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1

CONSTRUCTIVE NEGATION BY PRUNING

Fran�cois FAGES

� We show that a simple concurrent pruning mechanism over standard SLD

derivation trees, called constructive negation by pruning, provides a correct

and complete operational semantics for normal constraint logic programs

w.r.t. Fitting-Kunen's 3-valued logic semantics. We argue that this scheme

is simple enough to lead to practical implementations as the principle of

concurrent pruning is the only extra machinery needed to handle negation,

in particular there is no need for considering complex subgoals with explicit

quanti�ers outside the constraint part. We study a non-ground continuous

�nitary version of Fitting's operator, and we show that the corresponding

�xpoint semantics is fully abstract for the observation of computed answer

constraints.

In the context of optimization higher-order predicates, that are common

practice in CLP systems and that can be expressed by a logical formula

with negation, we show that constructive negation by pruning specializes

to an e�cient concurrent branch and bound like procedure, proved correct

and complete without any restriction on the degree of nesting of, and on

the degree of recursion through, optimization predicates in the program. �
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1. Introduction

Constraint logic programming and concurrent constraint programming are simple

and powerful models of computation that have been implemented in several systems

over the last decade, and proved successful in a variety of applications ranging from

combinatorial optimization problems to complex system modeling [14]. Extending

these classes of languages with a negation operator is a major issue as it allows the

user to express arbitrary logical combinations of relations and provides a framework

for optimization higher-order predicates [8].

Negation in logic programming has been extensively studied due to the prob-

lems of non-monotonicity and non recursive enumerability of the canonical model

approach [1] [17]. On the theoretical side these di�culties have been satisfactorily

solved by Kunen [16] and Fitting [11] who proposed to de�ne the declarative se-

mantics of a program by the set of the 3-valued logical consequences of its Clark's

completion, and to construct �xpoint semantics in the semi-lattice of partial in-

terpretations. On the implementation side, most constraint logic programming

systems allow restricted forms of negation, but the operational mechanism based

for instance on negation by failure is too weak w.r.t. Kunen's logical semantics,

and the restriction to negative goals containing no variable doesn't �t well with

constraint programming. Other ad hoc mechanisms are thus added in most CLP

systems for dealing with optimization predicates for instance [24].

Constructive negation, as introduced by Chan [6] for logic programs, and gener-

alized to CLP programs by Stuckey [23], provides an operational mechanism that

is correct and complete w.r.t. Kunen's three-valued logical semantics of programs

with negation. However the schemes proposed by Chan and Stuckey are not easily

amenable to a practical implementation as they necessitate to deal with explic-

itly quanti�ed complex subgoals, and to compute the disjunctive normal form of a

complex formula at each resolution step with a negative subgoal. The compilative

version proposed by Bruscoli et al. [5], named intensional negation, performs all

disjunctive normal form transformations once and for all at compile time, but still



Constructive negation by pruning 3

all quanti�ers need be explicit at run time and derivation rules need be de�ned for

complex goals.

In this paper we present a new scheme for constructive negation based on a

pruning mechanism over standard SLD-derivation trees, without the need for con-

sidering explicitly quanti�ed complex subgoals. The formalismwe develop is based

on a simple frontier calculus. The resulting execution model is essentially equiva-

lent to the one proposed independently by Drabent for normal logic programs [7].

We argue that this scheme is simple enough to lead to practical implementations as

the principle of concurrent pruning is the only extra machinery needed to handle

negation. We study a non-ground continuous �nitary version of Fitting's opera-

tor (similar to the operators studied in [23], [5] and [3]), and we show that the

corresponding �xpoint semantics is fully abstract for the observation of computed

answer constraints.

In the context of optimization higher-order predicates, that are common practice

in CLP systems and that can be expressed logically by a formula with negation,

we show that our general scheme specializes to an e�cient concurrent branch and

bound like procedure, proved correct and complete without any restriction on the

degree of nesting of, and on the degree of recursion through, optimization predicates

in the program.

2. Preliminaries on Constraint Logic Programming

We recall the basic concepts of constraint logic programming (CLP) as de�ned in

[13], with some di�erent emphasis due to our interest in negation. Concerning the

declarative semantics of CLP programs we focus on the logical semantics instead of

the algebraic semantics which is highly undecidable, doing so some conditions such

as solution compactness [13] become irrelevant. We adopt also the point of view of

[12] and [18] that for a programming language the observation of computed answer

constraints is a more natural choice of observable than the success set considered in

[13], and that the formal semantics of CLP programs should characterize the set of

computed answer constraints. We shall thus present formal semantics accordingly

with sets of constrained atoms [4]. Before that we �x notations and make precise the

constraint languages and structures considered for CLP programs with negation.

2.1. Constraint languages with negation

The �rst-order language of constraints is de�ned on a countably in�nite set of

variables V and on a signature � composed of a set of predicate symbols containing

true and =, and of sets of n-place function symbols for each arity n (constants are

functions with arity 0). A primitive constraint is an atomic proposition of the form

p(t

1

; :::; t

n

), where p is a predicate symbol in � and the t

i

's are �; V -terms. A

constraint is a well-formed �rst-order �; V -formula. The set of free variables in an

expression e is denoted by V (e). Sets of variables will be denoted by X; Y; ::: and

we shall sometimes write e(X) if V (e) = X. For a constraint c, we shall use the

notation 9c (resp. 8c) to represent the closed constraint 9X c (resp. 8X c) where

X = V (c).

The intended interpretation of constraints is de�ned by �xing a �-structure A.

An A-valuation for a �; V -expression is a mapping � : V ! A which extends by
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morphism to terms and primitive constraints. Logical connectives and quanti�ers

are interpreted as usual, a constraint c is A-solvable i� A j= 9c.

It is not necessary for our purpose to suppose that A is solution compact [13]

[19], we suppose only that the constraints are decidable in A, so that A can be

presented by a decidable �rst-order theory th(A), i.e. satisfying:

1. (soundness) A j= th(A),

2. (satisfaction completeness) either th(A) j= 9c or th(A) j= :9c, for any

constraint c.

As a constraint is any �; V -formula, these conditions are equivalent to say that

th(A) is a complete �rst-order theory, and thus that all models of th(A) are ele-

mentary equivalent. For example, Clark's equational theory CET (augmented with

the domain closure axiom DCA if the signature is �nite) provides such a complete

decidable theory for the Herbrand universe with �rst-order equality constraints [15].

In practice however, the language of constraints will often be a restricted class of

�; V -formulae, assumed to be closed only by renaming, conjunction and existential

quanti�cation, not by negation. Stuckey [23] calls such a restriction a language

of admissible constraints, which intuitively represents the constraints the solver

can deal with. A structure A is then said to be admissible if the negation of an

admissible constraint is equivalent to a disjunction of admissible constraints:

A j= 8X(:9Y c(X;Y ) $ 9Z

1

d

1

(X;Z

1

) _ :::_ 9Z

n

d

n

(X;Z

n

))

For the sake of simplicity, we shall assume in this paper that the language of

constraints is closed by negation, but we shall indicate latter in section 6 how our

scheme can be easily modi�ed to deal with admissible constraints only, when the

structure A is admissible.

2.2. CLP (A) programs

CLP (A) programs are de�ned using an extra �nite set of predicate symbols �

disjoint from �. An atom has the form p(t

1

; :::; t

n

) where p 2 � and the t

i

's are

�; V -terms. A literal is either an atom (positive literal) or a negated atom :A

(negative literal).

A de�nite (resp. normal) CLP (A) program is a �nite set of clauses of the form

A cjL

1

; :::; L

n

where n � 0, A is an atom, called the head, c is a constraint, and

L

1

; :::; L

n

are atoms (resp. literals). The local variables of a program clause is the

set of free variables in the clause which do not occur in the head. A de�nite (resp.

normal) goal is a formula cjL

1

; :::; L

n

where L

1

; :::; L

n

are atoms (resp. literals). We

will identify conjunction \," and multiset union, greek letters, �, �,... will be used

to denote multisets of literals, so that a goal (resp. a clause) will be sometimes

written cj� (resp. A  cj�), we shall denote by �

+

(resp. �

�

) the multiset of

positive (resp. negative) literals in �, the empty multiset is noted 2. The set of

goals is denoted by G. In the rest of this paper we shall assume that all atoms

in programs and goals contain no constant, no function symbol and no multiple

occurrences of a same variable. Of course this is not a restriction as any program

or goal can be rewritten in such a standard form by introducing new variables and

equality constraints with terms. For instance the clause p(x + 1)  p(x) will be

read as p(y) y = x+ 1jp(x):
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The formal semantics of CLP (A) programs will be de�ned by sets of constrained

atoms. A constrained atom is a couple cjA where c is an A-solvable constraint such

that V (c) � V (A). The set of constrained atoms is denoted by B. A constrained

interpretation is a subset of B. The set of ground instances of a constrained atom

over A is de�ned by:

[cjA]

A

= fA� j � : V !A; A j= c�g

We denote also by [I]

A

the set of ground instances of a constrained interpretation

I. A ground atom A� is true (resp. false) in I if A� 2 [I]

A

(resp. A� 62 [I]

A

).

Constraint entailment de�nes a natural preorder on constrained atoms, called

the covering preorder: cjA v djA i� th(A) j= c ! d: Note that as th(A) is a

complete theory, cjA v djA is equivalent to [cjA]

A

� [djA]

A

. The covering preorder

extends to sets of constrained atoms in two ways: strong covering (used for strong

completeness results),

I v J iff 8cjA 2 I 9djA 2 J th(A) j= c! d

and �nite covering,

I v

f

J iff 8cjA 2 I 9fd

1

jA; :::; d

n

jAg � J th(A) j= c!

n

_

i=1

d

i

:

The operational semantics of de�nite CLP (A) programs is based on a simple

transition relation on de�nite goals, de�ned by the following SLD derivation rule:

SLD : cj�; p(X); �

0

! c ^ c

i

j�; �

i

; �

0

where p(X) c

i

j�

i

is any renamed clause de�ning p in P such that A j= 9(c^ c

i

).

A computed answer constraint (c.a.c.) for a de�nite goal cj� is a constraint of the

form 9Y d where Y = V (d) n V (cj�) such that

cj� !

�

dj2

where !

�

is the reexive transitive closure of !. An and-compositionality lemma

states that a c.a.c. d for a composite goal cjA

1

; :::; A

n

is of the form d = c^

V

n

i=1

c

i

where the c

i

's are c.a.c. for atomic goals truejA

i

. Thus the operational behavior of

de�nite CLP (A) programs w.r.t. answer constraints is fully characterized by the

following set of constrained atoms:

O(P ) = f9Y cjp(X) 2 B : truejp(X)!

