
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

A Model for Formal Parametric

Polymorphism:

a Per Interpretation for System R

Martin ABADI

Roberto BELLUCCI

Pierre-Louis CURIEN

LIENS - 95 - 19

A Model for Formal Parametric

Polymorphism:

a Per Interpretation for System R

Martin ABADI

�

Roberto BELLUCCI

��

Pierre-Louis CURIEN

LIENS - 95 - 19

July 1995

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : .. @dmi.ens.fr

�

Digital Equipment Corporation, Systems Research Center, USA

��

LIENS and

Dipartimento di Matematica, Universita di Siena Italy

A model for formal parametric polymorphism:

a per interpretation for system R

Roberto Bellucci

�

Mart��n Abadi

y

Pierre-Louis Curien

z

July 6, 1995

Abstract

System R is an extension of system F that formalizes Reynolds' notion of

relational parametricity. In this paper we describe a semantics for system R. As a

�rst step, we give a careful and general reconstruction of the per model of system

F of Bainbridge et al., presenting it as a categorical model in the sense of Seely.

Then we interpret system R in this model.

�

LIENS, CNRS - D�epartement de Math�ematiques et Informatique de l'Ecole Normale Sup�erieure

and Dipartimento di Matematica, Universit�a di Siena, Italy

y

Digital Equipment Corporation, Systems Research Center

z

LIENS, CNRS - D�epartement de Math�ematiques et Informatique de l'Ecole Normale Sup�erieure

1

Contents

1 From models of F to models of R 3

2 System R 4

3 Categories of pers and categories of relations 6

3.1 Combinatory algebras and �-models : 7

3.2 Categories PER and SAT : 10

3.3 Constructions in SAT : 11

4 Parametric semantics of system F 15

4.1 Concrete Models : 15

4.1.1 Types : 15

4.1.2 Typings : 16

4.1.3 Equalities : 20

4.2 Categorical Models : 22

4.2.1 PL-categories : 23

4.2.2 SAT as a PL-category : 24

4.2.3 Categorical interpretation of types and terms : : : : : : : : : : : 26

5 Semantics of system R 27

5.1 Related types : 27

5.2 Related values : 32

6 Conclusion 35

Acknowledgements 35

Appendix 36

System F : 36

System R : 37

PER as a PL-category : 40

References 42

2

1 From models of F to models of R

The principle of parametricity has gone through many avatars.

Originally Strachey distinguished parametric polymorphism and ad hoc polymor-

phism [Str67]. Strachey described parametric polymorphism as the pure polymorphism

of functions like append, which works on lists of any type uniformly. In contrast, a func-

tion like print examines and branches on the types of its arguments, and hence Strachey

deemed its polymorphism ad hoc.

Reynolds formalized Strachey's notion of parametricity [Rey83], in his attempt to

de�ne a set-theoretic model for Girard's system F [Gir72]. According to Reynolds'

semantic de�nition, a polymorphic function is parametric if its instances at related

types are related. For example, take a polymorphic function f of type 8(X):X ! X

(the type of the identity function). If X is instantiated to two types A and B with a

relation R between them, and a has type A, b has type B, and aRb, then we must obtain

f(a)Rf(b). All of the de�nable functions of system F are parametric, but system F

admits models with non-de�nable, non-parametric elements.

Since Reynolds' work, there have been many studies of parametricity. In particular,

Bainbridge et al. introduced a view of parametricity based on dinaturality [BFSS90].

They also developed Reynolds' ideas in a variant of the partial-equivalence-relation

(per) model. It seems still unknown whether the standard per model is parametric

without modi�cation.

System R is an extension of system F that formalizes a parametricity requirement.

The intent is to capture Reynolds' notion of relational parametricity in a formal sys-

tem, with simple syntax, at a suitable level of abstraction, and without reference to

a particular model. Other formal systems with similar features exist, serving related

purposes [Mai91, MR91, PA93]; see [ACC93] for a comparison.

In a preliminary version of system R, quanti�cation over pers and quanti�ca-

tion over relations were equated. This equation was rather attractive but too dar-

ing; Hasegawa ingeniously exploited it to derive an inconsistency. The inconsistency

naturally stimulated our interest in semantics, and particularly in the problem of har-

monizing the use of pers and the use of general relations.

Both pers and relations have a place in the semantics and in the logic of parametric-

ity. Pers are important as the denotations of types. From the point of view of formal

reasoning, pers are the basis of equational reasoning. Relations enforce the requirement

of parametricity in the construction of types, as in Reynolds' original (non-existent)

set-theoretic model and in the model of Bainbridge et al. Logically, relations corre-

spond to predicates, and many useful ones can be de�ned from the graphs of de�nable

functions. Thus, both pers and relations play a role in system R, and a semantics for

system R should shed some light on their interaction.

In this paper we show how a parametric model of system F can be extended to a

parametric model of system R. This extension might be possible for any parametric

model of system F , but we carry it out for the modi�ed per model of Bainbridge et

al. Along the way, we give a precise and general reconstruction of this per model. We

present it as a categorical model in the sense of Seely [See87].

The next two sections introduce the syntax of systemR and the necessary categories

of pers and relations. Section 4 de�nes two parametric semantics of system F ; then

section 5 extends one of these semantics to system R.

3

2 System R

This section is an introduction to system R, adapted from [ACC93]. A list of all the

rules of systems F and R can be found in the appendix.

System R is a formal system with judgements and rules in the style of those of F .

In order to deal explicitly with relational parametricity, the judgements of R generalize

those of F ; they are:

`

R

E E is a legal environment

E `

R

�

S

�

S is a relation between types � and � in E

E `

R

M : �

S

N : �

S relates M of type � and N of type � in E

A built-in equality judgement on values is not necessary. Instead of writing that M

and N are equal in �, we can turn the type � into a relation �

�

(intuitively, the identity

relation on �) and write that �

�

relates M and N . Similarly, there is no need for a

built-in typing judgement. We write:

E `

R

M : � for E `

R

M : �

�

�

M : �

E `

R

M = N : � for E `

R

M : �

�

�

N : �

The environments of R are lists of components of two sorts, directly inspired by

the corresponding ones for F environments:

X

W

Y

W is a relation variable between type variables

X (domain) and Y (codomain)

x : �

S

y : �

variables x and y have types � and � , respectively,

and are related by S

With this notation, we now explain some of the rules of R. In the rules, we write

x 62 M to mean that x is not a free variable of M . We start with rules that imitate

those of F for ! and 8.

4

The introduction and elimination rules for ! are, respectively:

E;

x : �

1

R

y : �

2

`

R

M : �

1

S

N : �

2

x 62 N;S

y 62M;S

E `

R

�

1

S

�

2

E `

R

�(x : �

1

):M : �

1

! �

1

R! S

�(x : �

2

):N : �

2

! �

2

E `

R

M

1

: �

1

! �

1

R! S

M

2

: �

2

! �

2

E `

R

N

1

: �

1

R

N

2

: �

1

E `

R

M

1

N

1

: �

1

S

M

2

N

2

: �

2

These rules follow the same pattern as the F rules:

E; x : � `

F

M : �

E `

F

�(x : �):M : � ! �

E `

F

M : � ! � E `

F

N : �

E `

F

MN : �

The introduction rule says: Assume that if R relates x of type �

1

and y of type �

2

,

then S relates M of type �

1

and N of type �

2

. For technical reasons, assume also

that S is a relation between �

1

and �

2

, as one would expect. Then R ! S, a relation

between �

1

! �

1

and �

2

! �

2

, relates the functions �(x : �

1

):M of type �

1

! �

1

and

�(y : �

2

):N of type �

2

! �

2

. The elimination rule works in the opposite direction,

applying related functions to related inputs and yielding related outputs.

The introduction and elimination rules for 8 are:

E;

X

W

Y

`

R

M : �

1

S

N : �

2

X 62 S; N; �

2

Y 62 S;M; �

1

E `

R

�(X):M : 8(X):�

1

8(W):S

�(Y):N : 8(Y):�

2

E `

R

M : 8(X):�

1

8(W):S

N : 8(Y):�

2

E `

R

�

1

R

�

2

E `

R

M�

1

: �

1

[�

1

=X]

S[R=W]

N�

2

: �

2

[�

2

=Y]

These rules follow the same pattern as the F rules:

E;X `

F

M : �

E `

F

�(X):M : 8(X):�

E `

F

M : 8(X):� E `

F

�

E `

F

M� : �[�=X]

The introduction rule says: Assume that ifW is a relation between typesX and Y , then

S relates M of type �

1

and N of type �

2

. Then 8(W):S, a relation between 8(X):�

1

and 8(Y):�

2

, relates the polymorphic terms �(X):M of type 8(X):�

1

and �(Y):N of

type 8(Y):�

2

. Again, the elimination rule works in the opposite direction.

Since the relation constructions parallel the type constructions, we can easily de�ne

a relation �

�

for every type �: we replace all quanti�ers over types with corresponding

5

quanti�ers over relations. This ()

�

operation is used in the rules for variables:

(Rel Val xRy)

`

R

E

0

;

x : �

1

R

y : �

2

; E

00

E

0

;

x : �

1

R

y : �

2

; E

00

`

R

x : �

1

R

y : �

2

(Rel Val Rx) (Rel Val Ry)

`

R

E

0

;

x : �

1

R

y : �

2

; E

00

E

0

;

x : �

1

R

y : �

2

; E

00

`

R

x : �

1

�

1

�

x : �

1

`

R

E

0

;

x : �

1

R

y : �

2

; E

00

E

0

;

x : �

1

R

y : �

2

; E

00

`

R

y : �

2

�

2

�

y : �

2

The �rst rule is straightforward. The other two formalize the parametricity condition.

Basically, they assert that the relation �

�

relates to itself any element of a type �.

The preceding rules, together with the rules of � and � conversion, form the core

of the part of R that deals with relations built from variables, !, and 8. This part

of R is not a very powerful proof system on its own, but it su�ces to encode F . In

particular:

if E `

F

M = N : � then E `

R

M : �

�

�

N : �

(In the second sequent we use E as an abbreviation of an R environment; see the

appendix for more details.)

In addition, R has rules for de�ning relations from functions:

E `

R

M : �

1

! �

2

E `

R

N : �

1

E `

R

N : �

1

< M >

MN : �

2

E `

R

N

1

: �

1

< M >

N

2

: �

2

E `

R

MN

1

: �

2

�

�

2

N

2

: �

2

According to these rules, a functionM from �

1

to �

2

can be viewed as a relation < M >

between �

1

and �

2

(intuitively, the graph of M).

Functional relations are essential to the power of R. They are often useful for

obtaining \free theorems" as in Wadler's work [Wad89]. They have no analogue in F .

