
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

Disjunctive Scheduling

with Task Intervals

Yves CASEAU

Fran�cois LABURTHE

LIENS - 95 - 25

Disjunctive Scheduling

with Task Intervals

Yves CASEAU

Fran�cois LABURTHE

LIENS - 95 - 25

July 1995

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : caseau@dmi.ens.fr , laburthe@dmi.ens.fr

Disjunctive Scheduling with Task Intervals

Yves Caseau, François Laburthe
{caseau, laburthe}@dmi.ens.fr

LIENS Technical Report n° 95-25

Laboratoire d’Informatique de l’Ecole Normale Supérieure

Département de Mathématiques et d’Informatique

45 rue d’Ulm, 75230 Paris Cedex 05, FRANCE

Abstract ... 2

Résumé .. 3

1. Introduction.. 4

2. Disjunctive Scheduling... 4

2.1. Jobshop scheduling... 4

2.2 The branch and bound scheme with time windows.............. 5

3. Task Intervals and their Application to Scheduling........................ 6

3.1 Intervals as Sets of Tasks ... 6

3.2 Reduction with Intervals.. 8

3.3 Interval Maintenance... 11

3.4 Comparison with related work 13

3.5 Branch & bound ... 13

4. The complete scheduling system.. 16

4.1 An initial solution ... 16

4.2 Local optimization .. 19

4.2.1. Repair... 19

4.2.2. Shuffle .. 20

4.3 Branch and bound... 23

4.3.1. Finding an optimal solution 23

4.3.2. Proofs of optimality ... 23

4.3.3. Optimal solution and proof of optimality

 within a single search tree 25

4.4 Lower bounds .. 25

4.6 The complete procedure. ... 26

4.6.1. an example : MT10... 27

4.6.2. an example : LA21 ... 27

5. Conclusion.. 28

Acknowledgments ... 28

References.. 29

Benchmarks.. 31

1

Abstract

Task intervals were defined in [CL94] for disjunctive scheduling so that, in a
scheduling problem, one could derive much information by focusing on some key
subsets of tasks. The advantage of this approach was to shorten the size of search
trees for branch&bound algorithms because more propagation was performed at
each node.

In this paper, we refine the propagation scheme and use it not only inside a
branch&bound algorithm but also within the framework of local moves and priority
dispatching rules (greedy algorithm). All these techniques are integrated into a
general disjunctive scheduling system which gives lower and upper bounds, finds a
solution, refines it up to optimality and proves optimality.

This system is tested on the standard benchmarks from Muth & Thompson,
Lawrence, Adams et al, Applegate & Cook and Nakado & Yamada (all available in
the OR library). The achievements are the following :

• Window reduction by propagation : for 23 of the 40 problems of Lawrence,
the proof of optimality is found with no search, by sole propagation; for typically
hard 10 ×10 problems, the search tree has less than a thousand nodes; hard problems
with up to 400 tasks can be solved to optimality and among these, the open problem
LA21 is solved within a day.

• Lower bounds that are very quick to compute and outperform by far lower
bounds given by cutting planes. The lower bound for the open problem YAM1 is
improved from 812 to 826.

• A deterministic greedy heuristic which outperforms classical static selection
rules.

• A local optimization algorithm in which several strategies using different
neighborhood structures cooperate : it supports very efficient local moves involving
very little search.

keywords: Jobshop scheduling, branch and bound, local moves, repair, heuristics,

shuffle, propagation, constraints

2

Résumé

Les intervalles de tâches, définis précédemment dans [CL94] permettent pour les
problèmes d’ordonnancement disjonctif de tirer beaucoup d’information de l’examen
de certains ensembles critiques de tâches. L’avantage de cette approche est de réduire
la taille des arbres de recherche dans des algorithmes de types branch&bound en
propageant plus d’information à chaque noeud.
Dans ce rapport, nous raffinons les règles de propagation et les utilisons pour un
algorithme de branch&bound, mais aussi dans le cadre de l’optimisation locale et de
règles de priorité (algorithme gourmand). Toutes ces techniques sont intégrées dans
un système d’ordonnancement disjonctif complet qui produit des bornes supérieures
et inférieures, trouve une solution, la répare et la change jusqu’à arriver à
l’optimalité, puis prouve l’optimalité de la solution. Ce système est testé sur les
problèmes test standards de Muth & Thompson, Lawrence, Adams et al, Applegate
& Cook et Nakado & Yamada (tous disponibles dans la “OR library”). Les succès
sont les suivants:

• Réduction des fenêtres de temps par propagation : pour 23 des 40 problèmes
de Lawrence, la preuve d’optimalité est donnée par simple propagation, sans
recherche; pour des problèmes 10 ×10 réputés difficiles, l’arbre de recherche a
moins de mille noeuds; des problèmes difficiles jusqu’à 400 tâches sont résolus et
parmi eux le problème ouvert LA21 est résolu en un jour de calcul.

• Des bornes inférieures rapides à calculer et bien plus précises que celles issues
des techniques de plans de coupes. La borne inférieure pour le problème ouvert
YAM1 est améliorée de 812 à 826.

• Un algorithme gourmand plus performant que les règles de sélection
classiques.

• Un algorithme d’optimisation locale dans lequel plusieurs stratégies basées sur
différentes structures de voisinages coopèrent, ce qui permet des mouvements locaux
efficaces n’impliquant que très peu de recherche.

mots clés: Ordonnancement d’atelier, branch and bound, optimisation locale,

réparations, heuristiques, algorithmes gourmands, shuffle, propagation, contraintes

3

1. Introduction

Disjunctive scheduling problems are combinatorial problems defined as follows :
a set of uninterruptible tasks with fixed durations that have to be performed on a set
of machines. The problem is constrained by precedence relations between tasks.
Moreover, the problem is said to be disjunctive because a resource can handle only
one task at a time (as opposed to cumulative scheduling problems). The goal is to
order the tasks on the different machines so as to minimize the total makespan of the
schedule. These problems have been extensively studied in the past twenty years and
many algorithmic approaches have been proposed, including branch & bound
([CP 89], [AC 91], [CP 94]), mixed integer programming with cutting planes
([AC 91]), simulated annealing ([VLA92]), tabu search ([Ta 89]), genetic algorithm
([NY 92], [Po 95]). In this paper, we describe a complete scheduling system which

• finds various lower bounds,

• finds quickly a good solution,

• improves the objective by repairing solutions and moving from a solution to a
neighbor one,

• finds the optimal solution,

• proves optimality.

This system is a hybrid algorithm since the algorithmic paradigms are all
different. Nevertheless, the common denominator to all these components is the use
of the propagation engine.

The paper is organized as follows : Section 2 defines scheduling problems and
explains how they can be modelled with time windows and solved with branch and
bound, Section 3 explains the notion of task interval and exposes the reduction rules.
Finally, Section 4 describes the full algorithm and reports tests on a large set of
benchmarks.

2. Disjunctive Scheduling

2.1. Jobshop scheduling

A scheduling problem is defined by a set of tasks T and a set of resources R.
Tasks are constrained by precedence relationships, which bind some tasks to wait for
other ones to complete before they can start. Tasks that share a resource are not
interruptible (non-preemptive scheduling) and mutually exclusive (disjunctive versus
cumulative scheduling). The goal is to find a schedule that performs all tasks in the
minimum amount of time.

Formally, to each task t , a non-negative duration d(t) and a resource use(t) are
associated. For precedence relations, precede(t1 , t2) denotes that t2 cannot be
performed before t1 is completed. The problem is then to find a set of starting times
{time(t)}, that minimizes the total makespan of the schedule defined as
Makespan := max{time(t)+ d(t)} under the following constraints:

∀ t1 , t2 ∈T , precede(t1 , t2) ⇒ time(t2) ≥ time(t1) + d(t1)

4

∀ t1 , t2 ∈T , use(t1) = use(t2) ⇒ time(t2) ≥ time(t1) + d(t1) ∨
time(t1) ≥ time(t2) + d(t2)

Job-shop scheduling is a special case where the tasks are grouped into jobs

j1 ,..., j n. A job j i is a sequence of tasks j1
i ,..., jm

i that must be performed in this

order, i.e., for all ∀k ∈{1,..., m − 1}, one has precede(jk
i , jk+1

i). Such problems are

called n × m problems, where n is the number of jobs and m the number of
resources. The precedence network is thus very simple: it consists of n “chains”. The
simplification does not come from the matrix structure (one could always add empty
tasks to a scheduling problem) but rather from the fact that precedence is a
functional relation. It is also assumed that each task in a job needs a different

machine. For a task jk
i , the head will be defined as the sum of the durations of all its

predecessors on its job and similarly the tail as the sum of the durations of all its
successors on its job, e.g.:

 head(jk
i) = d(jl

i

l=1

k−1

∑) and tail(jk
i) = d(jl

i

l=k+1

m

∑) .

 When one allows the precedence relations to form a more complex network, the
problem is referred to as a disjunctive scheduling problem. Although general
disjunctive scheduling problems are often more appropriate for modelling real-life
situations, little work concerning them has been done (they have been studied more
by the AI community than by Operations Researchers and most of the published
work concerns small instances, like a famous bridge construction problem with 42
tasks [VH89])
The interest of n × m scheduling problems is the attention they have received in the
last 30 years. The most famous instance is a 10 × 10 problem of Fisher & Thompson
[MT63] that was left unsolved until 1989 when it was solved by Carlier & Pinson
[CP89]. Classical benchmarks include problems randomly generated by Adams, Balas
& Zawak in 1988 [ABZ88], Applegate & Cook in 1990 [AC91] and by Lawrence in
1984 [La84]. Of the 40 problems published by Lawrence, one is still unsolved (a 20
× 10 referred to as LA29). The typical size of these benchmarks ranges from 10 × 5
to 30 × 10.