�

cj2; Y = V (c) nXg

Taking as logical semantics

L(P ) = fcjp(X) 2 B : P; th(A) j= c! p(X)g

we obtain the well-known soundness, O(P ) � L(P ), and completeness, L(P ) v

f

O(P ), results of SLD-resolution for de�nite CLP (A) programs w.r.t. answer con-

straints [18] [12].
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The logical semantics of normal CLP (A) programs is de�ned via the Clark's

completion of the program. The Clark's completion of a CLP (A) program P is the

conjunction of th(A) with a formulaP

�

obtained fromP by putting in a conjunction

the following formulae:

8X p(X) $

n

_

i=1

9Y

i

c

i

^ �

i

for each predicate symbol p de�ned inP with a set of clauses fp(X) c

i

j�

i

g

1�i�n

2

P , where Y

i

= V (c

i

j�

i

) nX, and

8X :p(X)

for the other predicate symbols which don't appear in any head in P .

The completion of a normal program can be inconsistent, e.g. with the program

P = fp ! :pg, P

�

= (p $ :p), in that case any constraint should be a correct

answer constraint for any goal. In order to de�ne a faithful logical semantics for

normal programs, such contradictions must be localized in the program, the solu-

tion proposed by Kunen is to de�ne the logical semantics as the set of 3-valued

logical consequences of P

�

; th(A). The usual strong 3-valued interpretations of the

connectives and quanti�ers are assumed, except for the connective a $ b which is

interpreted as t if a and b have the same truth value (f , t or u), and f otherwise (i.e.

Lukasiewicz's 2-valued interpretation of$). In the previous example we can assign

the unde�ned truth value to predicate p so that u $ :u is true, more generally

Fitting [11] showed that any normal logic program has a three-valued model.

The formal semantics of normal CLP (A) programs will be thus de�ned by par-

tial interpretations. A partial constrained interpretation for a CLP (A) program

is a couple of sets of constrained atoms, I =< I

+

; I

�

>, satisfying the following

consistency condition: [I

+

]

A

\ [I

�

]

A

= ;. The set of partial interpretations forms

a semi-lattice for set inclusion on true and false constrained atoms, we denote it by

(I;�

3

). It is not a lattice as the union of two partial interpretations may not be a

partial interpretation due to the consistency condition. The preorder v extends to

partial interpretation by I v J i� I

+

v J

+

and I

�

v J

�

. And similarly for v

f

.

The logical semantics of a normal CLP(A) program P is de�ned by the following

partial interpretation:

L(P ) =< L

+

(P );L

�

(P ) > where

L

+

(P ) = fcjp(X) 2 B : P

�

; th(A) j=

3

c! p(X)g,

L

�

(P ) = fcjp(X) 2 B : P

�

; th(A) j=

3

c! :p(X)g.

The aim of this paper is to study a complete operational semantics for normal

CLP (A) programs.

3. Constructive negation by pruning

3.1. Procedural interpretation on SLD derivation forests

Constructive negation by pruning can be presented informally as a simple pruning

mechanism over standard SLD-derivation trees. The idea to resolve a goal cj�;:A

where :A is the selected literal is to develop concurrently two SLD-derivation trees,

one 	 for cj�; (:A) in which :A is not selected, and one 	

0

for cjA.
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Once a successful derivation is found in 	

0

, say with answer constraint d, then

	 is pruned by adding the constraint :9Y d where Y = V (d)nV (cjA), to the nodes

in 	 where that constraint is satis�able, and by removing the other nodes. This

operation is called \pruning by success" (PBS).

Once a successful derivation is found in 	, say with answer constraint e, we get a

successful derivation for the main goal with answer constraint f = e^

V

n

i=1

:9Y

i

d

i

where Y

i

= V (d

i

) n V (cjA), for each frontier

1

fd

i

j�

i

g

1�i�n

in 	

0

such that f is

satis�able (the deeper the frontier, the more general the computed answer). This

operation is called \success by pruning" (SBP).

The main goal is �nitely failed if 	 gets �nitely failed after pruning. Figure 1

illustrates the pruning mechanism.

tt

t t

�

�

�

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�
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�

B
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B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

	 	

0

c j �; (:A) c j A

d j 2ej2; (:A)

ej2; (:A)

pruning by success

:9Y d

Frontier

fd

i

j�

i

g

1�i�n

e ^

V

n

i=1

:9Y

i

d

i

j2

success by

pruning

c j � , :A

Figure 1. Constructive negation by pruning.

Example 3.1. The nesting of negation can be illustrated by the following program:

p(X):-X=0.

p(X):-p(X).

q(X):-not p(X).

with the goal:

1

A frontier in a SLD-derivation tree is a �nite set of nodes in the tree such that every derivation

in the tree is either �nitely failed or passes through exactly one node of the frontier.
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? not q(X)

X=0

As the query contains no positive literal the �rst derivation tree is initially triv-

ial. A second derivation tree is developed for truejq(X), that tree contains one

derivation to the goal truej:p(X), thus a third derivation tree is developed for

truejp(X). As X = 0 is a success for p(X), the second tree can be pruned with

X 6= 0 by using the PBS rule (note that the SBP rule doesn't apply here as any

frontier in the third tree contains the goal truejp(X) whose constraint cannot be

negated). Then by negating the frontier in the second tree after pruning and by

applying the SBP rule we get a successful derivation for the query with answer

constraint X = 0.

�

�

�

�

S

S

S

S

%

%

%

J

J

J

truej(:q(X)) truejq(X)

truej(:p(X)) truejp(X)

X = 0j2 truejp(X)X 6= 0j(:p(X))

PBS

X = 0j2truej(:q(X))

SBP

3.2. Operational semantics

3.2.1. Uniform derivations We shall �rst de�ne the operational semantics of

constructive negation by pruning with a simple calculus on frontiers of uniform

SLD trees, i.e. SLD trees such that a tree for cj�; �

0

is a combination of a tree for

cj� and of a tree for cj�

0

.

The set of frontiers is the set P

f

(G) of �nite sets of goals. The calculus is based

on a binary operator: the usual cross product of frontiers, �, and on a negation

operator for frontiers w.r.t. a set of variables V , noted :

V

F , which associates to

a frontier F the constraint representing the negation of the projection on V of the

constraints in F :

De�nition 3.2. Given two frontiers F = fc

i

j�

i

g

i2I

, F

0

= fd

j

j�

j

g

j2J

, let us de�ne

F � F

0

= f(c

i

^ d

j

j�

i

; �

j

) j i 2 I; j 2 J; A j= 9(c

i

^ d

j

)g

c� F = fcj2g � F = f(c ^ c

i

j�

i

) j i 2 I; A j= 9(c ^ c

i

)g

:

V

F =

V

i2I

:9Y

i

c

i

; where Y

i

= V (c

i

) n V

S(F ) = fcj2 2 F j A j= 9cg

S(F ) is the set of successes in F . c� F is called the pruning of F by constraint

c, that operation will be used to formalize the \pruning by success" rule (PBS) of

the previous section.
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One can easily check that (P

f

(G);[; ;;�; ftruej2g) is a commutative semi-ring:

� is associative and commutative; (1)

F � ; = ;; (2)

� distributes over [; (3)

furthermore, :

V

; = true; (4)

(:

V

F )� F = ;; (5)

:

V

(F [ F

0

) = (:

V

F ) ^ (:

V

F

0

); (6)

:

V

(F � F

0

) = (:

V

F ) _ (:

V

F

0

); (7)

S(F � F

0

) = S(F )� S(F

0

): (8)

Now the relation / 2 G � P

f

(G) which associates a frontier to a goal, can be

de�ned inductively as the least relation satisfying the following axiom and rules

2

:

TRIV: cj� / fcj� : A j= 9(c)g

RES:

c ^ c

1

j�

1

/ F

1

::: c ^ c

k

j�

k

/ F

k

cjp(X) / F

1

[ :::[ F

k

where f(p(X)  c

i

j�

i

)g

1�i�k

is the set of renamed apart clauses

de�ning p(X) in P such that A j= 9(c ^ c

i

), and we assume

(V (F

i

) n V (c ^ c

i

j�

i

)) \X) = ; in order to avoid variable clashes.

FRT:

cj�

1

/ F

1

cj�

2

/ F

2

cj�

1

; �

2

/ F

1

� F

2

where �

1

6= 2, �

2

6= 2 and in order to avoid variable clashes

we assume V

1

\ V (�

2

) = ;, V

2

\ V (�

1

) = ;, V

1

\ V

2

= ;

where V

1

= V (F

1

) n V (cj�

1

) and V

2

= V (F

2

) n V (cj�

2

).

PRN:

cjA / F

cj:A / c � f:

V

Sj:A; :

V

F j2g

where S � S(F ) and V = V (cjA).

Figure 2. Inductive de�nition of the goal-frontier relation for uniform derivations.

Rule RES is the usual resolution rule for positive literals. Rule FRT expresses

the formation of frontiers by cross products (a more standard operational semantics

2

This presentation of the operational semantics is not in the SOS format of Plotkin insofar as

we do not specify a transition relation over states, corresponding to elementary execution steps,

but directly its transitive closure representing the possible results of a computation. It is of course

possible to give an incremental SOS presentation of our system but we did not �nd it elegant nor

useful for our purpose. Similar di�culties have been noted for the de�nition of SLDNF resolution

(see [1]). An inductive de�nition of SLDNF resolution is given in [16].
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where frontiers are not formed by cross products but by elementary SLD resolution

steps is studied in the next section). The last rule called \pruning" (PRN) is the

new inference rule introduced for negative literals. The two elements of the inferred

frontier formalize the pruning by success rule (PBS) and the success by pruning

rule (SBP) of the procedural interpretation respectively

3

. Note that the negation

as failure rule is the restriction of the pruning rule to the case F = ; (if cjA/; then

cj:A / fcj:A; cj2g by equation 4).

De�nition 3.3. A computed answer constraint (c.a.c.) for a goal cj� is a constraint

of the form 9Y d such that cj� / fdj2g[F and Y = V (d) n V (cj�). A goal cj�

is �nitely failed if cj� / ;.

Example 3.4. Going back to example 3.1, the answer constraint x = 0 for the goal

truej:q(x) can be obtained by the following proof tree:

x = 0j2 / fx = 0j2g truejp(x) / ftruejp(x)g

truejp(x) / fx = 0j2; truejp(x)g

truej:p(x) / fx 6= 0j:p(x)g

truejq(x) / fx 6= 0j:p(x)g

truej:q(x) / ftruej:q(x); x = 0j2g

By a simple inspection of the rules we can easily state several lemma on the

goal-frontier relation /. For some proofs we shall use the principle of structural

induction on proof trees for /, that is we shall show that a property holds for /,

simply by showing that it holds for the axiom TRIV, and for the conclusion of the

rules RES, FRT and PRN assuming it holds for the premises of these rules.

Lemma 3.5. (instanciation lemma) If cj� / F then for any constraint d there exists a

frontier F

0

such that c ^ dj� / F

0

and F

0

= d� F .

Proof: The proof is by structural induction on a proof tree for cj� / F .

TRIV: We have F = fcj� : A j= 9cg. By rule TRIV we have also c ^ dj� / F

0

with

F

0

= fc ^ dj� : A j= 9(c ^ d)g = d� F .

