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Abstract

A degree of parallelism is an equivalence class of Scott-continuous
functions which are relatively definable each other with respect to the
language PCF (a paradigmatic sequential language). We introduce an
infinite (“bi-dimensional”) hierarchy of degrees. This hierarchy is in-
spired by a representation of first order continuous functions by means
of a class of hypergraphs. We assume some familiarity with the language
PCF and with its continuous model.

Keywords: sequentiality, stability, strong stability, logical relations,
sequentiality relations.

1 Introduction

A natural notion of relative definability in the continuous type hierarchy is
given by the following definition:

Definition 1 Given two continuous functions f and g, we say that f is less
parallel than g (f <, g) if there exists a PCF-term M such that [M]g = f.

A degree of parallelism is a class of the equivalence relation associated to the
preorder <,,,.

In this paper we deal with degrees of parallelism of first order boolean
functions, i.e. of functions which take tuples of booleans as arguments and
give booleans as results. PCF-definability for first order functions is fully
characterized by the notion of sequentiality (in any of its formulations), and
Sieber’s sequentiality relations ([6]) provide a characterization of first order
degrees of parallelism. Moreover this characterization is effective: given f and
g one can decide if f <, g, and recently A. Stoughton ([7]) has implemented
an algorithm which solves this decision problem.

Nevertheless, as far as I know, there is little knowledge of the structure of
the partial order <,,, on first order boolean functions.



A well known fact is that any continuous function(al) is less parallel than
the “parallel or” function (the non-strict binary disjunction) ([4]), and we also
know a that any first order stable function is less parallel than the Berry-
Plotkin function ([3], p. 334), but there is a lack of general results about the
poset of degrees, whose structure turns out to be quite complicated, already
at first order. Sazonov’s paper [5] may be considered as a first step toward a
systematic study of the poset of degrees of parallelism.

In this paper we give a geometric account of first order degrees of paral-
lelism, by representing first order functions as hypergraphs which higlight the
structure of linearly coherent' subsets in the trace of the function. Then we
introduce a hierarchy of functions { fi, n)}n<mew Which has the property that
Jinm) Zpar J(n,moy if and only if there exists a morphism from the hypergraph
associated to fu, ) to the hypergraph asociated to fi,r ).

Throughout the paper PCF terms will be written in uncurryed form (as
n-ary functions), and some “macros” like a syntactic L and a sequential con-
junction A wil be used.

2 Preliminaries

We denote by B the flat domain of boolean values {L,true, false}. Tuples
of boolean values are ordered componentwise. Given a continuous function
f:B* — B, the trace of f is defined by

tr(f)=4(v,b)|ve B, be B, b#L, f(v)=b and Vo' < v f(v') =1}

A continuous function f: B” — B is stable if for all vy, v, € T (tr(f)), vy Vva.
A subset A = {vy,...,v:} of B" is linearly coherent (or simply coherent) if for
any linear function a : B" — O?, a(\ A) = A a(A), or equivalently if

Vil<j<mn(VI1<I<ko#L= Vi,lb1<l<lb<kv =)

The set of coherent subsets of B” is noted C(B™).

fact 1: If A € C(B") and B is an Egli-Milner lower bound of A% then
B e C(B”) u

Definition 2 A continuous function f: B® — B™ is linearly strongly stable
(or simply strongly stable) if for any A € C(B")

Yin the sense of [2]
20 denotes the Sierpinsky domain {1, T}
that is
Vi€ Adye By<z and Vye Bidrc Ay <w



o f(A)eC(B™).
o fINA) = AS(A)).

The following proposition states that strong stability captures the notion of
sequential definability, at least at first order.

Proposition 1 Any strongly stable, first order function f : B" — B is PCF-
definable.

2.1 Sequential Logical Relations

Definition 3 (Sieber) For each n > 0 and each pair of sets A C B C
{1,....n} let SAHP C B be defined by

SAB(b, . by (Tie Ab=1) vV (Vi,j € B b =b;)

An n-ary logical relation R is called a sequentiality relation if it is an inter-
section of relations of the form SP.

