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1 Introduction

Visibility graphs (for polygonal obstacles) were introduced by Lozano-Perez and Wesley [16] for

planning collision-free paths among polyhedral obstacles; in the plane a shortest euclidean path

between two points runs via edges of the tangent visibility graph of the collection of obstacles,

augmented with the source and target points. Since then numerous papers have been devoted

to the problem of their e�cient construction ([2, 6, 8, 9, 10, 12, 21, 24, 26, 27]) as well as their

characterization (see [1, 5, 20] and the references cited therein).

Figure 1: The visibility graph of a collection of four obstacles.

In this paper we present an optimal time and linear working space algorithm that computes the

visibility graph of a collection O of n pairwise disjoint convex objects (= obstacles) in the plane.

To the best of our knowledge, even for the case of line segments, this is the �rst optimal algorithm

that uses linear working space. In [22, 23] we described an optimal time method for computing

the so-called visibility complex of the collection O of obstacles. Just as the algorithm of Ghosh

and Mount, see [8], it is based on a complicated data structure (namely the split-�nd structure

of Gabow and Tarjan, see [7]). Therefore it is not suitable for a practical implementation. The

algorithm presented in this paper is suitable for a practical implementation, for it uses a rather

simple advanced data structure, namely the splittable queue. Recall that a bitangent is a closed

line segment whose supporting line is tangent to two obstacles at its endpoints; it is called free if

it lies in free space (i.e., the complement of the union of the relative interiors of the obstacles). An

exterior (interior) bitangent is a bitangent lying on the boundary of (in the interior of) the convex

hull of the collection O of obstacles. The endpoints of these bitangents subdivide the boundaries

of the obstacles into a sequence of arcs; these arcs and the free bitangents are the edges of the

visibility graph of the collection of obstacles, see Figure 1. Our main result is the following.

Theorem 1 Let B be the set of free bitangents of a collection O of n pairwise disjoint obstacles,

and let k be the cardinality of B. There is an algorithm that computes the set B in O(k + n logn)

time and O(n) working space|under the assumption that the bitangents between two obstacles are

computable in constant time. Furthermore, if desired, the algorithm can compute the visibility graph

(or the visibility complex) of the collection of obstacles in the same space and time bounds.

Our approach is to turn B into a poset (partially ordered set) (B;�) and to compute a linear

3
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extension of (B;�), i.e., to embed � into a linear (total) order. In other words, we solve the

topological sorting problem for (B;�), see [13, 14].

To de�ne this partial order, we �rst introduce some terminology. The set of unit vectors in

the plane is the 1-sphere S

1

. Let exp : R ! S

1

be the universal covering map of the 1-sphere,

de�ned by exp(u) = (cosu; sinu). Furthermore, let B

or

be the oriented version (double cover) of

B, obtained by associating with each b 2 B the two directed versions of b. For a directed bitangent

b 2 B

or

let v(b) 2 S

1

be the unit vector along the directed line supporting b. We de�ne X

0

to be

the set

S

b2B

or

fbg � exp

�1

(v(b)). A point v in X

0

is called a bitangent in X

0

; its �rst component

is a bitangent in B, denoted by bit(v), and its second component is called its slope, denoted by

Slope(v). We identify a bitangent in B with the corresponding bitangent in X

0

with slope in [0; �[.

Two bitangents v and v

0

in X

0

are crossing, disjoint, etc., if the corresponding bitangents bit(v)

and bit(v

0

) in B are crossing, disjoint, etc.

