plane of p

0

(p

00

1

(h+t)

�

!

q

00

0

). We have z

q

00

0

� z

p

00

0

� � = k

0

1

(because

eg � �
 < 0).

On the other hand, by moving vertically backwards from p

0

as much as possible, one reaches

a point p

00

0

(p

00

0

v

�

!
p

0

) such that 0 > z

p

00

0

� �g. By walking backwards in the vt-plane along

the planar pattern that preserves z, one goes from p

00

0

to a point p at the intersection of the

ht-plane of p

1

(note that this plane must be reached since by construction p

1

� p

0

). We have

� > z

p

� �g, therefore z

q

00

0

� z

p

. It follows that there is a sequence of t-moves from q

00

0

to p

(q

00

0

t

�

!
p). Therefore we have:

p

1

h

�

!
p

00

1

(h+t)

�

!

q

00

0

t

�

!
p

(v+t)

�

!

p

0

Since p

0

2

(h+t)

�

!

p

1

and p

0

(v+t)

�

!

p

0

0

, we �nally get p

0

2

(h+t)

�

!

q

00

0

(v+t)

�

!

p

0

0

.

Therefore the the sequence

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; � � �

reduces to the sequence

p

0

0

; q

00

0

; p

0

2

; � � �

It is not necessarily the case that (x

q

00

0

� d

0

_ y

q

00

0

� d

1

) ^ z

q

00

0

� d

2

. However, the number

of planes always reduces.

part 4 eg � �
 > 0

Suppose z

p

0

> d

2

. By moving horizontally from p

1

as much as possible

(p

1

h

�

!
p

00

1

) one reaches a point p

00

1

such that 0 > x

p

00

1

� �e. Then by walking in the ht-

plane along the planar pattern that keeps x invariant, one goes from p

00

1

to a point q

00

0

at the

intersection of the vt-plane of p

0

(p

00

1

(h+t)

�

!

q

00

0

). We have � > x

q

00

0

� �e.

On the other hand, by moving transversally as much as possible from p

0

, one reaches a point

p

00

0

such that x

p

00

0

> k

1

+ � and z

p

00

0

� �g. This is possible since x

p

0

� �e, so if d

2

is chosen

su�ciently large, x

p

00

0

> k

1

+ � kan be made to hold. Following the pattern backwards in the

vt-plane that preserves z, one reaches a point p at the intersection of the ht-plane of p

1

such
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p
2

1

p
0

p

0
q

p
1

0
p

1

0
q

0
p

p

z=0

p

Figure 51

that x

p

> k

1

. We have x

p

> k

1

, therefore x

p

> x

q

00

0

. It follows that there is a sequence of

t-moves from q

00

0

to p (q

00

0

t

�

!
p). Therefore we have:

p

1

h

�

!
p

00

1

(h+t)

�

!

q

00

0

t

�

!
p

(v+t)

�

!

p

0

Since p

0

2

(h+t)

�

!

p

1

and p

0

(v+t)

�

!

p

0

0

, we �nally get p

0

2

(h+t)

�

!

q

00

0

(v+t)

�

!

p

0

0

.

Therefore the the sequence

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; � � �

reduces to the sequence

p

0

0

; q

00

0

; p

0

2

; � � �

Suppose y

p

0

> d

1

(see �gure 52). By moving backwards horizontally One moves backwards

from p

0

following the parallel to z = 0 until one intersects the vt-plane of p

0

2

in a point q

0

. We

have y

q

0

> d

1

� � and z

q

0

� �g. Therefore there is a path in the vt-plane from p

0

2

to q

0

. Thus

p

2

(v+t)

�

!

q

0

(h+t)

�

!

p

0

, hence one can reduce the sequence

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; p

2

; � � � ;

to the sequence

p

0

0

; p

0

; q

0

; p

2

; � � � ;

again the number of planes is reduced.

As a recapitulation, we have shown that one can reduce the sequence

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; p

2

; � � � ;
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to a sequence

p

0

0

; q

0

; q

0

0

; p

1

; p

0

2

; p

2

; � � � ;

where q

0

is \small" in y and z, or to a shorter sequence.

By repeating the transformations above until no more transformation can be applied, the

original sequence is reduced to a sequence

p

0

0

; q

0

; q

0

1

; q

1

; q

0

2

; � � � q

s�1

; q

0

s

where q

0

s

= p

r

, that satis�es the condition of lemma 35 such that

1. q

0

(v+t)

�

!

p

0

0

2. q

i

(v+t)

�

!

q

0

i

for all 1 � i � r � 1

3. q

0

i+1

(h+t)

�

!

q

i

for all 0 � i � r � 1

4. y

q

i

� d

1

^ z

q

i

� d

2

or x

q

0

i+1

� d

1

^ z

q

0

i+1

� d

2

for all 0 � i � r � 1

�

The case

� =

0

@

�e � �


� �f �

�� � �g

1

A

is symmetric to

� =

0

@

�e �� 


�� �f �

� � �g

1

A

by permuting t and v.

Lemma 35, allows us to apply the pigeon hole principle to the points of a reduced path. Since

there are �nitely many points such that (x

p

0

� d

0

_ y

q

i

� d

1

^ z

q

i

� d

2

, and �nitely many

such that x

q

0

i+1

� d

1

^ z

q

0

i+1

� d

2

, for a su�ciently long path, some yz- or xz-values must

appear twice. This yields a three dimensional pattern that either preserves y and z, or x and

z.

What remains is to show that this pattern can be computed in advance, and that it is the

same for all paths. Let us assume that for some q

i

0

, y

q

i

0

= y

q

i

j

and z

q

i

0

= z

q

i

j

, for several q

i

j

,

j = 1; 2; : : : and i

j

> i

0

. That is, by the pigeon-hole principle, some yz-values occurs over and

over again. Furthermore suppose �y

q

i

0

+fz

q

i

0

� 0 or gy

q

i

0

+�z

q

i

0

� 0. By proposition 12, there

exists an in�nite path in the vt-plane starting at q

i

0

(and at all q

i

j

). In particular, one may

choose a path that makes z invariant. Call this path w. Then w = kh0; g; �i

T

where k = g��
�.