A function f : B"™ — B is invariant with respect to the m-ary logical
relation R if for any

(21,..,27) € R (23, ..., af ) ER, ... (al,....27) ER
one has that
(f(w%,w%,,wi),f(w%,x%,,xi),,f(ac’f,x?,,wff)) eR

Proposition 2 for any f: B® — B and g : B™ — B continuous functions,
f <par g tf and only if for any sequentiality relation R, if g is invariant with
respect to R then f is invariant too.

fact 2: A set A= {(af,...,27),...,(a},...,2%)} C B" is linearly coherent
if and only if

Vi<i<n(al,2h,...,20) € S,il""’k}’{l""’k}



3 Hypergraphs for boolean functions

We consider a category whose objects are (colored) hypergraphs and whose
morphisms are arcs-preserving and coloring-preserving maps:

Definition 4 A colored hypergraph h = (V}, An, Ch) is given by a set V), of
vertexes, a set A, C{A C V,|#A > 2} of (hyper)arcs and a coloring function
Ch : Vi, — {black,white}. A morphism from an hypergraph h to an hypergraph
k' is a function m : V, — Vi such that:

o forall ACV,, if A€ Ay then m(A) € Ay
o forallz,z’ €V, Cy(z) = Ch(2’) if and only if Cyp(m(z)) = Cp(m(2’)).

Definition 5 Let f : B® — B be the n-ary function defined by tr(f) =
{(v1,01),...,(ve,b)}. The hypergraph H(f) is defined by

L] VH(f)I{l,Q,,k‘}
[ ] AH(f):{{Zl,Zz,,Zl}gVH(f) | 122 and {?JZ'I,?JZ'Q,...,?JZ'I}EC(B”}).
o Cyp(t)= if b; then white else black.

example 1: Consider the functions G : B> — B and Por : Bool*> — B
defined by

tr(G) = {((L, true, false), true), (( false, L, true), true), (true, false, L), false)}
and
tr(Por) = {((L, true), true), ((true, L), true), (( false, false), false)}
We have:
H(G) = ({1,2,3}. {{1,2,3}}. Crry(1) = Crrge(2) = white, Crre(3) = black)

H(Por) = ({1,2,3}, {{1,2},{1,2,3}}, Crrgpors(1) = Crrcpory(2) = white, Crripory(3) = black)

The map m : H(G) — H(Por) defined by m(:) = 4, for i = 1,2,3, is a
morphism. A term M such that [M]Por = G is

M = \f Azqzo23 f(tlth)
where
ty =if xy then (¢f x5 then L else false) else if x3 then true else L

to = if x5 then (¢f x5 then L else true) else if x, then false else L



example 2: Let 3 — Por : B3> — B be defined by
tr(3 — Por) = {((true, L, L), true),((L,true, L), true),((L, L, true),true)}
The associated hypergraph is:
H(3—Por) = ({1,2,3},{{1,2},{1,3},{2,3},{1,2,3}},C(1) = C(2) = C(3) = white)

It is easy to see that there exists no morphism m : H(3 — Por) — H(Por).
Nevertheless 3 — Por <,,, Por, since for instance

3 — Por = |M]Por
where

M = Nf Azyzazs f(f(21,22),73)

In the rest of this section we list some simple properties relating hyper-
graphs and degrees of parallelism:

fact 3: Let f: B™ — B be a continuous function:
e fis stable if and only if H(f) has no 2-arc.

e fis strongly stable if and only H(f) has no arc.

Proposition 3 Let f: B" — B and g : B™ — B be such that
min{#A | A€ App} <min{#A | A€ Ay}
Then f £y 9.