The (partial) order � on X

0

is de�ned as follows: b � b

0

if there is a counterclockwise oriented

curve joining (some point of) bit(b) to bit(b

0

), that runs along the edges (arcs and bitangents) of

the visibility graph of the obstacles, and that sweeps an angle of Slope b

0

� Slope b (a more formal

de�nition is given in Section 2). This order has several nice properties, on which our algorithm is

based. At this point we just mention that two crossing bitangents are comparable with respect to

� (see Lemma 3). Since � is compatible with the slope-order on X

0

, an obvious extension of �

is the linear order obtained by sorting the elements of X

0

according to increasing slope. However,

this is computationally too expensive. To obtain the proper setting for dealing with the problem

of extending � to a linear order on X

0

, we use the notion of �lter

1

. A special type of �lter of X

0

is

the subset of bitangents I(u), de�ned for u 2 R, that consists of all bitangents in X

0

whose slope

is greater than u. For each �lter I of (X

0

;�) we de�ne a maximal subset G(I) = fb

1

; � � � ; b

m

g of I

as follows: (1) b

1

is minimal in I , and (2) for 1 � i < m, the bitangent b

i+1

is minimal in the set of

bitangents in I , disjoint from b

1

; b

2

; : : : ; b

i

. Since crossing bitangents are comparable it follows that

G(I) is well-de�ned (independent of the choice of the b

i

), and that min

�

I � G(I). We shall prove

that for each �lter I the set G(I) contains 3n� 3 bitangents, that subdivide free space into regions

called pseudotriangles . This subdivision, denoted by G(I), is called a greedy pseudo-triangulation.

The regions owe their name to their special shape, that will be explained in more detail in Section 2.

We refer to Figure 2 for an example of greedy pseudo-triangulations associated with �lters of X

0

.

Our algorithm maintains the greedy pseudo-triangulation G(I) as I ranges over a maximal

chain of �lters of the interval [I(0); I(�)], viz the set of �lters I with I(0) � I � I(�). The basic

operation that updates the pseudo-triangulation is a ip of a free bitangent, minimal in the �lter.

The key result is the following.

Theorem 2 Let I be a �lter of (X

0

;�) and let b 2 min

�

I. Then G(I n fbg) is obtained from G(I)

by ipping b, i.e., by replacing b with the only minimal bitangent in I n fbg disjoint from the other

bitangents in G(I) (see Figure 2).

If the obstacles are points, our method|translated into dual space|is an alternative for the topo-

logical sweep algorithm for arrangements of lines, of Edelsbrunner and Guibas, see [6]. Our pseudo-

triangulations replace their (upper and lower) horizon trees.

1

A �lter I of a poset (P;�) is a subset of P such that if x 2 I and x � y then y 2 I. The set of �lters, ordered by

reverse inclusion, is a poset. Our main interest in the notion of �lters is that, given two �lters I and J with J � I and

I nJ �nite, the sequence x

1

; x

2

; : : : ; x

k

of elements of I nJ is a linear extension of (I nJ;�) if and only if the sequence

of sets I

1

; I

2

; : : : ; I

k

de�ned by I

i

n J = fx

i

; x

i+1

; : : : ; x

k

g, is an unre�nable chain of �lters in the interval [I; J ]. We

borrow poset terminology from Stanley [25, Chap.3]. To keep the paper self-contained we review this terminology in

Appendix C.
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(a) (b)

Figure 2: (a) The greedy pseudo-triangulation associated with the �lter I(0) of bitangents with

slope � 0. The dashed bitangents b

1

and b

2

are both minimal in the �lter I(0). (b) The greedy

pseudo-triangulation associated with the �lter I(0) n fb

1

; b

2

g which is obtained from G(I(0)) by

ipping b

1

and b

2

.

The paper is organized as follows. In Section 2 we introduce the partial order � on the set X

of cells (or faces) of the visibility complex (whose X

0

is the set of vertices or 0-faces), we prove

that this order satis�es a 'lattice-like' property, and we prove Theorem 2 by interpreting the greedy

pseudo-triangulations as maximal antichains of � on X nX

0

. In Section 3 we show how the ip

operation can be e�ciently implemented, using splittable queues.
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2 The visibility complex

2.1 Terminology, pseudotriangle, pseudo{triangulations

(a) (b)

Figure 3: (a) A pseudotriangle. (b) Two disjoint pseudotriangles share exactly one common tangent line.

Let O = O

1

[O

2

[ � � � [O

n

be the union of n pairwise disjoint convex sets O

i

(obstacles for short).