RES: We have � = p(X) and F =

S

i2I

F

i

where fp(X)  c

i

j�

i

g

i2I

is the set of

renamed rules de�ning p(X) in P such that A j= 9(c^ c

i

), and c^ c

i

j�

i

/F

i

.

By the induction hypothesis we get c ^ c

i

^ dj�

i

/ d� F

i

. Let J � I be the

subset of indices such that c ^ c

i

^ d is A-satis�able, then by the RES rule

we get c ^ djp(X) / F

0

with F

0

=

S

j2J

d� F

j

= d�

S

i2I

F

i

= d� F .

FRT: We have � = �

1

; �

2

, cj�

1

/ F

1

, cj�

2

/ F

2

and F = F

1

� F

2

. By induction we

get c ^ dj�

1

/ d� F

1

and c ^ dj�

2

/ d� F

2

, hence by rule FRT and equation

1 we have c ^ dj� / d� F .

3

The fact that in the procedural interpretation the SBP rule need be applied only to successful

derivations in the main tree is justi�ed at the end of this section (cf. prop. 3.12).
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PRN: We have � = :A and F = c�f:

V

Sj:A; :

V

F

00

j2gwith cjA/F

00

, S � S(F

00

),

and V = V (cjA).

By the induction hypothesis we get c^ djA/d�F

00

, so by the PRN rule we

have c^ dj:A/F

0

with F

0

= (c^ d)�f:

V

0

(d�S)j:A; :

V

0

(d�F

00

)j2g and

V

0

= V [ V (d). Now

F

0

= c� (d� f:

V

0

d _ :

V

Sj:A; :

V

0

d _:

V

F

00

j2g) by eq. 1 and 7,

= c� fd ^ :

V

Sj:A; d ^ :

V

F

00

j2g,

= d� c� f:

V

Sj:A; :

V

F

00

j2g,

= d� F .

2

Lemma 3.6. (lifting lemma) If cj� / F then there exists F

0

such that truej� / F

0

and

F = c� F

0

.

Proof: By structural induction, similarly to the proof of lemma 3.5. 2

Lemma 3.7. (And-compositionality of uniform derivations)

cj�

1

; �

2

/ F if and only if there exist F

1

and F

2

such that truej�

1

/ F

1

,

truej�

2

/ F

2

, and F = c� F

1

� F

2

.

Proof:

) The proof is by cases on the root rule of a proof tree for cj�

1

; �

2

/ F .

TRIV: we have F = fcj�

1

; �

2

: A j= 9cg. By rule TRIV we can take F

1

=

ftruej�

1

g and F

2

= ftruej�

2

g, thus F = c� F

1

� F

2

.

RES: we have �

1

= p(X) and �

2

= 2, by lifting lemma 3.6 we get truejp(X)/

F

1

with F = c � F

1

, and by rule TRIV we can take F

2

= ftruej2g so

that F = c� F

1

� F

2

.

FRT: By lifting lemma 3.6 we immediately get F = c � F

1

� F

2

.

PRN: same proof as for the RES case.

( By instanciation lemma 3.5, we get cj�

1

/ c�F

1

and cj�

2

/ c�F

2

, hence by

rule FRT we have cj�

1

; �

2

/ F with F = (c� F

1

) � (c� F

2

) = c� F

1

� F

2

.

2

Corollary 3.8. (Canonical proof trees)

4

Any derivation admits a canonical proof tree in which in each application of the

FRT rule �

1

is a literal.

Proof: By taking the �rst literal of the goal for �

1

in lemma 3.7 we can build

recursively a canonical proof tree for any derivation. 2

Corollary 3.9. (And-compositionality of computed answer constraints)

d is a computed answer constraint for the goal cjA

1

; :::; A

m

;:A

m+1

; :::;:A

n

,

if and only if there exists computed answer constraints c

1

; :::; c

n

for the goals

truejA

1

; :::; truejA

m

; truej:A

m+1

; :::; truej:A

n

respectively, such that d = c ^

V

n

i=1

c

i

.

4

Canonical proof trees will be used only in the proof of lemma 3.18.
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Proof: By n applications of the lemma. 2

Uniform derivations can thus be decomposed into elementary derivations, one for

each literal in the query. That fundamental property does not hold for arbitrary

SLD derivations, but we shall show in the next subsection that any �nite SLD

derivation can be extended to a uniform derivation (theorem 3.19).

Lemma 3.10. (�nite failure lemma) If c is a computed answer constraint for truej:p(X)

then cjp(X) / ;. Conversely, if cjp(X) / ; then there exists a computed answer

constraint d for truej:p(X) such that A j= c! d.

Proof: First let us suppose truej:p(X) / F with dj2 2 S(F ), c = 9Y d,

Y = V (d) nX. Necessarily the PRN rule is applied at the root of a proof tree for

truej:p(X)/F , hence we have truejp(X)/F

0

with F = true�f:

X

Sj:p(X); :

X

F

0

j2g

and S � S(F

0

). Thus d = :

X

F

0

= c. Hence by instanciation lemma 3.5, we have

cjp(X) / c� F

0

, and c� F

0

= :

X

F

0

� F

0

= ; by eq. 5.

Conversely, let us suppose cjp(X) / ;. Then by applying the PRN rule we get

cj:p(X) / c� ftruej:p(X); truej2g, hence c is a c.a.c. for cj:p(X). Therefore by

corollary 3.9, there exists a c.a.c. d for truej:p(X) such that A j= c! d. 2

In view of these lemmas, the observation of �nite failure on an atom is equivalent

to the observation of a success on the negation of the atom (lemma 3.10), and the

computed answer constraints for a goal can be retrieved from the computed answer

constraints for the unconstrained literals that appear in the goal (lifting lemma

3.6, and corollary 3.9). Therefore we can de�ne the operational semantics of the

program as the set of computed answer constraints for unconstrained literals solely.

De�nition 3.11. O(P ) =< O

+

(P );O

�

(P ) >

O

+

(P ) = fcjp(X) 2 B : c is a c.a.c for the goal truejp(X)g

O

�

(P ) = fcjp(X) 2 B : c is a c.a.c. for the goal truej:p(X)g

Note that in the procedural interpretation of the previous section the SBP rule

need be applied only to the success nodes in the main tree, not to all nodes as in

the PRN rule. This di�erence obviously does not a�ect successful derivations in

the main tree, nor does it a�ect the negation of a frontier in that tree:

Proposition 3.12. (negation of frontiers obtained by the PRN rule) Let U; V be two sets

of variables and S; F be two frontiers s.t. S � F . Then :

U

f:

V

Sj�;:

V

F j�g =

:

U

f:

V

Sj�g.

Proof: Let F = fc

i

j�

i

g

i2I

, and S = fc

j

j�

j

g

j2J

where J � I. For all i 2 I let

Y

i

= V (c

i

) n V and Z

i

= (V (c

i

) n V ) n U . We have

:

U

f:

V

Sj�; :

V

F j�g = :

U

f

V

j2J

:9Y

j

c

j

j�;

V

i2I

:9Y

i

c

i

j�g

=

W

j2J

9Z

j

9Y

j

c

j

^

W

i2I

9Z

i

9Y

i

c

i

=

W

j2J

9Z

j

9Y

j

c

j

= :

U

f:

V

Sj�g:

2

The successful derivations are thus the same in the procedural interpretation and

in the / relation. This shows that the operational semantics and the procedural

interpretation are indeed equivalent w.r.t. computed answer constraints.
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3.2.2. Non-uniform derivations Standard SLD trees are formed by elementary

SLD derivation steps instead of cross products. Although not necessary for the rest

of this paper, it is thus interesting to study the goal-frontier relation // 2 G�P

f

(G)

de�ned as the / relation except that the RES and FRT rules are replaced by the

standard SLD resolution rule, and the PRN rule is generalized to conjunctive goals.

The inductive de�nition of the // relation is given in �gure 3.

TRIV: cj� // fcj� : A j= 9cg

SLD:

c ^ c

1

j�; �

1

; �

0

// F

1

::: c ^ c

k

j�; �

k

; �

0

// F

k

cj�; p(X); �

0

// F

1

[ :::[ F

k

where f(p(X)  c

i

j�

i

)g

1�i�k

is the set of renamed clauses

de�ning p in P such that A j= 9(c ^ c

i

),

and (V (F

i

) n V (c ^ c

i

j�; �

i

; �

0

)) \X = ;.

PRN:

cjA // F

1

cj�; �

0

// F

2

cj�;:A;�

0

// c� f:

V

Sj:A; :

V

F

1

j2g � F

2

where S � S(F

1

), V = V (cjA) and (V (F

2

) n V (cj�; �

0

)) \ V = ;.

Figure 3. Inductive de�nition of the goal-frontier relation for non-uniform derivations.

Example 3.13. Let P = fp(x)  x = 0; p(x)  x = 1; q(x; y)  p(x); p(y)g. We

have the following proof tree for the goal truejq(x; y):

x = 1 ^ y = 0j2 //fx = 1 ^ y = 0j2g

x = 1 ^ y = 1j2 //fx = 1 ^ y = 1j2g

x = 0jp(y) //fx = 0jp(y)g x = 1jp(y) //fx = 1^ y = 0j2; x = 1 ^ y = 1j2g

truejp(x); p(y) //fx = 0jp(y) ; x = 1 ^ y = 0j2; x = 1 ^ y = 1j2g

truejq(x; y) //fx = 0jp(y) ; x = 1^ y = 0j2; x = 1 ^ y = 1j2g

hence c = (x 6= 0^ (x 6= 1_ (y 6= 0^y 6= 1)) is now a computed answer constraint

for the query truej:q(x; y). On the other hand we have

truejq(x; y) / fx = 0jp(y) ; x = 1jp(y)g; or

truejq(x; y)/fx = 0^y = 0j2; x = 0^y = 1j2; x = 1^y = 0j2; x = 1^y = 1j2g

but the answer constraint c for truej:q(x; y) cannot be computed by a uniform

derivation, as p(y) cannot be developed in one branch and not in another as in

a non-uniform derivation.
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De�nition 3.14. Let us de�ne the operational semantics for non-uniform derivations

as

~

O(P ) =<

~

O

+

(P );

~

O

�

(P ) > where

~

O

+

(P ) = fcjp(X) 2 B : c is a //-c.a.c. for the goal truejp(X)g

~

O

�

(P ) = fcjp(X) 2 B : c is a //-c.a.c. for the goal truej:p(X)g

Not surprisingly, one can easily check that uniform derivations can be simulated

by non-uniform derivations, thus O(P ) �

~

O(P ).

Proposition 3.15. If cj� / F then cj� //F .

Proof: By structural induction on a proof tree for cj� / F . 2

Corollary 3.16. O(P ) �

~

O(P ).

Of course the previous example shows that the converse of that proposition

doesn't hold but we can show that any non-uniform derivation can be extended to

a uniform derivation, and thus that computed answers obtained by non-uniform

derivations are covered by computed answers obtained by uniform derivations. For

this result an extra technical lemma is needed on uniform derivations.