3 Categories of pers and categories of relations

In this section we introduce the main notions and tools that we use for the de�nition

of our model of R. They are all well known, but we review them in order to clarify

which assumptions are essential.

6

First we recall a general de�nition of model for the untyped �-calculus. Then we

consider the category of partial equivalence relations (pers) and some related categorical

constructions. Finally, we introduce the category of saturated relations between pers,

extending the categorical constructions previously de�ned for pers. Our models are

based on this last category.

3.1 Combinatory algebras and �-models

This section is a review of combinatory algebras. For more details, see for exam-

ple [Bar84].

De�nition 3.1 (Partial and Total Combinatory Algebras)

� A partial combinatory algebra hD; �; k; si consists of a set D together with a partial

binary operation � and elements k; s 2 D such that for all a; b; c 2 D: k � a; s �

a; (s � a) � b are de�ned and

(k � a) � b = a

((s � a) � b) � c ' (a � c) � (b � c)

where x ' y means that x is de�ned if and only if y is de�ned, and then they are

equal.

� A (total) combinatory algebra is a partial combinatory algebra whose operation �

is total. In this case two equations hold:

(k � a) � b = a

((s � a) � b) � c = (a � c) � (b � c)

� A �-model hD; �; k; s; �i consists of a set D together with a binary operation � and

elements k; s; � 2 D such that hD; �; k; si is a combinatory algebra and such that

for all a; b 2 D:

(� � a) � b = a � b

8d(a � d = b � d)) � � a = � � b (Weak Ext)

� � � = �

Given a structure hD; : : :i, a value assignment is a mapping from term variables

to elements of D. We may call such a value assignment untyped, as D is an untyped

structure. Whenever f is a function (for example, a value assignment), we use the

notation f [e=x] for the function that maps x to e and is otherwise identical to f .

A combinatory-logic term (or CL-term) is one built from variables, k, and s using

only application. Similarly, a CL

�

-term is one built from variables, k, s, and � using

only application. (In both cases, we simply write MN for the application of term M

to term N .)

7

If hD; �; k; si is a combinatory algebra and � a value assignment, it is trivial to de�ne

the meaning of a CL-term in D:

JkK

�

= k

JsK

�

= s

JxK

�

= �(x)

JM

1

M

2

K

�

= JM

1

K

�

� JM

2

K

�

Lemma 3.2 (Substitution Lemma for Combinatory Algebras) For all M;N; �

we have:

JM [N=x]K

�

= JMK

�[
J
N

K

�

=x]

Furthermore, if D is a �-model we can de�ne the meaning of a CL

�

-term by setting:

J�K

�

= �

If hD; �; k; s; �i is a �-model and � a value assignment, it is also possible to de�ne

the meaning of an untyped �-term in D:

JxK

�

= �(x)

JM

1

M

2

K

�

= JM

1

K

�

� JM

2

K

�

J�x:MK

�

= � � d where d is such that d � e = JMK

�[e=x]

for all e

The d required in the de�nition of the semantics of �-abstraction always exists. In

fact, it is a well-known result about combinatory logic that abstraction is internally

de�nable. This means that we can associate a CL-term [x]:M with every CL-term M

so that for all CL-terms N :

([x]:M)N .

CL

M [N=x] (1)

where .

CL

is the reduction relation on CL-terms obtained by orienting the two equations

for k and s from left to right. This applies also to CL

�

-terms. There exist several

de�nitions of [x]:M , guaranteeing (1), all by induction on M . Here is one, which we

shall call the naive one:

� [x]:y � ky if x 6= y

� [x]:x � skk

� [x]:(M

1

M

2

) � s([x]:M

1

)([x]:M

2

)

Proposition 3.3 The naive abstraction algorithm satis�es the following properties for

all M; �; e:

1. J[x]:MK

�

� e = JMK

�[e=x]

2. J([x]:M)NK

�

= JM [N=x]K

�

This de�nition of abstraction enables us to translate �-terms to CL

�

-terms. Given

a �-term M , we denote its translation by (M)

CL

�

, and de�ne it by:

8

� (x)

CL

�

� x

� (M

1

M

2

)

CL

�

� (M

1

)

CL

�

(M

2

)

CL

�

� (�x:M)

CL

�

� �([x]:(M)

CL

�

)

Using this translation, we can give an explicit de�nition of the semantics of �-abstrac-

tion:

J�x:MK

�

= � � d where d = J[x]:(M)

CL

�

K

�

The combinator � makes the meaning of �x:M independent of the speci�c choice of d.

This independence is crucial for establishing the validity of the �-rule, which says that

if JMK = JNK then J�x:MK = J�x:NK. The validity of � follows from the axiom (Weak

Ext).

If we have only a combinatory algebra D we can still de�ne an interpretation of the

untyped �-calculus. This requires a little modi�cation of the translation since now we

translate �-terms to CL-terms. In this case we denote the translation of M by (M)

CL

.

The only di�erence with respect to the previous translation is the case of �-abstraction,

which becomes:

(�x:M)

CL

� [x]:(M)

CL

The meaning of �-terms is :

JMK

�

� J(M)

CL

K

�

It follows that:

JxK

�

= �(x)

JM

1

M

2

K

�

= JM

1

K

�

� JM

2

K

�

J�x:MK

�

� e = JMK

�[e=x]

for all e

It is easy to check that this translation validates the �-axiom only in a weak sense,

that is, given two �-terms M;N we have that:

((�x:M)N)

CL

.

CL

M

CL

[N

CL

=x]

while, in order to validate the �-axiom we need:

((�x:M)N)

CL

.

CL

(M [N=x])

CL

This is due to the fact that with the naive abstraction algorithm the CL-translation

does not commute with substitution, therefore M

CL

[N

CL

=x] is not equivalent (in CL)

to (M [N=x])

CL

, as shown by the following example. Take M = �x:y and N = zz; we

have:

M

CL

[N

CL

=y] = k(zz)

(M [N=y])

CL

= s(kz)(kz)

and we cannot prove their equality using the rules for CL. The following modi�cation

of the abstraction algorithm repairs this: replace the clause [x]:y � ky if x 6= y by

[x]:M � kM if x 62M

9

We call this algorithm the standard one. But the naive algorithm is enough for our

purposes: the two terms M

CL

[N

CL

=x] and (M [N=x])

CL

have the same extensional be-

haviour, that is, when applied to any other CL-term they produce the same result: see

lemma 4.23.

The di�erence between the �-model interpretation and the combinatory-algebra

interpretation regards the �-rule, which is not valid in arbitrary combinatory algebras

(regardless of the choice of the underlying abstraction algorithm).

If the structure D is only a partial combinatory algebra, we cannot de�ne the

meaning of general �-terms. However, we can still de�ne the meaning of some terms,

useful in later results.

Lemma 3.4 For every �-term M and variable x, the semantics of (�x:M)

CL

is de�ned

in every partial combinatory algebra.

Proof. First note that for all CL-terms N , if the semantics of N is de�ned then

that of [x]:N is also de�ned, for all x. This can be checked easily by induction on N .

We prove the claim by induction on M . In the case that M is a variable, the

claim is obvious. If M = NP then we can apply the induction hypothesis to N

and P , obtaining that the semantics of [x]:(N)

CL

and [x]:(P)

CL

are both de�ned and

therefore also that of (�x:M)

CL

= s([x]:(N)

CL

)([x]:(P)

CL

) is de�ned. If M = (�y:N)

then we can apply the induction hypothesis to N obtaining that the semantics of

(�y:N)

CL

= [y]:(N)

CL

is de�ned; using our initial remark, we have that the semantics

of (�x:M)

CL

= [x]:([y]:(N)

CL

) is de�ned. �

The above lemma fails if the standard abstraction algorithm is used instead of the

naive one.

3.2 Categories PER and SAT

Starting from an arbitrary partial combinatory algebra, we de�ne categories of pers

and categories of relations.

De�nition 3.5 The category PER of partial equivalence relations (pers) on a partial

combinatory algebra D is de�ned by:

� A 2 Obj(PER) i� it is a symmetric and transitive partial relation on D; its

domain of de�nition fa : aAag is denoted dom(A) and the partial quotient of D

by A is denoted Q(A), that is, Q(A) is the set of equivalence classes f[a]

A

ja 2

dom(A)g;

� a morphism (f : A! B) 2 Mor(PER) is a function f : Q(A)! Q(B) such that

there is an element n 2 D that computes f , or more formally:

for all a 2 dom(A) : f([a]

A

) = [n � a]

B

We say that n is a realizer of f , and write n ` f .

De�nition 3.6 The category SAT of saturated relations on a partial combinatory al-

gebra D is de�ned by:

10

� a saturated relation (R : A 9 B) 2 Obj(SAT) is given by two pers A and B over

D and a relation R � dom(A)� dom(B) such that R = A;R;B or, equivalently:

{ R is a relation between dom(A) and dom(B), that is, if aRb then aAa and

bBb;

{ R is saturated, that is, if aAb, bRc, and cBd, then aRd.

� a morphism f : (R : A

0

9 A

00

) ! (S : B

0

9 B

00

) 2 Mor(SAT) between two

saturated relations consists of a couple (f

0

: A

0

! B

0

; f

00

: A

00

! B

00

) of per

morphisms such that:

for all a 2 dom(A

0

); b 2 dom(A

00

); if aRb then f

0

(a)Sf

00

(b)

If n ` f

0

and m ` f

00

, we say that (n;m) is a realizer of f , and write (n;m) ` f .

We often write R for R : A9 B, and sometimes refer to a saturated relation simply as

a relation. We call A and B the domain and the codomain of R : A9 B, respectively,

and write A = dom(R) and B = cod(R). More generally, given a tuple S of saturated

relations, we write dom(S) and cod(S) for the tuples of domains and codomains of the

relations in S.

The saturation property allows us to see a saturated relation indistinctly as a rela-

tion between equivalence classes or as a relation between elements of such classes.

Moreover, since any per can be seen as the identity saturated relation on itself, and

every morphism between pers (seen as saturated relations) in SAT must be a couple

of equal PER morphisms, we �nd PER as a full subcategory of SAT.

3.3 Constructions in SAT

In this section we generalize the usual categorical constructions of product (�), expo-

nentiation ()), and intersection (

T

) from PER to SAT.

Products do not appear explicitly in any of our formal systems, but they are part of

the necessary categorical structure. In order to de�ne products, we encode the pairing

and the projection functions in D. The pairing function [;] : D�D! D is the function

realized by the interpretation of �z:�x:�x:zxy. The projection functions (-)

1

; (-)

2

: D !

