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1 Introduction

Visibility and shortest path problems in a scene consisting of disjoint polygons in the plane have

been studied extensively. Recently the scope of this research has been extended to scenes of disjoint

convex plane sets (convex obstacles for short). One of the combinatorial questions concerns the

complexity of such scenes. Our starting point is the following question: what is the minimal

number of free bitangents shared by n convex obstacles? A bitangent is a closed line segment whose

supporting line is tangent to two obstacles at its endpoints; it is called free if it lies in free space

(i.e., the complement of the union of the relative interiors of the obstacles). The endpoints of these

bitangents split the boundaries of the obstacles into a sequence of arcs; these arcs and the bitangents

are the edges of the so-called tangent visibility graph. The size of the tangent visibility graph is

de�ned to be the number of free bitangents, so our question asks for the minimal size of tangent

visibility graphs. Visibility graphs (for polygonal obstacles) were introduced by Lozano-Perez and

Wesley [11] for planning collision-free paths among polyhedral obstacles; in the plane a shortest

euclidean path between two points runs via edges of the tangent visibility graph of the collection

of obstacles augmented with the source and target points. Since then numerous papers have been

devoted to the problem of their e�cient construction ([1, 4, 5, 8, 10, 13, 17, 18, 21, 22]) as well as

their characterization (see [12] and the references cited therein). The more recent papers [14, 15, 16]

consider the problem of the e�cient computation of tangent visibility graphs for curved obstacles.

This paper is concerned with the problem of characterizing the minimal tangent visibility graphs and

classifying the corresponding con�gurations; such con�gurations are called, in this paper, minimal

con�gurations. The answer to our question is given in the following theorem (we assume that the

obstacles are closed, bounded, and are not reduced to points).

Theorem 1 The number of free bitangents shared by n pairwise disjoint convex obstacles is at least

4n� 4; this bound is tight.

Figure 1: Con�gurations of 4 obstacles with 4� 4� 4 = 12 free bitangents.

Con�gurations of n(= 4) convex obstacles with exactly 4n � 4(= 12) bitangents are depicted

in Figure 1. These examples are easily extented to any value of n. The 4n � 4 lower bound

has been established previously in the case where the obstacles are line segments by Shen and

Edelsbrunner [19] (see also [2, 20]). Here we give a di�erent proof based on the notion of pseudo-

triangulation introduced in [14]. In fact we prove the following stronger result.

3



Minimal Visibility Graphs Mars 1995

Theorem 2 Consider a collection O of n pairwise disjoint convex obstacles. The following asser-

tions are equivalent.

1. The weak visibility graph of O is a tree.

2. The number of free bitangents of O is minimal (i.e., 4n � 4).

3. The size of the convex hull of O is maximal (i.e., 2n � 2).

Recall that the weak visibility graph is the graph whose nodes are the obstacles and whose edges

are pairs of obstacles such that there is a free line segment with endpoints lying on the obstacles.

The size of the convex hull is the number of bitangents appearing on its boundary.

�(p)

p

�(p)

(a) (b)

Figure 2: (a) Representation of the visibility type of two disjoint convex obstacles: the cycles of � are

represented by circles in a conventional way (counterclockwise for instance) and the cycles of � are represented

by arcs. (b) The corresponding topological map, obtained by contraction of each circle to a point, lies on

the torus (opposite sides of the parallelogram are identi�ed in the usual way). The labels of the darts

p; �(p); �

2

(p); �

3

(p) are (�;�); (+;+); (+;�); (�;+).