Thus we reach a point q

0

i

0

= q

i

0

+w. We have x

q

0

i

0

= x

q

i

0

�(�g���)(g��
�). Since z

q

0

i

0

� �g,

assuming x

q

i

0

� d for some constant d, 
x

q

0

i

0

+ ez

q

0

i

0

� 0 or gx

q

0

i

0

+ �z

q

0

i

0

� 0 must hold so

that there exists an in�nite path in the ht-plane leaving q

0

i

0

. Once again we may choose a path

that keeps z invariant. Call this path w

0

. Then w

0

= k

0

hg; 0; 
i

T

where k

0

= �gf + ��. Thus

we reach a point q

00

i

0

= q

0

i

0

+w

0

= q

i

0

+w

00

, where w

00

= w

0

+w = hk

0

g; kg; k�+k

0


i

T

. It is easy

to verify that y

q

00

i

0

= y

q

i

0

and z

q

00

i

0

= z

q

i

0

hold. Furthermore, x

q

00

i

0

= x

q

i

0

� gD hold, where

D =

�

�

�

�

�

�

�e �� 


�� �f �

� � �g

�

�

�

�

�

�
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Thus, w

00

is a vt-pattern. We will now show that

(h+v+t)

�

!

can be expressed in terms of w

00

under certain assumptions.

1. Assume that there is a unique minimal solution to

y(h; v; t) = ��h �fv +�t = 0

z(h; v; t) = �
h +�v �gt = 0

say s

min

. All other solutions are of the form s = ls

min

for some l.

2. Assume s

min

makes x strictly increase.

3. By the path reduction and the pigeon hole principle, either for q

0

i

some xz-values repeat,

or for q

i

some yz-values repeat. Assume that for q

i

some yz-values repeat.

4. By (3), we get a solution to y(h; v; t) = 0 and z(h; v; t) = 0. By 1, if y

q

i

= y

q

i

0

and

z

q

i

= z

q

i

0

for some q

i

and q

i

0
such that q

i

� q

i

0
it must be that q

i

0
= q

i

+ ls

min

for some

l. By (2), all solutions make x increase. Since we start with x � �e, after a bounded

number of q

i

:s we reach q

i

0

say, such that x

q

i

0

� d for some constant d.

5. Assume q

i

0

satis�es �y

q

i

0

+ fz

q

i

0

� 0 or gy

q

i

0

+ �z

q

i

0

� 0. By the reasoning above, the

pattern w

00

is applicable at q

i

0

.

6. By (4), q

i

0

su�ciently far from q

i

0

, is of the form q

i

0

= q

i

0

+l

0

w

00

, and by (5), q

i

0

�

�

w

00

!

q

i

0

.

7. q

i

0

can be chosen such that it is connected to p

0

0

by a bounded number of planes (the

bound is independent of p

r

and p

0

0

).

If one assumes that

�

�

�

�

�e 


� �g

�

�

�

�

< 0

one may reason analogously for xz-values.

If s

min

decreases x, one reasons as above except that one starts from the the end p

0

0

and

go backwards towards p

r

. If s

min

keeps x invariant, the determinant D is zero, which we as-

sume it is not.

If q

i

0

does not satisfy �y

q

i

0

+ fz

q

i

0

� 0 or gy

q

i

0

+ �z

q

i

0

� 0, the algorithm in sectition 6

can be adapted to compute a pattern u such that q

i

0

�

�

u

!

q

i

0

for q

i

0

su�ciently far from q

i

0

.

We summarize this section as

Theorem 10:

Consider the matrix

� =

0

@

�e �� 


�� �f �

� � �g

1

A

where �; 
; �; � � 0 and where both planar vt-patterns make x decrease. Assume that there is

a unique minimal solution to the equations

y(h; v; t) = ��h �fv +�t = 0

z(h; v; t) = �
h +�v �gt = 0

Then the �xpoint is given by

p

(h+v)

�

(h+t)

�

(v+t)

�

(h+v+t)

�k

�

�

u

(h+v+t)

�k

(h+t)

�

(v+t)

�

!

p

0

_

p

(h+v)

�

(h+t)

�

(v+t)

�

((h+t)

�

(v+t)

�

)

�k

0

�

�

w

00

(v+t)

�

(h+t)

�

(v+t)

�

!

p

0
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�

10 Class 4

In this section we consider matrices of the form

� =

0

@

e � �

� �f �

� � �g

1

A

where e; f; g; �; � > 0,

�

�

�

�

�f �

� �g

�

�

�

�

< 0

We investigate reachability p




yz

(h+v+t)

�

!

p

0

under the assumption that p




yz

2 [


yz

(d; d

0

)] for

su�ciently large d and d

0

that guarantees that a pattern is applicable, and x

p

0

� 0.

10.1 increasing vt-pattern

Throughout this subsection we assume that at least one planar vt-pattern makes x strictly

increase. Note that this assumption excludes matrices of the form

� =

0

@

e � �

�� �f �

�� � �g

1

A

where �; � � 0 since this would imply that both vt-patterns made x decrease.

Lemma 36:

Consider the matrix

� =

0

@

e � �

� �f �

� � �g

1

A

where � � 0. Suppose p




yz

(h+v+t)

�

!

p

0

for some points p




yz

2 [


yz

] and p

0

such that z

p

0

� 0.

Then one of the following holds.

1. p




yz

(v+t)

�

h

�

(vh

�

+th

�

)

�k

!

p

0

for some k.

2. p




yz

(v+t)

�

h

�

t

�

!

p

0

3. p




yz

(v+t)

�

h

�

v

�

h

�

!

p

0

�

Proof:

The proof is similar to the proof of lemma 32, so we only give the key relations. We distin-

guish the cases when, by moving along the pattern that increases x, one cross either the ht- or

hv-plane of p

0

. This is illustrated in �gures 53 and 54 respectively.

Consider �gure 53. We have

z

q

0

� z

p

0

� 0

x

q

0

� x

q

� x

p

00

+ d � d

85



p

q

p

p

q

Figure 53

p

q

q

q

p

p

q

Figure 54
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Thus q

h

�

!
q

0
t

�

!
p

0

Consider �gure 54. We have

y

q

000

� y

q

00

� y

q

0

� 0

x

p

0

� x

q

00

� x

q

000

� x

q

� x

p

00

+ d � d

Thus q

h

�

!
q

000
v

�

!
q

00
h

�

!
p

0

�

Lemma 37:

Consider the matrix

� =

0

@

e � �

� �f �

� � �g

1

A

where � � 0. Suppose p




yz

(h+v+t)

�

!

p

0

for some points p




yz

2 [


yz

] and p

0

such that y

p

0

� 0.