D are realized by the interpretations of �z:z(�x:�y:x) and �z:z(�x:�y:y), respectively.

(By lemma 3.4 their semantics is always de�ned even in a partial combinatory algebra.)

It is immediate to see that D�D is a retract of D via these two functions, that is, for

all a; b 2 D:

[a; b]

1

= a

[a; b]

2

= b

We are interested in functions on relations F : Obj(SAT)

k

! Obj(SAT) with the

property that

(SAT-FUNC) if S : A 9 B then F (S) : F (A) 9 F (B)

Note that F (S) : F (A) 9 F (B) implies that F (A) and F (B) are pers. We stipulate

that a function F : Obj(SAT)

0

! Obj(SAT) satis�es (SAT-FUNC) i� it is constantly

equal to a per.

11

Next we describe how to de�ne functions on relations by product, exponentiation,

and intersection with parameters. All of these constructions preserve property (SAT-

FUNC).

Recall the de�nition of product and exponentiation in PER:

a(A�B)b i� a

1

Ab

1

and a

2

Bb

2

a(A) B)b i� for all c; d; if cAd then (a � c)B(b � d)

Product and exponentiation in SAT are similar:

De�nition 3.7 (Product) Given R : A 9 B and S : C 9 D, their product R � S :

(A� C)9 (B �D) is de�ned by:

a(R� S)b i�

8

>

<

>

:

a(A� C)a

a

1

Rb

1

and a

2

Sb

2

b(B �D)b

De�nition 3.8 (Exponentiation) Given R : A 9 B and S : C 9 D their exponen-

tiation R) S : (A) C)9 (B) D) is de�ned by:

a(R) S)b i�

8

>

<

>

:

a(A) C)a

for all c; d; if cRd then (a � c)S(b � d)

b(B) D)b

Remark 3.9 It is easy to prove that the previous constructions � and ! are the

categorical product and exponentiation in SAT. Moreover these constructions are ex-

tensions of those de�ned in PER.

Like pers, saturated relations also support in�nite intersections:

De�nition 3.10 (Intersection with Parameters) Given a function

F : Obj(SAT)

k+1

! Obj(SAT)

with property (SAT-FUNC), we de�ne the intersection of F on its last argument

SAT

\

R:A9B

F [�; R] : Obj(SAT)

k

! Obj(SAT)

with

SAT

\

R:A9B

F [�; R]

!

(S) :

\

R:A9B

F (dom(S); R)

!

9

\

R:A9B

F (cod(S); R)

!

by:

a

SAT

\

R:A9B

F [�; R]

!

(S)

!

b i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

a

\

R:A9B

F (dom(S); R)

!

a

a

\

R:A9B

F (S;R)

!

b

b

\

R:A9B

F (cod(S); R)

!

b

for all S : A 9 B 2 Obj(SAT)

k

.

12

Note that in the right-hand side of the previous de�nition we used set-theoretical

intersection. In section 4.2 we show that in�nite intersections are categorical products

in SAT, as in PER. In the meantime, we prove that our de�nition is proper:

Proposition 3.11 Intersection with parameters is well de�ned, that is, it maps tuples

of saturated relations to saturated relations. Moreover it satis�es (SAT-FUNC), that

is, if S : A 9 B then

SAT

\

R:A9B

F [�; R](S)

!

:

SAT

\

R:A9B

F [�; R](A)

!

9

SAT

\

R:A9B

F [�; R](B)

!

Proof. We check that the intersection is well-de�ned. Let G stand for

SAT

\

R:A9B

F [�; R]

Assume that S : A 9 B is a k-tuple of saturated relations. We have to prove that

\

R:A9B

F (dom(S); R) and

\

R:A9B

F (cod(S); R)

are pers, that

\

R:A9B

F (dom(S); R) = G(A) and

\

R:A9B

F (cod(S); R) = G(B)

and that G(S) is saturated.

� Symmetry of domain and codomain: Suppose

a

\

R:A9B

F (dom(S); R)

!

b

This means that for all R : A 9 B, aF (dom(S); R)b. We have to prove that

b

\

R:A9B

F (dom(S); R)

!

a

that is, bF (dom(S); R)a for all R : A 9 B. By (SAT-FUNC) we know that:

F (dom(S); R) : F (dom(S); dom(R))9 F (dom(S); cod(R))

If we instantiate the hypothesis with dom(R) and cod(R) we obtain:

aF (dom(S); dom(R))b and aF (dom(S); cod(R))b

By hypothesis, both F (dom(S); dom(R)) and F (dom(S); cod(R)) are pers, there-

fore by their symmetry we have:

bF (dom(S); dom(R))a and bF (dom(S); cod(R))a

Finally, we can use the saturation of F (dom(S); R) to conclude

bF (dom(S); R)a

for all R : A 9 B.

The proof for the codomain is similar.

13

� Transitivity of domain and codomain: Suppose that

a

\

R:A9B

F (dom(S); R)

!

b

\

R:A9B

F (dom(S); R)

!

c

We have to prove that

a

\

R:A9B

F (dom(S); R)

!

c

that is, aF (dom(S); R)c for all R : A 9 B. As before, we have by (SAT-FUNC):

F (dom(S); R) : F (dom(S); dom(R))9 F (dom(S); cod(R))

From the �rst assumption we know that aF (dom(S); R)b for all R : A 9 B, and

instantiating the second assumption with cod(R) we have bF (dom(S); cod(R))c.

By the saturation of F (dom(S); R) we obtain aF (dom(S); R)c.

Again, the proof for the codomain is similar.

� Correct domain and codomain: By de�nition we know that

G(A) =

\

R:A9B

F (A;R)

G(B) =

\

R:A9B

F (B;R)

Therefore, we can conclude

G(A) =

\

R:A9B

F (dom(S); R)

G(B) =

\

R:A9B

F (cod(S); R)

Now suppose that aG(S)b. We have to prove that aG(A)a and bG(B)b. Both of

these properties are obvious by expanding the de�nition of G.

� Saturation: Suppose that

a

\

R:A9B

F (dom(S); R)

!

bG(S)c

\

R:A9B

F (cod(S); R)

!

d

We have to prove that aG(S)d. Expanding the de�nition of G, we �nd the

conditions:

{ a

\

R:A9B

F (dom(S); R)

!

a: This follows from

a

\

R:A9B

F (dom(S); R)

!

b

by symmetry and transitivity.

14

{ d

\

R:A9B

F (cod(S); R)

!

d: This is proved similarly.

{ a

\

R:A9B

F (S;R)

!

d: We have to prove that aF (S;R)d for all R : A 9 B.

Instantiating the �rst, the second, and the third assumptions with dom(R),

R, and cod(R), respectively, we obtain: aF (dom(S); dom(R))b, bF (S;R)c,

and cF (cod(S); cod(R))d. We derive aF (S;R)d using the saturation of

F (S;R).

�

We now have the ingredients for our parametric interpretation of systems F and

R, described in sections 4 and 5, respectively.

4 Parametric semantics of system F

We de�ne an interpretation of system F , which we call the parametric per models of

F , or SAT models of F .

In the �rst part of this section, we de�ne the interpretation concretely, by directly

interpreting the judgements of the syntax of F in SAT. This is a reconstruction of

the one sketched in [BFSS90]. The second part of the section gives a more general

categorical description of the SAT model. The main di�erence in outcome is that the

second construction requires less of the underlying structure|namely, only a partial

combinatory algebra is needed.

4.1 Concrete Models

Next we give a concrete de�nition for a model of F . Throughout this subsection, we

assume that hD; �; k; si is at least a total combinatory algebra.

4.1.1 Types

In the parametric per model, quanti�cation over types is understood as quanti�cation

over all relations. In order to interpret the quanti�cation on a type variable as a quan-

ti�cation over all relations, we must be able to instantiate the variable with arbitrary

relations. Therefore, we must be able to provide the semantics of types in a general

context where type variables are interpreted as relations.

We denote by TypeExp the syntactic category of type expressions of F , obtained

from type variables by the ! and 8 constructors. We interpret type expressions by a

function

J�K : TypeExp ! RelAssign ! Obj(SAT)

where RelAssign is the domain of (total) relation assignments which map type variables

to relations. If a relation assignment maps every type variable to a per, then we call it

a per assignment. This subset of RelAssign will be denoted by PerAssign. Typically, "

15

denotes a relation assignment and � a per assignment. The operators " and # transform

an arbitrary relation assignment " into a per assignment:

" " (X) = dom("(X))

" # (X) = cod("(X))

The interpretation is:

De�nition 4.12 (Semantics of Type Expressions) The semantics of type expres-

sions is de�ned by:

� JXK

"

= "(X)

� J�

1

! �

2

K

"

= J�

1

K

"

) J�

2

K

"

� J8(X)�K

"

=

SAT

\

R:A9B

G(R)

where G : Obj(SAT)! Obj(SAT) is de�ned by G(R) � J�K

"[R=X]

.

Proposition 4.13 The previous de�nition is proper, that is:

1. for all type expressions � and all per environments �:

J�K

�

2 Obj(PER)

2. for all type expressions � and all relation environments ":

J�K

"

: J�K

""

9 J�K

"#

This proposition easily follows from remark 3.9 and proposition 3.11. Part 1 amounts

to what is known in the literature as the Identity Extension Lemma. It is stated in

[Rey83] for an hypothetical set-theoretic semantics and is proved in [BFSS90] for the

SAT model.

We close this section with a standard substitution lemma:

Lemma 4.14 (Substitution Lemma for Types) For all type expressions � and �

and all relation assignments ":

J�[�=X]K

"

= J�K

"[
J
�
K

"

=X]

Proof. By a straightforward induction on �. �

4.1.2 Typings

In what follows, we consider mostly derivable judgements, and often write judgement

instead of derivable judgement. We denote by TypingJudge the syntactical category of

typing judgements derivable in F . We interpret typing judgements by a function

J�K : TypingJudge ! PerAssign ! ValAssign !

[

A2Obj(PER)

Q(A)

16

where ValAssign is the domain of value assignments, which map each term variable to

an equivalence class of some per:

ValVar !

[

A2Obj(PER)

Q(A)

and ValVar is the collection of all term variables. Typically � denotes a value assign-

ment.

De�nition 4.15

� A value assignment � satis�es an environment E with respect to a per assignment

� i�, for all (x : �) 2 E, �(x) 2 Q(J�K

�

). This is denoted � j=

�

E.

� Two value assignments �

1

and �

2

satisfy an environment E with respect to a

relation assignment " i�, for all (x : �) 2 E, �

1

(x) J�K

"

�

2

(x). This is denoted

�

1

; �

2

j=

"

E.