2.2 The branch and bound scheme with time windows

Branch and bound algorithms have, however, undergone much study, and the
method effectively used in [CP89] to solve MT10 is a branch & bound scheme called
“edge-finding”. Since a schedule is a set of orderings of tasks on the machines, a
natural way to compute them step after step is to order a pair of tasks that share the
same resource at each node of the search tree (which corresponds to getting rid of a
disjunction in the constraint formulation). There are many variations depending on
which pair to pick, how to exploit the disjunctive constraint before the pair is
actually ordered, etc., but the general strategy is almost always to order pairs of
tasks [AC91].

The domain associated with time(ti) is represented as an interval : to each task ti,

a window ti , ti − d(ti)[] is associated, where ti is the minimal starting date and ti is

the maximal completion date (thus the starting date time(ti) must be between ti and

5

ti − d(ti)). During the search, a partial ordering (<<) of tasks is built, with the

following meaning :
t1 << t2 ⇔ time(t1) + d(t1) ≤ time(t2)

In order to prune efficiently the search space, one needs to be able to propagate
the decisions taken at each node of the search tree. Thus, whenever an ordering is
selected, say t1 << t2, the bounds of the domains can be updated as follows:

t2 ≥ t1 + d(t1) and t1 ≤ t2 − d(t2). With this model, inconsistency can be detected

when one has t − t < d(t) for some task t (t can no longer fit in its window).

3. Task Intervals and their Application to Scheduling

This part describes a redundant model, called task intervals, -introduced in
[CL94]- that gives better insight about the feasibility of the scheduling problem than
solely information from time windows. The idea is to focus not only on tasks but on
sets of tasks sharing the same resource in order to reflect the disjunctive sharing
constraints. This additional model has several interests: first, it allows us to
propagate more information from an ordering decision between two tasks and so
reduces the size of search trees, second, it detects inconsistencies early and third, it is
particularly well-suited for a branching scheme using edge-finding.

3.1 Intervals as Sets of Tasks

A trick that is often used with algorithms that shrink domains is to add redundant
constraints to improve pruning. The most obvious redundant constraint that is used
by all constraint-based schedulers is the resource interval constraint. If we denote by
T (r) the set of tasks that use the resource r, T (r) = min{t, t ∈T (r)} the earliest

starting time of all tasks in T (r) and T (r) = max{t, t ∈T (r)} the latest completion
time of all tasks in T (r), the task constraint

t − t ≥ d(t)

also applies to T (r) with d T r()() = {d(t), t ∈T (r)}∑ :

T (r) − T (r) ≥ d(T (r)) (1)

If the time window T (r) − T (r) is not sufficient for all tasks in T (r), this

additional constraint detects an inconsistency, whereas without this constraint, some
ordering on r would have been necessary before an inconsistency for a t ∈T (r)
could have been detected. The novel idea of task intervals is to apply this constraint
(1) to all subsets of tasks that use a common resource. For an n × m problem, this
generates m × (2n -1) constraints. Fortunately, checking them on all subsets of tasks
is equivalent to checking it only on task intervals, which are at most m × n2.

Definition : If t1 and t2 are two tasks (possibly the same) satisfying :

use(t1) = use(t2) = m (the tasks share the same resource)

t1 ≤ t2 and t1 ≤ t2

6

then the task interval [t1, t2] is the set of tasks t such that use(t)=m, t1 ≤ t and

t ≤ t2 . By convention, if t1 and t2 do not verify the order condition

(t1 ≤ t2 ∧ t1 ≤ t2), then [t1, t2] will denote the empty set. Task intervals that are

not empty are called active.

Note that to any set of tasks S = {t1 ,..., ti}, we can associate tp and tq such that

tp = S and tq = S . Since d([tp , tq]) ≥ d(S) by construction, the equation (1) for

[tp , tq] subsumes that for S. On all following figures, the time will be represented

on a horizontal axis, each task t on a horizontal line with two brackets to denote its

time window1 t, t[] and a box of length d(t) between both brackets. Figure 1 shows

an example of a task interval I = t1 , t1[]. The corresponding window is represented

by larger brackets.

[]
I = t1 I = t1d(s)

[
[]

]
t3

t2

t3

t2

Figure 1: Task Intervals :

I = t1 , t1[] represents the set {t1 , t2 , t3}

By construction, there are at most m × n2 task intervals to consider, which is only
n times more than the number of tasks. It is possible to further reduce the number
of task intervals that must be considered if we notice that the same time window may
be covered by several pairs of tasks (when two tasks have a bound of their time
windows in common). We can use a total ordering on tasks to select a unique task
interval to represent each time window. However, the maintenance of such “critical”
task intervals has shown to be too computationally expensive to gain any benefits
from a reduced number of task intervals.

Implementation note:
Each task interval can be seen as the representation of a dynamic constraint. In
addition to the two bounds t1 and t2 that do not change, we need to store for each
interval [t1, t2] its set extension (for propagation [Section 4.2] and maintenance
[Section 4.3]). To see if an interval is active, we simply check if its extension is not
empty. The set extension is a dynamic value that will change throughout the search
and that needs to be backtracked. To avoid useless memory allocation, it is
convenient to code it with a bit vector mechanism. Task intervals are stored in a
matrix with cross-access, so that we have direct access to the set of intervals with t

as a left bound, denoted t, _[] and to the set of intervals with t as a right bound,

denoted _ , t[].
In the rest of the paper, we shall call the slack of an interval I , written ∆(I), the

value I − I − d(I).

1 To avoid confusion, we will reserve the word “interval” for task intervals

and the expression “time window” for the laps of time during which the task

may be performed.

7

3.2 Reduction with Intervals

In addition to the constraints from the equation (1), we use three sets of reduction
rules, corresponding respectively to ordering, edge finding and exclusion.

Ordering rules use the precedence relation among tasks and a dynamic
ordering relation << that will be build during the search (cf. Section 4.1). The rules

are as follows.

∀t1 , t2 , precede(t1 , t2) ∧ t2 < t1 + d(t1)() ⇒ t2 := t1 + d(t1)

∀t1 , t2 , t1 << t2 ∧ t2 < t1 + d(t1)() ⇒ t2 := t1 + d(t1)

Symmetrical rules apply to upper bounds.

The second set of rules, edge finding, determines if a task can be the first or the
last to be performed in a given task interval. For a task t belonging to a task interval
S , the value of S − t − d(S) is considered. If it is strictly negative, we know that t

cannot be first in S , therefore t cannot start before the earliest ending time over all
other tasks in S (cf. Figure 2). Thus the rule that we apply is the following :

∀t,S, (t ∈S ∧ S − t − d(S) < 0) ⇒ t ≥ min ti + d(ti), ti ∈S − {t}{ }
Here also, a symmetrical rule applies to see if a task can or cannot be the last

member of a given interval. Finding the first and last members of task intervals is
known as “edge finding” [CP89] [AC91] and is a proven way to improve the search.
We will complete these two rules in Section 4.1 with a search strategy that also
focuses on edge finding.

[]
s = t1 s = t2d(s)

[]t

s - t (too small)

Figure 2: Edge Finding

The previous rule has one drawback, however, because it requires the

computation of min ti + d(ti), ti ∈S − {t}{ }, which is expensive. If we implement this

rule with a rule-based language, this rule is likely to be evaluated for many tasks for
which it will not increase t. Since using a rule-based implementation has many other
advantages (readability, maintainability and flexibility), we improve the rule by
using t1 + d(t1) (the left bound of the interval s) as an oracle for

min ti + d(ti), ti ∈set(S) − {t}{ }. The rule now becomes :

∀t,S = [t1 , t2], (t ∈S ∧ S − t − d(S) < 0 ∧ t < t1 + d(t1)) ⇒ t ≥ min ti + d(ti), ti ∈S − {t}{ }
The last set of rules, exclusion , tries to order tasks and intervals. More

precisely, we check to see if a task can be performed before an interval to which it
does not belong (but which uses the same resource). This is done by computing the

8

value of S − t − d(S) − d(t) (same as previously but t no longer belongs to S). If it is
negative, then t cannot be performed before S , thus t must be performed after some
tasks in S . In all cases, t must be performed after the first task in S , but in two
special cases, it can be deduced that t must be performed after all tasks in S . Either
because the interval S is too tight to allow t to be performed between two tasks of
S , or because t is already greater than the latest start over all possible latest task in
S . The functions packed? and is_after? respectively detect these two situations :

packed?(S,t) := S − S > d(S) + d(t)()
is_after?(t,S) := t + d(t) > max ti − d(ti), ti ∈S{ }()
Finally, we use the following rule (and its symmetrical counterpart):

∀t,S = [t1 , t2], (t ∉S ∧ S − t − d(S) − d(t) < 0) ⇒
if packed?(S,t) or is_after?(t,S)

then t ≥ S + d(S) ∧ ∀ti ∈S, ti ≤ t − d(t)

else t ≥ min ti + d(ti), ti ∈S{ }

[]
S

[]t t

∆

t

S

Figure 3: Exclusion - case packed
(packed?(S,t) = (d(t) > ∆))

[]
S = t1 S = t2

[]t t

t2

t1

lsl (latest start of last)

t2t1

t

Figure 4 Exclusion - case where t is after S
(is_after?(S,t) = (t + d(t) > lsl))

Finer tuning of propagation

Some refinements can be made for the edge-finding and the exclusion rules (case
unpacked). Indeed, more information can be propagated when we reach the
conclusion that a task t is performed after some other task in a task interval S .
When we come to this conclusion, the quantity D = d(S ∪{t}) − (S − t) is strictly
positive. And so, there exists a subset V of tasks of S , which durations account for
more than D, such that t is performed after V and before S − V . The candidates to

be this subset V are V ⊆ S such that V + d(S ∪{t}) ≤ S{ } and S itself. If S is the

9

only candidate, t is increased to S + d(S), otherwise, t can be increased to a value x

defined by :

x = min V + d(V) for V ⊆ S such that V + d(S ∪{t}) ≤ S{ }
Computing such a value x exactly is too long (it amounts to a knapsack problem).