We assume

2

that each obstacle is strictly convex, that is, the open line segment joining two of its

points lies in its interior, and has a smooth boundary, that is, there is a well{de�ned tangent line

through each of its boundary points. A pseudo{triangulation of a set of obstacles is the subdivision

of the plane induced by a maximal (with respect to inclusion) family of pairwise noncrossing free

bitangents. It is clear that a pseudo{triangulation always exists and that the bitangents of the

boundary of the convex hull of the obstacles are edges of any pseudo{triangulation. A pseudo{

triangulation of a collection of four obstacles is depicted in Figure 2. The subdivision owes its

name to the special shape of its regions. A pseudotriangle is a simply connected subset T of the

plane, such that (i) the boundary @T consists of three convex curves, that share a tangent at

their common endpoint, and (ii) T is contained in the triangle formed by the three endpoints of

these convex chains. These three endpoints will be called the cusps of T . At each boundary point

of a pseudotriangle there is a well-de�ned tangent line, and there is a unique tangent line to the

boundary of a pseudotriangle with a given unoriented direction (more formally the support function

�

T

: S

1

! R of T is well de�ned, continuous, and satis�es �

T

(u) = ��

T

(�u)).

Lemma 1 The bounded free regions of any pseudo{triangulation are pseudotriangles. Furthermore

the number of pseudotriangles (of a pseudo{triangulation of a collection of n obstacles) is 2n� 2,

and the number of bitangents is 3n� 3.

Proof. Let R be a family of noncrossing bitangents containing the bitangents of the boundary of

the convex hull of the collection of obstacles. Assume that some free bounded face of the subdivision

is not a pseudotriangle; from which we shall derive that R is not maximal. This means that this

face is not simply connected or that its exterior boundary contains at least 4 cusp points. In both

cases we add to R a bitangent as follows. Take a minimal length curve homotopy equivalent to the

curve formed by the part of the exterior boundary of the face that goes through all cusp points

2

This assumption is only for the ease of the exposition|in particular two bitangents in B are disjoint or intersect

transversally (i.e., not at their endpoints).

6
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of the exterior boundary but one. This curve contains a free bitangent not in R; hence R is not

maximal.

An extremal point is a point on the boundary of an obstacle at which the tangent line to

that obstacle is horizontal. Each pseudotriangle contains exactly 1 extremal point in its boundary

(namely the touch point of the horizontal tangent line to the pseudotriangle). Since there are

2n � 2 extremal points in the interior of the convex hull of the obstacles there are exactly 2n � 2

pseudotriangles. The last result is then an easy application of the Euler relation for planar graphs.

To see this observe that the set of vertices consists of all endpoints of bitangents. In particular

every vertex has degree 3. Furthermore the number of edges, that lie on the boundary of some

object, is equal to the number of vertices. Finally the total number of bounded regions is equal to

the sum of the number of pseudotriangles and the number (n) of obstacles.

Figure 4: A pseudoquadrangle and its diagonals.

Lemma 2 Let T and T

0

be two disjoint pseudotriangles. Then T and T

0

have exactly one common

tangent line.

Proof. For the existence part we apply the Intermediate Value Theorem to the continuous function

de�ned as the di�erence between the support functions of T and T

0

. For the unicity we observe

that tangent lines to a pseudotriangle cross inside the pseudotriangle.

We will use this last lemma only in the case where T and T

0

are adjacent pseudotriangles (in a

pseudo{triangulation). In that case the union of T and T

0

is called a pseudoquadrangle, and T and

T

0

share two common bitangents called the diagonals of the pseudoquadrangle (see Figure 4).