Proposition 4.16 The assignments enjoys the properties:

(a) � "= �, � #= �,

(b) if �

1

; �

2

j=

"

E then �

1

j=

""

E and �

2

j=

"#

E,

(c) if �

1

; �

2

j=

�

E then �

1

j=

�

E and �

2

j=

�

E,

(d) if � j=

�

E then �; � j=

�

E.

De�nition 4.17 Given a value assignment �, we can obtain from it a new (untyped)

value assignment �

?

such that �

?

(x) 2 �(x), that is, �

?

maps every term variable x to

an (arbitrary) element of the equivalence class �(x).

The erase function associates to every typed term M the untyped term erase(M)

obtained by erasing all type decorations present in M :

erase(x) = x

erase(�(x : �):M) = �x:erase(M)

erase(MN) = erase(M)erase(N)

erase(�(X):M) = erase(M)

erase(M�) = erase(M)

What follows is a version in our relational setting of a well-known semantical property

of erasures of typed terms in PER models (see [Mit90, CL91]). It is usually stated

for PER models over a �-model D, but the proof actually uses only the fact that the

partial combinatory algebra structure is total: the totality is used to make sure that

the interpretation of untyped terms in D is always de�ned.

Theorem 4.18 For all typing judgements E `

F

M : � and all assignments � and �

such that � j=

�

E,

�

Jerase(M)K

�

?

�

J�K

�

�

Jerase(M)K

D

�

?

�

Moreover, this is independent from the speci�c choice of �

?

.

17

To prove this result we need a more general statement.

Theorem 4.19 (Abstraction Theorem for Erasures) For all typing judgements

E `

F

M : � and all assignments ", �

1

, and �

2

such that �

1

; �

2

j=

"

E:

�

Jerase(M)K

�

?

1

�

J�K

"

�

Jerase(M)K

�

?

2

�

Moreover, this is independent from the speci�c choice of �

?

1

and �

?

2

.

Proof. We prove this statement by induction on the derivation of the judgement.

� Case (Val x): This case follows directly from the hypothesis on the assignments.

� Case (Val Fun): We have to prove:

�

Jerase(�(x : �):M)K

�

?

1

�

J� ! �K

"

�

Jerase(�(x : �):M)K

�

?

2

�

This is equivalent to proving:

(i) J�x:erase(M)K

�

?

1

2 dom(J�K

""

) J�K

""

)

(ii) if a; b 2 D and a J�K

"

b

then (J�x:erase(M)K

�

?

1

� a) J�K

"

(J�x:erase(M)K

�

?

2

� b)

(iii) J�x:erase(M)K

�

?

2

2 dom(J�K

"#

) J�K

"#

)

These three statement are instances of the claim: for all a; b 2 D and all

e

",

f

�

1

,

and

f

�

2

,

if a J�K

~"

b then (J�x:erase(M)K

e�

1

?

� a) J�K

~"

(J�x:erase(M)K

e�

2

?

� b) (2)

provided

f

�

1

;

f

�

2

j=

~"

E (3)

The three di�erent instantiations are:

(~";

f

�

1

;

f

�

2

) =

8

>

<

>

:

(" "; �

1

; �

1

)

("; �

1

; �

2

)

(" #; �

2

; �

2

)

and in each case (3) easily follows from the hypothesis on the assignments and

their properties (proposition 4.16).

Next we prove the more general claim. From the de�nition of the semantics of

abstraction for untyped terms, we know:

J�x:erase(M)K

e�

1

?

� a = Jerase(M)K

e�

1

?

[a=x]

and analogously for J�x:erase(M)K

e�

2

?

� b. Now from (3) and the premise of (2)

we have:

f

�

1

h

[a]

J
�
K

~""

=x

i

;

f

�

2

h

[b]

J
�
K

~"#

=x

i

j=

~"

E; x : �

At this point we can apply the induction hypothesis to the premise of the rule

(Val Fun) to obtain the desired result.

18

� Case (Val Fun2): We have to prove:

�

Jerase(�(X):M)K

�

?

1

�

J8(X):�K

"

�

Jerase(�(X):M)K

�

?

2

�

and this is equivalent to proving:

(i) for all R : A 9 B,

�

Jerase(M)K

�

?

1

�

J�K

""[R=X]

�

Jerase(M)K

�

?

1

�

(ii) for all R : A 9 B,

�

Jerase(M)K

�

?

1

�

J�K

"[R=X]

�

Jerase(M)K

�

?

2

�

(iii) for all R : A 9 B,

�

Jerase(M)K

�

?

2

�

J�K

"#[R=X]

�

Jerase(M)K

�

?

2

�

since erase(�(X):M) = erase(M). As for the previous case these three statements

are instances of

for all R : A 9 B;

�

Jerase(M)K

e�

1

?

�

J�K

~"[R=X]

�

Jerase(M)K

e�

2

?

�

(4)

with

f

�

1

;

f

�

2

j=

~"

E (5)

To prove this claim, we �rst observe that the premise of the rule (Val Fun2)

implies that X does not appear in E, and therefore is not free in the type of any

of the free term variables of erase(M). Then (5) implies

f

�

1

;

f

�

2

j=

~"[R=X]

E;X (6)

since J�K

~"[R=X]

= J�K

~"

because X 62 � for all (x : �) 2 E. Now we can apply the

induction hypothesis to the premise of the rule (Val Fun2) with (6) to obtain the

desired result.

� Case (Val Appl): We have to prove:

�

Jerase(MN)K

�

?

1

�

J�K

"

�

Jerase(MN)K

�

?

2

�

but by induction hypothesis applied to the premises of the rule we know:

�

Jerase(M)K

�

?

1

�

J� ! �K

"

�

Jerase(M)K

�

?

2

�

�

Jerase(N)K

�

?

1

�

J�K

"

�

Jerase(N)K

�

?

2

�

and, since erase(MN) = erase(M)erase(N), the result follows by the de�nition

of exponentiation of relations.

� Case (Val Appl2): We have to prove:

�

Jerase(M�)K

�

?

1

�

J�[�=X]K

"

�

Jerase(M�)K

�

?

2

�

From lemma 4.14 (Substitution Lemma for Types) we know that J�[�=X]K

"

=

J�K

"[
J
�
K

"

=X]

. Since erase(M�) = erase(M) we can apply the induction hypothesis

to the premise of the rule (Val Appl2) to obtain that

�

Jerase(M)K

�

?

1

�

J�K

"[R=X]

�

Jerase(M)K

�

?

2

�

for all R : A 9 B. The result follows when we instantiate R with J�K

"

.

�

19

The previous theorem allows us to de�ne the semantics of typed terms from the se-

mantics of their erasures, provided that the SATmodel is based on a total combinatory

algebra:

De�nition 4.20 (Semantics of Typing Judgements) Given a per assignment �

and a value assignment � such that � j=

�

E, we can de�ne the semantics of the judge-

ment E `

F

M : � by:

JE `

F

M : �K

��

=

h

Jerase(M)K

�

?

i

J
�
K

�

Using the Abstraction Theorem for Erasures it is easy to verify that the previous

de�nition is proper. We obtain:

Corollary 4.21 (Abstraction Theorem) For all typing judgements E `

F

M : �

and all assignments ", �

1

, and �

2

such that �

1

; �

2

j=

"

E:

�

JE `

F

M : �K

""�

1

�

J�K

"

�

JE `

F

M : �K

"#�

2

�

To close this section, we prove a standard substitution lemma.

Lemma 4.22 (Substitution Lemma for Terms) For all typing judgements

E;X `

F

M : �

all type expressions � whose free variables are in the domain of E, and all assignments

� and � such that � j=

�

E, we have:

q

E `

F

M [�=X] : �[�=X]

y

��

=

q

E;X `

F

M : �

y

�[
J
�
K

�

=X]�

Proof. We apply de�nition 4.20; then the statement is an immediate consequence

of the lemma 4.14. �

4.1.3 Equalities

As previously remarked at the end of section 3.1, the typed �-rule is validated by our

model even if its untyped counterpart is not valid into the (untyped) model. The key

property in order to prove this result is the following lemma which allows, in the typed

case, the commutation between substitution and CL-translation.

Lemma 4.23 (Commutation) For all terms M;N such that E; x : � `

F

M : � and

E `

F

N : � , and for all assignments �; �

1

; �

2

such that �

1

; �

2

j=

�

E we have:

Jerase(M)

CL

[erase(N)

CL

=x]K

�

?

1

J�K

�

J(erase(M)[erase(N)=x])

CL

K

�

?

2

Proof. By induction on the length of M . If M is a variable di�erent from x, then

we can easily conclude by the hypothesis on the assignments. If M is equal to x then

the statement follows by the abstraction theorem 4.19. The case of application follows

directly by the induction hypothesis.

20

If M is an abstraction, for example M = �y : �

1

:P of type �

1

! �

2

, then we can

apply the induction hypothesis to P , obtaining that for all a; b such that a J�

1

K

�

b:

Jerase(P)

CL

[erase(N)

CL

=x]K

�

?

1

[a=y]

J�

2

K

�

J(erase(P)[erase(N)=x])

CL

K

�

?

2

[b=y]

(7)

We have to prove that

J([y]:erase(P)

CL

)[erase(N)

CL

=x]K

�

?

1

J�

1

! �

2

K

�

J[y]:(erase(P)[erase(N)=x])

CL

K

�

?

2

(8)

On the other hand, by the substitution lemma 3.2, we have that

J([y]:erase(P)

CL

)[erase(N)

CL

=x]K

�

?

1

= J[y]:erase(P)

CL

K

�

?

1

[

J

erase(N)

CL

K

�

?

1

=x]

(9)

In order to prove (8) we have to show that for all a; b such that a J�

1

K

�

b:

(J([y]:erase(P)

CL

)[erase(N)

CL

=x]K

�

?

1

� a) J�

2

K

�

(J[y]:(erase(P)[erase(N)=x])

CL

K

�

?

2

� b)

and, using (9), this is equivalent to

(J[y]:erase(P)

CL

K

�

?

1

[

J

erase(N)

CL

K

�

?

1

=x]

� a) J�

2

K

�

(J[y]:(erase(P)[erase(N)=x])

CL

K

�

?

2

� b)

which, by lemma 3.3 is equivalent to

Jerase(P)

CL

K

�

?

1

[

J

erase(N)

CL

K

�

?

1

;a=x;y]

J�

2

K

�

J(erase(P)[erase(N)=x])

CL

K

�

?

2

[b=y]

Now, using the substitution lemma 3.2 for the untyped semantics again (in the opposite

direction), we have

Jerase(P)

CL

[erase(N)

CL

=x]K

�

?