However, the first lower bound used (i.e. min t + d(t) for t ∈ S{ }) is too gross an

estimate of x . We refined it with the value computed by the following algorithm :

[after first(S:Task_Interval, t:Task, D:integer) : integer

 -> let v := ∞ in

(for t’ in S - {t}

let d’ := d(t’), v’ := t’ + d’ in

(if (v’ > v) (if (d’ ≥ D) v := v’

 else D := D - d’)),

if (v = ∞) v := S + d(S),

v)]

Note also that the function is_after? can be sharpened to take the dynamic
ordering into account. Indeed the computation of the latest start of the last task in S
can ignore tasks t’ for which the ordering t' << t has already selected (at a node of

the search tree).

Triggering of these rules

If all these equations were checked each time some new information is drawn, the
system would be terribly slow. So, deciding when to trigger the evaluation of these
equations is a key point in the algorithm. There is fine tradeoff between too much
triggering which brings redundant checks and is too slow, and not enough triggering
which is faster but misses consequences that could have been drawn.

• Ordering rules for a task t are triggered upon changes of t , t , or <<. This
corresponds to a classical dynamic reevaluation of the PERT.

• Concerning edge finding, the rule to decide whether t could be scheduled first
in S is triggered upon changes of t , S but also S . Indeed, changes to S will not
change the triggering condition of the rule, but may change its conclusion, by
changing the value of the bound after first(S,t,D). The rule is not triggered upon
changes to the set extension of S , because it prunes too little for its cost in time.

• The exclusion rule that decides whether a task t can be scheduled before all
tasks of S or not is triggered upon changes to t , S and to the set extension of S , but
also upon changes to S (which might change the Boolean value of packed?(S,t))

For rapidity purposes, we also preferred to group the triggering upon time
window bounds for the two edge finding and the two exclusion rules into a single
one. It avoided redundant checks. The code also contains guards to avoid propagating
the consequences of a change concerning a task t as soon as one of the consequences
is to further reduce the window of t .

Note that unlike many problems solved with propagation rules, these rules may
not be confluent. With the simplest version of the exclusion rule -case unpacked-
(i.e. without the computations of after_first), these rules are not commutative (since
applying them to a task interval I no longer subsumes it for all other subsets of I

10

[BL95]). Hence, it is not clear whether propagation always leads to the same fix point
or not. It remains an open problem to find an appropriate set of reduction rules
(subsuming this one) that can be proved to be confluent.

 Implementation note
Finally, it must be mentioned that we have implemented these reduction rules with
production rules in CLAIRE (following previous examples described in [CK92] and
[CGL93]). A CLAIRE production rule contains two parts : an expression exp and a
logical condition cond. The system formally differentiates cond w.r.t. the relations
involved in cond and specified to be triggers and produces “demons” that watch over
updates to these relations in order to evaluate exp when cond becomes true. In the
case of scheduling, the conclusion exp always consist in narrowing time windows
(via a functional call to increase and decrease, which are described below in section
3.3)

The declarative style of constraint based programming with production rules
helped us in keeping the program elegant and small (400 lines without the
heuristics). The control over the propagation and triggering mechanisms offered to
the user is of great help for tuning the algorithm.

Unlike many problems solved with propagation rules, these rules may not be
confluent. With the simplest version of the exclusion rule -case unpacked- (i.e.
without the computations of after_first), these rules are not commutative (since
applying them to a task interval I no longer subsumes it for all other subsets of I).
Hence, it is not clear whether propagation leads to a fix point or not. It remains an
open problem to find an appropriate set of reduction rules (subsuming this one) that
can be proved to be confluent.

3.3 Interval Maintenance

Taking task intervals into account is a powerful technique that supports focusing
very quickly on bottlenecks. However, the real issue is the incremental maintenance
of intervals (indeed, recomputing all intervals upon each update on a time window
would be much too slow). Resources are interdependent because of the precedence
relationship (as displayed in Figure 5, where the arrows symbolize the precedence
constraints).

resource 1

resource 2

resource 3

Figure 5 Resource Interdependence

While a resource is being scheduled, the changes to the windows of the tasks are
propagated to other resources. We need to be able to compute the changes on task
intervals very quickly (new active intervals, intervals that are no longer active and

11

changes to the set extensions of the intervals). More precisely, there are two types of
events that need to be reacted to: the increase of a t and the decrease of a t .

The correct algorithm for updating t can be derived from the definition of the
set extension of a task interval:

[t1, t2] = t, t1 ≤ t ∧ t ≤ t2{ }
From this definition, we see that, when increasing the values of t from n to m,

• we must deactivate intervals [t, t2] if m > t2

• we must remove tasks t’ from active intervals [t, t2] when t' < m

• we must create new active intervals [t1 , t] if n < t1 ≤ m and t1 < t

• we must add t to active intervals [t1 , t2] if n < t1 ≤ m and t < t2

The interesting issues are the order in which we need to perform these
operations, and the detection that we are in a state stable enough to propagate the
changes and trigger the rules. It turns out that negative changes (removing tasks
from set extension) do not need to be propagated, because all the rules we use always
apply to subsets of intervals (i.e., if a rule can be applied to an interval, it could also
be applied to any subset and would not yield more changes). Thus we perform the
two “negative” actions first. Then we need to augment the other intervals, which
requires triggering rules (as the window or the set extension of the interval changes).
This requires that we have set t to its new value m (but not propagated this change
yet because the intervals are not set up properly yet). After this, rules can legally be
triggered, because one can be sure that all intervals have a set extension that can only

be smaller than what it should be. Therefore, since all rules that are used are
monotonic with respect to set extension, we know that any conclusion that might be
drawn will be valid.

The last action is then to propagate the change to t . To avoid duplicate work, we
also need to check that t was not subsequently changed to a higher value by the
propagation of a rule. Therefore, we are using two invariants H0 and H1 (cf. the
following algorithm) to make sure that we stop all propagation work if m is no
longer the new value for t .

The algorithm that we use to increase t from n to the new value m is therefore as
follows :

increase(t:Task,n:integer,m:integer) : ;; m > n

for I = [t,t2] in [t,_]

if (n ≤ t2 < m) ∧ (t2 ≠ t) set(I) := ∅ ;; I is no longer active

else for t’ in I
if (n ≤ t' < m) ∧ (t' < t2)

(I := I - {t’}, d(I) := d(I) - d(t’)),

t = m, ;; H0 ⇔ (t = m)

for all t1 ≠ t such that use(t) = use(t1)

if (n < t1 ≤ m) ;; H1 ⇔ (t1 ≤ m)

for I’ = [t1, t2] in [t1, _]

if (t ≤ t2) ∧ H0 ∧ H1

(I’ := I’ U {t’}, d(I’) := d(I’) + d(t’)),

for I = [t1, t] in [_,t]

if (t1 ≤ m) ∧ (t1 ≤ t) ∧ H0

(I := {...}, d(I) := ...),

12

if H0 propagate(t = m)

The algorithm for decreasing t is exactly symmetrical. We have tried two
different variations of this algorithm. First, as mentioned earlier, we tried to restrict
ourselves to “critical intervals”, using a total ordering on tasks to eliminate task
intervals that represented the same time window (and thus the same set). It turns out
that the additional complexity does not pay off. Moreover, the maintenance
algorithm is so complex that it becomes very hard to prove. The other idea that we
tried is to only maintain the extension of task intervals (represented by a bit vector)
and to use m pre-computed duration matrices of size 2n representing the durations of
all possible subsets of tasks. It turns out that the duration is used very heavily during
the computation and that caching its value improves performance substantially;
however, in order to limit the space complexity of the algorithm, we abandoned this
feature for problems with more than 15 tasks per machine.

3.4 Comparison with related work

The structure of task intervals together with the reduction rules has two
highlights : it is conceptually simple, but gives a very sharp insight of the tightness
of the window situation. It provides an elegant unified frame for interpreting many
former techniques used by Operational Researchers.

Operationally, the reduction rules presented here are very similar to those
presented, in a different terminology, in [CP94]. Carlier and Pinson also do some
window reduction, but call it adjusting the heads and tails of the tasks. There are
however some real differences due to the fact that they do not maintain an extra
structure such as the task intervals. As far as complexity is concerned, the procedure
increase which is called every time that one of the bounds of a task has been changed
is in O(n3), whereas theirs is in O(n log(n)), but their triggering is less efficient
(since they do not reason about intervals, they have to consider more subsets after
each modification to the window bounds of the tasks). As far as the expressiveness is
concerned, Carlier and Pinson also include some lookahead in their propagation
scheme (trying to replace a time window [a,b] by its left half or its right half and
hoping to come to an impossibility in one of the cases). This operation amounts to a
one-step breadth exploration of the search tree and explains the relatively smaller
number of nodes for their search trees since each node encapsulates a fair amount of
search.

The other contribution of task intervals is to give a unified framework that allows
the expression complex reduction rules in a simple way. For example, all the
sophisticated cutting planes described in [AC91] for semi-definite integer
programming are subsumed by the three reduction rules.

3.5 Branch & bound

As we mentioned previously, a classical branching scheme for the job-shop is to
order pairs of tasks that share the same resource [AC91]. The search algorithm,
therefore, proceeds as follows. It picks a pair of tasks {t1, t2} and a preferred
ordering t1 << t2. The algorithm then explores sequentially the two branches (t1 << t2

13

and t2 << t1) recursively. The key point is the selection of the pair and of the

preferred order. This algorithm produces a feasible schedule within the given
makespan. When the makespan is not large enough, the algorithm explores the whole
tree without finding any solution. The classical scheme with reduction rules is to
iterate the algorithm many times with decreasing makespans to obtain an optimal
solution, up to the point when the makespan is one unit too short and the algorithm
comes to a dead-end in all branches of the tree, which proves optimality. The search
strategy presented here is specially designed for proofs of optimality, therefore we
only describe the selection of the pair to order since both branches are visited. This
heuristic is well-suited for tight situations and therefore also works correctly to find
an optimal (or near-optimal) solution. However, it performs very poorly for finding
an initial feasible schedule.