To discuss the characterization/classi�cation problem we use the notion of visibility type (intro-

duced in [15]). The visibility type might be considered as a combinatorial version of the tangent

visibility graph where, for each obstacle, we take into account the circular order of the free bitan-

gents incident to this obstacle. More precisely, let O = O

1

[O

2

[� � �[O

n

be the union of n pairwise

disjoint convex obstacles; for the sake of simplicity we assume that each obstacle is strictly convex

and has a smooth boundary (equivalently its boundary has a well-de�ned tangent line at every

point, and a well-de�ned touching point for every tangent line). Let b be a bitangent of O with

endpoints p

i

and p

j

lying on the boundary of O

i

and O

j

, respectively; we de�ne the type of the

bitangent b directed from p

i

to p

j

to be the pair (�; �

0

) with � = + or � (�

0

= + or �) depending on

whether O

i

(O

j

) lies, locally at the touch point p

i

(p

j

), to the left or to the right of the supporting

line of the directed bitangent b. Now let B be a set of bitangents of O, and let P be the set of

endpoints of bitangents in B. We de�ne two permutations � and � on P by the two following

conditions: (1) the line segment [p; �(p)] is a bitangent in B (observe that � is an involution), and

4
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(2) the point �(p) is the �rst point in P encountered when walking counterclockwise along the

boundary of the obstacle on which lies p, starting at p. Finally, for p in P , we de�ne `(p) to be the

type of the bitangent [p; �(p)] directed from p to �(p). We denote by T

B

(O) the (combinatorial)

map (P; �; �) augmented with the labeling `; elements of P are usually called darts. T

B

(O) can also

be considered as a topological map: its vertices are the cycles of the permutation �, its edges are

the pairs fp; �(p)g, and its faces are the cycles of the permutation � � � (see [3, 9] for background

material on combinatorial and topological maps).

By de�nition the visibility type of O is the labeled map T

B

(O) where B is the set of free

bitangents of O; the visibility type is denoted by V (O). The visibility type of a collection of two

convex obstacles is depicted in Figure 2.

Given a visibility type (P; �; �) one can easily recover the corresponding tangent visibility graph:

this is the graph whose set of nodes is P and whose set of edges is the set of pairs fp; �(p)g and

fp; �(p)g, where p ranges over P . We don't know if, conversely, the tangent visibility type de-

termines the visibility type (up to reorientation of the plane). However it follows easily from our

analysis that the notion of visibility type and the notion of tangent visibility graph are equiv-

alent for the class of minimal con�gurations (with smooth and strictly convex obstacles). Our

characterization/classi�cation result is the following.

Theorem 3 The set of minimal visibility types on n disjoint convex obstacles is in 1-1 correspon-

dence with the set of plane labeled trees on n nodes. Furthermore the realization space of a minimal

visibility type is connected.

It is worth noting that in general the realization space of a visibility type is not connected (to see

this recall that realization spaces of order types of points are in general not connected [6], and note

that order types of points are visibility types of convex obstacles such that stabbing lines of triplets

of obstacles don't exist).

The paper is organized as follows. In Section 2 we introduce the notion of pseudo-triangulation

and we prove the three theorems above. In Section 3 we generalize Theorem 1 and 2 to con�gura-

tions of obstacles which are not necessarily convex. A classi�cation of the corresponding minimal

con�gurations is left open.

5
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2 Minimal tangent visibility graphs of convex obstacles

(a) (b)

Figure 3: (a) A pseudotriangle, and (b) a pseudo{triangulation.

Let O = O

1

[O

2

[� � �[O

n

be a con�guration of n pairwise disjoint convex obstacles. As mentioned

in the introduction we assume that each obstacle is strictly convex and has a smooth boundary

(equivalently its boundary has a well-de�ned tangent line at every point, and a well-de�ned touching

point for every tangent line). An extremal point of an obstacle is a boundary point at which the

tangent line to the boundary is horizontal.

2.1 Pseudo{triangulation

A pseudotriangle is a simply connected bounded subset T of R

2

such that (i) the boundary @T

is a sequence of three convex curves that are tangent at their endpoints, and (ii) T is contained

in the triangle formed by the three endpoints of these convex curves (see Figure 3). Observe that

there is a well-de�ned tangent line to the boundary of a pseudotriangle with a given (unoriented)

direction. A pseudo{triangulation of the set of obstacles is the subdivision of the plane induced by

the obstacles and a maximal (with respect to the inclusion relation) family of pairwise noncrossing

free bitangents. It is clear that a pseudo{triangulation always exists and that the bitangents of

the boundary of the convex hull of the obstacles are edges of any pseudo{triangulation. A pseudo{

triangulation of a collection of six obstacles is depicted in Figure 3.