Proof: Let k = min{#A | A € Ay }. We show that the logical relation

Sgilz """ ALk S such that g is invariant with respect to it, and f is not.

e f is not invariant:
let

v = (2],27,...,27)

vp = (24,25, ..., 27)



be a coherent subset of 71 (¢r(f)). For 1 < j < n,let w; be the k4 1-tuple
defined by:

(] J J
w; _($17$27"'7$k7 /\ $l)

1<I<k

The coherence of {vy,...,v;} entails that, for all 1 < j < n, w; €

Sipp et Appliyng (f,... ) to

k+1

we get (by,...,bp, L) & S,i}ljlz""’k}’{1’2"”’k+1}, where b; = f(v;), and we
have done.
e ¢ is invariant:

let us suppose, by reductio ad absurdum, that there exist k + 1 m-tuple

Uy :(yivvygn)

Up41 = (3/;14.17 CE) ylrcn+1)
such that for all 1 < j <m,

i i i 1,2,.. 0k} {1,2,. . k+1
(yivyév"'vyi+1)esli+l }{ +}

and

() gegs)) @ L2024

This entails that U = {uy,...,u;} is coherent, and that any element
of U has a lower bound in 7,(¢r(g)). Hence there exists an Egli-Milner
lower bound A of U in 7;(tr(g)), and 1 < #A < k*, which is absurd.

*#A > 1 since, if all the elements of U are upper bounds of an element v € w1 (tr(g)),
then ugy1 > v, and hence

(g(u1), ..., glunsr)) € Siﬁ,...,k},{lz,...,k+1}



4 A hierarchy of degrees

Definition 6 Given two natural numbers m > n > 3, let hy, ) be the hyper-

graph defined by:
hinmy = ({1, 2,...,m}, {AC{L,2,....,m} | #A > n}, forall ¢ C(i) = white)

Given hy ) and hg, ), we are interested in determining the conditions
under which there exists a morphism f : fu m) — Agnrmy. Since the A j)’s are
mono-colored, the only condition to be satified for a function f: {1,...,m} —
{1,...,m'} to be a morphism is the preservation of arcs. It is easy to see that
f is a morphism if and only if

maz{#f"(B)| BC{l,...,m'} and #B =0 -1} <n

since only in that case any arc of A, ) is mapped by f on an arc of A, .
Hence there exists a morphism from Ay, ) t0 Agm ny if and only if

> MM w1, m/}max{#f_l(B) | BC{l,...,m'} and #B =n'—1}

It is quite easy to see that one of the functions f : {1,...,m} — {1,....m'}
which realize the minimum above is fy(¢) = ((¢—1) MOD m’)+ 1, and that

maz{#f;"(B)| BC{l,...,m'} and #B=n' -1} =
= (min{n'=1,m MOD m'}x* | (%))—I—(max{o,(n'—l)—(m MOD m/)}* | (%)
where T 2 and |  denote the integer parts of & + 1 and z respectively. If we
denote this natural number by C™"" ™' we have that there exists a morphism
from A ) t0 hins ey if and only if n > cmn'm'

We define now a set of boolean functions {f(, )} such that for all n,m
(with 3 < n < m), H(finm)) = h(n,m), and we show that for all n, m,n’,m’
Jonm) Zpar Jnrmny if and only if n > cmn'm' - We start by showing how to
construct, for any given h, ), a boolean function f such that H(f) = h, m).
The trace of f has to contain m elements, its second projection has to be the
singleton {true} and for any subset A of the first projection of the trace, A has
to be coherent if and only if #A4 > n. Before describing the general method
for constructing such a function f, let us consider an example:

example 3: The function f described by the following trace (that we rep-
resent as a matrix), is such that H(f) = h(za

true | true | true 1 1 1 true
false L L true | true L true
L false L false L true || true
L L false L false | false || true




Actually a subset of the first projection of this trace is coherent if and
only if its cardinality is at least 3, since for any binary subset {,j} of rows
there exists a column [ such that the elements (¢,1) and (7,/) are defined and
different. .

For constructing a function f, ,,) whose associated hypergraph be A, )
we have just to generalize the idea above: for any subset of less then n rows
(and of at least two rows), it must exist a column which makes that subset

n—

uncoherent. The arity of the function is ZZ»:; C¢ 5, and in the jth column,
only elements corresponding to rows in the jth subset (with respect to an
enumeration whatsoever) will be defined, say by true for the first row in that

subset and by false for the other rows.

example 4:
The following matrix represents m(7( fi44))):

v= true true true 1L 1L 1L true true true 1L

vy= false L L true true L false L false true
V= L false L false L true false false L false
V4= L L false L false false L false false false

and the following one represents m(tr( fis,3))):

wy= true ftrue 1L
wo= false L true
W= L false false

Proposition 4 If n,m,n'm’ € w are such that 3 <n <m, 3 <n <m and
n > Cm,n’,m” then f(n,m) Spar f(n’,m’)-