Then one of the following holds.

1. p




yz

(v+t)

�

h

�

(vh

�

+th

�

)

�k

!

p

0

for some k.

2. p




yz

(v+t)

�

h

�

t

�

h

�

!

p

0

3. p




yz

(v+t)

�

h

�

v

�

!

p

0

�

Proof:

Consider �gure 55. We have

p

q

q
q

p

p

q

Figure 55

z

q

000

� z

q

00

� z

q

0

� 0

x

p

0

� x

q

00

� x

q

000

� x

q

� x

p

00

+ d � d

Thus q

h

�

!
q

000
t

�

!
q

00
h

�

!
p

0

Consider �gure 56. We have

y

q

0

� y

p

0

� 0

x

q

0

� x

q

� x

p

00

+ d � d
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p

q

p

p

q

Figure 56

Thus q

h

�

!
q

0
v

�

!
p

0

�

As for class 2 and class 3, after p

0

such that y

p

0

� 0 or z

p

0

� 0, it is su�cient to walk a

v(h + t)

�

- or t(h + v)

�

-path respectively, since p

0

can be chosen to be the point at which the

last v- or t-move respectively, is applied.

We summarize this as

Theorem 11:

Consider the matrix

� =

0

@

e � 


� �f �

� � �g

1

A

where � � 0. Suppose p

(h+v+t)

�

!

p

0

for some points p and p

0

. Then

1. If � � 0 ^ 
 � 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+v)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(v+t)

�

h

�

t

�

(h+v)

�

!

p

0

2. If � � 0 ^ 
 < 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+v)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

t

�

(h+v)

�

!

p

0

3. If � < 0 ^ 
 � 0, then

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+v)

�

!

p

0

_

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

t

�

(h+v)

�

!

p

0
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4. If � < 0 ^ 
 < 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+v)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+v)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

t

�

(h+v)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

t

�

(h+v)

�

!

p

0

for some �, k and k

0

. �

Proof:

Follows from theorem 7 and lemma 36, and from the fact that h

�

v

�

h

�

(h+ v)

�

� h

�

t

�

(h+ v)

�

.�

Theorem 12:

Consider the matrix

� =

0

@

e � 


� �f �

� � �g

1

A

where � � 0. Suppose p

(h+v+t)

�

!

p

0

for some points p and p

0

. Then

1. If � � 0 ^ 
 � 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(v+t)

�

h

�

v

�

(h+t)

�

!

p

0

2. If � � 0 ^ 
 < 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

v

�

(h+t)

�

!

p

0

3. If � < 0 ^ 
 � 0, then

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+t)

�

!

p

0

_

p

(h+v)

�

(h+t)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

v

�

(h+t)

�

!

p

0

4. If � < 0 ^ 
 < 0, then

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

(vh

�

+th

�

)

�k

0

(h+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+v)

�

(v+t)

�

h

�

v

�

(h+t)

�

!

p

0

_

p

(h+t)

�

(h+v)

�

(h+v+t)

�k

�

�

(h+v+t)

�k

(h+t)

�

(v+t)

�

h

�

v

�

(h+t)

�

!

p

0

89



for some �, k and k

0

. �

Proof:

Follows from theorem 7 and lemma 37, and from the fact that h

�

t

�

h

�

(h+ t)

�

� h

�

v

�

(h+ t)

�

.�

10.2 class 4 decreasing

Throughout this subsection we assume that both planar vt-patterns makes x strictly decrease.

This assumption excludes matrices of the form

� =

0

@

e � �

� �f �

� � �g

1

A

where �; � � 0 since this would imply that both vt-patterns made x increase.

First let us note that (h+v+ t)

�

� ((v+ t)

�

h

�

t

�

)

�

which means that any path w 2 (h+v+ t)

�

between two points p

0

w

! p is included in the sequence

p

0

(v+t)

�

!

p

0

0

h

�

!
p

00

0

t

�

!
p

1

� � �

t

�

!
p

n

(v+t)

�

!

p

0

n

h

�

!
p

00

n

t

�

!
p, (see �gure 57), where the

sequences hp

0

i

; p

00

i

; p

i+1

i, are such that

x

p

0

i

� 0; y

p

0

i

� �f; z

p

0

i

� �g

y

p

i+1

� �f; z

p

i+1

� �g

p

p

p

p

p

p

0

0

1

1

2

2
p

p

r

r

Figure 57

Lemma 38:
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Consider the matrices

� =

0

@

e �� 


�� �f �

� � �g

1

A

or � =

0

@

e �� �

� �f �

�� � �g

1

A

where �; 
; �; � � 0 and both vt-patterns make x decrease. Let us consider a path w represented,

as above, under the form

p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

; p

2

; � � � p

0

r

; p

r

Then the path w can be transformed into a path w

0

represented as the sequence

p

0

0

; q

0

; q

0

1

; q

1

; q

0

2

; � � � q

s�1

; q

0

s

such that

1. q

0

(v+t)

�

!

p

0

0

2. q

i

(v+t)

�

!

q

0

i

for all 1 � i � s � 1

3. q

0

i+1

(h+t)

�

!

q

i

for all 0 � i � s � 1

4. k

2

� y

q

i

� k

0

2

(� d

1

) ^ �g � z

q

i

� � (� d

2

) or x

q

0

i+1

� k

1

^ (y

q

0

i+1

� d

1

_ z

q

0

i+1

� d

2

)

5. q

0

s

= p

r

For some constants d

0

, d

1

, d

2

, m and n. �

Proof:

part 1

In the �rst part of the proof we show the existence of a point q

0

associated with p

0

such that

k

2

� y

q

i

� k

0

2

^ �g � z

q

i

� �. The proof proceeds exactly as for class 3 (the �rst part of the

proof of lemma 35.

part 2

Part 2 of the proof consists in showing that, if p

1

� q

0

, there exists a path that links p

0

2

to p

0

contained in a number of planes smaller than the number of planes crossed by the path via p

1

,

p

0

1

and p

0

. This is illustrated in �gure 58. Let q

00

0

be the intersection point of the horizontal line

passing by p

0

2

and the vt-plane of q

0

. There exists a linear path (either transversal or vertical)

that connects q

00

0

to a point, say q

0

0

, of the region y

q

0

0

� �f ^ z

q

0

0

� �g of the vt-plane of q

0

.