The choice of the task pairs is directly inspired from the edge-finding method
described in [AC91], which is itself inspired from the work of Carlier & Pinson
[CP89]. This principle consists in considering the set of unscheduled tasks for a given
resource, and picking a pair of tasks that could be both first (resp. last) in this set.
The choice between first and last is based on cardinality. Our adaptation of this idea
is to focus on the most constrained subset of tasks for the resource instead of the set
of tasks that are currently unscheduled. This allows faster focusing on bottlenecks
and takes advantage of the task intervals that are being carefully maintained.

For all task intervals I, let t1 , ... , tp{ } be the set of tasks that could be scheduled

first in I, let t1' , ... , tq '{ } be the set of tasks that could be last and let

NC(I) := min(p,q) be the number of choices associated to I . To each resource r ,
we associate the most critical task interval Crit(r) as the one minimizing (over all
tasks intervals using the considered resource) the quantity ∆(S) × NC(S).

Minimizing the slack forces to concentrate on bottlenecks and minimizing the
number of choices insures that there will be much propagation. Indeed, the faster the
first task of an interval is known, the faster the exclusion constraints between it and
the other tasks in the interval can be propagated. Over all resources, we select the
one (and the associated most critical task interval) that minimizes the quantity

ff (r) = ∆(Crit(r)) × ∆(r) × min(par, NC(Crit(r))).

where par is a fixed parameter, empirically set around 3. This heuristic combines
several criteria into a single numerical objective function :

• first, the slack of the most critical interval of the resource forces to
concentrate on bottlenecks,

• second, the slack of r , which denotes the smallest slack over all intervals using
r , forces the algorithm to schedule the tightest machines first (if most of the
ordering has been done on one machine, it may be worth finishing it before
considering other even tighter machines),

• the third quantity is taken into account to force the algorithm to take into
account the “first-fail principle” (concentrating first on choices with the
smallest number of possibilities), but only for choices offering less than par
possibilities. As mentioned above, driving the search by first-fail makes sense
only when few alternatives need to be considered, therefore par is given a
relatively small value,

• the final quantity is the product of these three, rather than a linear
combination. Indeed, scaling problems arise with linear combinations (linear

14

coefficients seem to be quiete sensitive to the size of the problem instance).
Taking the product showed to be more robust.

Finally, once the task interval I has been selected, suppose that the set of possibly

first tasks, t1 , ... , tp{ } has been picked (this is the case when p ≤ q); among this set,

there remains to pick two tasks ta and tb such that both choices (ta << tb) and
(tb << ta) will have the maximal impact (we try to reduce the entropy of the

scheduling system, in a manner similar to what is described in [CGL93]). The
ordering (ta << tb) is evaluated by predicting the consequent changes on the bounds

of certain windows. If ∆ is the slack of a window and ∆-δ is the slack after the
ordering decision is taken, we want to minimize the resulting slack (∆-δ) and to
maximize the change δ. After many attempts, our best evaluation function (to be
minimized) is the following:

ƒ(∆, δ) = if (δ = 0) M else if (∆ < δ) 0 else (∆ − δ)2 / ∆,
where M is the current allowed makespan.

We evaluate the consequences of the ordering ta << tb :

ta << tb ⇒ tb := max(tb , ta + d(ta)) ∧ ta := min(ta , tb − d(tb))

δ (tb) = max(0, ta + d(ta) − d(tb)) and δ (ta) = max(0, ta − (tb − d(tb)))

We assess the impact of an ordering by its heaviest consequences :

g(ta << tb) = min(f (∆(ta),δ (ta)), f (∆(tb),δ (tb)))

We always take ta = t1 (the left bound of the interval) and select tb by minimizing

the following function :

h(t1 , tb) = max g(t1 << tb), min g(tb << t1), f (∆(S),δ (S))()()
The function h is a maximum over both branches because one wants both

possibilities to perform much propagation. Notice that the change to ∆(S) is taken
into account for the branch (tb << t1). We can now summarize how to select the next

pair of tasks that will be ordered.
next_pair()

find r such that ff(r) is minimal,

let S = Crit(r), S= [t1 , t2]

S1 := t use(t) = r ∧ t ≠ t1 ∧ not(t1 << t) ∧ t ≤ t1 + ∆(S){ } ;; could be first

S2 := t use(t) = r ∧ t ≠ t2 ∧ not(t << t2) ∧ t ≥ t2 − ∆(S){ } ;; could be last

if |S1| ≤ |S2| δ (S) := min t, t ∈ set(S) − {t1}() − t1
find t in S1 such that h(t1, t) is minimal

return (t1,t) if g(t1 << t) ≤ g(t << t1) and (t,t1) otherwise

 else δ (S) := t2 − max t, t ∈ set(S) − {t2}()
find t in S2 such that h(t, t2) is minimal

return (t,t2) if g(t << t2) ≤ g(t2 << t) and (t2,t) otherwise

15

4. The complete scheduling system

Up to now, we have described a propagation mechanism that can be efficiently
used, within a branch and bound scheme, to explore a solution space for a given
makespan. However, for large scheduling problems, this exact approach takes too
much time and the scheduler is expected to give solutions quickly (even if not
optimal) and some guarantees about their quality (by means of lower bounds) within
seconds.

 Below, we describe a complete scheduling system that attacks the problem from
these two angles : from above, it finds an approximate solution to start with, makes
local changes and repairs on it to quickly decrease the upper bound and finally, when
the upper bound is close to the optimal, performs an exhaustive search for
decreasing makespans. From below, it can give good lower bounds (to estimate the
distance of a solution to the optimal) and perform proofs of optimality.

An interesting fact is that the propagation mechanism takes part in this whole
process, not only for the exhaustive search part of the algorithm.

4.1 An initial solution

The first problem is to find a feasible solution of reasonable cost. In an m × n

problem, any schedule has a makespan less than n times than the optimal makespan.
The “quality” of a solution should thus be judged with respect to n . The first thing to
mention is that a search algorithm that associates time windows to tasks and tries to
reduce them is not adapted to finding a solution. Indeed, such an algorithm needs to
know an upper bound of the problem. Moreover, when an upper bound of very poor
quality is given, the algorithm produces a solution of very poor quality also. This is
due to the fact that ordering decisions are based on the analysis of the tightness of the
situation: with too loose an upper bound, the relative slacks of the windows are not
relevant and thus ordering decisions are almost taken randomly until the algorithm
comes to a tighter situation (because of the previous poor choices) where it starts
working properly. Moreover, the whole propagation machinery is too complicated
when one just wants a starting solution, obtained without backtracking.

A classical method for obtaining starting solution is to use priority dispatching
rules : the schedule is constructed chronologically, tasks are selected one after the
other and performed as soon as possible. The algorithm works as follows : At each
step, a set of “selectable” tasks is kept. In the beginning, this set is initialized to the
set of all tasks that are first in a job (tasks that do not require any other task to be
performed before them, i.e., tasks with an empty head). One of the tasks in this set is
selected and scheduled as soon as possible on its machine. It is then removed from
the set of selectable tasks and replaced in this set by its direct successor in the job.
This process is repeated until no more tasks are to be selected. The whole algorithm
depends on the selection rule. Lawrence reported some experiments in [La 84] of
trying out 10 selection rules on 40 problems. The ten priority rules were the
following : FIFO (the set of selectable tasks works as a queue), EST (select the task
with earliest starting time), LST (select the task with latest starting time), EFT (select
the task with earliest finish time), LFT (select the task with latest finish time), SPT

(select the task with smallest processing time), LPT (select the task with longest
processing time), MTR (most task remaining : select the task having the largest

16

number of tasks in its tail), MWKR (most work remaining : select the task having the
longest tail) and RANDOM. His conclusions were that these methods lead to fair
quality solutions, but that none of the criteria dominated the other ones. Indeed, eight
of the criteria were best on at least one of the 40 problems in his test set (however,
priority dispatching rules are most often used with the criterion SPT). The fact that
these rules are static probably accounts for the poor quality of the solutions.

We tried out a more complex dynamic criterion, GREEDY. It gives good quality
solutions and it is stable with respect to problem instance. In particular, it
outperforms all criteria proposed in [La 84]. This selection rule is greedy in the
sense that we consider at each step a lower bound estimate of the solution to be built,
which is, in the end, equal to the value of the constructed solution. We then pick the
task that will cause this lower bound to increase as little as possible. The lower bound
LB is computed as follows :

LB := max lb(t) | t ∈ Task()
where lb(t) := t + d (t')

use(t') = use(t)
t' ≥ t

∑

Here, t denotes the earliest starting time of t. Indeed, throughout the task
selection process, the propagation of the precedence constraints is left active (since
only left bounds of the windows are known, this corresponds to dynamically
reevaluating the PERT). If the task t0 is selected next on machine m0, then for all

tasks t using m0, t will be updated to max t , t0 + d (t0)().
To evaluate the change to LB if the task t0 is selected, we perform the update to

all tasks sharing m0, propagate precedences, evaluate the new lower bound and
backtrack one step to undo the changes. The propagation of precedences as well as
the evaluation of the lower bound LB take a time O(n2m), and this bound has to be
evaluated Ο(n2m) times. Hence, the algorithm runs in O(n4m2), whereas static
selection rules such as SPT or MWKR run in Ο(n2m). The idea of a greedy selection
rule was first mentioned in [DT93], and the performances are comparable. There are
however a few differences : Dell’Amico and Trubian use a randomized version of a
bi-directional algorithm (two semi-schedules are constructed -one from the left and
one from the right), while we propose a deterministic unidirectional algorithm with
a slightly finer lower bound estimate.

It could seem a good idea to reduce the complexity by computing approximates of
the bound (taking the max of lb(t) not over all unselected tasks but only on those
with earliest starting time) or by performing the propagation only on m0. However,
restricting the propagation leads to a substantial loss in the quality of the solution
obtained and, for the size of the test instances, the time required for obtaining the
first solution was very reasonable compared to the time required for the optimal
solution or for the proof of optimality. However, for very large problems where
optimality is out of reach, it is worthwhile (timewise) to take only estimates of the
lower bound as in [DT93].