2.2 De�nition of the visibility complex as an abstract polytope

First it is convenient to identify the plane R

2

with a 2-sphere S

2

minus a point, called the point at

in�nity. Given a real number u 2 R we set C

u

= 2CH(O)+Rexp(u+ �=2) (assuming without loss

7
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C

u

L

u

R

u

CH(O)

exp(u)

Figure 5: Free space F

u

= Cl(C

u

nO).

of generality that the origin is an interior point of the convex hull CH(O) of O), and we denote by

L

u

and R

u

the two connected components of R

2

n C

u

(see Figure 5). The u-free space F

u

is the

closure of C

u

n O. A ray (p; u) is an element of S

2

�R, consisting of a point p and a real number

u. The point p is called the origin of the ray, and the real number u is called its slope. We denote

by 

+i

(

�i

) the set of rays (p; u) emanating from and tangent to obstacle O

i

(i.e. p 2 @O

i

and the

tangent vector at p to O

i

is exp(u) 2 S

1

), that contain O

i

in their left (right) half-plane; obviously



�i

is homeomorphic to R. Let C

i

= O

i

�R, and let C

�

=

S

u2R

L

u

�fug and C

+

=

S

u2R

R

u

�fug.

For a point p in R

2

and a real number u 2 R we are interested in the object (possibly L

u

or R

u

)

that we can see from p in the direction exp(u) 2 S

1

. This object is called the view from p along

u, or the forward view from the ray (p; u) (the backward view from the ray (p; u) is the forward

view of the opposite ray, (p;�u)). The view from a point p inside an object O

i

is this object O

i

,

irrespective of the direction.

The underlying space jX j of the visibility complex of O is the quotient space of the space of

rays S

2

�R under the reexive and transitive closure of the relation �, de�ned by: (p; u) � (q; u) if

and only if (1) the slope of the line (pq) is equal to u modulo �, and (2) the line segment [p; q] lies

in u-free space F

u

. One can easily check that jX j is homeomorphic to S

2

�R. If we �x u 2 R the

set of rays in jX j with slope u is a two-dimensional set, homeomorphic to S

2

. We shall refer to this

set as the cross-section of jX j at u. The slope of an equivalence class r, denoted by Slope(r), is the

common slope of its rays, and we denote by seg(r) the set of origins of the rays in r. Observe that

seg(r) is a maximal (with respect to the inclusion relation) free line segment, unless r = f(p; u)g

with p in the interior of some O

i

(or L

u

or R

u

). By a slight abuse of terminology, an equivalence

class will be called a ray in jX j. A ray r in jX j is said to be tangent to obstacle O

i

if the line

segment seg(r) is tangent to O

i

. It is convenient to denote by � the mapping which associates the

ray (p; u+ �) with the ray (p; u). We stress that the rays (p; u+ k�), k 2 Z , are distinct points in

jX j.

Observe that the canonical mapping from S

2

�R onto jX j, restricted to the interiors Inte(C

i

)

of C

i

, with i 2 f1; : : : ; n;+;�g, is one-to-one. The n + 2 canonical images of the sets Inte(C

i

) and

the 2n canonical images of the curves 

�i

in jX j induce a 3-dimensional cell (or face) decomposition

of jX j. The 3{faces correspond to collections of rays with origins in the interior of the obstacles

(including L

u

and R

u

), i.e., the Inte(C

i

), with i 2 f1; : : : ; n;+;�g. The 2{faces correspond to

collections of rays with the same forward and backward views. The 1{faces correspond to collections

of rays with the same forward and backward views and tangent to the same obstacle. The 0{faces

correspond to collection of rays which are tangent to two obstacles.

8



Visibility Graphs via Pseudo{triangulations April 1995

(a) (b)

(d)(c)

vv

1 2 3 456

1

2

3

4

5

6

jX j

u

u� � u+ �

bit(v)

exp(u� �)

e

0

e

0

e

e

O

i

C

i

O

j

C

j

Figure 6: (a) Two obstacles de�ning a vertex v of the visibility complex with slope u. (b) (Local) cross-

sections at slopes u� �, u and u+ �. (c) Neighbourhood of a vertex of the visibility complex. (d) The Hasse

diagram of the vertex-�gure of a vertex of P (X)

We denote respectively by X

0

, X

1

, X

2

, and X

3

the sets of 0-, 1-, 2-, and 3{faces of X . Let

P (X) be the poset of faces of X , augmented with ; and jX j, ordered by the inclusion relation of

their closures. The local combinatorial structure of P (X) is described in the following theorem, see

Figure 6. (We refer to [3] for the terminology on abstract polytopes.)