The path p

0

2

� q

00

0

� q

0

0

� p

0

0

is an admissible path. The subsequence p

0

0

; p

0

; p

0

1

; p

2

; p

0

2

can be

replaced by the shorter sequence p

0

0

; q

00

0

; p

0

2

.
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q

q
0

0

p
0

0

p
1

p

1
p

p
2

0
q

Figure 58

part 3

Part 3 of the proof consists in showing that, if p

1

6� q

0

, one can connect the point p

0

2

to the

point q

0

.

The assumptions are:

� x

p

0

1

> k

1

or y

p

0

1

> d

1

^ z

p

0

1

> d

2

for some su�ciently large k

1

, d

1

and d

2

.

� d

1

> y

q

0

> k

2

for some k

2

.

� � > z

q

0

� �g

Consider the matrix

� =

0

@

e �� 


�� �f �

� � �g

1

A

where �; 
; � � 0. There are two subcases: x

p

0

1

> k

1

or y

p

0

1

> d

1

^ z

p

0

1

> d

2

.

Consider the case when x

p

0

1

> k

1

(the situation is illustrated in �gure 59). By walking back-

wards vertically from p

0

1

as much as possible, one reaches a point p

00

1

. Then by walking backward

along the pattern preserving z, one reaches a point q

0

0

at the intersection of the vt-plane of q

0

.

We have: x

p

00

1

> x

p

0

1

> k

1

and x

q

0

0

� x

p

00

1

> k

1

> 0.

On the otherhand, let q

00

0

be the intersection point of the horizontal path through q

0

and

the vt-plane of p

0

1

.

We have: y

p

00

0

� y

q

0

� k

2

and z

q

00

0

� z

q

0

< 0.

92



Therefore q

00

0

is located above q

0

0

. Therefore there exists an admissible path p

0

2

�p

0

1

�q

0

0

�q

000

0

�q

0

from p

0

2

to q

0

, where q

000

0

is the intersection point of the horizontal line passing through q

0

0

and

the vertical line passing through q

0

.

0
q

q
0

p
1

p
1

0
q

p
2

0
q

p
1

p

p
0

0

Figure 59

Consider the case when y

p

0

1

> d

1

^ z

p

0

1

> d

2

. Since z

p

0

1

> d

2

one can move backwards

vertically as above and yield a point p

00

1

such that x

p

00

1

> k

1

. The rest proceeds as above.

Consider the matrix

� =

0

@

e �� �

� �f �

�� � �g

1

A

where �; � � 0. Let us again show that there exists a path from p

0

2

to q

0

.

Consider the case when x

p

0

1

> k

1

(the situation is illustrated in �gure 60). By walking back-

wards transversally from p

0

1

as much as possible, one reaches a point p

00

1

. Then by walking

backwards along the pattern preserving y, one reaches a point q

0

0

at the intersection of the

vt-plane of q

0

.

We have: x

p

00

1

> x

p

0

1

> k

1

and x

q

0

0

� x

p

00

1

> k

1

> 0

On the other hand, let q

00

0

be the intersection point of the horizontal path passing through

q

0

and the vt-plane of p

0

1

.

We have: y

q

00

0

� y

q

0

� k

2

.
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There q

00

0

is located above q

0

0

. Therefore there exists a path p

0

2

� p

0

1

� q

0

0

� q

000

0

� q

0

, where

q

000

0

is the intersection point of the horizontal line passing through q

0

0

and the vertical line pass-

ing through q

0

.

p
1

0
q

0
q

q
0

0
q

p
1

p
2

p
1

p

p
0

0

Figure 60

Consider the case where y

p

0

1

> d

1

^ z

p

0

1

> d

2

. Since y

p

0

1

> d

1

one can move backwards

transversally as above, and yield a point p

00

1

such that x

p

00

1

> k

1

. The rest proceeds as above.

As a recapitulation we have shown that one always can reduce the sequence p

0

0

; p

0

; p

0

1

; p

1

; p

0

2

to a sequence p

0

0

; q

0

; q

0

0

; p

0

1

; p

0

2

(where q

0

is \small"), or to a shorter sequence. By iterating the

process, one yields a sequence p

0

0

; q

0

; q

0

1

; : : : ; q

s

; q

0

s

(with q

0

s

= p

r

) satisfying the conditions

of the lemma. �

The result applies to matrices of the form

0

@

+ � +

� �f �

� � �g

1

A

and

0

@

+ � �

� �f �

� � �g

1

A

Symmetric results (with hv instead of ht) can be shown for matrices of the form

0

@

+ + �

� �f �

� � �g

1

A

and

0

@

+ � �

� �f �

� � �g

1

A

These 4 matrices cover all the cases of class 4.
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Lemma 38, allows us to apply the pigeon hole principle to the points of a reduced path. Since

there are �nitely many points such that k

2

� y

q

i

� k

0

2

(� d

1

) ^ �g � z

q

i

� � (� d

2

) or

x

q

0

i+1

� k

1

^ (y

q

0

i+1

� d

1

_ z

q

0

i+1

� d

2

), for a su�ciently long path, some xy-, yz- or xz-values

must appear twice. This yields a three dimensional pattern that either preserves x and y, y

and z, or x and z.

What remains is to show that this pattern can be computed in advance, and that it is the

same for all paths. Let us assume that for some q

i

0

, y

q

i

0

= y

q

i

j

and z

q

i

0

= z

q

i

j

, for several q

i

j

,

j = 1; 2; : : : and i

j

> i

0

. That is, by the pigeon-hole principle, some yz-values occurs over and

over again. Furthermore suppose �y

q

i

0

+fz

q

i

0

� 0 or gy

q

i

0

+�z

q

i

0

� 0. By proposition 12, there

exists an in�nite path in the vt-plane starting at q

i

0

(and at all q

i

j

). In particular, one may

choose a path that makes z invariant. Call this path w. Then w = kh0; g; �i

T

where k = g��
�.