There are often ties with this rule, so we break them using a second criterion
(instead of using randomization as in [DT93]) : we pick the task with the most work
remaining (by maximizing tail(t) + d(t) over all concerned tasks t). This corresponds
to minimizing the lexicographic pair (GREEDY, -MWKR). We tried many other
criteria and this one worked best most of the time. The choice of this second

17

criterion is of importance : we relate in figure 6 the results with another classical
criterion, SPT : the difference is important.

Another idea that we tried out was to make the schedule from both sides (this
needs an adaptation of the bound lb(t), but we tried something very similar to what is
described in [DT93]). Indeed tasks could be placed according to priority dispatching
rules either at the beginning of the schedule or at the end of it. Our first impression
was that when there was a situation with many ties in one view (say from left to
right), it could be helpful to consider the problem from the other side and make a
few choices until the situation on the original side was clearer. However, we
encountered two problems : First, there is a natural tendency to drift to one of the
sides : when more tasks have been selected at one end of the schedule than to the
other, the lower bounds become more accurate and fewer ties arise: so it is necessary
to force the system to consider to work on both sides to prevent it from drifting.
Second, even if the lower bound remains low during most of the procedure, it rises
up considerably in the end when the two partial solutions meet. Because of resource
interdependence, it is hard to put back together these pieces of schedules built from
the left and from the right, although both pieces, alone, are very well scheduled.
Dell’Amico and Trubian also report considerable worsening in the quality of the
solution at the end of a unidirectional algorithm, which we did not experience. For
all these reasons, we did not find it worthwhile to have a bi-directional algorithm.

size optimal SPT GREEDY,
SPT

GREEDY,
-MWKR

BI-DIR

[DT93]

MT 06 6 × 6 55 84 59 55 56

MT 20 20 × 5 1165 1399 1269 1275 1310

MT 10 10 × 10 930 1124 1103 1013 1076

ABZ5 10 × 10 1234 1416 1390 1330 1359

ABZ6 10 × 10 943 1130 1033 1052 1025

LA 21 15 × 10 1046 1560 1230 1211 1210

LA 28 20 × 10 1216 1610 1416 1354 1415

LA 31 30 × 10 1784 2278 2034 1883 1840

LA 36 15 × 15 1268 1828 1704 1443 1383

Figure 6: Performance of various selection rules

The conclusion about this part of the algorithm confirms the experiments of
Dell’Amico and Trubian in the sense that priority dispatching rules can give
systematically good quality solutions, but to the condition that they are dynamic
rather than static (see the difference between SPT and GREEDY). Greedy algorithms
are good candidates for such constructions and do not necessarily need to be bi-
directional nor randomized to give good results. With these features, the incremental
construction of a solution by selection rules can now be considered as a technology
of choice for finding approximate solutions.

18

4.2 Local optimization

4.2.1. Repair

This section of the algorithm analyzes a solution and looks for easy
improvements. In fact, in some situations, the solution can be very easily repaired: a
small modification to the schedule, such as the permutation of two tasks on one
machine can lower the value of the total makespan. The idea is to tighten a critical
path. A path is a sequence of tasks {t1, ..., tn} such that for all i in {1, .. , n-1}
either ti is performed just before ti+1 on the same machine or ti and ti+1 are linked
by the following precedence relationship precede(ti , ti+1). It is hence a sequence of

tasks such that no two of them may overlap over time. Because of this mutual

exclusion of tasks, one always has along a path d(ti)
i=1

n

∑ ≤ Makespan. Moreover, a

path is called critical when d(ti)
i=1

n

∑ = Makespan .

Figure 6 and 7 display the case of two tasks A2 and B2 that can be swapped and
lead to such an improvement. Such a pair (A2,B2) is called “swappable” when the
sequence (A2, B2, B3) is on some critical paths (say k), and when swapping A2 and
B2 would allow us to shift B3 to the left by ∆ (∆ > 0). Such a swap would then
shrink the paths going through B3 by ∆, and thus remove k critical paths. So, when
one finds a “swappable” pair (A2,B2) such that the task B3 is located on all critical
paths, one knows that the swap will necessarily remove all critical paths and thus lead
to an improvement of the global makespan.

A1

A2

B1

B3

B2

A3

Figure 6: the pair (A2, B2) can be swapped in order to tighten
the critical paths going through (A1, A2, B2, B3)

19

A1

A2

B1

B3

B2

A3

∆
Figure 7: Once B2 and A2 have been swapped

B3 can be scheduled earlier

The repair algorithm goes as follows : A first pass reports all “swappable” pairs
(ti , t' i) and for each pair the number nbi of concerned critical paths and the
minimum shrinkage ∆ i of these paths. The total number of critical paths is noted
NB. If there are some pairs (ti , t' i) with nbi = NB , we select among them the one
with smallest ∆ i (selecting by smallest ∆ i turned out to work better than by largest
∆ i, because the number of such improving swaps that could be performed in a row

was larger than in the other case; however, the difference was small). If no such pair
exists, we select the pair with largest nbi and among those, we take the one with
maximum ∆ i. To summarize, the repair algorithm swaps the pair (ti , t' i) that

maximizes the lexicographic pair

nbi , if (nbi = NB) then (−∆ i) else ∆ i()
The case nbi < NB does not improve the total makespan, neither does it

necessarily reduce the number of critical paths (some critical paths are suppressed,
but other may arise), so this phase may not necessarily lead to an improvement. It
can even loop, swapping the same pair over and over again. To avoid this, we
limited the number of repair steps that could be performed at a given makespan (we
typically limited this number to 1 or 2 at the beginning of the search, when the
solution is far from optimal and to 5 or 7 at the end of the search, when the solution
is closer from the optimal). The repair algorithm could be further refined, using
tabu lists for the swappable tasks, but it might not be worth the effort for the next
stage, shuffle is very efficient anyway.

4.2.2. Shuffle

When the repair phase is over, either because the current solution has no more
swappable pair, or because enough swaps have already been tried at the same
makespan, another local optimization procedure takes over. The idea is similar to the
shuffle procedure from [AC91], which is itself inspired from the shifting bottleneck
procedure from [ABZ88]. The idea is to keep part of the solution and to recompute
the rest. This allows to explore a neighborhood of the current solution. The shuffle
procedure from [AC91] consists in freezing the schedule of one or several machines
and to recompute the rest of the solution. Such a method is possible because the
partial solution can be very quickly completed into a full one by the propagation
rules and the edge finder. Actually, the better the propagation, the smaller the search
for completing a partial solution and hence, the larger the neighborhood that can be
explored. Our optimization method differs from the previous ones in several ways :

20

• A smaller fragment of the solution is kept. For example, in the shuffle schema,
the schedule of just one or two machines are kept (for problems up to 20 × 20).

• The algorithm is forced to improve the current solution : the allowed
makespan is lowered for the completion of the solution. To improve the rate of
convergence, the total makespan is decreased by progressively by small steps (10
then 3 then 1).

• The information from the analysis of critical paths and swappable pairs is
kept. When the analysis suggests that swapping a pair would eliminate some critical
paths, the swap is performed, part of the solution around this pair is kept and the rest
is recomputed.

• Only a very limited number of backtracks is allowed. This number starts at
very small values (10 or 20 backtracks) and progressively increases

• Other neighborhood structures are explored.

The point is to avoid getting stuck when the search space is dense of solutions. To
achieve this, we accept only solutions that can be found very fast. Whenever a better
solution cannot be found with almost 0 backtracks, instead of persisting and spending
much effort for finding one in this area, we change neighborhood and explore other
areas of the tree.

The algorithm goes in several steps :

- SWAPS : when the repair phase is over and there are still some swappable pairs,
the system tries to use them to guide the local moves : it selects a swappable pair that
touches the most critical paths, swaps this pair, keeps the task order on the resource
used by the pair, and tries to recompute the rest of the solution on the other
resources (with the branch & bound algorithm described in section 3.5).

- BASIC SHUFFLE : the task order on one machine is kept and the rest of the
solution is forgotten; the branch and bound algorithm tries to complete the rest of
the schedule.

- VERTICAL SHUFFLE : Two dates t1 and t2 are selected in [0,Makespan] and the
following part of the solution is kept: if two tasks (sharing the same resource) were
both completly scheduled between t1 and t2 in the solution, their respective order is
kept else it is forgotten (this amounts to keeping only the information in the schedule
beween t1 and t2). The branch & bound algorithm then tries to complete this partial
schedule into a full one.

- HORIZONTAL SHUFFLE : This step is an adaptation of the BASIC SHUFFLE : the
task order is kept on a machine, except for the tasks that are on some critical paths
(the idea is to keep track of the ordering decisions that did not matter and to allow
more freedom in the ordering of the critical tasks)

The algorithm starts with a step of descent of 10 (the makespan is forced to
diminish by 10), and an allowed number of backtracks of 10. When one solution that
cannot be repaired is known, SWAPS is tried on all swappable pairs. If it does not
succeed, basic shuffle is tried on all resources, starting from the one with largest
slack, then vertical shuffle is tried at most 10 times, taking at random t1 in
[0, Makespan] and t2 - t1 in 0, Makespan / 15[]. If this does not succeed,

HORIZONTAL SHUFFLE is tried several times, keeping the respective order of all
uncritical tasks on the two machines with largest slack (and for which HORIZONTAL

SHUFFLE has not been tried so far). If all attempts to complete the schedule within
the allowed number of backtracks failed, the step of descent is lowered (10 then 3
then 1), the number of allowed backtracks is augmented (multiplied by 3) and the

21

whole cycle of swaps and shuffles is retried. When the step of descent is already 1, a
last pass is tried with an increased number of backtracks. If this fails, the algorithm
shifts to exhaustive branch and bound.