De�nition 3.17. Let V be a set of variables, and S, T be two sets of success goals. The

(strong) covering preorder w.r.t. V is de�ned by S v

V

T i� for all cj2 2 S there

exists dj2 2 T s.t. A j= 9Y c! 9Zd where Y = V (c) n V and Z = V (d) n V .

Lemma 3.18. Let cj� be a goal and V = V (cj�). If cj�/F and cj�/F

0

then there exists

F

00

such that cj� / F

00

with S(F ) v

V

S(F

00

), S(F

0

) v

V

S(F

00

), A j= :

V

F !

:

V

F

00

and A j= :

V

F

0

! :

V

F

00

.

Proof: The proof is by structural induction on the cartesian product of canon-

ical proof trees (cf. proposition 3.8) for cj� / F and cj� / F

0

. As the rules RES,

FRT and PRN are mutually exclusive there are only 5 cases.

TRIV | We just have to take F

00

= F

0

.

| TRIV We take F

00

= F .

RES-RES Then � = p(X), let fp(X)  c

k

j�

k

g

k2K

be the set of clauses de�ning p in

P s.t. c ^ c

k

is A-satis�able. We have F =

S

k2K

F

k

with c ^ c

k

j�

k

/ F

k

for

all k 2 K, and F

0

=

S

k2K

F

0

k

with c ^ c

k

j�

k

/ F

0

k

for all k 2 K.

By the induction hypothesis for all k 2 K there exist F

00

k

such that c ^

c

k

j�

k

/ F

00

k

, S(F

k

) v

V

S(F

00

k

), S(F

0

k

) v

V

S(F

00

k

), A j= :

V

F

k

! :

V

F

00

k

and

A j= :

V

F

0

k

! :

V

F

00

k

.

Hence by the RES rule we get cjp(X)/F

00

with F

00

=

S

k2K

F

00

k

. Furthermore

S(F ) =

S

k2K

S(F

k

) v

V

S(F

00

), and similarly S(F

0

) v

V

S(F

00

). We have

also :

V

F =

V

k2K

:

V

F

k

and :

V

F

00

=

V

k2K

:

V

F

00

k

by eq. 6, thus A j=

:

V

F ! :

V

F

00

and similarly A j= :

V

F

0

! :

V

F

00

.
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FRT-FRT As the proof trees are canonical, we have � = L;�

2

, cjL / F

1

, cj�

2

/ F

2

,

F = F

1

�F

2

, cjL / F

0

1

, cj�

2

/ F

0

2

, and F

0

= F

0

1

�F

0

2

. Now let F

00

= F

00

1

� F

00

2

where cjL / F

00

1

and cj�

2

/ F

00

2

are given by the induction hypothesis, by the

FRT rule we have cj�/F

00

and we easily check that the rest of the induction

hypothesis is satis�ed.

PRN-PRN Here � = :A, F = c�f:

V

S

1

j:A; :

V

F

1

j2g with cjA/F

1

, S

1

� S(F

1

), and

F

0

= c � f:

V

S

2

j:A; :

V

F

2

j2g with cjA / F

2

, S

2

� S(F

2

).

By the induction hypothesis there exists F

00

1

such that cjA / F

00

1

, S(F

1

) v

V

S(F

00

1

), S(F

2

) v

V

S(F

00

1

), A j= :

V

F

1

! :

V

F

00

1

and A j= :

V

F

2

! :

V

F

00

1

.

Now let F

00

= c � f:

V

Sj:A; :

V

F

00

1

j2g where S = S(F

00

1

). By the PRN

rule we have cj:A / F

00

, furthermore S(F

00

) = fc ^ :

V

F

00

1

j2g w

V

S(F ),

similarly S(F

0

) v

V

S(F

00

). Finally by proposition 3.12 we have :

V

F =

:c_

W

sj22S

1

9Y

s

s and :

V

F

00

= :c_

W

sj22S

9Y

s

s where Y

s

= V (s) nV , thus

A j= :

V

F ! :

V

F

00

and similarly A j= :

V

F

0

! :

V

F

00

.

2

Theorem 3.19. (Extension to uniform derivations) Let G be a goal and V = V (G). If

G //F then there exists F

0

such that G / F

0

, S(F ) v

V

S(F

0

) and A j= :

V

F !

:

V

F

0

.

Proof: The proof is by structural induction on a proof tree for G //F .

TRIV: We take F

0

= F .

SLD: We have G = �; p(X); �

0

, F =

S

k2K

F

k

where fp(X)  c

k

j�

k

g

k2K

is the

set of clauses de�ning p in P such that A j= 9(c^c

k

), and c^c

k

j�; �

k

; �

0

//F

k

.

By induction for all k 2 K there exist F

0

k

such that c ^ c

k

j�; �

k

; �

0

/ F

0

k

,

S(F

k

) v S(F

0

k

) and A j= :F

k

! :F

0

k

.

By lemmas 3.7 and 3.5, for all k 2 K there exist F

00

k

and F

000

k

such that

c ^ c

k

j�

k

/ F

00

k

, cj�; �

0

/ F

000

k

and F

0

k

= F

00

k

� F

000

k

.

Hence by the RES rule we get

cjp(X) /

[

k2K

F

00

k

:

Furthermore by lemma 3.18 there exists F

000

such that

cj�; �

0

/ F

000

and for all k 2 K S(F

000

k

) v

V

S(F

000

) and A j= :

V

F

000

k

! :

V

F

000

. Let

F

0

=

S

k2K

F

00

k

� F

000

, by the FRT rule we get

cj�; p(X); �

0

/ F

0

Now S(F ) =

S

k2K

S(F

k

)

v

V

S

k2K

S(F

0

k

)

v

V

S

k2K

S(F

00

k

) � S(F

000

k

) by eq. 8

v

V

S

k2K

S(F

00

k

) � S(F

000

)

v

V

S(F

0

) by eq. 8.

Furthermore :

V

F =

V

k2K

:

V

F

k

by eq. 6,

thus A j= :

V

F !

V

k2K

:

V

F

00

k _ :

V

F

000

k by eq. 7

A j= :

V

F !

V

k2K

:

V

F

00

k _ :

V

F

000

A j= :

V

F ! :

V

F

0

by eq. 6 and 7.
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PRN: We have G = cj�;:A;�

0

, F = c�f:

V

Sj:A; :

V

F

1

j2g�F

2

with S � S(F

1

),

cjA //F

1

and cj�; �

0

//F

2

. By induction there exist F

0

1

and F

0

2

such that

cjA/F

0

1

, cj�; �

0

/F

0

2

, S(F

1

) v

V

S(F

0

1

), S(F

2

) v

V

S(F

0

2

), A j= :

V

F

1

! :

V

F

0

1

and A j= :

V

F

2

! :

V

F

0

2

. Let F

0

= c � f:

V

S(F

0

1

)j:A; :

V

F

0

1

j2g � F

0

2

, by

the PRN rule we have G / F

0

and we easily check that S(F ) v

V

S(F

0

) and

A j= :

V

F ! :

V

F

0

by proposition 3.12.

2

Corollary 3.20.

~

O(P ) v O(P ).

4. Fully abstract �xpoint semantics

In this section we study a non-ground continuous �nitary version of Fitting's op-

erator for constraint logic programs. We show that the least �xed point of our

operator is equal to the operational semantics of constructive negation by pruning.

We �rst recall the de�nition of Fitting's operator �

A

P

. Given a � � �-algebra

A, the A-ground base B

A

= [B]

A

is the set of ground instances of the base B of

constrained atoms. A partial ground interpretation is a couple I =< I

+

; I

�

>

such that I

+

; I

�

� B

A

and I

+

\ I

�

= ;. A ground atom A is true (resp. false)

in I i� A 2 I

+

(resp. A 2 I

�

). A constraint is true in I if it is true in A. A

�rst-order ���-formula 	 is true in I, noted I j=

3

	, if it is true under the usual

strong three-valued interpretation of the logical symbols. The set of partial ground

interpretations forms a semi-lattice for set inclusion on true and false atoms, we

denote it by (GI;�

3

).

De�nition 4.1 ([23][16][11]). Let P be a normal CLP (A) program, the immediate con-

sequence operator �

A

P

: GI ! GI is de�ned by:

�

A

P

+

(I) = fA 2 B

A

j there exist a clause in P , p(X) cj�,

and a valuation � such that A = p(X)� and I j=

3

(c ^ �)�g

�

A

P

�

(I) = fA 2 B

A

j for any clause in P , p(X)  cj�,

and any valuation � such that A = p(X)� then I j=

3

:(c ^ �)�g.

�

A

P

is a monotonic operator in the semi-lattice of partial ground interpretations.

It thus admits a least �xpoint which is the least three-valued A-model of the pro-

gram's completion [11]. It is not continuous however, so its power at ordinal ! is

generally not a �xpoint (cf. example 4.3).

In order to abstract from a given algebra A and to prove completeness results,

Stuckey [23] de�ned a non-ground version of Fitting's operator based on partial

constrained interpretations. In his de�nition the downward closure of constrained

atoms by their instances prevents however a characterization of the operational

behavior of the program w.r.t. answer constraints. Furthermore the operator of

Stuckey is not continuous either, so it doesn't provide CLP programs with a �xpoint

semantics.

The idea of our operator T

P

for obtaining a fully abstract �xpoint semantics

is simply to take the �nitary, hence continuous, non-downward closed constraint
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based version of Fitting's operator. So a constrained atom will be true (resp. false)

in T

P

(I) if the constraint in the constrained atom is a combination of constraints in

a �nite part of I which validates the body of a program clause for the atom (resp.

invalidates the body of all program clauses for the atom).

De�nition 4.2. Let P be a CLP (A) program. T

P

is an operator over 2

B

� 2

B

de�ned

by T

P

(I) =< T

+

P

(I); T

�

P

(I) > where:

T

+

P

(I) = fcjp(X) 2 B : there exists a clause in P with local variables Y ,

p(X)  djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

for all 1 � i � m there exists c

i

jA

i

2 I

+

for all m + 1 � j � n there exists c

j

jA

j

2 I

�

such that c = 9Y d ^

V

n

i=1

c

i

is A-satis�ableg

T

�

P

(I) = fcjp(X) 2 B : for each clause de�ning p in P with local variable Y

k

,

p(X)  d

k

jA

k;1

; :::; A

k;m

k

; �

k

, where m

k

� 0,

for all 1 � i � m

k

there exists e

k;i

jA

k;i

2 I

�

,

there exists n

k

� m

k

and for all m

k+1

� j � n

k

there exists e

k;j

jA

k;j

2 I

+

with :A

k;j

occurring in �

k

such that c

k

= 8Y

k

(:d

k

_

W

n

k

i=1

e

k;i

) is A-satis�able,

and c =

V

k

c

k

is A-satis�ableg

Note that in the de�nition of T

+

P

, for each literal in the body of a program clause

de�ning p, exactly one constrained atom is taken in I. In the de�nition of T

�

P

, if

p is not de�ned in P then we have c = true, otherwise for each clause de�ning

p, a �nite number of constrained atoms are taken in I to invalidate the body of

the clause. Note that for each atom in the body at most one constrained atom is

taken in I

�

(�

k

may contain both positive and negative literals), whereas for each

negative literal a �nite number of constrained atoms can be taken in I

+

. This is

crucial for the completeness w.r.t. the logical semantics. For instance, with the

program P :

p :q(X):

q(X)  X � 0:

q(X)  X < 0:

We have T

+

P

(;) = fX � 0jq(X); X < 0jq(X)g and T

�

P

(T

P

(;)) = ftruejpg. If in the

de�nition of T

�

P

only one constrained atom was taken in I

+

for a negative literal

in the clause, then p would not be false in the iteration of T

P

. Allowing to take

similarly a �nite number of constrained atoms in I

�

for a same positive literal,

instead of at most one, would not change the de�nition of T

�

as we shall see that

the �nite powers of T

P

are closed by disjunction on false atoms (proposition 5.6).