Thus we reach a point q

0

i

0

= q

i

0

+w. We have x

q

0

i

0

= x

q

i

0

�(�g���)(g��
�). Since z

q

0

i

0

� �g,

assuming x

q

i

0

� d for some constant d, 
x

q

0

i

0

+ ez

q

0

i

0

� 0 or gx

q

0

i

0

+ �z

q

0

i

0

� 0 must hold so

that there exists an in�nite path in the ht-plane leaving q

0

i

0

. Once again we may choose a path

that keeps z invariant. Call this path w

0

. Then w

0

= k

0

hg; 0; 
i

T

where k

0

= �gf + ��. Thus

we reach a point q

00

i

0

= q

0

i

0

+w

0

= q

i

0

+w

00

, where w

00

= w

0

+w = hk

0

g; kg; k�+k

0


i

T

. It is easy

to verify that y

q

00

i

0

= y

q

i

0

and z

q

00

i

0

= z

q

i

0

hold. Furthermore, x

q

00

i

0

= x

q

i

0

� gD hold, where

D =

�

�

�

�

�

�

�e �� 


�� �f �

� � �g

�

�

�

�

�

�

Thus, w

00

is a vt-pattern. We will now show that

(h+v+t)

�

!

can be expressed in terms of w

00

under certain assumptions.

1. Assume that there is a unique minimal solution to

y(h; v; t) = ��h �fv +�t = 0

z(h; v; t) = �
h +�v �gt = 0

say s

min

. All other solutions are of the form s = ls

min

for some l.

2. Assume s

min

makes x strictly increase.

3. By the path reduction and the pigeon hole principle, either for q

0

i

some xz-values repeat,

or for q

i

some yz-values repeat. Assume that for q

i

some yz-values repeat.

4. By (3), we get a solution to y(h; v; t) = 0 and z(h; v; t) = 0. By 1, if y

q

i

= y

q

i

0

and

z

q

i

= z

q

i

0

for some q

i

and q

i

0

such that q

i

� q

i

0

it must be that q

i

0

= q

i

+ ls

min

for some

l. By (2), all solutions make x increase. Since we start with x � �e, after a bounded

number of q

i

:s we reach q

i

0

say, such that x

q

i

0

� d for some constant d.

5. Assume q

i

0

satis�es �y

q

i

0

+ fz

q

i

0

� 0 or gy

q

i

0

+ �z

q

i

0

� 0. By the reasoning above, the

pattern w

00

is applicable at q

i

0

.

6. By (4), q

i

0

su�ciently far from q

i

0

, is of the form q

i

0

= q

i

0

+l

0

w

00

, and by (5), q

i

0

�

�

w

00

!

q

i

0

.

7. q

i

0

can be chosen such that it is connected to p

0

0

by a bounded number of planes (the

bound is independent of p

r

and p

0

0

).

If one assumes that

�

�

�

�

�e 


� �g

�

�

�

�

< 0
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one may reason analogously for xz-values.

If s

min

decreases x, one reasons as above except that one starts from the the end p

0

0

and

go backwards towards p

r

. If s

min

keeps x invariant, the determinant D is zero, which we as-

sume it is not.

If q

i

0

does not satisfy �y

q

i

0

+ fz

q

i

0

� 0 or gy

q

i

0

+ �z

q

i

0

� 0, the algorithm in sectition 6

can be adapted to compute a pattern u such that q

i

0

�

�

u

!

q

i

0
for q

i

0
su�ciently far from q

i

0

.

We summarize this section as

Theorem 13:

Consider the matrix

� =

0

@

�e �� 


�� �f �

� � �g

1

A

where �; 
; �; � � 0 and where both planar vt-patterns make x decrease. Assume that there is

a unique minimal solution to the equations

y(h; v; t) = ��h �fv +�t = 0

z(h; v; t) = �
h +�v �gt = 0

Then the �xpoint is given by

p

(h+v)

�

(h+t)

�

(v+t)

�

(h+v+t)

�k

�

�

u

(h+v+t)

�k

(h+t)

�

(v+t)

�

!

p

0

_

p

(h+v)

�

(h+t)

�

(v+t)

�

((h+t)

�

(v+t)

�

)

�k

0

�

�

w

00

(v+t)

�

(h+t)

�

(v+t)

�

!

p

0

�

11 Fixpoint Plots

In this section we show plots of example programs with three recursive rules. We give examples

for classes 2, 3 and 4. Needless to say, only an initial segment is shown since the �xpoints are

in�nite in general. The orientation of the �gures in terms of h, v and t is:

6

-





�

h

t

v

The �gures represents all the possible paths associated with the nondeterministic application

of all the rules.

11.1 class 2

� =

0

@

�1 3 �7

�1 �2 5

4 1 �2

1

A

The patterns in the vt-plane are h0; 5; 2i

T

(which keeps y invariant) and h0; 2; 1i

T

(which keeps

z invariant). There is no three dimensional pattern preserves y and z Note that [


vt

] is reached

after some initial segment.
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Starting with the base value h�10;�6; 6i

T

one gets the �xpoint ploted in �gure 61.
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15

0

5

10

15

Figure 61

11.2 class 3 increasing pattern

Consider the matrix

� =

0

@

�1 �3 1

�3 �1 2

2 2 �1

1

A

The patterns in the vt-plane are h0; 1; 2i

T

(which keeps y invariant) and h0; 2; 5i

T

(which keeps

z invariant). The pattern h0; 1; 2i

T

increases x.

Starting with the base value h�3;�4; 1i

T

one gets the �xpoint ploted in �gure 62.

Let us give another example of a program belonging to this class. Consider the matrix

� =

0

@

�2 �1 3

�1 �1 2

3 3 �5

1

A

The patterns in the vt-plane are h0; 3; 1i

T

(which keeps y invariant) and h0; 5; 2i

T

(which keeps

z invariant). The pattern h0; 3; 1i

T

keeps x invariant.

Starting with the base value h21; 10;�36i

T

one gets the �xpoint ploted in �gure 63.
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11.3 class 3 decreasing pattern

Consider the matrix

� =

0

@

�1 �3 1

�5 �1 2

2 2 �1

1

A

The patterns in the vt-plane are h0; 1; 2i

T

(which keeps y invariant) and h0; 2; 1i

T

(which keeps

z invariant). Both patterns decrease x.