1

[a=y]

J�

2

K

�

J(erase(P)[erase(N)=x])

CL

K

�

?

2

[b=y]

At this point we are done since this is exactly (7), which has been previously shown.

�

Now we can prove the soundness of the SAT model with respect to the equality

rules of F .

Theorem 4.24 (Soundness for F Equalities) Given an equality judgement E `

F

M = N : �, a per assignment � and a value assignment � such that � j=

�

E, we have:

JE `

F

M : �K

��

J�K

�

JE `

F

N : �K

��

Proof. We only sketch the proof. If the combinatory algebra D is actually a �-

model, then the statement is obvious since the equality already holds in the untyped

semantics:

Jerase(M)K

�

?

= Jerase(N)K

�

?

The general case requires more care. We look only at (Val Eq Beta) and (Val Eq Fun),

the latter corresponding to the �-rule of the untyped �-calculus.

21

� Case (Val Eq Beta):

JE `

F

(�(x : �):M)N : �K

��

= (by def.)

J([x]:erase(M)

CL

)erase(N)

CL

K

�

?

= (�-axiom for CL)

Jerase(M)

CL

[erase(N)

CL

=x]K

�

?

Now using the commutation lemma 4.23, we have that

Jerase(M)

CL

[erase(N)

CL

=x]K

�

?

J�K

�

J(erase(M)[erase(N)=x])

CL

K

�

?

and we are done since

JE `

F

M [N=x] : �K

��

= J(erase(M)[erase(N)=x])

CL

K

�

?

� Case (Val Eq Fun):

We have to prove

J�x:erase(M)K

�

?

J� ! �K

�

J�x:erase(N)K

�

?

that is, for all a, b:

if a J�K

�

b then

�

J�x:erase(M)K

�

?

� a

�

J�K

�

�

J�x:erase(N)K

�

?

� b

�

By proposition 3.3 we can rewrite this as

if a J�K

�

b then Jerase(M)K

�

?

[a=x]

J�K

�

Jerase(N)K

�

?

[b=x]

We conclude by applying the induction hypothesis and by transitivity, since by

theorem 4.19 we have:

Jerase(N)K

�

?

[a=x]

J�K

�

Jerase(N)K

�

?

[b=x]

�

What makes the di�erence between the untyped and the typed semantics is that

while the representatives for �-abstractions are not canonical they are nevertheless in

the same equivalence class.

4.2 Categorical Models

In the previous subsection we have been forced to assume a total combinatory algebra

in order to de�ne the semantics of typed terms from the semantics of their erasures. In

this section we overcome this limitation. We build a SAT model for system F starting

from an arbitrary partial combinatory algebra. This will be possible by moving from

an untyped semantics for typed terms (that is, a semantics based on erasures) to a

typed semantics. The typed semantics is presented as a categorical model

Categorical models of system F are based on the quanti�ers-as-adjoints paradigm,

which goes back to Lawvere [Law69]; Seely has de�ned them under the name of PL-

categories [See83, See87].

Next we review the de�nition of PL-category. Then we describe the model SAT as

a PL-category. In the appendix we review how this is done for the usual PER model.

22

4.2.1 PL-categories

PL-categories are an algebraic generalization of the models of simply typed �-calculus

in a bi-dimensional universe of cartesian closed categories indexed over a global cat-

egory. PL-categories are sometimes referred to as external models of F in contrast

with the internal ones which use the internal category theory. We do not consider

here the internal models and we refer the interested readers to [AM92], where detailed

descriptions and relationships between the two kinds of models are provided.

We assume some acquaintance with the notion of indexed category and of categor-

ical models of system F , but provide the main de�nitions.

The de�nition of external model is based on that of indexed category. A model is

given via a contravariant functor G from a category E to CCCat, the category of all

(small) cartesian closed categories and cartesian closed functors between them. The

category E is cartesian and has a distinguished object
, interpreting the collection

of types. Products

p

are used to give meanings to environments E declaring p type

variables. Types legal in E are interpreted by arrows in E[

p

;
]. The functor G :

E

op

! CCCat takes

p

in E to a (local) category G(

p

) whose objects are the types

legal in E. Thus, types appear both as arrows in E and as objects in the local category

G(

p

) and we require

Obj((G(

p

)) = E[

p

;
]

The arrows of the local category G(

p

) interpret the terms of system F whose free

type variables are in E. Every local category is required to be a model of the simply

typed �-calculus, that is, a cartesian closed category. The abstraction on type variables

is described as the right adjoint to the diagonal functor.

The following de�nition is obtained from the one presented in [AM92] by dropping

the unnecessary requirement of the cartesian closedness of the global category, as done

for example in [Cur89].

De�nition 4.25 (PL-category) A PL-category is a triple (E;G;
) such that:

� E is a cartesian category whose objects are
 and its powers; we abbreviate the

object

p

by p and the product of

p

and

q

by p+ q. In particular 1 is
.

� G : E

op

! CCCat is a functor (indexed category) such that

(a) For each object p in E, Obj(G(p)) = E[p; 1] and for each morphism f 2

E[p; q], G(f) acts on the objects of G(q) as the pre-composition with f , that

is G(f)(g) = g � f .

(b) For every f 2 E[p; q], the functor G(f) : G(q)! G(p) preserves the carte-

sian closed structure \on the nose" (and not just up to isomorphism); that

is, for all h; l 2 Obj(G(q)) = E[q; 1]:

(1) G(f)(t

G(q)

) = t

G(p)

where t

G(p)

is the terminal object of G(p)

(2) G(f)(t

h

) = t

G(f)(h)

where t

h

: h ! t

G(q)

is the unique arrow from h

to the terminal object of G(q)

(3) G(f)(h�

G(q)

l) = G(f)(h)�

G(p)

G(f)(l)

where �

G(p)

is the product in G(p)

(4) G(f)(fst

h;l

) = fst

G(f)(h);G(f)(l)

23

(5) G(f)(snd

h;l

) = snd

G(f)(h);G(f)(l)

(6) G(f)([h; l]

G(q)

) = [G(f)(h);G(f)(l)]

G(p)

where [;]

G(p)

is the expo-

nentiation in G(p)

(7) G(f)(eval

h;l

) = eval

G(f)(h);G(f)(l)

(c) Let G

and Fst be de�ned by:

(1) G

: E

op

! CCCat is the functor (indexed category) such that

G

(p) = G(p+ 1)

G

(f) = G(f � id)

(2) Fst(p) = G(fst

p;1

) :G

(p)! G(p)

Then there exists an E-indexed adjunction hFst;8;�i : G * G

, that is,

for all f 2 E[p; q]:

� hFst(p);8(p);�(p)i : G(p) * G

(p) is an adjunction in the usual

sense, and, moreover,

� �(p) �G

(f) = G(f) ��(q)

The last equation in the de�nition expresses the naturality of the isomorphism � with

respect to the index p. Informally, it states the naturality for substitution under �(X):

J�(X):(M [�=Y])K = J(�(X):M)[�=Y])K

for all � (modulo the obvious renamings of bound variables).

4.2.2 SAT as a PL-category

We now recast the SAT model as a PL-category. We follow a pattern of de�nitions

that applies also to the PER model; we review the categorical presentation of the

PER model in the appendix, for comparison.

De�nition 4.26 (Global Category) The objects of the global category E are the set

Obj(SAT) and its powers. The set of morphisms is de�ned in two steps: �rst we de�ne

E[p; 1] = fF : Obj(SAT)

p

! Obj(SAT) j F satis�es (SAT � FUNC)g

and then

E[p; q] = E[p; 1]

q

so the morphisms in E[p; q] are q-tuples of morphisms in E[p; 1].

As usual the property F (R) : F (dom(R))9 F (cod(R)) implies that for all p-tuples

of pers A we have F (A) 2 Obj(PER).

De�nition 4.27 (Indexed Category) The collection of objects of the indexed cate-

gory G(p) is E[p; 1], by the de�nition of PL-categories. The morphisms in G(p) are

the uniformly realized arrows between objects, that is, the arrows � : F ! H such that:

� F;H 2 Obj(G(p));

� � : p! Mor(SAT) and for all R 2 p, �(R) : F (R)! H(R) in Mor(SAT).

24

� There exists n 2 D that computes uniformly � in the sense that for all R 2 p,

(n; n) realizes �(R) in Mor(SAT). We say that n is a realizer of � : F ! H,

and write n ` (� : F ! H).

Given an L 2 E[p; q], we de�ne G(L) as the functor from G(q) to G(p) that acts

on both objects and morphisms as the pre-composition with L. Namely, if F is an

object of G(q), then G(L)(F) = F � L, and if � : F ! H is a morphism of G(q)

realized by n, then G(L)(� : F ! H) is the uniquely determined morphism, denoted

(� �L) : (F � L)! (H �L), realized by n.

Product and exponentiation in the �bersG(p) are de�ned componentwise using those

of SAT as follows. For all F;G;H 2 G(p) and R 2 p:

� (F �G)(R) = F (R)�G(R)

� fst

F;G

(R) = fst

F (R);G(R)

and snd

F;G

(R) = snd

F (R);G(R)

� the terminal object is the constant function T

p

(R) = t where t is the terminal

object of SAT

� F

G

(R) = F (R)

G(R)

� eval

F;G

(R) = eval

F (R);G(R)

� �(�)(R) = �(�(R)) for all � : F � G! H

It is easy to verify the existence of a uniform realizer for each one of the previous

arrows in the �bers. For example consider eval

F;G

which, by the previous de�nition,

is the family of arrows:

feval

F (R);G(R)

: F (R)

G(R)

� G(R)! F (R) j R 2 pg

Each member of this family is realized by the interpretation of �x:�y:xy in the partial

combinatory algebra D.

Note that G(0) is isomorphic to PER. This corresponds to the fact that closed

type expressions are interpreted as pers.

We interpret the quanti�cation functor 8 on objects by the intersection operator

introduced in de�nition 3.10.

De�nition 4.28 (Indexed Adjunction) Given an object L of G(p+ 1), we de�ne

8(p)(L) =

SAT

\

R:A9B

L[�; R]

The behavior of 8(p) on morphisms is that if n realizes the morphism � : F ! H in

G(p+1) then 8(p)(� : F ! H) is the arrow from 8(p)(F) to 8(p)(H) in G(p) realized

by n. For every p, F 2 Obj(G(p)) and H 2 Obj(G(p+ 1)), we de�ne the isomorphism

�(p) :G(p+ 1)[Fst(p)(F); H]

�

=

�! G(p)[F;8(p)(H)]

so that it sends a morphism � : Fst(p)(F)! H realized by n to the unique morphism

from F to 8(p)(H) in G(p) realized by n.