Lemma 1 The bounded free faces of any pseudo{triangulation are pseudotriangles.

Proof. Let B be a family of noncrossing bitangents containing the bitangents of the boundary of

the convex hull of the collection of obstacles. Assume that some free bounded face of the subdivision

is not a pseudotriangle; from which we shall derive that B is not maximal. This means that this

face is not simply connected or that its exterior boundary contains at least 4 cusp points. In both

cases we add to B a bitangent as follows. Take a minimal length curve homotopy equivalent to the

curve formed by the part of the exterior boundary of the face that goes through all cusp points

of the exterior boundary but one. This curve contains a free bitangent not in B; hence B is not

maximal.

Lemma 2 Consider a pseudo{triangulation of a collection of n disjoint convex obstacles induced

by a maximal family B of free bitangents and let F

i

be the set of pseudotriangles with exactly i

6
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bitangents on their boundaries. Then we have

jBj = 3n� 3 (1)

jF

2

j+ jF

3

j+ � � � = 2n� 2 (2)

2jF

2

j+ 3jF

3

j+ � � � = 6n� 6� h (3)

jF

3

j+ 2jF

4

j+ � � � = 2n� 2� h (4)

where h is the number of bitangents on the boundary of the convex hull of the collection.

Proof. Each pseudotriangle contains in its boundary exactly 1 extremal point (namely the touching

point of the horizontal tangent line to the boundary of the pseudotriangle); since there are 2n� 2

extremal points in bounded free space (= free space inside the convex hull of the collection of

obstacles) there are exactly 2n� 2 pseudotriangles; this proves equation (2). The �rst equation is

then an easy application of Euler's relation for planar graphs. To see this observe that the set of

vertices (of the pseudo{triangulation) consists of all endpoints of bitangents. In particular every

vertex has degree 3. Furthermore the number of edges, that lie on the boundary of some object, is

equal to the number of vertices. Finally the total number of bounded regions is equal to the sum

of the number of pseudotriangles and the number (n) of obstacles.

The third equation is obtained by counting the number of incidences between the faces and

the bitangents of the pseudo{triangulation. The last equation is a linear combination of the two

preceding it.

From equation (4) we deduce that 2n � 2 is an upper bound for h; Figure 1 shows that this

upper bound is tight. An alternative argument is the following. The number h is also the size

of the circular sequence of obstacles that appear on the convex hull (we call this sequence the

combinatorial convex hull of the collection of obstacles). Since the obstacles are pairwise disjoint

this circular sequence is a circular Davenport-Schinzel sequence on n symbols and parameter 2,

(i.e., factors aa and subwords abab are forbidden). It is well-known (and easy to verify) that such a

circular sequence has length at most 2n� 2. Conversely any circular Davenport-Schinzel sequence

(not necessarily maximal) on n symbols with parameter 2 can be realized as the combinatorial

convex hull of n pairwise disjoint obstacles. The argument is very simple. Let i

1

: : : i

h

be a circular

Davenport-Schinzel sequence on the alphabet f1; : : : ; ng with parameter 2. Now label in clockwise

order the h vertices of a regular h-gon by the indices of the sequence i

1

: : : i

h

. The convex hulls O

i

of the points labeled i are pairwise disjoint (because subwords abab are forbidden) obstacles whose

combinatorial convex hull is exactly i

1

: : : i

h

. Finally we note the following simple fact.

Lemma 3 Consider a pseudo{triangulation of a collection of obstacles, and let F

2

be the set of

pseudotriangles with exactly 2 bitangents on their boundaries. Then a pseudotriangle in F

2

is

adjacent to at most one other pseudotriangle in F

2

.

2.2 Proof of the main results

Lemma 4 The number of free bitangents of a collection of n disjoint convex obstacles is at least

6n�6�h, where h is the number of bitangents on the boundary of the convex hull of the collection.