In order to assess the efficiency of this local optimization procedure, we tested it
against the problem set selected in [VAL94]. In 1994, Vaessens et al. compared many
different approaches for finding approximate solutions to the job shop problem,
including iterative improvement, shifting bottleneck heuristic, simulated annealing,
taboo search, genetic algorithms and constraint satisfaction. These approaches were
ranked on a set of 13 hard instances by the ratio between the distance of the solution
to optimum and the optimum. (some of these problems were open at that time; in this
case, the best lower bound is taken as reference instead of the optimum). Taboo
search outperformed the other methods, the winner being the tailored taboo
algorithm of Nowicki and Smutnicki [NS 93] with a ratio of 0,54% (after this come
two other taboos ranking between 1 and 2% and all others candidates are above 2%.
Our ratio is exactly the same as the one for Nowicki and Smutnicki (0,54% with the
1994 lower bounds, and 0,36% with the bounds known in 1995). Our procedure
comes thus first ex-aequo in this ranking, ahead of the other taboos and far ahead of
the simulated annealing and genetic algorithms tested in [VAL 94]. Another
procedure based on constraint propagation [BLN95] was also tested on this set of 13
problems and achieved a ratio of 0,8%. Hence, in the case of job-shop scheduling,
constraint propagation methods can compete with the best taboos algorithms. Note
that some time figures in table 8 are high; they could be significantly lowered if the
algorithm was stopped a few units earlier (say within 1% of the solution). Indeed,
the closer one gets to optimum, the longer it takes to improve the current solution.
For example, on LA29, if the algorithm is given less time, the best solution is 1180
(7000 s.), while if the algorithm is given more time (70 hours), the solution can be
improved to 1161 (which brings the ratio below 0,36%).

size opt. best
solution

time

MT10 10 × 10 930 930 68 s.

LA02 10 × 5 655 655 6 s.

LA19 10 × 10 842 842 19 s.

LA21 15 × 10 1046 1046 420 s.

LA24 15 × 10 935 938 1 500 s.

LA25 15 × 10 977 977 394 s.

LA27 20 × 10 1235 1235 8 800 s.

LA29 20 × 10 1130-57 1168 20 000 s.

LA36 15 × 15 1268 1268 2 600 s.

LA37 15 × 15 1397 1397 740 s.

LA38 15 × 15 1196 1211 5 600 s.

LA39 15 × 15 1233 1233 578 s.

LA40 15 × 15 1222 1224 15 000 s.

Figure 8: The local optimization phase,
evaluation on 13 hard problems

22

4.3 Branch and bound

4.3.1. Finding an optimal solution

We use branch and bound for two different purposes: for finding an optimal
solution and for proofs of optimality. In both cases, branching is done by edge-
finding, and the pair on which to branch is selected with an entropic function, as
described in section 3.5. There are however a few shallow differences between these
cases. Indeed, for proofs of optimality one needs to visit the whole search tree,
whereas for finding an optimal solution one just needs to come to a leaf of the tree.
Therefore, in the first case, the branching pair is selected to maximize the minimum
entropic change over both branches (since both of them have to be explored), with
the function h (cf paragraph 3.5) :

h(t1 , tb) = max g(t1 << tb), min g(tb << t1), f (∆(S),δ (S))()()
(recall that small values of g account for important changes, therefore the minimal
change over both branches is a max), whereas in the second case, the function is
modified as such

h' (t1 , tb) = min g(t1 << tb), max g(tb << t1), f (∆(S),δ (S))()()
The next tables contains the number of backtracks and running times for finding

an optimal solution when the search is performed within the optimal makespan. We
also tried another variation, adding a penalty is given to pairs of tasks which
durations are too different (it is often interesting to postpone such ordering
decisions). This feature brought susbtantial gains in the size of search trees, (the
solution for MT10 went from 363backtracks to 95 backtracks), but was unstable (for
ORB3, the figure rose from 6kb. to 11 kb), therefore, we did not keep it.

backtracks time

MT 10 363 b. 20 s.

ABZ 5 1 164 b. 61 s.

ABZ 6 67 b. 4,5 s.

La 19 1 008 b. 50 s.

La 20 267 b. 10,6 s.

ORB 1 1 539 b. 89 s.

ORB 2 54 b. 4,7 s.

ORB 3 6 690 b. 347 s.

ORB 4 1 156 b. 60 s.

ORB 5 658 b. 40 s.

Figure 9: Branch and bound for finding an optimal solution

Note that the function h' can also be used for proofs of optimality (it takes 2000
backtracks with h' , versus 1575 with h for the proof of optimality of MT10).

4.3.2. Proofs of optimality

The next tables contains the results for proofs of optimality on the same ten
problems. Our times are given on a Sparc 10, and those from [AC91] on a Sparc 1.

23

A good performance is achieved on MT10 with ten times less backtracks than [AC
91] and on La19, La20 and ORB2 which were supposed to be particularly hard 10 ×
10 problems. In fact, performances are stable : 8 out of 10 problems are solved
under 1600 backtracks. A few thousands of backtracks or less seems to be the typical
measure for 10 × 10 problems

[AC 91] Task Intervals

MT 10 372 s. - 16 kb. 106 s. - 1575 b.

ABZ 5 951 s. - 58 kb. 85 s. - 1350 b.

ABZ 6 91 s. - 1,3 kb. 9,9 s. - 157 b.

La 19 1460 s. - 94 kb. 63 s. - 1109 b.

La 20 1402 s. - 82 kb. 52 s. - 901 b.

ORB 1 1482 s. - 72 kb. 550 s. - 7265 b.

ORB 2 2484 s. - 153 kb. 36 s. - 456 b.

ORB 3 2297 s. - 130 kb. 340 s. - 4323 b.

ORB 4 1013 s. - 44 kb. 82 s. - 1060 b.

ORB 5 526 s. - 23 kb. 61 s. - 799 b.

Figure 9: Proof of optimality for ten 10 × 10 problems

The table below reports experiments with other classical benchmarks. 8 more 10
× 10 problems confirm the previous conclusion. The interesting fact is that among
the 40 problems published by Lawrence ([La 84]), 23 can be solved with no
backtrack and no search. For a time window one unit smaller than the optimal,
reduction rules come to a contradiction. Among these problems, large ones are
solved (all five 30 × 10). This indicates that the large problems of Lawrence are not
exceptionally hard, as are the 15 × 10 (such as La21) or 20 × 10 (such as La29),
but are just large. On such normal instances, task intervals perform especially well to
detect bottlenecks.

problem size time/backtracks problem size time/backtracks

La1,2,3,5 10 × 5 0,1 s. - 0 b. La31-35 30 × 10 1,7 s. - 0 b.

La4 10 × 5 0,6 s. 16 b.

La6-10 15 × 5 0,2 s. - 0 b. MT20 5 × 20 0,4 s. - 0 b.

La11-15 20 × 5 0,3 s. - 0 b.

La16 10 × 10 3,7 s. - 54 b. ORB 6 10 × 10 202 s. - 2770 b.

La17 10 × 10 0,4 s. - 5 b. ORB 7 10 × 10 44 s. - 631 b.

La18 10 × 10 4,6 s. - 80 b. ORB 8 10 × 10 0,2 s. - 4 b.

La23 15 × 10 0,6 s. - 0 b. ORB 9 10 × 10 8,3 s. - 142 b.

La26,28,30 20 × 10 0,8 s. - 0 b ORB 10 10 × 10 21 s. - 255 b.

Figure 10: Proof of optimality for other classical benchmarks

24

4.3.3. Optimal solution and proof of optimality within a single search tree

Finding an optimal solution and giving the proof of optimality can also be
integrated within a single search tree. The proof of optimality is then performed “on
the fly”, by dynamically reducing the makespan after the first optimal solution has
been found and continuing the exploration of the same search tree. For MT10,
starting from 930 (the optimum), it takes a total of 6281 backtracks with h' (and
even more with h). This figure may seem surprisingly high since part of the tree has
already been discarded when the proof of optimality starts. But this part is located
deep in the tree and therefore, the search for optimality is performed in a tree which
top nodes have been selected for a larger (feasible) makespan. Since the entropic
analysis is very sensitive, the pairs selected for a makespan of 930 are less relevant
for 929 and therefore, the relevant alternatives are reconsidered many times, below
the less relevant nodes inherited from the first part of the algorithm (930). The price
to pay for the acuteness of the entropic analysis is the inability to reuse parts of a
tree. When the value of the optimum is known beforehand, it is always worth
restarting a search from scratch for the proof of optimality, rather than performing
it in the same tree as the one for the optimal solution. However, when the optimal
value is still unknown, such trees may be of interest. For example, when this
algorithm is ran on MT10, starting with upper bound 940 (recall that the optimum is
930), it takes 779 backtracks to find a first solution at 938; this solution is
successively improved to 937, 936, 935, 934 and 930, requiring between each
solution another 30 to 80 backtracks. The system then takes 5492 backtracks for the
proof of optimality. In order to avoid this dramatic increase of the number of
backtracks for the proof of optimality, we decided to systematically stop the search
and start it over when the number of backtracks became too large compared to the
number of backtracks necessary for finding solutions (the rule was the following : if
n1 is the current average number of backtracks needed for finding a solution, the
search is stopped when more than 5n1 backtracks have been spent without finding

any solution and a search is restarted with the heuristic h (designed for proofs of
optimality). In the case of MT10, it allowed to spend 2000 backtracks in the search
for solutions from 938 down to 930 and 1569 backtracks for the proof of optimality.

4.4 Lower bounds

The next experiment was to look for lower bounds. We used two techniques that
we compared with the methods described in [AC91]. Several methods are presented
in [AC91] : the first one “Preempt” gives instantaneously a lower bound by
constructing the optimum of the relaxed preemptive scheduling problem (for details,
see [Ca 82]) and the other ones (“Cuts 1”, “Cuts 2” and “Cuts 3”) are cutting plane
heuristics with increasingly complex cuts. Our first bound (reported in the column
“Task Intervals”) is to determine what maximum allowed total time window would
cause a contradiction when the reduction rules are applied. The second method is
also a common technique, that consists in computing the minimal schedule of one
machine, leaving the propagation rules active. That is to say that only one machine is
scheduled, but decisions made on this machine are propagated to the other tasks,
where contradictions can be raised. This second lower bound (reported in the
column “Task Intervals - 1 machine”) is more expensive to obtain since some search
is involved. The running times are measured on an IBM 3081D for those given by
[AC91] and on a Sun Sparc 10 for ours.