Example 4.3. Let us consider an example over the Herbrand domain formed with a

constant 0 and an unary function symbols s. Clark's equational theory CET

augmented with the domain closure axiom DCA is a complete theory for that

structure [19], in particular we have CET + DCA j= (8y x 6= s(y)) $ x = 0.

The following program is a classical example that shows that Fitting's operator

�

A

P

is not continuous:

p(x) x = s(y)jp(y):

q  p(x):

No atom is true in the powers of �

A

P

and T

P

. At ordinal !, all ground instances

of p(x) are false both in �

A

P

" ! and [T

P

" !], whereas the atom q becomes false
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in �

A

P

" ! + 1 and stays unde�ned in [T

P

" ! + 1]:

� (�

A

P

" �)

�

(T

P

" �)

�

0 ; ;

1 fp(0)g fx = 0jp(x)g

2 fp(0); p(s(0))g fx = 0jp(x); x= 0 _ x = s(0)jp(x)g

... ... ...

! fp(s

i

(0) j i � 0g fx = 0 _ :::_ x = s

i

(0)jp(X) j i � 0g

! + 1 fqg [ fp(s

i

(0) j i � 0g fx = 0 _ :::_ x = s

i

(0)jp(X) j i � 0g

The de�nition of �

A

P

(I) based on valuations allows to infer that q is false in

�

A

P

" ! + 1 whilst the de�nition of T

P

based on �nite subsets of I does not.

Proposition 4.4. T

P

is an operator over partial interpretations.

Proof: We just have to prove that if I is a partial interpretation, then [T

+

P

(I)]\

[T

�

P

(I)] = ;.

Let cjp(X) 2 T

+

P

(I) and � be any valuation of the variables in X such that c� is

true. There exists a clause in P , p(X)  djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

, such that

for all 1 � i � m there exists c

i

jA

i

2 I

+

, for all m + 1 � j � n there exists

c

j

jA

j

2 I

�

, such that c = 9Y (d^

V

n

i=1

c

i

). As c� is true in A let � be a valuation

extending � to the variables in Y such that (d ^

V

n

i=1

c

i

)� is true.

Let us suppose that there exists ejp(X) 2 T

�

P

(I) such that e� is true. Then for

the previous clause de�ning p there exists p � m and fe

1

jA

1

; :::; e

p

jA

p

g � I

�

, there

exists fe

p+1

jB

p+1

; :::; e

q

jB

q

g � I

+

, where for all p+1 � j � q B

j

2 fA

m+1

; :::; A

n

g,

such that e = 8Y (:d _

W

q

j=1

e

j

) is satis�ed by �. Hence (:d _

W

q

j=1

e

j

)� is true.

Now as d� is true, e

j

� must be true for some j 2 [1; q], with e

j

jA

i

2 I

�

for some

i 2 [1;m] (or e

j

jA

i

2 I

+

for some i 2 [m + 1; n]). Hence we have c

i

jA

i

2 I

+

(or

c

i

jA

i

2 I

�

) with c

i

� true, so we get a contradiction: c

i

^ e

j

is satis�ed by � and

we have c

i

jA

i

2 I

+

and e

j

jA

i

2 I

�

(or c

i

jA

i

2 I

�

and e

j

jA

i

2 I

+

), i.e. I is not a

partial interpretation. 2

Proposition 4.5. T

P

is monotonic in the semi-lattice (I;�

3

).

Proof: If I �

3

J then I

+

� J

+

and I

�

� J

�

, so it is straightforward to verify

that by de�nition of T

P

we have both T

+

P

(I) � T

+

P

(J) and T

�

P

(I) � T

�

P

(J), thus

T

P

(I) �

3

T

P

(J). 2

Proposition 4.6. T

P

is continuous in the semi-lattice (I;�

3

).

Proof: The result follows from the fact that an operator f over a powerset,

monotonic w.r.t. set inclusion, is continuous if it is �nitary, i.e. 8x; y x 2 f(y) )

9y

0

� y �nite s.t. x 2 f(y

0

). From its de�nition T

P

is clearly �nitary. 2

As T

P

is continuous we can take the least �xpoint of T

P

as the �xpoint se-

mantics of the program. We then show a strong equivalence theorem with the

operational semantics which shows that the �xpoint semantics fully characterizes

the operational behavior of normal CLP programs w.r.t. answer constraints.
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De�nition 4.7. (Fixpoint semantics) F(P ) = lfp(T

P

) = T

P

" !.

Main theorem 4.8. (Full abstraction for answer constraints computed by uniform deriva-

tions) O(P ) = F(P ).

Proof:

�

3

: We show more generally that if cj� / F where � 6= 2 then, let V = V (cj�),

1) if dj2 2 F then for each occurrence of an atomA

i

in �, 1 � i � m, there

exists c

i

jA

i

2 F(P )

+

, for each occurrence of a negative literal :A

j

in �,

m+1 � j � n, there exists c

j

jA

j

2 F(P )

�

, such that 9Y d = c^

V

n

i=1

c

i

where Y = V (d) n V .

2) if :

V

F is A-satis�able then there exist occurrences of atoms of atoms

in �, A

1

; :::; A

m

, m � 0, and for all 1 � i � m there exists c

i

jA

i

2 F

�

,

there exists n � m and for all m + 1 � j � n there exists c

j

jA

j

2 F

+

where :A

j

is a negative literal in �, such that :

V

F = :c _

W

n

i=1

c

i

.

Therefore taking cj� = truejp(x) in 1) we get O(P )

+

� F(P )

+

, and taking

cj� = truej:p(x) in 1) we get O(P )

�

� F(P )

�

. The proof is by structural

induction on a proof tree for cj� / F .

TRIV: 1) We have F = fcj� : A j= 9cg and � 6= 2 hence fdj2g 62 F .

2) We have F = fcj� : A j= 9cg and :

V

F = :c.

RES: We have � = p(X) and F =

S

k

i=1

F

i

where fp(X) c

i

j�

i

g

1�i�k

is the

set of renamed apart clauses de�ning p(X) in P with local variables Y

i

such that c ^ c

i

is A-satis�able, and c ^ c

i

j�

i

/ F

i

for all 1 � i � k.

1) Let us suppose dj2 2 F , then dj2 2 F

i

for some i. By the induction

hypothesis applied to c ^ c

i

j�

i

/ F

i

we get that for each atom's

occurrence A

j

(resp. negative literal's occurrence :A

j

) in �

i

, 1 �

j � n, there exists e

j

jA

j

2 F(P )

+

(resp. e

j

jA

j

2 F(P )

�

) such

that 9Zd = c ^ c

i

^

V

n

j=1

e

j

where Z = V (d) n V (c ^ c

i

j�

i

).

Now let e = 9Y

i

(c

i

^

V

n

j=1

e

j

), then by the de�nition of T

+

P

we get

that ejp(X) 2 F(P )

+

, thus 9Y d = 9Y

i

9Zd = c ^ e.

2) Let us suppose :

V

F is A-satis�able. As :

V

F =

V

k

i=1

:

V

F

i

by eq.

6, :

V

F

i

is A-satis�able for all 1 � i � k. Let V

i

= V (c ^ c

i

j�

i

),

we have :

V

F =

V

k

i=1

8Y

i

:

V

i

F

i

, hence for all 1 � i � k, :

V

i

F

i

is A-satis�able as well. By applying the induction hypothesis to

c ^ c

i

j�

i

/ F

i

, we get that for all 1 � i � k,

:

V

i

F

i

= :c _ :c

i

_

n

i

_

j=1

c

i

j

where n

i

� 0 and for all 1 � j � n

i

, c

i

j

jA

i

j

2 F

�

(resp. c

i

j

jA

i

j

2 F

+

)

where A

i

j

is an atom's occurrence in �

i

(resp. :A

i

j

is a literal in

�

i

).

Now let d =

V

k

i=1

8Y

i

(:c

i

_

W

n

i

j=1

c

i

j

), we get from the de�nition of

T

�

P

that djp(X) 2 F(P )

�

. Thus :

V

F =

V

k

i=1

8Y

i

:

V

i

F

i

= :c _ d.
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FRT: We have � = �

1

; �

2

, cj�

1

/ F

1

, cj�

2

/ F

2

and F = F

1

� F

2

. Let V

1

=

V (cj�

1

) and V

2

= V (cj�

2

).

1) If dj2 2 F then there exist d

1

j2 2 F

1

and d

2

j2 2 F

2

such that

d = d

1

^ d

2

. Let Y = V (d) n V (cj�), Y

1

= V (d

1

) n V (cj�

1

) and

Y

2

= V (d

2

) n V (cj�

2

). By the hypothesis on variable clashes in

the FRT rule we have 9Y d

1

= 9Y

1

d

1

and 9Y d

2

= 9Y

2

d

2

, therefore

9Y d = 9Y

1

d

1

^ 9Y

2

d

2

. Now the induction hypothesis 1) applied to

cj�

1

/ F

1

and cj�

2

/ F

2

immediately concludes the proof.

2) By eq. 7 we have :

V

F = :

V

F

1

_ :

V

F

2

. Furthermore by the

hypothesis on variable clashes in the FRT rule we have :

V

1

F

1

=

:

V

F

1

and :

V

2

F

2

= :

V

F

2

, therefore :

V

F = :

V

1

F

1

_ :

V

2

F

2

. Now

the induction hypothesis 2) applied to cj�

1

/ F

1

and cj�

2

/ F

2

also

immediately concludes the proof.

PRN: We have � = :p(X) and F = c�f:

V

Sj:p(X); :

V

F

0

j2g with cjp(X)/

F

0

and S � S(F

0

).

1) If d = c ^ :

V

F

0

is A-satis�able, then :

V

F

0

is A-satis�able, hence

by the induction hypothesis 2) applied to cjp(X) / F

0

we get that

there exists c

1

jp(X) 2 F(P )

�

such that :

V

F

0

= :c _ c

1

. Thus

9Y d = c ^ (:c _ c

1

) = c ^ c

1

.