Proof. Consider a pseudo{triangulation of the set of obstacles induced by a maximal set B of

pairwise noncrossing free bitangents. Let b 2 B and suppose that b lies inside the convex hull. This

bitangent is the common boundary of two pseudotriangles, say T

1

and T

2

. Exactly one cusp point

7
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T

1

T

2

A

1

A

2

b

b

0

Figure 4: Bitangent b

0

crosses b.

of T

i

, say A

i

, does not belong to the convex boundary of T

i

that contains the bitangent b. Now a

shortest path, inside T

1

[ T

2

, between A

1

and A

2

contains a free bitangent b

0

that crosses b, and

only b among the bitangents in B (see Figure 4 for an illustration). Hence there are at least as

many free bitangents as there are incidences among pseudotriangles, viz

P

i�2

ijF

i

j = 6n � 6 � h,

see Lemma 2.

Proof of Theorem 1. Lemma 4 implies (the �rst part of) Theorem 1 since, as we have observed

in the previous section, 2n� 2 is a upper bound for h.

Proof of Theorem 2. Since the number of bitangents between two convex obstacles is 4 it is clear

that the size of a tangent visibility graph is bounded above by 4 times the number of edges of the

weak visibility graph. Assuming (1) (i.e., the weak visibility graph is a tree) it follows that the size

of the tangent visibility graph is bounded above by 4n� 4; since 4n� 4 is a lower bound, the size

of the tangent visibility graph is exactly 4n� 4. This proves that (1) implies (2). The fact that (2)

implies (3) is an obvious consequence of Lemma 4 and the fact that 2n�2 is an upper bound for the

size of the convex hull. Now we prove that (3) implies (1). According to equation (4) of Lemma 2

we have jF

i

j = 0 for i � 3, i.e. the 2n� 2 pseudotriangles of any pseudo{triangulation have exactly

two bitangents on their boundaries. It follows (see Lemma 3) that the connected components of

bounded free space are pseudoquadrangles (i.e., the union of two adjacent pseudotriangles). There

are n� 1 of these pseudoquadrangles. Each of these connected components is incident to exactly 2

obstacles and induces exactly one edge of the weak visibility graph. Therefore the weak visibility

graph is a tree.

Proof of Theorem 3. Let O = O

1

[ � � � [ O

n

be a collection of n disjoint convex obstacles with

minimal visibility type V (O). According to the argument in the proof of Theorem 2 there is exactly

one edge of the weak visibility graph per connected component of bounded free space. Therefore

there is a unique (topological) embedding of the weak visibility graph in the plane such that the

counterclockwise ordering of the edges incident to a node i coincides with the counterclockwise

ordering of the connected components of bounded free space incident to the corresponding obstacle

O

i

. We denote this (topological) plane tree by T (O). Clearly the plane tree T (O) determines the

order type V (O), and conversely. It remains to show that any plane labeled tree on n nodes, say T ,

8
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is the tree T (O) of some collection O of n disjoint convex obstacles. Let i

1

i

2

: : : i

2n�2

be the circular

sequence of nodes encountered when we follow the boundary of the external face of the plane tree

in a counterclockwise direction. This is a circular Davenport-Schinzel sequence on n symbols and

parameter 2. As we have already observed such a sequence is realizable as the combinatorial convex

hull of a collection O of n disjoint convex obstacles. Clearly T = T (O). Finally a simple induction

argument shows that the realization space of a minimal visibility type is connected.

(a) (b)

(c)

Figure 5: (a) A minimal con�guration, (b) its tangent visibility graph, and (c) its weak visibility graph.

It follows easily from the above analysis that the visibility type of a minimal con�guration on

n obstacles can be recovered from its tangent visibility graph by searching in the tangent visibility

graph n� 1 disjoint occurrences of the following subgraph (their number is n� 1 + 2f , where f is

the number of leafs of the corresponding plane tree),

@

@�

�

r r r r

r r r r

which represent the n � 1 connected components of bounded free space (see Figure 5); details are

left to the reader.

9
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3 Extension to non-convex obstacles

(a) (b)

Figure 6: (a) Relative convex hull (semi-free space is the dotted region), and (b) pseudo-triangulation of

a con�guration of 7 obstacles (its bounded faces are the obstacles, the connected components of semi-free

space, and pseudotriangles).