25

Preempt

[AC 91]

Cuts 1

[AC 91]

Cuts 2

[AC 91]

Cuts 3

[AC 91]

Task
Intervals

Task Intervals

one machine

MT 10

opt = 930

808

(0,1 s.)

823

(5,23 s.)

824

(305 s.)

827

(7552 s.)

868

(0,3 s.)

915

(25 s - 541b.)

ABZ 5

opt = 1234

1029

(0,1 s.)

1074

(5,61 s.)

1076

(611 s.)

1077

(4971 s.)

1127

(0,3 s.)

1208

(18 s. - 426 b.)

ABZ 6

opt = 943

835

(0,1 s.)

835

(4,87 s.)

837

(335 s.)

840

(5257 s.)

890

(0,3 s.)

936

(3,5 s. - 59 b.)

La 19

opt = 842

709

(0,1 s.)

709

(5,57 s.)

716

(917 s.)

not
available

763

(0,3 s.)

813

(7,8 s. - 202 b.)

La 20

opt = 902

807

(0,1 s.)

807

(5,13 s.)

807

(806 s.)

not
available

851

(0,3 s.)

874

(1,6 s. - 29 b.)

ORB1

opt = 1059

929

(0,1 s.)

930

(7,16 s.)

931

(358 s.)

not
available

975

(0,3 s.)

1045

(100 s. - 2k b.)

ORB 2

opt = 888

766

(0,1 s.)

768

(10 s.)

769

(327 s.)

not
available

815

(0,3 s.)

867

(9,3 s. - 189 b.)

ORB 3

opt = 1005

865

(0,1 s.)

869

(5,95 s.)

870

(449 s.)

not
available

907

(0,3 s.)

971

(19 s. - 436 b.)

ORB 4

opt = 1005

833

(0,1 s.)

891

(5,58 s.)

895

(555 s.)

not
available

898

(0,3 s.)

1004

(473 s. 10k b.)

ORB 5

opt = 887

801

(0,1 s.)

801

(6,90 s.)

801

(323 s.)

not
available

822

(0,3 s.)

873

(14 s. - 303 b.)

Figure 11: Lower Bounds for ten 10 × 10 problems

A few remarks need to be made. The Preemptive bound is at an average distance
of more than 13% to the optimum, bounds obtained with cutting planes are at an
average distance of around 11%, and our two bounds are respectively within 8% and
2% of the optimum. Taking running times into account, the first bound (almost
instantaneous) should be related to the preemptive bound. The distance to optimum is
almost divided by a factor 2 for the same running times. The second bound is also
obtained within reasonable times (less than 25 seconds for 8/10 problems) and is
extremely precise. Sophisticated cutting planes are not competitive in terms of
quality of the bound (by a factor 5 or 6) and in terms of running times (becoming
unreasonable).

These results clearly show the power of task intervals and their reduction rules as
a cutting mechanism.

4.6 The complete procedure.

The complete procedure is decomposed as follows : an initial solution is found
with priority dispatching rules, using the lexicographic criterion (GREEDY,-MWKR).
The current solution is then improved by successive runs of repair, swap and shuffle
(trying all different neighborhood structures described earlier). When local moves

26

no longer manage to improve the solution, a complete search is performed until the
algorithm finds an optimal solution and proves its optimality. Below, two examples
of famous instances illustrate the behaviour of the algorithm.

4.6.1. an example : MT10

MT10 is a very famous 10 × 10 job shop instance that remained unsolved for 25
years. It was first solved by Carlier & Pinson, using branch & bound and edge-
finding. The shortest proof of optimality reported today is the one in [CP94], which
take 35 nodes (but this figure does not account for some lookahead exploration) in a
couple of minutes.

915868 929 930 1013

LB1 LB2 PO OS IS
LO

Figure 12 : the run on MT10

LB1 The first lower bound is obtained by simple propagation in 0,3 seconds.

LB2 The second lower bound obtained by trying to schedule only the tightest
resource is obtained in 22 s. and 542 bk.

PO The proof of optimality is obtained in 1575 backtracks and 80 seconds.

OS The optimal solution is found in 97 backtracks and 5,8 s.

LO The local optimization consists in 18 moves decomposed into 10
repairs, 1 swap and 7 shuffles. The total takes 70 s.

IS The initial solution is found in 1 s.

The total procedure has thus taken 151 s.

4.6.2. an example : LA21

The problem LA21 a hard 15 × 10 instance published by Lawrence in 1984 (for
which Applegate & Cook report 1040 as best lower bound and 1053 as best upper
bound). This problem was solved early 95 for the first time by three separate teams,
one using mixed integer programming and the other two (including ours) using
constraint propagation. To our knowledge, our approach yields the best
performance.

1033 1045 1046 1220

LB1= LB2 PO OS ISLO

Figure 13: the run on LA21

LB1 The two lower bounds are obtained by simple propagation in 1 s.

PO The proof of optimality is obtained in 1,28 million backtracks and 23
hours.

LO The local optimization consists in 27 moves decomposed into 15
repairs, 2 swaps and 10 shuffles. The total takes 420 s.

IS The initial solution is found in 10 s.

27

The total procedure has thus taken 24 hours

This algorithm also allowed us to improve the lower a bounds for two 20 × 20
open problems, YAM1 and YAM2, which respectively rose from 820 to 826 and
from 860 to 861. A complete table with all figures is provided at the end of the
paper. For a large set of benchmarks, the following entries are mentionned: the
value of the optimum (or the best bounds in the case of open problems), the two
lower bounds obtained by propagation and by scheduling one resource, the search
trees for the proof of optimality and the optimal solution, the initial solution given
by the greedy algorithm, the number of steps of the local optimization algorithm
(rp=repairs, sw=swaps, sh=shuffle, vs=vertical shuffle, cs=critical horizontal
shuffle) as well as the total time required by the local optimization algorithm and the
best value obtained (column "solution"). The last column ("final solution") relates an
other pass of local optimization, with a larger number of backtracks per shuffle
(starting at 500 or 1000 and rising in the process up to 30000).

5. Conclusion

We have presented in this paper a complete disjunctive scheduling system which
has been applied to many standard jobshop problems. The 15 × 10 problem LA21,
unsolved since 1984, was solved for the first time in a day of computations. This
scheduling system finds lower bounds, an initial greedy solution, performs local
optimization and branch and bound search for finding an optimal solution and
proving optimality.

The importance of propagation rules need to be stressed : they play a crucial part
in the algorithm in two stages : from below, they allow to perform very efficient
cuts for lower bounds and proofs of optimality and from above, they are used in the
local optimization procedure. This technique of using propagation for performing
local optimization seems very promising and is under invetigation on other
combinatorial problems.

For the scheduling problems, a possible future direction of work would be to
limit the notion of task intervals to smaller subsets of tasks in order to find good
approximate solutions and lower bounds for larger problems (like 50 × 20).

Acknowledgments

This paper and the work on job-shop scheduling has been strongly influenced by
numerous people. We are especially grateful to Bill Cook and Claude Lepape for
their insights and their comments throughout our work. We also want to thank
Fançois Fages, Clyde Monma, Jean-Francois Puget and Pascal Van Hentenryck for
their kind encouragement and their valuable comments. Last, we are grateful to
Jacques Carlier and Eric Pinson for an enlightning conversation about disjunctive
scheduling.

28

References

[ABZ88] J.Adams, E. Balas & D. Zawak. The Shifting Bottleneck Procedure for

Job Shop Scheduling. Management Science 34, p391-401. 1988

[AC91] D. Applegate & B. Cook. A Computational Study of the Job Shop

Scheduling Problem. Operations Research Society of America vol 3, no
2, 1991

[Ba 69] E. Balas. Machine Sequencing via Disjunctive Programming: an Implicit

Enumeration Algorithm. Operations Research 17, p 941-957. 1969

[Ba 95] P. Baptiste, rapport de DEA.

[BL 95] P. Baptiste, C. Lepape A theoretical and experimental comparison of

constraint propagation techniques for disjunctive scheduling. Proc. of
the 14th IJCAI, 1995.

[BLN95] P. Baptiste, C. Lepape, W. Nuijten Constraint-based Optimization and

Approximation for Job Shop Scheduling , Proc. of the IJCAI 95
�orkshop on Intelligent Manufacturing Systems, Montréal, 1995.

[Ca 82] J. Carlier. The one machine sequencing problem European Journal of
Operations Research 11, p. 42-47, 1982.

[Ca 91] Y. Caseau. A Deductive Object-Oriented Language. Annals of
Mathematics and Artificial Intelligence, Special Issue on Deductive
Databases, March 1991.

[CC88] J. Carlier & P. Chretienne. Problèmes d'ordonnancement. col. ERI,
Masson, Paris 1988

[CGL93] Y. Caseau, P.-Y. Guillo & E. Levenez. A Deductive and Object-

Oriented Approach to a Complex Scheduling Problem. Proc. of
DOOD'93, Phoenix, December 1993.

[CK92] Y. Caseau & P. Koppstein. A Cooperative-Architecture Expert System

for Solving Large Time/Travel Assignment Problems. International
Conference on Databases and Expert Systems Applications, Valencia,
Spain, September 1992.

[CL94] Y. Caseau & F. Laburthe. Improved CLP Scheduling with Task

Intervals. Proc. of ICLP'94, ed: P. van Hentenryck, The MIT Press,
1994.

[CP89] J. Carlier & E. Pinson. An Algorithm for Solving the Job Shop

Problem. Management science, vol 35, no 2, february 1989

[CP94] J. Carlier & E. Pinson. Adjustments of heads and tails for the job-shop

problem , European Journal of Operations Research, vol 78, 1994, p.
146-161.