25

Also in this case it is easy to verify that the morphism part of the quanti�cation

functor and the previous isomorphism are well de�ned. For the naturality of the iso-

morphism with respect to the global parameter, we have to check that for all morphisms

� : Fst(p)(F)! H in G(p+ 1) and L 2 E[q; p]:

�(q)(� � (L� id)) = (�(p)(�) � L) : (F � L)! (8(q)(H) � L)

This equality is proved as follows: if n realizes � : Fst(p)(F) ! H in G(p + 1) then

both sides of the previous equality are realized by n and so must be equal.

For any F 2 G(p + 1) we will denote by Proj

F

(p) the counit of the indexed

adjunction, that is, the following arrow in G(p+ 1):

Proj

F

(p) =�

�1

(p)(id

8(F)

) : Fst(p) � 8(p)(F)! F

Since the presence of all such indexes makes the notation very heavy, from now on

we will omit them when their values can be inferred from context.

4.2.3 Categorical interpretation of types and terms

Given a type judgement E `

F

� with exactly p type variables declared in E, we de�ne

the semantics of � in E, denoted by J�K

p

as an object of the �ber G(p), that is, an

arrow Obj(SAT)

p

! Obj(SAT).

De�nition 4.29 (Semantics of Types)

JXK

p

= snd � fst

i�1

where X is the i-th type variable

declared in E

J� ! �K

p

= J�K

J
�
K

p

p

J8(X):�K

p

= 8(J�K

p+1

)

We do the same for environments, so if `

F

E is a correct environment expression,

with p type variables declared in E, then its semantics, denoted by J`

F

EK

p

, will be

an element of the �ber G(p), namely the product of the semantics of the types of the

term variables declared in it.

De�nition 4.30 (Semantics of Environments)

J`

F

;K

p

= T

p

J`

F

E;XK

p

= J`

F

EK

p

J`

F

E; x : �K

p

= J`

F

EK

p

� J�K

p

Finally, we de�ne the semantics of typing judgements E `

F

M : � with exactly p

type variables declared in E, denoted by JE `

F

M : �K

p

, as a morphism in the �ber

G(p) from J`

F

EK

p

to J�K

p

.

26

De�nition 4.31 (Semantics of Typing Judgements)

q

E

0

; x : �;E

00

`

F

x : �

y

p

= snd � fst

n�1

where x is the n-th term variable

declared in E

JE `

F

�(x : �):M : � ! �K

p

= �(JE; x : � `

F

M : �K

p

)

JE `

F

�(X):M : 8(X):�K

p

= �(JE;X `

F

M : �K

p

)

JE `

F

MN : �K

p

= eval �

< JE `

F

M : � ! �K

p

; JE `

F

N : �K

p

>

JE `

F

M� : �[�=X]K

p

= G(<id ; J�K

p

>)(Proj

J
�
K

p+1

) �

JE `

F

M : 8(X):�K

p

All the cases are straightforward, except the last one. The arrow

G(<id ; J�K

p

>)(Proj

J
�
K

p

) : J8(X):�K

p

! J�[�=X]K

p

instantiates the counit Proj

J
�
K

p

of the adjunction to J�K

p

which, in turn, is used to

instantiate the semantics of the polymorphic term M

Remark 4.32 With this kind of semantics the Abstraction Theorem comes \for free"

since we have that

JE `

F

M : �K

p

: J`

F

EK

p

! J�K

p

This means, in particular, that the semantics of M maps related values for its free term

variables to related values.

5 Semantics of system R

In this section we extend the �rst SAT model of F to a model of R. We believe

that an analogous extension is possible for the categorical SAT model of F . We

prefer treating the �rst model because the structure of R complicates the notations

for categorical models even further. The complications arise from the dependence of

relation expressions upon term variables. Because of this dependence, the semantics of

relation expressions is de�ned only under correct assignments to term variables; this is

hard to express in a categorical style.

We rely on the constructions of the previous sections to de�ne an interpretation of

R in the SAT model.

5.1 Related types

Since in system R type and relation variables are both present explicitly, we de�ne

relation assignments on both type and relation variables in such a way that type vari-

ables are mapped to pers and relation variables are mapped to relations. The domain

RelAssign of relation assignments becomes:

RelVar [TypeVar ! Obj(SAT)

27

We denote � l the restriction of a relation assignment � to the set of type variables.

Value assignments remain the same as in system F .

We let RelTypesJudge denote the syntactic category of related types judgements,

and interpret the related types judgements by a function:

J�K : RelTypesJudge ! RelAssign ! ValAssign ! Obj(SAT)

De�ning the semantics of relation expressions is a little more di�cult than de�ning

the semantics of type expressions. One technical reason for this is that relation expres-

sions may contain term variables, so we are forced to make their meaning depend upon

term variable assignments. Moreover, the presence of term variables inside relation

expressions implies that not all relation expressions are meaningful, since we must add

some hypothesis on the interpretation of term variables which, in turn, depend on the

particular (syntactic) environment considered. In order to de�ne the semantics of rela-

tion expressions, then, we would like to know in which environment we are working and

that the relation expression is well-formed (that is, derivable) in this environment. For

these reasons, it seems best to de�ne the semantics of entire related types judgements,

as we do next.

To interpret functional-relation expressions, we use an auxiliary function:

De�nition 5.33 Let FRel : Mor(PER) ! Obj(SAT) be the function that maps an

f : A! B to the relation FRel(f) : A9 B such that:

a(FRel(f))b i� b 2 f([a]

A

)

Note that, by construction, FRel(f) is always saturated.

De�nition 5.34 Given a derivable environment judgement `

R

E and a relation as-

signment �, we say that � is an assignment for E i�

for all

0

B

@

X

W

Y

1

C

A

2 E, �(W) : �(X)9 �(Y)

De�nition 5.35 We de�ne the satisfaction of an environment judgement by a relation

assignment and a value assignment, and the meaning of a related types judgement, with

a joint inductive de�nition:

� Given an environment judgement `

R

E, a relation assignment � for it, and a

value assignment �, we say that � satis�es E with respect to � i�

for all

0

B

@

x : �

1

R

y : �

2

1

C

A

2 E; �(x)

u

v

E

0

`

R

�

1

R

�

2

}

~

��

�(y)

where E

0

is such that E = E

0

;

x : �

1

R

y : �

2

; E

00

. We write this � j=

�

E.

28

� Given assignments � and � such that � j=

�

E, we de�ne the semantics of the

related types judgement E `

R

�

1

S

�

2

by induction on its derivation:

u

v

E

0

;

X

W

Y

;E

00

`

R

X

W

Y

}

~

��

= �(W)

u

v

E

0

;

X

W

Y

;E

00

`

R

X

}

~

��

= �(X)

u

v

E

0

;

X

W

Y

;E

00

`

R

Y

}

~

��

= �(Y)

u

v

E `

R

�

1

! �

1

S

1

! S

2

�

2

! �

2

}

~

��

=

u

v

E `

R

�

1

S

1

�

2

}

~

��

)

u

v

E `

R

�

1

S

2

�

2

}

~

��

a

u

v

E `

R

8(X):�

1

8(W):S

8(Y):�

2

}

~

��

b i�

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

a J8(X):�

1

K

F

�l

a

a

u

v

E;

X

W

Y

`

R

�

1

S

�

2

}

~

~��

b

for all R : A9 B

where ~� = �[R;A;B=W ; X; Y]

b J8(Y):�

2

K

F

�l

b

u

v

E `

R

�

1

< M >

�

2

}

~

��

= FRel(JE

F

`

F

M : �

1

! �

2

K

F

�l;�

)

Note that for the semantics of quanti�cation and functional relations we have used the

parametric semantics of system F (denoted J�K

F

). Thus, the semantics of the corre-

sponding related types judgements do not depend upon their derivations. Moreover,

the derivation of a related types judgement always follows exactly the structure of the

relation except in the case of functional relations. Therefore, the semantics of a related

types judgement is always independent of its derivation.

In the judgement E

F

`

F

M : �

1

! �

2

, E

F

stands for the F
attening of E, obtained

by retaining the type variables and the term variables of E, and removing the relations.

In [ACC93] appears a lemma, called (Flattened F derivations fromR derivations), that

asserts that if E `

R

M : �

1

! �

2

is provable in R, then E

F

`

F

M : �

1

! �

2

is provable

in F .

Remark 5.36 The presence of functional relations prevents us from using the inter-

section operator of de�nition 3.10 since it is no longer true that

F (S) : F (A) 9 F (B)

29

Indeed, consider the case where the function F is constantly equal to a functional

relation: it does not maps pers to pers.

Instead, we have given a direct, pointwise de�nition of the meaning of intersection.

This interpretation is sound:

Theorem 5.37 (Soundness for Related Types Judgements)

For every related types judgement E `

R

�

1

S

�

2

and assignments � and � such that

� j=

�

E:

u

v

E `

R

�

1

S

�

2

}

~

��

: J�

1

K

F

�l

9 J�

2

K

F

�l

Proof. By induction on the complexity of the relation expression S. We check only

the case of quanti�cation over relation variables.

Suppose that for all R : A9 B:

a

�

J8(X):�

1

K

F

�l

�

b

u

v

E;

X

W

Y

`

R

�

1

S

�

2

}

~

~��

c

�

J8(Y):�

2

K

F

�l

�

d

where ~� = �[R;A;B=W ; X; Y]. We have to prove:

a

u

v

E;

X

W

Y

`

R

�

1

S

�

2

}

~

~��

d

By induction hypothesis we have:

u

v

E;

X

W

Y

`

R

�

1

S

�

2

}

~

~��

: J�

1

K

F

�l[A=X]

9 J�

2

K

F

�l[B=Y]

since the side conditions ensure that X is not free in �

2

and that Y is not free in �

1

.

We are done, since by assumption we know that a J�

1

K

F

�l[A=X]

b and c J�

2

K

F

�l[B=Y]

d. �

Given a type expression �, we expect its F semantics to be equal to the R semantics

of �

�

. This turns out to be an essential property.