Starting with the base value h�3;�4; 1i

T

one gets the �xpoint ploted in �gure 64.
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11.4 class 4 increasing pattern

Consider the matrix

� =

0

@

1 �3 1

�3 �1 2

2 2 �1

1

A

The patterns in the vt-plane are h0; 1; 2i

T

(which keeps y invariant) and h0; 2; 1i

T

(which keeps

z invariant). The pattern h0; 1; 2i

T

increase x.

Starting with the base value h�3;�4; 1i

T

one gets the �xpoint ploted in �gure 65.

11.5 class 4 decreasing pattern

Consider the matrix

� =

0

@

1 �3 1

�5 �1 2

2 2 �1

1

A
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The patterns in the vt-plane are h0; 1; 2i

T

(which keeps y invariant) and h0; 2; 1i

T

(which keeps

z invariant). Both patterns decrease x.

Starting with the base value h�3;�4; 1i

T

one gets the �xpoint ploted in �gure 66.

12 Class 5

Let us consider class 5, which has not yet been treated, and in particular, to matrices of the

form

0

@

� + �

� � +

+ � �

1

A

(see lemma17 in section 5). We are going to see informally that, contrary to the cases studied so

far, the least �xpoint cannot be expressed under a linear arithmetic form. The underlying rea-

son for such a di�erence, is that for such matrices, the possitive subspace, x � 0 ^ y � 0 ^ z � 0

(that is, a subspace where a co-pattern of constant size is applicable), is no longer accessible

from the origin through a constant number of planes.

This subspace is now only accessible from the origin through a \generating spiral" that rolls

around the negative subspace, x < 0 ^ y < 0 ^ z < 0 (from this generating spiral, start also

some \secondary spirals" that end into the subspace x < 0 ^ y < 0 ^ z < 0 before having

a chance of reaching the positive subspace). This is illustrated in �gures 67 and 68 where the

matrix is

� =

0

@

�1 3 �1

�1 �1 2

2 �1 �1

1

A

and the base values are respectively h128;�293;�1i

T

and h26;�62;�1i

T

. The xyz values of
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consecutive vertices (corners) of the generating spiral are linked together through a recurrence

relation. We explain the computation of this recursive relationship for the matrix chosen above

as an example, but the computation is general.

Let us suppose that we start from a point p

0

such that

hx

p

0

; y

p

0

; z

p

0

i

T

= hx

0

;�y

0

;�1i

T

where x

0

; y

0

� 0 (and satisfy some linear relationship that will be explained later on).

Since an h-move decreases x by 1, it is possible to apply x

0

+ 1 horizontal steps thus reaching

a point p

0

0

(that, is p

0

h

x

0

+1

!

p

0

0

) such that

hx

p

0

0

; y

p

0

0

; z

p

0

0

i

T

= h�1; 3x

0

+ 3� y

0

;�x

0

� 2i

T

Provided that 3x

0

+ 3 � y

0

, one can apply 3x

0

+ 4� y

0

vertical steps to reach a point p

00

0

(that

is, p

0

0

v

3x

0

+4�y

0

!

p

00

0

) such that

hx

p

00

0

; y

p

00

0

; z

p

00

0

i

T

= h�3x

0

� 5 + y

0

;�1;�x

0

+ 6� 2y

0

i

T

Finally, one can apply 5x

0

+ 7� 2y

0

transversal steps, provided that 5x

0

+ 7 � 2y

0

, to reach a

point p

1

(that, is p

00

0

h

5x

0

+7�2y

0

!

p

1

) such that

hx

p

1

; y

p

1

; z

p

1

i

T

= h7x

0

+ 9� 3y

0

;�5x

0

� 18 + 2y

0

;�1i

T

= hx

1

;�y

1

;�1i

T

Therefore, through a h

�

v

�

t

�

(\helicoidal") path, we have linked p

0

to p

1

, and x

0

; y

0

; x

1

; y

1

are

related to each other through the linear relationship

�

x

1

�y

1

�

=

�

7 3

�5 �2

��

x

0

�y

0

�

+

�

9

�8

�
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Therefore, a sequence of vertices p

0

; p

1

; p

2

; : : : ; p

n

with corresponding xyz-values hx

i

;�y

i

;�1i

T

such that hx

i+1

; y

i+1

i and hx

i

; y

i

i are related by the recurrence equation above, are connected

as p

i

h

�

v

�

t

�

!
p

i+1

provided that

x

0

� 0

3x

0

+3 � y

0

5x

0

+7 � 2y

0

x

1

� 0 that is: 7x

0

+9 � 3y

0

3x

1

+3 � y

1

that is: 16x

0

+22 � 7y

0

5x

1

+7 � 2y

1

that is: 25x

0

+52 � 18y

0

x

2

� 0 that is: 34x

0

+82 � 29y

0

3x

2

+3 � y

2

that is: 77x

0

+110 � 34y

0

5x

2

+7 � 2y

2

that is: 120x

0

+123 � 53y

0

.

.

.

It is always possible to choose the values of x

0

and y

0

so that the spiral makes as many rolls

as one desires (i.e. so that the sequence of vertices p

0

; p

1

; p

2

; : : : ; p

n

is as long as desired).

In the above example, starting with the base value h128;�293;�1i

T

, one yields the sequence

h128;�293;�1i

T

, h26;�62;�1i

T

,

h5;�14;�1i

T

, h2;�5;�1i

T

before reaching the positive subspace.

The points p

i

are not expressible as a linear arithmetic formula (the x

i

- and y

i

-values are

roughly divided by a factor of 5 when going from p

i

to p

i+1

). This implies that the �xpoint

itself cannot be expressed as a linear arithmetic formula because, otherwise, the generating spi-

ral (and therefore the points p

i

) would be expressible as a linear arithmetic formula by �ltering

out points from the lfp, as explained hereafter.

If the lfp was a linear arithmetic formula G, one could indeed describe describe the gener-

ating spiral S by excluding the secondary spirals from G. It is more convenient, actually, to

describe the complement of S by characterizing the points of G, which are accessible only via

secondary spirals

p 2 G� S , p 2 G ^ 9q < p :

0

B

B

B

B

B

B

B

B

@

q 2 G

^

q + 1

h

2 G

^

q + 1

v

2 G

^

q + 1

v

< p

1

C

C

C

C

C

C

C

C

A

_

0

B

B

B

B

B

B

B

B

@

q 2 G

^

q + 1

v

2 G

^

q + 1

t

2 G

^

q + 1

t

< p

1

C

C

C

C

C

C

C

C

A

One can then express the points p

i

from the above formula, by taking the complement S of the

above expression, then by intersecting S with the set of points having �1 as z-value. If G was

a linear arithmetic formula, the points p

i

would also be expressible under a linear arithmetic

form, which is impossible.