2) Let us suppose that :

V

F is A-satis�able. Let S = fs

1

j2; :::; s

m

j2g,

proposition 3.12 gives :

V

F = :c_

W

m

i=1

9Y

i

s

i

where Y

i

= V (s

i

)nV .

Now by the induction hypothesis 1) applied to cjp(X) / F

0

we get

that there exists fc

1

jp(X); :::; c

m

jp(X)g � F(P )

+

such that for all

1 � i � m, 9Y

i

s

i

= c

i

. Thus :

V

F = :c _

W

m

i=1

c

i

with c

i

jp(X) 2

F(P )

+

.

�

3

: We prove by induction on n that O

+

(P ) � T

P

" n

+

and O

�

(P ) � T

P

" n

�

for all n � 0. The base case n = 0 is trivial. Let us consider the induction

step.

Let cjp(X) 2 (T

P

" n)

+

. There exists a clause with local variables Y

p(X) djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

for all 1 � i � m there exists c

i

jA

i

2 (T

P

" n� 1)

+

for all m + 1 � j � n

there exists c

j

jA

j

2 (T

P

" n� 1)

�

such that c = 9Y d ^

V

n

i=1

c

i

.

By induction we get that c

i

is a computed answer to the goal truejA

i

for all

1 � i � m and to the goal truej:A

i

for all m+ 1 � i � n.

Hence by corollary 3.9,

V

n

i=1

c

i

is a computed answer to

truejA

1

; :::; A

m

;:A

m+1

; :::;:A

n

:

By the instanciation lemma 3.5, we get that c is a computed answer to the

goal djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

; hence by the RES rule we get cjp(X) 2

O

+

(P ).

Let cjp(X) 2 (T

P

" n)

�

. For any clause de�ning p in P , with local variables

Y

k

,

p(X)  d

k

jA

k;1

; :::; A

k;m

k

; �

k
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there exists fe

k;1

jA

k;1

; :::; e

k;m

k

jA

k;m

k

g � (T

P

" n � 1)

�

,

there exists n

k

� m

k

and fe

k;m

k

+1

jA

k;m

k

+1

; :::; e

k;n

k

jA

k;n

k

g � (T

P

" n � 1)

+

,

where for all m

k

+ 1 � j � n

k

, :A

k;j

is a negative literal in �

k

, such that

c

k

= 8Y

k

(:d

k

_

W

n

k

i=1

e

k;i

) is A-satis�able, and c =

V

k

c

k

is A-satis�able.

By induction we have that for all 1 � i � m

k

, e

k;i

is a c.a.c. for the goal

truej:A

k;i

. As the PRN rule is necessarily applied at the root, we have

truejA

k;i

/ F

k;i

with e

k;i

= :

V (A

k;i

)

F

k;i

.

Similarly by induction we have that for all m

k+1

� j � n

k

, e

k;j

is c.a.c. for

the goal truejA

k;j

. Hence by the PRN rule, taking the singleton fe

k;j

j2g as

success set, we have

truej:A

k;j

/ F

k;j

with :e

k;j

j:A

k;j

2 F

k;j

. By proposition 3.12 we get :

V (A

k;j

)

F

k;j

= e

k;j

.

Let �

k

= �

k

n

S

n

k

j=m

k

+1

:A

k;j

, by lemma 3.7 and rule TRIV we have

d

k

jA

k;1

; :::; A

k;m

k

;:A

k;m

k

+1

; :::;:A

k;n

k

; �

k

/ F

k

where F

k

= d

k

� �

n

k

i=1

F

k;i

� fd

k

j�

k

g. Note that by equation 7 we have

:

X

F

k

= 8Y

k

(:d

k

_

W

n

k

i=1

e

k;i

) = c

k

.

Now by applying the RES rule we get truejp(X) / F where F =

S

k2K

F

k

.

By equation 6 we have :

X

F =

V

k

c

k

= c, hence by the PRN rule we get

cjp(X) 2 O

�

(P ).

2

Full abstraction does not hold for non uniform derivations, however the full ab-

straction theorem 4.8, together with corollaries 3.16 and 3.20 show that non-uniform

derivations are nevertheless sound and complete w.r.t. the �xpoint semantics.

Theorem 4.9. (Soundness and completeness of non-uniform derivations)

~

O(P ) v F(P )

and F(P ) �

~

O(P ).

5. Three-valued logical semantics

The main theorem of [15], extended to CLP programs in [23], characterizes the

three-valued logical consequences of the Clark's completion with the �nite powers

of Fitting's operator �

A

P

:

Theorem 5.1 ([15][23]). Let P be a normal CLP (A) program and  be a �;�; V -

formula, then P

�

; th(A) j=

3

� i�  is true in �

A

P

" n for some integer n.
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Corollary 5.2. [L(P )]

A

= �

A

P

" !.

In this section we show that the �nite powers of T

P

coincide with those of

Fitting's operator �

A

P

as in [23], and thus, by the previous theorem, that the �xpoint

and operational semantics are correct and complete w.r.t. the three-valued logical

consequences of the program's completion.

Proposition 5.3. If I is a �nite partial interpretation then T

P

(I) is �nite.

Proof: Obvious from the de�nition of T

P

. 2

Corollary 5.4. For all n � 0, T

P

" n is �nite.

De�nition 5.5. A constrained interpretation I is closed by disjunction if whenever

cjp(X) 2 I, c

0

jp(X) 2 I then there exists djp(X) 2 I such that A j= (c_ c

0

)! d.

Proposition 5.6. Let I be a partial constrained interpretation. If I

�

is closed by dis-

junction then so is T

�

P

(I).

Proof: Let cjp(X); c

0

jp(X) 2 T

�

P

(I). For any clause de�ning p in P , with local

variable Y

k

, p(X) A

k;1

; :::; A

k;m

k

; �

k

, where m

k

� 0,

there exist fe

k;r

jA

k;r

g

r2R

� I

�

, and fe

0

k;r

0

jA

k;r

0

g

r

0

2R

0

� I

�

, where R and R

0

are

subsets of f1; :::;m

k

g,

there exist �nite sets fe

k;s

jA

k;s

g

s2S

� I

+

and fe

0

k;s

0

jA

k;s

0

g

s

0

2S

0

� I

+

where R\S =

;, R

0

\ S

0

= ; and for all j 2 S [ S

0

, :A

k;j

is a negative literal in �

k

,

such that c

k

= 8Y

k

(:d

k

_

W

i2R[S

e

k;i

), c

0

k

= 8Y

k

(:d

k

_

W

j2R

0

[S

0

e

0

k;j

) c =

V

k

c

k

,

and c

0

=

V

k

c

0

k

are A-satis�able (c = c

0

= true if p is not de�ned in P )g.

Now for any clause de�ning p in P , let

ff

k;l

g

l2L

= fe

k;s

g

s2S

[ fe

0

k;s

0

g

s

0

2S

0

[ fe

k;r

g

r2RnR

0 [ fe

0

k;r

0

g

r

0

2R

0

nR

[ fg

k;r

g

r2R\R

0

where, as I is a partial interpretation closed by disjunction on false atoms, we can

de�ne g

k;r

for all r 2 R\R

0

by choosing g

k;r

jA

k;r

2 I

�

such that A j= e

k;r

_e

0

k;r

!

g

k;r

.

Let f

k

= 8Y

k

(:d

k

_

W

l2L

f

k;l

), we have A j= (c

k

_ c

0

k

) ! f

k

, hence f

k

is

A-satis�able. Let f =

V

k

f

k

, we have A j= c _ c

0

! f , hence f is A-satis�able.

Therefore by de�nition of T

�

P

we conclude that f jp(X) 2 T

�

P

(I) withA j= c_c

0

! f .

2

Corollary 5.7. For all n � 0, T

P

" n is closed by disjunction on false atoms.
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Corollary 5.8. F(P ) (and O(P )) are closed by disjunction on false constrained atoms.

Lemma 5.9. [T

P

(I)]

A

= �

A

P

([I]

A

) for all �nite partial interpretation closed I by dis-

junction on false atoms.

Proof: We consider both inclusions on positive and negative parts separately.

�

+

: Let cjp(X) 2 T

+

P

(I), and � be any A-valuation of X such that c� is true.

From the de�nition of T

+

P

there exists a clause in P with local variables Y ,

p(X) djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

such that for all 1 � i � m there exists c

i

jA

i

2 I

+

;, for all m + 1 � j � n

there exists d

j

jA

j

2 I

�

such that c = 9Y (d ^

V

i

c

i

^

V

j

d

j

) is A-satis�able.

Therefore there exists an A-valuation � which extends � to an A-valuation

of the variables in Y such that (d^

V

i

c

i

^

V

j

d

j

)� is true. Hence d� is true,

A

i

� 2 [I

+

]

A

for all i, 1 � i � m, and A

j

� 2 [I

�

]

A

for all j, m + 1 � j � n.

Hence by de�nition of (�

A

P

)

+

we have p(X)� 2 �

A

P

+

([I]

A

) for all � such that

c� is true.

�

�

: Let cjp(X) 2 T

�

P

(I), and � be any A-valuation of X such that c� is true.

For any clause in P de�ning p, with local variable Y

k

,

p(X) d

k

jA

k;1

; :::; A

k;m

; �

k

,

there exists fe

k;1

jA

k;1

; :::; e

k;m

jA

k;m

g � I

�

,

there exists fe

k;m+1

jA

k;m+1

; :::; e

k;n

jA

k;n

g � I

+

, where for allm+1 � j � n,

:A

k;j

is a negative literal in �

k

,

such that c

k

= 8Y

k

(:d

k

_

W

n

i=1

e

k;i

) is A-satis�able, and c =

V

k

c

k

is A-

satis�able.

Therefore for any clause de�ning p in P , and any A-valuation �

k

extending

� to an A-valuation for the variables in Y

k

, we have

either d

k

�

k

false,

or e

k;i

�

k

true for some 1 � i � m, in which case A

i

�

k

2 [I

�

]

A

,

or e

k;j

�

k

true for some m + 1 � j � n, in which case A

j

�

k

2 [I

+

]

A

.

Hence by de�nition of (�

A

P

)

�

we have p(X)� 2 �

A

P

�

([I]

A

) for all � such that

c� is true.

�

+

: Let p(X)� 2 �

A

P

+

([I]

A

). There exists a clause in P with local variables

Y , p(X)  djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

such that d� is true and for all

1 � i � m; m + 1 � j � n, A

i

� 2 [I

+

]

A

and A

j

� 2 [I

�

]

A

.

Hence for all 1 � i � m; m+1 � j � n, there exist c

i

jA

i

2 I

+

; d

j

jA

j

2 I

�

,

such that c

i

� and d

j

� are true. Hence c = 9Y (d^

V

i

c

i

^

V

j

d

j

) is A-satis�able

(by �), and from the de�nition of T

+

P

we get cjp(X) 2 T

+

P

(I).