Proof: Let k=3"7'Ci and k' = Y";' (', and let A = T (tr( fonm))) =
{v1,...,v} and B = 7 (tr(finrm)) = {wi, ..., wy ). By hypothesis there
exists a function f:{1,...,m} — {1,...,m’'} which maps any non-singleton
coherent subset of A on a non-singleton coherent subset of B. Consider the
function F: B¥ — B* defined by tr(F) = {(vi,w;¢)) | 1 <4 < m}. We show
that F is strongly stable: given ' € C(B*) we have to prove that F(C) €
C(B") and that F(\C) = A F(C):

o If (L,L,...,1) € F(C)then F(C)is linearly coherent, else there exists

k/
an Egli-Milner lower bound C” of C' such that ¢ C m(tr(F)), and

5C?. denotes the binomial coefficient of m and %



F(C) = F(C") = {wy) | v € C"}. By fact 1 C” is coherent, and hence
{wsy | vi € C'} is coherent. Hence F' preserves linear coherence.

e The only interesting case is when there exists an Egli-Milner lower bound

of C'in m(tr(F')) (otherwise A F(C) = (L,L,...,1), and F(AC) =

AF(C) holds trivially). Let C” be the Egli—Mkﬂner lower bound of '
such that C" C my(tr(F)), and F(C) = F(C") = {wy) | v € C'}. I 7
is a singleton, say C’ = {v;}, then AC > v; and F(ANC) = AF(C). If
("’ is non-singleton then F(C') = {w;(¢) |v; € C"} is coherent and non
singleton. Hence #F(C’) > n’, and it is easy to see that by definition of
Jormns NF(C') = (L, L,..., L) = F(NC).
Py
Since F' is strongly stable, the function ¢; : B* — B defined by ¢; =
m; o F is strongly stable, for any ¢ < k’/, since projections are strongly stable
functions, and strong stability is preserved by composition. The g;’s are first
order functions, hence by proposition 1, for all i < &’ there exists a PCF term
ti(z1,...,2;) which defines g;. Consider the term

M =Xy Azyzq.oxp y(t(ziae . oxp), ta(@12a o 2g)y oot (@120 .. 2y )

In order to prove that [ M| f,/ pry = fin,m) We just remark that, by construc-
tion,

Vo e BY (35 <m/ (g1(v)y..yg(v) > wj & F<mo>ov and f(i) = j)

example 5: Let us apply the construction above to show that fi44) <,ar f(3,3)
(remark that C*3? = 3) (we refers to example 4)

Any surjective function f:{1,2,3,4} — {1,2,3} satisfies the condition of
being a morphism from %4 4) to h(ss); let us choose for instance

f=f4)=1 f(2)=2 f(3)=3
The corresponding F is defined by
tr(F) = {(v1, w1), (v2, w2), (v, ws), (v, w1)}
and the g;’s are defined by
tr(g1) = {(v1, true), (ve, false), (va, true)}

tr(gs) = {(v1, true), (vs, false), (va, true)}



tr(gs) = {(vq, true), (vs, false)}

The terms ¢;’s are essentially sequences of conditionals statements: for instance
ts = Axy...x0 of x4 then (0f (g ANas A 27 A9 A xyg) then true else L)

else (if (mxa A g A mx7 A g A —2yo) then true else 1)

The rest of this section is devoted to prove that the condition n > C™n" ™',
is indeed necessary for having fi, ) <per f(2',m'):

Proposition 5 If n,m,n’,m’ are such that 3 < n < m, 3 < n' < m' and
n S Cm,n',m" then f ﬁpar g-

Proof: By proposition 2 it is sufficient to define a sequential logical relation
R such that f,s ) is invariant with respect to R and fq, ) is not.
The first projection of t7( fin m)) is

el el
1 (1 fonm)) = L&l o2 ) (ke O

Remark that, by definition, any “column” of the first projection of tr( fin m)),
i.e. any tuple
{(2, 25, .. "wiﬂ)}lsiszn__; ci
contains at least m — n + 1 “L7s.
Hence it is easy to see that f(,,,) is not invariant with respect to the
(m + 1)-ary sequential logical relation