Finally, let us note that, similarly, one can link a vertex h�1; y;�zi

�

to a vertex h�1; y

0

;�z

0

i

T

through a v

�

t

�

h

�

path, with

�

y

0

�z

0

�

=

�

7 5

�3 �2

��

y

�z

�

+

�

11

�6

�
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Likewise, one can link a vertex h�x;�1; zi

T

to a vertex h�x

0

;�1; z

0

i

T

through a t

�

h

�

v

�

path,

with

�

�x

0

z

0

�

=

�

�3 �5

5 8

��

�x

z

�

+

�

�9

12

�

Another matrix of class 5 is analysed in appendix A.

13 Recapitulation

In this report we have studied a special form of Datalog programs made of 3 recursive rules with

arithmetical cosntraints. We have decomposed such programs in three groups (hierarchic, peri-

odic and spiralling) according to the signs of the coe�cients of their \incrementation matrices".

Most of the report has been devoted to the study of the periodic group (classes 2, 3 and

4), whose incrementation matrices contain \central" submatrices of the form

�

� +

+ �

�

We have shown that any path of the least �xpoint is made of the repetition of a pattern (pre-

ceded and followed by pre�x- and post�x-paths, which are contained within a constant number

of planes).

Most of the non-periodic programs fall into the group of hierarchic programs (class 1), whose

incrementation matrices are, roughly speaking, characterized by a row or a column of coe�-

cients of the same sign. For these programs, every path of the least �xpoint is contained in at

most 4 planes.

Finally we have stressed the existence of a group of programs (class 5), which correspond

to 4 speci�c cases (over a total of 512) for which the paths are nonlinear, but have a vortical

form, spiralling around the negative subspace x < 0 ^ y < 0 ^ z < 0.
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A Another example of a program of class 5

Let us �nally look at an example that illustrates the suprisingly complex behaviour of the sim-

ple class of programs we study.

Consider the matrix

� =

0

@

�1 3 �2

�2 �1 3

3 �2 �1

1

A

whose determinant is zero. Note that every rule lets the expression (x + y + z) invariant.

Starting with the base value h1;�5;�1i

T

we get the �xpoint shown in �gure 69. As can be

0 1 2 3 4 5 6 7 8
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Figure 69

seen, the only admissible path is h

2

v

2

t

2

h

2

v

2

t

2

: : :. The pattern h1; 1; 1i

T

preserves x, y and z,

(that is, � = h1; 1; 1i

T

solves the equation �

T

� = 0), but no path w such that w = h1; 1; 1i

T

is

admissible at the origin.

Now choose h2;�7;�1i

T

as base value. The �xpoint is shown in �gure 70. In this case the

only admissible path is h

3

v

3

t

3

h

3

v

3

t

3

: : :. We emphasize that only the base value has changed

and not the matrix.

The base value h5;�13;�1i

T

yields the �xpoint is shown in �gure 71. Now the spiral is

of the form h

6

v

6

t

6

h

6

v

6

t

6

: : :. Also some secondary spirals branch out from this spiral, but they

all end up in the negative area (x < 0 ^ y < 0 ^ z < 0).

By choosing the base value carefully, it is possible to construct a �xpoint whose only cycle

is h

n

v

n

t

n

for any n. Clearly this means that a linear arithmetic expression independent of the

base value cannot be given. Since the cycle must be expressed by a formula of the form

0

�

�

!

p

0

, 9n : p

0

= n � �
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where � depends on the base value (and thus is not a constant), such an expression is not a lin-

ear arithmetic formula. This suggests that a linear arithmetic expression for the �xpoint could

be given if one sacri�se the indpendense of the base value. However, choosing the base value

as h2;�10; 0i

T

yields the �xpoint shown in �gure 72, which has a qualitatively very di�erent

appearance. In this case all cycles h

n

v

n

t

n

such that n � 6 will appear at some point. This
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Figure 72

�xpoint is a \vortex" with a \hole" (x < 0 ^ y < 0 ^ z < 0) in the core, and the admissible

paths spirals around it in ever growing cycles. The �xpoint is not a cone since the angles of

the planes enclosing it grows according to a geometric progression, as discussed in section 12,

that converges to some limit.

This intuitively explains why linear arithmetic expressions cannot be given in general for these

programs, and it also gives a hint to the di�culties of dealing with programs with associated

matrices that has zero determinants (or subterminants). The pigeon-hole approach does not

work for these programs since it is not possible to derive upper bounds for the construction of

the graph.
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B Fixpoint Graphics

The pictures illustrating �xpoints has been generated using gnuplot. The program below com-

putes (an initial segment of) the �xpoint and generates a data �le that can be read by gnuplot.

To generate a �xpoint plot for the program with matrix

� =

0

@

�1 2 �3

�1 �5 7

13 4 �4

1

A

say, with base value, h�13;�5; 0i

T

, the predicate

coefficients([-13, -5, 0,

-1, 2, -3,

-1, -5, 7,

13, 4, -4]).

is added to the program. The goal

botup(15).

will compute the �xpoint bottom-up to a level of 15 rule applications, and write the result on

the �le

'pointpictures/pointset_3d.dat'

This is simply the set of points corresponding to the number of horizontal, vertical and transver-

sal moves that are reached. The following sequence of commands to gnuplot will plot the result:

set parametric

set nohidden3d

set data style points

splot "pointpictures/pointset_3d.dat" using 1:2:3 notitle

An example of a plot of this type is seen in �gure 62. The goal

pairs_botup(15).

works as

botup(15).

but now the �xpoint is represented as pairs of points and thus keeping the information about

which rules are applicable at which point. The result is a directed acyclic graph (actually a

�nite piece of

(h+v+t)

�

!

). The following sequence of commands to gnuplot will plot the result:

set parametric

set nohidden3d

set data style linespoints

splot "pointpictures/pointset_3d.dat" using 1:2:3 notitle

An example of a plot of this type is seen in �gure 61.
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B.1 Program Code

member(E,[E|_]) :- !.

member(E,[_|L]) :-

member(E,L).

append([],L2,L2).

append([A|L1],L2,[A|L3]) :-

append(L1,L2,L3).