�

�

: Let p(X)� 2 �

A

P

�

([I]

A

). From the de�nition of �

A

P

, for any clause in P

de�ning p, with local variable Y

k

, p(X)  d

k

j�

k

, and for any A-valuation

�

k

extending � to the variables in Y

k

, we have

either d

k

�

k

false,

or A�

k

2 [I

+

]

A

for some negative literal :A in �

k

, in which case there exists

cjA 2 I

+

with c�

k

true,
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or A

0

�

k

2 [I

�

]

A

for some positive literal A

0

in �

k

, in which case there exists

c

0

jA

0

2 I

�

with c

0

�

k

true.

Let us consider the classes of all constrained atoms taken in I

�

and I

+

, for

all A-valuations extending � to the variables in Y

k

. By hypothesis I is �nite,

thus these classes are �nite sets, say fc

k;1

jA

k;1

; :::; c

k;n

jA

k;n

k

g � I

+

where

:A

k;1

; :::;:A

k;n

k

are negative literals in �

k

, and fc

0

k;1

jA

0

k;1

; :::; c

0

k;n

0

jA

0

k;n

0

g �

I

�

where A

0

k;1

; :::; A

0

k;n

0

are positive literals in �

k

.

Let fA

k;n

k

+1

; :::; A

k;m

k

g = fA

0

k;i

j 1 � i � n

0

g. As I is closed by disjunction

on false atoms, there exists fc

k;n

k

+1

jA

k;n

k

+1

; :::; c

m

k

jA

k;m

k

g � I

�

such that

for all c

0

k;i

jA

0

k;i

, 1 � i � n

0

there exists a j, n

k

+ 1 � j � m

k

such that

A

0

k;i

= A

k;j

and A j= c

0

k;i

! c

k;j

.

Now let c

k

= 8Y

k

(:d

k

_

W

n

k

i=1

c

k;i

). For all k, c

k

� is true, hence c =

V

c

k

is

A-satis�able and from the de�nition of T

�

P

we get cjp(X) 2 T

�

P

(I).

2

Theorem 5.10. For all n � 0, [T

P

" n]

A

= �

A

P

" n.

Proof: By induction on n. The base case n = 0 is trivial. For the induction

step, we have [T

P

" n]

A

= [T

P

(T

P

" n� 1)]

A

. By corollary 5.4 and 5.7, T

P

" n � 1

is �nite and closed by disjunction on false atoms, hence we get by lemma 5.9,

[T

P

" n]

A

= �

A

P

([T

P

" n � 1]

A

). Therefore by the induction hypothesis we conclude

[T

P

" n]

A

= �

A

P

(�

A

P

" n� 1) = �

A

P

" n. 2

Corollary 5.11. For all n � 0, �

A

P

" n has a �nite cover.

Corollary 5.12. [F(P )]

A

= �

A

P

" !.

Theorem 5.13. (Correctness and completeness of the �xpoint semantics w.r.t. the log-

ical semantics) F(P ) � L(P ), L

+

(P ) v

f

F

+

(P ) and L

�

(P ) v F

�

(P ).

Proof: By corollaries 5.12 and 5.2 we get [F(P )]

A

= [L(P )]

A

, thus by de�ni-

tion of L we have F(P ) � L(P ).

Conversely, let cjp(X) 2 L

+

(P ), by theorem 5.1, 8X(c! p(X)) is true in �

A

P

" n

for some n, thus by theorem 5.10, it is true in T

P

" n for some n. Now as T

P

" n

is �nite (corollary 5.4), there exists fd

1

jp(X); :::; d

k

jp(X)g � T

P

" n such that

A j= c!

W

k

i=1

d

i

, so L

+

(P ) v

f

F

+

(P ). We prove similarly that L

�

(P ) v

f

F

�

(P ),

yet by corollary 5.8 we get L

�

(P ) v F

�

(P ). 2

Theorem 5.14. (Correctness and completeness of the operational semantics w.r.t. the

logical semantics) O(P ) � L(P ), L

+

(P ) v

f

O

+

(P ) and L

�

(P ) v O

�

(P ).

Similarly

~

O(P ) � L(P ), L

+

(P ) v

f

~

O

+

(P ) and L

�

(P ) v

~

O

�

(P ).

Proof: By theorems 5.13 and 4.8 (resp. 4.9). 2
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6. Comparison with other schemes for constructive negation

The constructive negation scheme of Chan [6] for logic programs, and Stuckey [23]

for constraint logic programs, relies on a transition relation over explicitly quanti�ed

complex goals. The transition relation is de�ned by the usual SLD resolution rule

for positive subgoals and by the following constructive negation rule CN for complex

subgoals:

CN : (cj�; (:9Y �); �

0

) ! (c ^ c

j

j�; �

0

j

; �

0

)

for each j 2 J where

W

j2J

c

j

^ �

0

j

is a disjunctive normal form of

V

k2K

:9Z

k

(c ^

d

k

^�

k

) and where fc^d

k

j�

k

g

k2K

is a frontier in a SLDCN derivation tree for cj�.

Not only the constraints but also the goals in the frontier of an auxiliary deriva-

tion tree are thus transformed into disjunctive normal form and reinjected in the

resolvant at each resolution step with a negative subgoal. This makes the scheme

hardly amenable to a practical implementation for normal CLP programs in all

generality.

The compilative version proposed by Bruscoli et al. [5], named intensional nega-

tion, performs all disjunctive normal form transformations once and for all at com-

pile time, but still all quanti�ers need be explicit at run time and derivation rules

need be de�ned for complex goals. The practical advantage of constructive negation

by pruning is that it relies on standard SLD derivation trees for de�nite goals only.

The only extra machinery to handle negation is a concurrent pruning mechanism

over standard SLD derivation trees. It is remarkable that the exploitation of con-

currency in the development of SLD derivation trees is su�cient to build a complete

scheme for negation. This is the case also for the fail answers approach proposed

recently by Drabent in [7] for normal logic programs. Drabent's execution model is

essentially equivalent to constructive negation by pruning in that case, the success

by pruning rule is a special case of the fail answer approach, we believe that both

schemes de�ne in fact the same set of computed answer substitutions for normal

logic programs.

If we look at the nesting of negation, we can see that the e�ect of doubly negating

a goal is to collect in a single answer constraint all the successes found for the pos-

itive goal. Corollary 5.8 shows that the computed answer constraints for negative

goals are closed by disjunction, thus a simple way to obtain a strong completeness

result w.r.t. the logical semantics (i.e. L(P ) v O(P ) instead of L(P ) v

f

O(P )) is

to put double negations on positive goals. On the other hand, in the intensional

negation scheme double negations are eliminated by simpli�cation. In this respect

our scheme is nearer to the one of Chan and Stuckey.

The closure by disjunction property for negative literals can be seen also as

a drawback as at some point in the execution all the current information on a

negative literal need to be handled by the constraint solver. A general solution

to this problem is to exploit the trade-o� there is between the constraint solver

and the non-deterministic derivation system. This is possible if the structure A

is admissible [23] (cf. section 2.1), in that case the language of constraints need

not even be closed by negation. Constructive negation by pruning can be adapted

mainly by changing the de�nition of :

V

F . The negation of the projection of the

constraints in a frontier F = fc

1

j�

1

; :::; c

n

j�

n

g over a set of variables V is then no

longer a constraint but a frontier de�ned as:

:

V

F = fd

1;1

j2; :::; d

1;l

1

j2g � :::� fd

n;1

j2; :::; d

n;l

n

j2g
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where A j= 8V (:9Y

i

c

i

(V; Y

i

) $ 9Z

i

(d

i;1

_ ::: _ d

i;l

i

)) for all 1 � i � n. This

change amounts to replace in the procedural interpretation the pruning by success

rule by a check of satis�ability with at least one of the disjunct, and the success by

pruning rule by the creation of a success for each satis�able disjunct.

Another possible drawback of constructive negation by pruning is that once a

derivation tree is developed for a negative literal it receives no more information

from the resolution of the positive part of the goal. This is the price to pay for

having a single derivation tree for a negative literal instead of duplicating resolution

steps at all its occurrences. Many optimizations can nevertheless be imagined, such

as sending back for pruning in the auxiliary tree the constraints which are entailed

by the frontiers in the main tree.

On the theoretical side constructive negation was proved correct and complete

w.r.t. Kunen's logical semantics by Stuckey for consistent fair computation rules

[23]. Similar results were obtained for intensional negation [5] and by Drabent [7].

None of these schemes however were provided with a �xpoint semantics. The full

abstraction theorem given for constructive negation by pruning allows to analyze

and transform normal CLP (A) programs by reasoning at the �xpoint semantics

level of abstraction while preserving the program equivalence based on the observa-

tion of computed answer constraints. Note that a similar result is conjectured in [3].

Note also that the full abstraction result has been obtained without �xing a resolu-

tion strategy, it holds w.r.t. the computation of all frontiers in uniform derivation

trees. This left open the problem of giving a fully abstract �xpoint semantics under

speci�c strategies, such as breadth-�rst [23].

7. Variations on a scheme for optimization predicates

7.1. Query optimization by pruning

Because of their importance in real-life applications, most constraint logic program-

ming systems, such as CHIP, CLP(R) and Prolog III, include various constructs

for optimization w.r.t. an objective function. The optimization of the top-level

query [20] [24] can be achieved with a simple pruning mechanism on the derivation

tree of the query, assuming the constraint solver can deal with constraint mini-

mization. By constraint minimization we mean, given a constraint c(X;Y ) and a

term f(Y ), determine the minimum value, noted min

c(X;Y )

f(Y ), of f(Y ) under

constraint c(X;Y ), when it exists, fail otherwise.

The main procedure is a variant of the branch-and-bound procedure. Once

a successful derivation is found for the query G(X), say with answer constraint c,

then the optimal value v of the objective function f is computed for that derivation,

v = min

c

f(X), and the tree is pruned by adding the constraint f(X) � v. If v

doesn't exist it is a failure, otherwise whenever the tree gets �nite after pruning, the

optimal solutions to the query are given by the remaining successful derivations.

There are some problems however to use that procedure recursively for optimiza-

tion goals, noted min(G(X); f(X)) where G(X) is a goal and f(X) a term, because

of the following non-logical behavior well-known in current CLP systems:

p(X):- X>=0.

q(X):- X>=1.

? q(X), min(p(X),X).

X=1
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p
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�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

min(G(X); f(X))

cj2

v = min

c

f(X)

pruning

f(X) � v

Figure 4. Query optimization by pruning.

? min(p(X),X), q(X).

fail

In [8] and [21], it is shown that optimization higher-order predicates can be

provided with a faithful logical semantics based on constructive negation. The

correct answer in the example is fail, whereas X = 1 is a correct answer to the

goal min((p(X); q(X)); X). In the next section we show how constructive negation

by pruning specializes to a correct and complete concurrent branch and bound like

procedure for optimization predicates.