R = ﬂ SA’A) N (S{l,...,m},{1,...,m+1})

AC{1,2,...m} #A=n

since the tuples
{(xllv $227 sy xin? J‘)}lgi<zn_l ci

are in R, and the application of (fi, m),- .., fn,m)) to those tuples yelds the

m+1
tuple (true,true,...,true, L) which is not in R

If we prove that fi, ) is invariant with respect to R we have done. By
reductio ad absurdum, let us suppose that fq,,,/) is not invariant. Then there
exist m + 1 tuples in R

=1 ci,
vlz(yiv"'vylz:l:2 m)

10



/=1
ct
7]2:(3/%7"'73/22:1:2 ml)

Z:LI_I C:n’)

vm-l—l = (y71n+17 R ym+1:2
such that
(f(n’,m’)(vl)v .. '7f(n’,m’)(vm+1)) € R

It is easy to see that this is the case if and only if

Jnrmn(01) = fonrmny(02) = oo = fiurmny (V) = true  and  fiur my(Vmgr) =1

Hence for any 1 < 7 < m there exists an element wy;(; of the first projection
of tr(fin',mny) such that v; > wyy°, for some function f : {1,2,...,m} —
{1,2,...,m/}. Since n < C™""™ there exists B C {1,2,...,m'} such that
#B = n' —1 and #f7Y(B) > n. This means that there exist n elements
Vigyeoos Vi, 1 < 2y < m and there exist 1 < k& < n/ — 1, wy,...,w; €

n?

T (17 ( finr,m?y)), such that {wy, ..., wy} is an Egli-Milner lower bound of {v;,...,v; }.

If £ > 2, we conclude that {v;,...,v; } is not linearly coherent and
then that there exists 1 < h < YP5'CEL, such that {yl,yl,... ¥t} =
{true, false}. It follows that

(ylllbv ygv .. '7yr}7bz+1) € S{il,...,in},{il,...,in}

which is absurd.
If £ = 1, there are two cases:

o there exists 1 < h < m such that v, ? w. In this case v, > w for some
w € T (tr( frnrmny)), w # wy, and we conclude as before, since {w, w,} is
not linearly coherent.

o forall 1 <7< m, v; < w;. In this case for all 1 < j < Z?;;lc'fn,, we
have y],4%,...,%. > w) and hence, since

(y{v ygv ey yZn? yZn-I—l) € S{l,...,m},{l,...,m+1}

we get yZn-I—l > w]1 Hence we conclude that v,,.; > w; and that
Jin m(Umy1) = true, which is absurd.

6This element is unique since J(nt,m) 1s stable.

11



Hence finm) <par fin',m) if and only if n > cmn'm'In order to draw a
picture of (a part of) this hierarchy of degrees, let us compute some typical
value of %9

Cn+1,n,n =2+ (n - 2) =n =VVn >3 f(n+1,n+1) Spar f(n,n)
Cn,n—l,n+1 =n—-2 =>n > 4 f(n—l,n) Spar f(n—l,n+1)

Cn+1,n—1,n =2+ (n - 3) =n-1=n >4 f(n,n+1) Spar f(n—l,n)

We can prove that the inequalities above are strict by using the same method:
for the first one we have for instance

Cn,n-l-l,n-l-l =n =Vn f(n,n) fpar f(n+1,n+1)

The following picture shows some degrees in the hierarchy:

(3.5)
(4,6) (3,4)

5 Conclusion

The hypergraph that we associate to a function f brings some information
about the degree of parallelism of f.

Actually, as shown by exemple 2, the existence of a morphism from H(f)
to H(g) is not a necessary condition for f <,,. ¢, but some of the result we
got (like proposition 3, or the existence of the hierarchy f, ), comfort our

12



feeling that the study of the combinatory of hypergraphs can result in a better
understanding of the poset of degrees of parallelism.

A complete characterization of first order degrees of parallelism can be
considered as preliminary to the study of the decidability problem for <,,,. at
higher order, which is open.
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