In this section we extend our analysis to con�gurations of obstacles which are not necessarily

convex. For our purpose, in this section an obstacle is a bounded closed set whose boundary is an

injective smooth closed regular curve (i.e. an injective curve  : S

1

7! R

2

whose derivative satis�es



0

(t) 6= 0 for all t 2 S

1

). Given a con�guration O = O

1

[ � � � [ O

n

of n pairwise disjoint obstacles,

we denote by C

0

its convex hull, and by C

i

the relative convex hull of O

i

with respect to O, i.e.,

the interior of the shortest curve in the closure of R

2

nO homotopy equivalent to the boundary of

O

i

(this shortest curve is not necessarily injective; its interior can be de�ned as the set of points in

the plane whose winding number with respect to the curve is equal to +1 [7] ). We denote by h

i

(i � 0) the number of bitangents (counting multiplicities) on the boundary of C

i

, and by l

i

(i � 1)

the number of connected components of C

i

n O

i

. (Note that a bitangent might involve only one

obstacle.) Set l(O) =

P

n

i=1

l

i

, and h(O) =

P

n

i=0

h

i

. The complement in R

2

of the union of the C

i

(i � 1) is called free space, the union [

n

i=1

(C

i

n O

i

) is called semi-free space, and the complement

in C

0

of the union of the C

i

(i � 1) is called the relative convex hull of the family of obstacles.

We denote by h

0

(O) the number of bitangents lying on the boundary of the relative convex hull.

Observe that h(O) = h

0

(O) + !(O), where !(O) is the number of free bitangents incident on both

sides upon semi-free space (these bitangents are counted twice in h(O)). See Figure 6 (a) for an

illustration of these notions.

3.1 The lower bound

As in the case of convex obstacles we de�ne a pseudo{triangulation to be a subdivision of the plane

induced by the obstacles and a maximal family of pairwise noncrossing free bitangents. Clearly

a pseudo{triangulation always exists and the corresponding maximal family of free bitangents

contains the h

0

(O) bitangents of the relative convex hull (see Figure 6 (b)).

10
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Lemma 5 The free bounded faces of any pseudo{triangulation are pseudotriangles. Furthermore

the number of pseudotriangles in a pseudo{triangulation is equal to 2n� 2.

Proof. The �rst part is proven as in Lemma 1. For the second part we claim that the number of

extremal points on the boundary of bounded free space is 2n� 2, as in the convex case. Let us say

that an extremal point on the boundary of obstacles is red (green) if it lies on a convex (concave)

arc. Obviously every green point lies in the boundary of semi{free space. Since the number of

red points on a given obstacle is equal to the number of green points plus 2, the number of red

points exceeds the number of green points by 2n. Now observe that each semi-free bounded face

of a pseudo{triangulation contains in its boundary exactly the same number of green points and

red points. Furthermore the boundary of the convex hull contains exactly two red points. These

last two observations imply that the number of pseudotriangles is equal to the excess of red points,

minus two. This proves our lemma.

Consider now a pseudo{triangulation of the collection of obstacles, induced by a maximal family B

of free bitangents. Let F

i

be the set of pseudotriangles of the pseudo{triangulation with i bitangents

on their boundaries. From the previous lemma we deduce, arguing as in the proof of Lemma 2,

that

jBj = 3n� 3 + l(O) (5)

jF

2

j+ jF

3

j+ � � � = 2n� 2 (6)

2jF

2

j+ 3jF

3

j+ � � � = 6n� 6 + 2l(O)� h(O) (7)

jF

3

j+ 2jF

4

j+ � � � = 2n� 2 + 2l(O)� h(O): (8)

It follows from (8) that 2n + 2l(O)� 2 is an upper bound for h(O). It is not hard to verify that

this upper bound is tight for �xed n(� 2) and l(O), see Figure 7. Similarly 2n + 2l(O)� 2 is an

upper bound for h

0

(O), since h

0

(O) = h(O)� !(O).