7.2. Optimization higher-order predicates

De�nition 7.1. Let (A;�) be a total order. The minimization higher-order predicate

min(G(X); f(X))

where G(X) is a goal and f(X) is a term, is de�ned as an abbreviation for the

formula:

G(X) ^ :9Y (f(Y ) < f(X) ^G(Y ))

A �CLP program over A is a de�nite CLP program over A which may contain

minimization predicates in clause bodies.

�CLP programs allow for the arbitrary composition of optimization subgoals

and for the recursive de�nition of predicates through their optimal solutions, as

used for instance in dynamic programming. We shall show the completeness of the

following concurrent branch and bound like procedure for �CLP programs.

To resolve a goal of the form cj�;min(G(X); f(X)); �

0

, two SLD derivation trees

are developed, one 	

1

for cj�;G(X); �

0

, and one 	

2

for c ^ f(Y ) < f(X)jG(Y ).

Once a successful derivation is found in 	

2

, say with answer constraint d, then 	

1

is
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pruned by adding the constraint f(X) � v if v = min

d

f(Y ) exists, false otherwise.

Once a successful derivation is found in 	

1

, say with answer constraint e, then 	

1

and 	

2

are pruned by adding the constraint f(X) � w if w = min

e

f(X) exists,

false otherwise. We get a successful derivation for the minimization goal when we

get a successful derivation in 	

1

and 	

2

is �nitely failed. The minimization goal

gets �nitely failed if 	

1

gets �nitely failed after pruning. Figure 5 illustrates the

mutual pruning mechanism.
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pruning	

1

	

2

cj�;min(G(X); f(X)); �

0

f(X) � v

v = min

d

f(Y )

cj�;G(X); �

0

pruning

f(X) � w

w = min

e

f(X)

c ^ f(Y ) < f(X)jG(Y )

Figure 5. Subgoal optimization by pruning.

Note that in the previous case of query optimization the context is empty, c =

true, � = �

0

= 2, hence both CSLD trees 	

1

and 	

2

can be taken identical up

to variable renaming. The mutual pruning mechanism of the optimization scheme

can thus be simpli�ed into a single pruning in 	

1

with constraint f(X) � w, as

described in the previous section. This is no longer possible if the goal contains a

constraint or an atom outside the minimization predicate.

Example 7.2. Consider the �CLP (R) program P

p(X) :- X=0.

p(X) :- X>1, p(X).

and the goal X>1|min(p(X),X).

The �rst SLD tree for X>1|p(X) is in�nite. The second SLD tree for X>1,Y<X|p(Y)

contains a success with answer constraint Y = 0. The �rst tree is thus pruned

with the constraint X � 0, hence it gets �nitely failed and the answer to the

minimization goal is no, in accordance to the logical semantics.
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Note that the optimization procedures described in [24] and [8] loop forever on this

example. This shows the di�culty to de�ne a complete scheme for optimization

w.r.t. logical failures, and w.r.t. successes as well when minimization predicates

are nested (see [21] for a di�erent procedure).

Completeness and full abstraction can be proved by specializing the principle of

constructive by pruning to optimization goals in �CLP programs. As is well known,

a general �rst-order formula can be normalized into a normal logic program [17].

�CLP programs can thus be transformed into normal CLP programs by reading

min(G(X); f(X) as:

G(X);:gf(X)

where gf is a new predicate symbol, and by adding the following clause to the

program:

gf(X)  f(Y ) < f(X)jG(Y ):

As the negative literals in the translation of a �CLP program come all from

optimization predicates we can equivalently replace the PRN rule by the following

OPT rule for �CLP programs:

OPT:

cjG(X) / F

1

c; f(Y ) < f(X)jG(Y ) / F

2

cjmin(G(X); f(X)) / c � F

1

� f:

V

Sjmin(G(X); f(X)); :

V

F

2

j2g

where S � S(F

2

), V = V (c) [X and Y \ V = ;.

Now it is easy to see that as the variables X and Y are related by the constraint

f(Y ) < f(X) solely, the negation of constraints involved in the OPT rule amount

to a simple form of constraint minimization:

Proposition 7.3. (negation of constraints as constraint minimization) In the OPT rule

for all dj� 2 F

2

, let Z = V (d) n V , if v = min

d

f(Y ) exists then A j= (c ^

:9Z d)$ (c ^ f(X) � v), otherwise c ^ :9Z d is A-unsatis�able.

Proof: As Y \ V = ; we have Y � Z and d = c ^ f(Y ) < f(X) ^ d

0

(Z).

If v = min

d

f(Y ) exists then we have v = min

d

0

(Z)

f(Y ) thus A j= (c ^ :9Zd) $

(c^f(X) � v). Ifmin

d(X;Y;Z)

f(Y ) doesn't exist then for any value v, the constraint

f(Y ) < v ^ d

0

(Z) is A-satis�able, thus c ^ :9Zd is A-unsatis�able. 2

The OPT rule can thus be interpreted procedurally with both a pruning by

success rule (PBS) that prunes the main tree with the constraint f(X) � v where

v is the optimal value of the objective function for a success in the auxiliary tree

(prune with false if v doesn't exist), and with a success by pruning rule (SBP)

that negates frontiers in the auxiliary tree once a successful derivation is found in

the main tree. It is worth noting however that the computation of frontiers is not

necessary in this context, the following proposition shows that the SBP rule can

be replaced by a reversed pruning operation and by a check for �nite failure in the

auxiliary tree.



30 Constructive negation by pruning

Proposition 7.4. In the OPT rule, suppose dj2 2 S(F

1

), if w = min

d

f(X) exists and

(f(X) � w)�F

2

= ; then A j= (d^:

X

F

2

)$ (d^f(X) � w) otherwise d^:

X

F

2

is A-unsatis�able.

Proof: Remark �rst that due to the similarity of the goals in the premises of

the OPT rule, if f(X) can take two values v < v

0

under constraint d, then f(Y )

can take value v under constraint e for some ej� 2 F

2

.

If w = min

d

f(X) exists and (f(X) � w) � F

2

= ; then for all ej� 2 F

2

A j= e! f(Y ) � w, thus A j= (d^ f(X) � w)! (d^:

X

F

2

). Furthermore by (the

contrapositive of) the previous remark we have A j= (d^:

X

F

2

)! (d^f(X) = w).

Otherwise, either min

d

f(X) doesn't exist, in which case by the previous remark

d ^ :

X

F

2

is A-unsatis�able, or (f(X) � w) � F

2

6= ; in which case there exists

ej� 2 F

2

such that e^f(X) � w is A satis�able, thus d^:9Z e where Z = V (e)nX

is A-unsatis�able, and so is d ^ :

X

F

2

. 2

Note �nally that given a successful derivation with constraint d in the main

tree such that w = min

d

f(X) exists, even if the auxiliary tree doesn't get �nitely

failed by pruning, both the main tree and the auxiliary tree can be pruned with

the constraint f(X) � w as we already know the there will be a similar successful

derivation in the auxiliary tree with f(Y ) = w. This provides evidence that the

procedure given in the introduction of this section is a sound procedural interpre-

tation of the principle of constructive negation by pruning. As the transformations

preserve the equivalence with the general scheme, the completeness results of the

previous sections continue to hold:

Theorem 7.5. Let P be a �CLP program. The �xpoint semantics F(P ) is fully abstract

w.r.t. the answer constraints computed by rules TRIV, RES, FRT and OPT.

The operational semantics based on rules TRIV, SLD and OPT is sound and

complete w.r.t. the logical semantics L(P ).

7.3. Optimization predicates with protected variables

The optimization predicates de�ned in [8] or [21] are more general than those con-

sidered in the previous section as they allow to protect a set of variables in the goal

subject to optimization. The e�ect is to localize the optimization to the remaining

variables, and relativize the result to the set of protected variables.

De�nition 7.6. The local minimization predicate

min(G(X;Y ); [X]; f(X;Y ))

where [X] is the set of protected variables is de�ned as an abbreviation for the

formula

G(X;Y ) ^ :9Z(f(X;Z) < f(X;Y ) ^G(X;Z)):

The local maximization predicate is de�ned similarly.
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Example 7.7. Local optimization predicates can be used to express the min-max method

of game theory with the following goal:

? max( min((move(X,Y),move(Y,Z)),[X,Y],val(Z)), [X], val(Z))

Note that protected variables are necessary in this example to conform to the

intended semantics.

The previous execution model for optimization predicates is not correct for local

optimization predicates. This is not surprising as it is easy to see that any normal

logic program can be encoded as a de�nite CLP program with local optimization

predicates encoding negations. Therefore there is no hope to fundamentally improve

a general scheme for negation in the context of local optimization predicates.

Proposition 7.8. Any normal logic program is equivalent to a CLP program containing

local optimization predicates in place of negative literals.

Proof: Given a normal logic programP and a normal goalG let us consider the

CLP goal G and the CLP program P over the Herbrand domain and the natural

numbers obtained by replacing each negative literal :p(X) by max(q(X; y); [X]; y)

where q is a new predicate symbol, and by adding the clauses

q(X; 0):

q(X; y)  p(X):

One easily checks that P

�

j= 9G i� P

�

;N j= 9G. 2

Constructive negation by pruning can be used to interpret local optimization

predicates, it can be used as well to interpret directly preference predicates over

solutions de�ned by CLP programs, that is to evaluate goals of the form

G(X) ^ :9Y (G(Y ) ^ better(Y;X)):

where better is a user-de�ned preference predicate. This form of optimization, called

relational optimization, doesn't need to encode preferences by objective functions,

it is discussed and illustrated by one application in [10].

8. Conclusion

The principle of constructive negation by pruning (CNP) provides a correct and

complete operational semantics for normal CLP programs w.r.t. Kunen's three-

valued logical semantics. CNP is the �rst scheme to receive a �xpoint semantics

which fully characterizes the operational behavior of normal CLP programs w.r.t.

answer constraints. Furthermore, that �xpoint semantics is based on a continuous

�nitary version of Fitting's operator which is interesting to study in its own right.

We have shown that CNP provides a simple operational semantics to normal

CLP programs: there is no complex subgoals with explicit quanti�ers, no formula

transformation at run-time or compile-time, only pruning over concurrent standard

SLD derivation trees. It is remarkable that exploiting concurrency in the formation
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of standard SLD trees is su�cient to build a complete scheme for negation. This is

an example of the potential power of concurrency in proof theory.

We believe that constructive negation by pruning can lead to a practical scheme

for handling negation in CLP systems. Of prime importance is the study of e�cient

constraint solvers for constraint systems with negation over �nite and in�nite trees,

linear arithmetic, �nite domains, order-sorted domains, etc. In the context of op-

timization higher-order predicates we have shown that constraint minimization is

the only required extension of the solvers, and that CNP specializes to a concurrent

branch and bound like procedure, without frontier computation in SLD trees.

Ongoing work concerns on the one hand the natural extension of the class cc

of concurrent constraint programming languages [22] with constructive negation

by pruning and optimization higher-order agents [9], and on the other hand the

bottom-up abstract interpretation of normal CLP programs based on operator T

P

.
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