Proposition 5.38 If E `

R

� then for all assignments � and � such that � j=

�

E we

have

u

v

E `

R

�

�

�

�

}

~

��

= J�K

F

�l

This proposition is a corollary of a more general statement:

30

Lemma 5.39 If E;

X

0

W

X

00

`

R

�[X

0

=X]

�

�

[W=X]

�[X

00

=X]

then for all assignments � and � such that

� j=

�

E, and for all tuples S : A 9 B of relations, we have:

u

v

E;

X

0

W

X

00

`

R

�[X

0

=X]

�

�

[W=X]

�[X

00

=X]

}

~

~�;�

= J�K

F

�l[S=X]

where ~� � �[S;A;B=W; X

0

; X

00

]

Proof. By induction on �. The cases of type variables and arrow types are immedi-

ate. Suppose � � 8(Y):�

1

. We introduce the following abbreviations: �

0

1

� �

1

[X

0

=X],

�

00

1

� �

1

[X

00

=X], and

c

�

�

1

� �

�

1

[W=X]. By de�nition we have:

a

u

v

E;

X

0

W

X

00

`

R

8(Y):�

0

1

8(W

0

):

c

�

�

1

[W

0

=Y]

8(Y):�

00

1

}

~

~�;�

b i�

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a J8(Y):�

1

K

F

�l[A=X]

a

a

u

v

E;

X

0

W

X

00

;

Y

0

W

0

Y

00

`

R

�

0

1

[Y

0

=Y]

c

�

�

1

[W

0

=Y]

�

00

1

[Y

00

=Y]

}

~

~�

00

;�

b

for all S

0

: A

0

9 B

0

b J8(Y):�

1

K

F

�l[B=X]

b

where ~�

00

� ~�[S

0

; A

0

; B

0

=W

0

; Y

0

; Y

00

]; and:

a J8(Y):�

1

K

F

�l[S=X]

b i�

8

>

<

>

:

a J8(Y):�

1

K

F

�l[A=X]

a

a J�

1

K

F

�l[S

0

;S=Y;X]

b for all S

0

: A

0

9 B

0

b J8(Y):�

1

K

F

�l[B=X]

b

We compare the right-hand sides of the two de�nitions. The upper and bottom rows

are exactly the same, while the middle rows are equal by induction hypothesis. �

As usual, we have also a substitution lemma:

Lemma 5.40 (Substitution Lemma for Relations)

For all related types judgements E;

X

W

Y

`

R

�

1

R

�

2

andE `

R

�

1

S

�

2

and all assignments �

and � such that � j=

�

E, we have:

u

v

E `

R

�

1

[�

1

; �

2

=X; Y]

R[S; �

1

; �

2

=W ; X; Y]

�

2

[�

1

; �

2

=X; Y]

}

~

�;�

=

u

v

E;

X

W

Y

`

R

�

1

R

�

2

}

~

�[S;A;B=W;X;Y];�

31

where

u

v

E `

R

�

1

S

�

2

}

~

�;�

= S : A 9 B

Proof. The proof is by induction on the proof ofE;

X

W

Y

`

R

�

1

R

�

2

. We limit ourselves

to the case (Rel FRel). Thus suppose R =< M >, and let E

0

stand for E;

X

W

Y

. The

premise of (Rel FRel) is E

0

`

R

M : �

1

! �

2

. We have E

0

F

`

F

M : �

1

! �

2

by

lemma (Flattened F derivations from R derivations) of [ACC93]. Then we can apply

the substitution lemma 4.22 (Substitution Lemma for Terms), and obtain:

q

E

F

`

F

M [�

1

; �

2

=X; Y] : �

1

[�

1

; �

2

=X; Y]! �

2

[�

1

; �

2

=X; Y]

y

�l�

=

q

E;X `

F

M : �

y

�l[
J
�

1

K

�

;
J
�

1

K

�

=X;Y]�

The conclusion follows by the de�nition of the interpretation of functional relations. �

5.2 Related values

In order to check the validity of a related values judgement, we interpret the two

terms of the judgement in the parametric per model of F , and we prove that these

interpretations are related by the semantics of the relation expression of the judgement.

Thus we �rst interpret a related values judgement by a function

J�K : RelValJudge ! RelAssign ! ValAssign !

[

A;B2Obj(PER)

Q(A)�Q(B)

u

v

E `

R

M : �

1

S

N : �

2

}

~

��

= (JE

F

`

F

M : �

1

K

F

�l�

; JE

F

`

F

N : �

1

K

F

�l�

)

Next we prove that the two components of this interpretation are related.

Theorem 5.41 (Soundness for Related Values Judgements)

Given a related values judgement E `

R

M : �

1

S

N : �

2

and assignments � and � such that

� j=

�

E, we have:

JE

F

`

F

M : �

1

K

F

�l�

u

v

E `

R

�

1

S

�

2

}

~

��

JE

F

`

F

N : �

2

K

F

�l�

Proof. By induction on the derivation.

32

� Case (Rel Val Symm): By proposition 5.38

u

v

E `

R

�

�

�

�

}

~

is a per, so symmetry

holds.

� Cases (Rel Val Saturation Left), (Rel Val Saturation Right): By theorem 5.37 we

know that

u

v

E `

R

�

1

S

�

2

}

~

��

: J�

1

K

F

�l

9 J�

2

K

F

�l

so in both cases the results follow by proposition 5.38.

� Case (Rel Val xRy): Follows immediately from the hypothesis on the assignments.

� Cases (Rel Val Rx), (Rel Val Ry): Follow by the hypothesis on the assignments

and by proposition 5.38.

� Case (Rel Val Fun): Our goal is:

J�x:erase(M)K

�

?

u

v

E `

R

�

1

! �

2

R! S

�

1

! �

2

}

~

�;�

J�y:erase(N)K

�

?

This is equivalent to:

if a

u

v

E `

R

�

1

R

�

1

}

~

�;�

b

then Jerase(M)K

D

�

?

[a=x]

u

v

E `

R

�

1

S

�

2

}

~

�;�

Jerase(N)K

D

�

?

[b=x]

The premise of this implication implies:

�[[a]

J
�

1

K

�

; [b]

J
�

1

K

�

=x; y] j=

�

E;

x : �

1

R

y : �

1

and the conclusion follows by induction hypothesis.

� Case (Rel Val Appl): Follows immediately by applying the induction hypothesis

to the premises.

� Case (Rel Val Fun2): We have to prove

Jerase(M)K

�

?

u

v

E `

R

8(X):�

1

8(W):S

8(Y):�

2

}

~

�;�

Jerase(N)K

�

?

33

that is, for all R : A 9 B:

Jerase(M)K

�

?

u

v

E `

R

�

1

S

�

2

}

~

�[R;A;B=W;X;Y];�

Jerase(N)K

�

?

and this follows by applying the induction hypothesis to the premise.

� Case (Rel Val Appl2): We have to prove

Jerase(M)K

�

?

u

v

E `

R

�

1

[�

1

=X]

S[R=W]

�

2

[�

2

=Y]

}

~

�;�

Jerase(N)K

�

?

By lemma 5.40 this is equal to

Jerase(M)K

�

?

u

v

E `

R

�

1

S

�

2

}

~

�[R

0

;A

0

;B

0

=W;X;Y];�

Jerase(N)K

�

?

where

R

0

: A

0

9 B

0

�

u

v

E `

R

�

1

R

�

2

}

~

�;�

Now applying the induction hypothesis to the premise we have, for all R : A9 B:

Jerase(M)K

�

?

u

v

E `

R

�

1

S

�

2

}

~

�[R;A;B=W;X;Y];�

Jerase(N)K

�

?

Therefore, the result follows by instantiating R with R

0

.

� Cases (Rel Val FRel Intro), (Rel Val FRel Elim): The �rst one follows from the

de�nition of the meaning of functional relations while for the second we need also

proposition 5.38.

� Cases (Rel Val Beta), (Rel Val Beta2), (Rel Val Eta), (Rel Val Eta2): Their

soundness follow, as usual, by proposition 5.38 and by the fact that they are

valid in the parametric model of F .

�

This concludes the proof of soundness for our interpretation of R. This proof has

been rather concrete. It might be interesting to have an abstract characterization of

the notion of model for R, and then to recast our proof in more abstract terms.

34

6 Conclusion

We have de�ned two parametric models of system F and used one of them as a basis

for an interpretation of system R. In hindsight, our results may not seem surprising.

However, the de�nitions include a number of tricky, \obvious" details. Details of this

sort were left implicit in the work of Bainbridge et al. [BFSS90], and misunderstood in

the �rst, inconsistent version of R. Therefore, we feel that a careful interpretation of

R is important.

The interpretation has been helpful both in understanding R and in thinking about

other formal systems for reasoning about polymorphic programs. Several other formal

systems come to mind. Following a suggestion of [PA93], we have started to consider a

formal system with relations of arities other than 2. Reynolds' discussed relations of all

arities in his original work, but binary relations have been preferred more recently (e.g.,

in [BFSS90]), in part arbitrarily. It seems interesting to extend the model presented

here to support relations of all arities.

Acknowledgements

Ryu Hasegawa and Eugenio Moggi both made useful suggestions.

35

Appendix

System F

Environments

(Env ;) (Env X) (Env x)

`

F

;

`

F

E X 62 E

`

F

E;X

E `

F

� x 62 E

`

F

E; x : �

Types

(Type X) (Type Arrow) (Type Forall)

`

F

E

0

; X; E

00

E

0

; X; E

00

`

F

X

E `

F

� E `

F

�

E `

F

� ! �

E;X `

F

�

E `

F

8(X):�

Values

(Val x) (Val Fun) (Val Fun2)

`

F

E

0

; x : �;E

00

E

0

; x : �;E

00

`

F

x : �

E; x : � `

F

M : �

E `

F

�(x : �):M : � ! �

E;X `

F

M : �

E `

F

�(X):M : 8(X):�

(Val Appl) (Val Appl2)

E `

F

M : � ! � E `

F

N : �

E `

F

MN : �

E `

F

M : 8(X):� E `

F

�

E `

F

M� : �[�=X]

36

Value equalities

(Val Eq Symm) (Val Eq Trans)

E `

F

M = N : �

E `

F

N =M : �

E `

F

M = N : � E `

F

N = P : �

E `

F

M = P : �

(Val Eq x)

`

F

E

0

; x : �;E

00

E

0

; x : �;E

00

`

F

x = x : �

(Val Eq Appl) (Val Eq Fun)

E `

F

M = N : � ! � E `

F

P = Q : �

E `

F

MP = NQ : �

E; x : � `

F

M = N : �

E `

F

�(x : �):M = �(x : �):N : � ! �

(Val Eq Appl2) (Val Eq Fun2)

E `

F

M = N : 8(X):� E `

F

�

E `

F

M� = N� : �[�=X]

E;X `

F

M = N : �

E `

F

�(X):M = �(X):N : 8(X):�

(Val Eq Beta) (Val Eq Beta2)

E; x : � `

F

M = N : � E `

F

P = Q : �

E `

F

(�(x : �):M)(P) = N [Q=x] : �

E;X `

F

M = N : � E `

F

�

E `

F

(�(X):M)(�) = N [�=X] : �[�=X]

(Val Eq Eta) (Val Eq Eta2)

E `

F

M = N : � ! � x 62 E

E `

F

�(x : �):Mx = N : � ! �

E `

F

M = N : 8(X):� X 62 E

E `

F

�(X):MX = N : 8(X):�

System R

We use the following abbreviations:

� E `

R

� for E `

R

�

�

�

�

� E `

R

M : � for E `

R

M : �

�

�

M : �

� E;X;E

0

for the environment E;

X

W

X

0

; E

0

where X

0

and W are fresh variables,

� E; x : �;E

0

for the environment E;

x : �

�

�

x

0

: �

;E

0

where x

0

is a fresh variable.