%======= [Dh,Dv,Dt,Dx,Dy,Dz,Phi_x,Phi_v,Phi_t] ===============

step([H,V,T,X,Y,Z],

[Dh,Dv,Dt,Dx,Dy,Dz,Phi_x,Phi_y,Phi_z],

[H_new,V_new,T_new,X_new,Y_new,Z_new]) :-

X >= Phi_x,

Y >= Phi_y,

Z >= Phi_z,

X_new is X + Dx,

Y_new is Y + Dy,

Z_new is Z + Dz,

H_new is H + Dh,

V_new is V + Dv,

T_new is T + Dt.

children([],_,Kids,Kids).

children([Operator|Ops],Point,Previous_kids,New_kids) :-

(step(Point,Operator,New_point) ->

(member(New_point,Previous_kids) ->

children(Ops,Point,Previous_kids,New_kids)

; children(Ops,Point,[New_point|Previous_kids],New_kids))

; children(Ops,Point,Previous_kids,New_kids)).

generation([],_,New_generation,New_generation).

generation([Point|Points],Operators,Cumulative,New_generation) :-

children(Operators,Point,Cumulative,New_cumulative),

generation(Points,Operators,New_cumulative,New_generation).

new_generation(Previous_generation,Operators,New_generation) :-

generation(Previous_generation,Operators,[],New_generation).

closure(N,Limit,_,Cumulative_closure,Delta,Closure) :-

N>Limit,!,

append(Delta,Cumulative_closure,Closure).

closure(N,Limit,Operators,Cumulative,Delta,Closure) :-

new_generation(Delta,Operators,New_delta),

append(Delta,Cumulative,New_cumulative),

N_new is N + 1,

closure(N_new,Limit,Operators,New_cumulative,New_delta,Closure).
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closure(Limit,Operators,Base,Closure) :-

closure(0,Limit,Operators,[],Base,Closure).

closure(Limit,Operators,Base,Closure) :-

closure(0,Limit,Operators,[],Base,Closure).

%==================== Output file ==================================

init_gnu_dat_file(Stream) :-

open('pointpictures/pointset_3d.dat',write,Stream).

output_points([],_).

output_points([[H,V,T,_,_,_]|Fixpoint],Stream) :-

output_points(Fixpoint,Stream),

format(Stream,"~0d ~0d ~0d~n",[H,V,T]).

end_gnu_dat_file(Stream) :-

close(Stream).

gnuplot_path(Fixpoint) :-

init_gnu_dat_file(Stream),

output_points(Fixpoint,Stream),

end_gnu_dat_file(Stream).

%============== single points botom-up ================================

botup(Limit) :-

coefficients([A1,A2,A3,

K11,K12,K13,

K21,K22,K23,

K31,K32,K33]),

closure(Limit,[[1,0,0,K11,K12,K13,0,-1000000,-1000000],

[0,1,0,K21,K22,K23,-1000000,0,-1000000],

[0,0,1,K31,K32,K33,-1000000,-1000000,0]],

[[0,0,0,A1,A2,A3]],Clo),

gnuplot_path(Clo).

%===================== pairs ====================================

pairs_children([],_,Kids,Kids,Pairs,Pairs).

pairs_children([Operator|Ops],Point,Previous_kids,New_kids,

Previous_pairs,New_pairs) :-

(step(Point,Operator,New_point) ->

(member(New_point,Previous_kids) ->

pairs_children(Ops,Point,Previous_kids,New_kids,

[[Point,New_point]|Previous_pairs],

New_pairs)

; pairs_children(Ops,Point,[New_point|Previous_kids],

New_kids,

[[Point,New_point]|Previous_pairs],

New_pairs))

; pairs_children(Ops,Point,Previous_kids,New_kids,

Previous_pairs,New_pairs)).
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pairs_generation([],_,New_generation,New_generation,Pairs,Pairs).

pairs_generation([Point|Points],Operators,Cumulative,New_generation,

Cum_pairs,Pairs) :-

pairs_children(Operators,Point,Cumulative,New_cumulative,

Cum_pairs,Cum_pairs2),

pairs_generation(Points,Operators,New_cumulative,New_generation,

Cum_pairs2,Pairs).

new_pairs_generation(Previous_generation,Previous_pairs,Operators,

New_generation,New_pairs) :-

pairs_generation(Previous_generation,Operators,[],New_generation,

Previous_pairs,New_pairs).

pairs_closure(N,Limit,_,_,Pairs,Pairs) :-

N>Limit,!.

pairs_closure(N,Limit,Operators,Delta,Old_pairs,Pairs) :-

new_pairs_generation(Delta,Old_pairs,Operators,

New_delta,Old_pairs2),

N_new is N + 1,

pairs_closure(N_new,Limit,Operators,New_delta,Old_pairs2,Pairs).

pairs_closure(Limit,Operators,Base,Pairs) :-

pairs_closure(0,Limit,Operators,Base,[],Pairs).

%========================================================================

output_pairs([],_).

output_pairs([[[H1,V1,T1|_],[H2,V2,T2|_]]|Fixpoint],Stream) :-

output_pairs(Fixpoint,Stream),

format(Stream,"~0d ~0d ~0d~n",[H1,V1,T1]),

format(Stream,"~0d ~0d ~0d~n~n~n",[H2,V2,T2]).

gnuplot_pairs(Fixpairs) :-

init_gnu_dat_file(Stream),

output_pairs(Fixpairs,Stream),

end_gnu_dat_file(Stream).

%============ pairs of points botom-up ===============

pairs_botup(Limit) :-

coefficients([A1,A2,A3,

K11,K12,K13,

K21,K22,K23,

K31,K32,K33]),

pairs_closure(Limit,[[1,0,0,K11,K12,K13,0,-1000000,-1000000],

[0,1,0,K21,K22,K23,-1000000,0,-1000000],

[0,0,1,K31,K32,K33,-1000000,-1000000,0]],

[[0,0,0,A1,A2,A3]],Pairs),

gnuplot_pairs(Pairs).

%========= coefficients ==============================================

%
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% coefficients([A1,A2,A3, base values

%

% K11,K12,K13, Matrix Phi

% K21,K22,K23,

% K31,K32,K33]).

%

%=====================================================================
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