We recall also that a pseudotriangle in F

2

is adjacent to at most one pseudotriangle in F

2

.

Figure 7: Con�gurations of two obstacles with l(O) = 1; 2; 3, and maximal value of h.

Theorem 4 Consider a collection O of n pairwise disjoint obstacles. Then the number of free

bitangents of the collection is at least 6n � 6 + 2l(O)� h(O) + !(O). Furthermore the following

assertions are equivalent.

1. The number of free bitangents of O is minimal (i.e., 4n � 4).

2. The size of the relative convex hull of O is maximal (i.e., h(O) = h

0

(O) = 2(n+ l(O)� 1)).

11
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3. The connected components of the relative convex hull of O are pseudotriangles and/or pseu-

doquadrangles (= union of two adjacent pseudotriangles of size two).

In case at least one (and hence all) of the conditions 1{3 hold, the number of pseudotriangles is

2l(O) and the number of pseudoquadrangles is n� 1� l(O).

Proof. The proof of the �rst part is similar to that of Lemma 4. First observe that there are !(O)

free bitangents that are not incident upon any pseudotriangle. Secondly, as in the convex case,

there are at least

P

i

ijF

i

j free bitangents incident upon or inside the pseudotriangles. Therefore

the number of free bitangents is at least !(O) +

P

i

ijF

i

j which, according to (7), is equal to

6n � 6 + 2l(O)� h(O) + !(O). This proves the �rst part of the lemma. Since 2(n+ l(O)� 1) is

an upper bound for h(O), it follows that 4n � 4 + !(O) is a lower bound for the number of free

bitangents of O. Now we prove the second part. If the number of free bitangents is equal to its

minimal value 4n�4, it follows from the �rst part that !(O) = 0 and h

0

(O) = h(O) = 2n�2+2l(O).

This proves that (1) implies (2). Assume now that the size of the relative convex hull is maximal,

i.e. h

0

(O) = h(O) = 2n + 2l(O) � 2. It follows that !(O) = 0 and, according to equation (8),

that jF

3

j = jF

4

j = � � � = 0. Hence every pseudotriangle has exactly 2 bitangents in its boundary.

It follows that the connected components of the relative convex hull are pseudotriangles, and

pseudoquadrangles. This proves that (2) implies (3). Furthermore, if the connected components of

the relative convex hull are pseudotriangles (in number n

1

) and pseudoquadrangles (in number n

2

)

the number of free bitangents (which lie necessarily in the connected components of free space) is

exactly 2n

1

+4n

2

, i.e. 4n�4, since n

1

+2n

2

= 2n�2. This proves that (3) implies (1). Finally, from

2(n

1

+n

2

) = 2n�2+2l(O) and n

1

+2n

2

= 2n�2, we deduce that n

1

= 2l(O) and n

2

= n�1�l(O).

3.2 A zoo of minimal con�gurations

Newminimal con�gurations appear with nonconvex obstacles, see Figure 8. From the above analysis

(see Theorem 4) we can easily deduce that there is a 1-1 correspondence between the set of minimal

visibility types and the set of maximal (for a given value of l(O) between 0 and n�1) combinatorial

relative convex hulls (= labeled maps T

B

(O) where B is the set of bitangents of O which appears

in the relative convex hull of O). In the case of convex obstacles (l(O) = 0) the set of maximal

combinatorial convex hulls is in 1-1 correspondence with the set of plane trees (see Section 2).

The case of non convex obstacles seems to be much harder to analyze; one reason is that we have

no obvious \canonical" con�guration with a given minimal visibility type. However we conjecture

that these labeled maps are still recognizable in polynomial time and that the realization space of

a minimal visibility type is still connected.
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Figure 8: Minimal con�gurations on 2, 3, and 5 obstacles.
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4 Conclusion

We have proven that 4n � 4 is a tight lower bound for the size of tangent visibility graphs on n

obstacles. We have also given a simple description of the corresponding minimal con�gurations of

convex obstacles. Our main tool is the notion of pseudo{triangulation. It is expected that a better

understanding of this notion will give insights in the classi�cation problem of tangent visibility

graphs.
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