37

Environments

(Env ;)

`

R

;

(Env XWY) (Env xRy)

`

R

E X;W ; Y 62 E

X;W ; Y distinct

`

R

E;

X

W

Y

E `

R

�

1

R

�

2

x; y 62 E

x; y distinct

`

R

E;

x : �

1

R

y : �

2

Related types

(Rel W)

`

R

E

0

;

X

W

Y

;E

00

E

0

;

X

W

Y

;E

00

`

R

X

W

Y

(Rel WX) (Rel WY)

`

R

E

0

;

X

W

Y

;E

00

E

0

;

X

W

Y

;E

00

`

R

X

`

R

E

0

;

X

W

Y

;E

00

E

0

;

X

W

Y

;E

00

`

R

Y

(Rel Arrow) (Rel FRel)

E `

R

�

1

R

�

2

E `

R

�

1

S

�

2

E `

R

�

1

! �

1

R! S

�

2

! �

2

E `

R

M : � ! �

E `

R

�

< M >

�

(Rel Forall)

E;

X

W

Y

`

R

�

1

S

�

2

X 62 S; �

2

Y 62 S; �

1

E `

R

8(X):�

1

8(W):S

8(Y):�

2

38

Related values

(Rel Val Saturation Left) (Rel Val Saturation Right)

E `

R

M : �

�

�

N : �

E `

R

N : �

R

P : �

E `

R

M : �

R

P : �

E `

R

N : �

R

P : �

E `

R

P : �

�

�

Q : �

E `

R

N : �

R

Q : �

(Rel Val Symm) (Rel Val xRy)

E `

R

M : �

�

�

N : �

E `

R

N : �

�

�

M : �

`

R

E

0

;

x : �

1

R

y : �

2

; E

00

E

0

;

x : �

1

R

y : �

2

; E

00

`

R

x : �

1

R

y : �

2

(Rel Val Rx) (Rel Val Ry)

`

R

E

0

;

x : �

1

R

y : �

2

; E

00

E

0

;

x : �

1

R

y : �

2

; E

00

`

R

x : �

1

`

R

E

0

;

x : �

1

R

y : �

2

; E

00

E

0

;

x : �

1

R

y : �

2

; E

00

`

R

y : �

2

(Rel Val Fun)

E;

x : �

1

R

y : �

2

`

R

M : �

1

S

N : �

2

x 62 N;S

y 62M;S

E `

R

�

1

S

�

2

E `

R

�(x : �

1

):M : �

1

! �

1

R! S

�(x : �

2

):N : �

2

! �

2

(Rel Val Appl)

E `

R

M

1

: �

1

! �

1

R! S

M

2

: �

2

! �

2

E `

R

N

1

: �

1

R

N

2

: �

1

E `

R

M

1

N

1

: �

1

S

M

2

N

2

: �

2

39

(Rel Val Fun2) (Rel Val Appl2)

E;

X

W

Y

`

R

M : �

1

S

N : �

2

X 62 S; N; �

2

Y 62 S;M; �

1

E `

R

�(X):M : 8(X):�

1

8(W):S

�(Y):N : 8(Y):�

2

E `

R

M : 8(X):�

1

8(W):S

N : 8(Y):�

2

E `

R

�

1

R

�

2

E `

R

M�

1

: �

1

[�

1

=X]

S[R=W]

N�

2

: �

2

[�

2

=Y]

(Rel Val FRel Intro) (Rel Val FRel Elim)

E `

R

M : �

1

! �

2

E `

R

N : �

1

E `

R

N : �

1

< M >

M(N) : �

2

E `

R

N

1

: �

1

< M >

N

2

: �

2

E `

R

M(N

1

) : �

2

�

�

2

N

2

: �

2

(Rel Val Beta) (Rel Val Beta2)

E; x : � `

R

M : � E `

R

N : �

E `

R

(�(x : �):M)N : �

�

�

M [N=x] : �

E;X `

R

M : � E `

R

�

E `

R

(�(X):M)� : �[�=X]

�

�

[�

�

=X]

M [�=X] : �[�=X]

(Rel Val Eta) (Rel Val Eta2)

E `

R

M : � ! � x 62 E

E `

R

�(x : �):Mx : � ! �

(� ! �)

�

M : � ! �

E `

R

M : 8(X):� X 62 E

E `

R

�(X):MX : 8(X):�

(8(X):�)

�

M : 8(X):�

PER as a PL-category

We review the de�nition of the standard PER model of system F as a PL-category.

De�nition 6.42 (Global Category) The objects of the global category E are gener-

ated by the set
 = Obj(PER). The set of morphisms is de�ned by

E[p; q] = fF : Obj(PER)

p

! Obj(PER)

q

g

De�nition 6.43 (Indexed Category) The collection of objects of the indexed cate-

gory G(p) is E[p; 1], by de�nition of a PL-category. The morphisms in G(p) are the

uniformly realized arrows between objects, that is, an arrow � : F ! H such that:

� F;H 2 Obj(G(p))

� � : p! Mor(PER) such that for all A 2 p, �(A) : F (A)! H(A) in Mor(PER)

40

� there exists n 2 D that computes uniformly � in the sense that for all A 2 p,

n realizes �(A) in Mor(PER). We say that n is a realizer of � : F ! H, and

write n ` (� : F ! H)

Given L 2 E[p; q], we de�ne G(L) as the functor from G(q) to G(p) that acts on both

objects and morphisms as the pre-composition with L. Namely, if F is an object of

G(q), then G(L)(F) = F � L, and if � : F ! H is a morphism of G(q) realized by

n, then G(L)(� : F ! H) is the uniquely determined morphism, denoted (� � L) :

(F � L)! (H � L), realized by n.

Note that G(0) is isomorphic to PER.

De�nition 6.44 (Indexed Adjunction) Given an object L of G(p+ 1), we de�ne

8(p)(L) =

\

A2Obj(PER)

L[�; A]

The behavior of 8(p) on morphisms is that if n realizes the morphism � : F ! H in

G(p + 1), then 8(p)(� : F ! H) is the (unique) arrow from 8(p)(F) to 8(p)(H) in

G(p) realized by n. For every p, F 2 Obj(G(p)) and H 2 Obj(G(p+1)), we de�ne the

isomorphism

�(p) :G(p+ 1)[Fst(p)(F); H]

�

=

�! G(p)[F;8(p)(H)]

so that it sends a morphism � : Fst(p)(F)! H realized by n to the unique morphism

from F to 8(p)(H) in G(p) realized by n.

41

References

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism.

In A Collection of Contributions in Honour of Corrado B�ohm on the Oc-

casion of his 70th Birthday, volume 121 of Theoretical Computer Science,

pages 9{58, 1993. An early version appeared in the Proceedings of the 20th

Ann. ACM Symp. on Principles of Programming Languages.

[AM92] A. Asperti and S. Martini. Categorical models of polymorphism. Information

and Computation, 99:1{79, 1992.

[Bar84] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. Number

103 in Studies in Logic and the Foundations of Mathematics. North-Holland,

1984. Revised edition.

[BFSS90] E.S. Bainbridge, P. Freyd, A. Scedrov, and P.J. Scott. Functorial polymor-

phism. Theoretical Computer Science, 70:35{64, 1990.

[CL91] L. Cardelli and G. Longo. A semantic basis for QUEST. Journal of Func-

tional Programming, 1(4):417{458, October 1991.

[Cur89] P.-L. Curien. Alpha-conversion, conditions on variables and categorical logic.

STUDIA LOGICA, XLVIII(3), September 1989.

[Gir72] J.-Y. Girard. Interpr�etation fonctionnelle et �elimination des coupures dans

l'arithm�etique d'ordre sup�erieur. Th�ese de Doctorat d'Etat, Universit�e Paris

VII, 1972.

[Has93] R. Hasegawa. Categorical data types in parametric polymorphism. Mathe-

matical Structures in Computer Science, 1993. To appear.

[Law69] F.W. Lawvere. Adjointness in foundations. Dialectica, 23(3-4):281{296, 1969.

[Mai91] H.G. Mairson. Outline of a proof theory of parametricity. In J. Hughes, edi-

tor, Proceedings of the 5th International Conference on Functional Program-

ming Languages and Computer Architecture, Cambridge, MA, USA, August

1991, number 523 in Lecture Notes in Computer Science, pages 313{327.

Springer-Verlag, 1991.

[Mit90] J.C. Mitchell. A type-inference approach to reduction properties and se-

mantics of polymorphic expressions. In G. Huet, editor, Logical Foundations

of Functional Programming, Reading, MA, USA, pages 195{212. Addison-

Wesley, 1990.

[MR91] QingMing Ma and J.C. Reynolds. Types, abstraction and parametric poly-

morphism, part 2. In S. Brookes, M. Main, A. Melton, M. Mislove, and

D. Schmidt, editors, Proceedings of the Int. Conf. on Mathematical Foun-

dations of Programming Semantics, Pittsburgh, PA, USA, number 598 in

Lecture Notes in Computer Science. Springer-Verlag, 1991.

42

[PA93] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proceed-

ings of the International Conference on Typed Lambda Calculi and Applica-

tions, March 1993, Utrecht, NL, number 664 in Lecture Notes in Computer

Science, pages 361{375. Springer-Verlag, 1993.

[Rey83] J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A.

Mason, editor, INFORMATION PROCESSING '83, pages 513{523. Elsevier

Science Publishers B.V.North-Holland, 1983.

[See83] R.A.G. Seely. Hyperdoctrines, natural deduction and the Beck condi-

tion. Zeitschrift f�ur Mathematische Logik und Grundlagen der Mathematik,

29:505{542, 1983.

[See87] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda

calculus. The Journal of Symbolic Logic, 52(4):969{989, December 1987.

[Str67] C. Strachey. Fundamental concepts in programming languages. Lecture

Notes, International Summer School in Programming Languages, Copen-

hagen, Denmark, Unpublished, August 1967.

[Wad89] P. Wadler. Theorems for free! In Proceedings of the Fourth International

Conference on Functional Programming Languages and Computer Architec-

ture, pages 347{359. ACM press, 1989.

43