[DT93] M. Dell’Amico & M. Trubian. Applying Tabu-Search to the Job-Shop

Scheduling Problem. Annals of Operations Research, vol 41, 1993, p.
231-252

[DW90] M. Dyer & L.A. Wolsey. Formulating the Single Machine Sequencing

Problem with Release Dates as a Mixed Integer Program. Discrete
Applied Mathematics 26, p255-270. 1990

[La84] S. Lawrence. Resource Constrained Project Scheduling: an

Experimental Investigation of Heuristic Scheduling Techniques. GSIA,
Carnegie Mellon University 1984

29

[MT63] J.F. Muth & G.L. Thompson Industrial scheduling. Prentice Hall,
Englewood Cliffs, NJ, 1963

[NS 93] E. Nowicki & C. Smutnicki A fast taboo search algorithm for the job-

shop problem, Preprint 8/93 Institute of Engineering Cybernetics,
Technical University of Wroclaw, 1993.

[NY92] Nakado & Yamada A Genetic Algorithm applicable to Large Scale Job-

Shop Problems. Parallel Problem solving from Nature 2, R Manner 1
B. Manderick eds., Elsevier Science, 1992

[Po88] M.C. Portmann. Méthodes de Décomposition Spatiale et Temporelle en

Ordonnancement de la Production. RAIRO vol 22, no 5, 1988

[Po95] M.C. Portmann. Communication at FRANCORO 95, Mons, 1995

[Ta89] Taillard. Parallel Taboo Search Technique for the Jobshop Scheduling

Problem. Internal Report ORPWP 89/11, Ecole Polytechnique Fédérale
de Lausanne, 1989

[VLA92] P van Laarhoven, E.Aarts & J.K. Lenstra. Job Shop Scheduling by

Simulated Annealing. Operations Research vol 40, no 1, 1992

[VAL94] R. Vaessens, E. Aarts & J.K. Lenstra Job Shop Scheduling by Local

Search.

30

Benchmarks

Opt. LB1 LB2 Proof of

optimality

Optimal

solution

Greedy Steps of

local opt.

solution Final

solution

rp sw sh vs cs

MT 06

6 × 6

5 5 5 5 0 b. 5 5

MT 10

10 × 10

930 868 915

541 b.

25 s.

1575 b.

80 s.

363 b.

18 s.

1013 10 1 7 0 0 930

68 s.

MT 20

5 × 20

1165 1165 1275 12 6 6 1 0 965

156 s.

LA 01

10 × 5

666 666 0 b. 698 3 1 1 0 0 666

1,2 s.

LA 02

10 × 5

655 655 2 b. 699 2 0 1 2 0 655

6 s.

LA 03

10 × 5

597 597 0 b. 683 7 1 4 2 0 597

6,5 s.

LA 04

10 × 5

590 590 0 b. 687 4 2 4 1 0 540

4,9 s.

LA 05

10 × 5

593 593 0 b. 595 0 0 1 0 0 593

0,4 s.

LA 06

15 × 5

926 926 0 b. 926

LA 07

15 × 5

890 890 2 b. 890

LA 08

15 × 5

863 863 45 b.

3 s.

868 1 863

0,7 s.

LA 09

15 × 5

951 951 0 b. 951

LA 10

15 × 5

958 958 3 b. 962 1 958

0,8 s.

LA 11

20 × 5

1222 1222 0 b. 1257 4 0 1 0 0 1222

13 s.

LA 12

20 × 5

1039 1039 0 b. 1039

LA 13

20 × 5

1150 1150 0 b. 1150

31

Opt LB1 LB2 Proof of

optimality

Optimal

solution

Greedy Steps of

local opt.

solution final

solution

rp swsh vs cs

LA 14

20 × 5

1292 1292 0 b. 1292

LA 15

20 × 5

1207 1207 8831 b.

294 s.

1239 1 3 3 0 0 1207

41 s.

LA 16

10 × 10

945 909 945

85 b.

1,8 s.

61 b.

2,4 s.

29 b.

2,5 s.

1034 3 0 3 2 0 945

30 s.

LA 17

10 × 10

784 780 784

7 b.

5 b. 836 7 1 2 0 0 784

7,7 s.

LA 18

10 × 10

848 803 835

34 b.

1 s.

102 b.

3,8 s.

37 b.

2,8 s.

913 8 1 2 0 0 848

8,7 s.

LA 19

10 × 10

842 756 807

147 b.

2,5s.

1361 b.

48 s.

1008 b.

50 s.

966 7 0 6 0 0 842

19 s.

LA 20

10 × 10

902 844 870

42 b.

1 s.

2120 b.

67 s.

267 b.

10,6 s.

970 5 1 6 0 0 902

60 s.

LA 21

15 × 10

1046 1033 1033 1,2 Mb.

23 h.

2,2 Mb.

30 h.

1211 16 2 10 0 0 1046

420 s.

LA 22

15 × 10

927 913 927

318 b.

23 s.

363 b.

43 s.

1189 30 8 12 0 0 927

360 s.

LA 23

15 × 10

1032 1032 1124 12 5 4 0 0 1032

83 s.

LA 24

15 × 10

935 892 906

26 b.

2,5 s.

1017 9 1 6 1 0 938

1500

s .

LA 25

20 × 10

977 919 960

1172 b.

106 s.

1168 21 5 9

1

0

1

0 979

394 s. 977

2300s.

LA 26

20 × 10

1218 1218 1218

LA 27

20 × 10

1235 1235 1466 37 2 19 4 1 1235

8854s.

LA 28

20 × 10

1216 1216 1354 12 2 9 0 0 1216

435 s.

32

Opt LB1 LB2 Proof of

optimality

Optimal

solution

Greedy Steps of

local opt.

solution final

solution

rp sw sh vs cs

LA 29

20 × 10

1130

-

1157

1119 1428 35

2

6

1

14

3

1

3

1

4

1180

7300s. 1161

70 h.

LA 30

20 × 10

1355 1355 1512 15 3 11 0 0 1355

700 s.

LA 31

30 × 10

1784 1784 1883 17 6 5 0 0 1784

3000s.

LA 32

30 × 10

1850 1850 1876 3 0 1 0 0 1850

357 s.

LA 33

30 × 10

1719 1719 1775 8 1 3 0 0 1719

1085s.

LA 34

30 × 10

1721 1721 1835 8 4 10 0 0 1721

3700s.

LA 35

30 × 10

1888 1888 1954 13 5 3 0 0 1888

2400s.

LA 36

15 × 15

1268 1233 1267

135 b.

1443 23 4 10 0 0 1268

431 s.

LA 37

15 × 15

1397 1397 1614 18 5 15 0 0 1397

740 s.

LA 38

15 × 15

1196 1106 1161

2470 b.

1380 15 1 13 1 0 1211

5600s.

LA 39

15 × 15

1233 1221 1232

88 b.

1394 11 0 11 1 1 1233

578 s.

LA 40

15 × 15

1222 1192 1203 1502 30 6 17 0 1 1229

5033s.

ABZ 5

10 × 10

1234 1126 1190

219 b.

5 s.

1350 b.

61 s.

1164 b.

61 s.

1330 6 2 5 0

2

0 1238

272 s. 1234

472 s.

ABZ 6

10 × 10

943 889 933

62 b.

2 s.

217 b. 67 b.

4,5 s.

1052 8 6 7 1 0 943

48 s.

ABZ 7

20 × 15

655

 - 665

651 651 654

4172 b.

1360 s.

781 667

33

Opt LB1 LB2 Proof of

optimality

Optimal

solution

Greedy Steps of

local opt.

solution final

solution

rp sw sh vs cs

ABZ 8

20 × 15

638

 - 670

608 763 681

ABZ 9

20 × 15

656

 - 668

630 810 9 7 10 1 2 698

18 s.

ORB 1

10 × 10

1059 975 1041

1791 b.

52 s.

982 b.

48 s.

1539 b.

89 s.

1168 15 0 9 1 0 1059

90 s.

ORB 2

10 × 10

888 812 858

143 b.

3,7 s.

487 b.

23 s.

54 b.

4,7 s.

952 1 1 8 0 0 888

34 s.

ORB 3

10 × 10

998 907 971

470 b.

13 s.

4641 b.

228 s.

6690 b.

347 s.

1199 17 1 11 0 0 1005

387 s.

ORB 4

10 × 10

1005 898 998

9681 b.

258 s.

1215 b.

53 s.

1156 b.

60 s.

1158 12 2 8 0 0 1005

31 s.

ORB 5

10 × 10

887 821 867

236 b.

6 s.

904 b.

43 s.

658 b.

40 s.

957 5 0 4 1 0 887

196 s.

ORB 6

10 × 10

1010 946 983

281 b.

7 s.

4131 b.

162 s.

1336 b.

68 s.

1226 13 2 10 1 0 1010

125 s.

ORB 7

10 × 10

397 364 382

141 b.

3 s.

838 b.

37 s.

75 b.

4,3 s.

463

ORB 8

10 × 10

899 894 899

5 b.

5 b. 30 b.

19 s.

1020 14 3 8 2 0 899

89 s.

ORB 9

10 × 10

934 909 934

182 b.

5,7 s.

164 b.

7 s.

28 b.

2,2 s.

995 6 1 3 1 0 934

16 s.

ORB10

10 × 10

944 923 940

82 b.

3 s.

308 b.

14 s.

22 b.

1,8 s.

1117 16 6 8 0 0 944

32 s.

34

Opt LB1 LB2 Proof of

optimality

Optimal

solution

Greedy Steps of

local opt.

solution final

solution

rp sw sh vs cs

YAM 1

20 × 20

826

 - 888

784 826

50 kb.

33 ks.

YAM 2

20 × 20

861

 - 912

825 861

420 kb.

267 s.

YAM 3

20 × 20

827

 - 898

799

YAM 4

20 × 20

918

 - 977

885 916

454 kb.

258 ks.