Theorem 3 P (X) is an abstract polytope of rank 4. Furthermore the vertex-�gure of a vertex is

the face poset of a 3-dimensional simplex.

We denote by arc the onto mapping x 7! arc(x) from the set X

1

of edges of X onto the set of arcs

of the visibility graph of O (more precisely arc(x) is the set of origins of the rays in x emanating

from the object to which they are tangent). We denote by bit the onto mapping x 7! bit(x) from

the set X

0

of vertices of X onto the set of free bitangents of O|The pre{image under the mapping

bit of the bitangent [p; q] with slope u 2 [0; �[ is the set of rays (p; u+ k�), k 2 Z . An element of

X

0

will occasionally be called a bitangent in X

0

.

9
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A pseudo{triangulation in X is a maximal (with respect to the inclusion relation) family of

pairwise disjoint bitangents in X

0

. Clearly, if G is a pseudotriangulation in X then (1) bit(G) is a

pseudo{triangulation of the collection of obstacles, and (2) Card G = 3n� 3.

A face x is said to be bounded if Slope(x) is a bounded subset of R, otherwise the face is said

to be unbounded . The only unbounded faces are the 3{faces, and the 2{face that contains the rays

whose origin is the point at in�nity on S

2

.

Let x be a 1{face (viz an edge) or a bounded 2{face in X . We de�ne sup x (inf x) to be the

ray with maximal (minimal) slope in the closure of x. The operator sup (resp. inf) is a one-to-one

correspondance between the set of bounded 2|faces in X

2

and the set of vertices in X

0

. We denote

by inf (resp. sup) the inverse of the restriction of sup (inf) to the set of bounded faces. For a

bounded 2{face x the vertices sup x and inf x subdivide the boundary of x into two curves, called

the upper and lower boundary of the face. Observe also that the boundary of the unbounded

2{face has two connected components, denoted by 

+O

and 

�O

, that correspond to the set of rays

emanating from and tangent to the boundary of the convex hull of the obstacles, that contain the

convex hull of O in their left and right plane, respectively.

Remark 1 The mapping � is an automorphism of P (X). One can easily check that P (X)=�

2

(which is �nite) is still an abstract polytope (its 2-skeleton is called the visibility complex of O

in [22, 23]). The rank{generating function (see [25]) of P (X)=�

2

is given by

F (q) = 1 + 2kq + 4kq

2

+ (2k+ 1)q

3

+ (n+ 2)q

4

+ q

5

: (1)

where k is the number of free bitangents. This equality is a consequence of the previous discussion,

viz on the bijection between the set of bounded 2{faces and the set of 1{faces, the shape of the

vertex-�gure, and the number (n + 2) of 3{faces. The number of ags of P (X)=�

2

is 24 times the

number of vertices, i.e., 48k.

2.3 The poset (X;�) and a local lattice{like property

Now we turn X into a poset (X;�) by taking the transitive closure of the relation

inf x � x � sup x; (2)

that is, for t; t

0

2 X

0

one has t � t

0

if there exists a �nite sequence of edges and/or 2{faces x

1

; : : : ; x

l

in X such that (1) t = inf x

1

, (2) sup x

i

= inf x

i+1

, for i = 1; : : : ; l� 1, and (3) sup x

l

= t

0

. Observe

that we can replace each face that appears in the sequence x

1

; � � � ; x

l

by the sequence of edges of its

upper (or lower) boundary. In other words, t � t

0

if there is a counterclockwise oriented curve in the

plane from bit(t) to bit(t

0

) that runs along the edges (arcs and bitangents) of the visibility graph of

the obstacles (namely the arcs arc(x

i

) and the bitangents bit(v

i

) with v

i

= inf x

i

, where we assume

that x

i

are edges), and which sweeps an angle of Slope(t

0

)�Slope(t). Clearly � is compatible on X

0

with the slope order. It is convenient to adjoin a

^

0 and

^

1 to X with the convention that

^

0 � x �

^

1

for all x 2 X . We set sup x =

^

1 and inf x =

^

0 for all unbounded faces of X .

Observe that if two bitangents belong to the boundary of a pseudotriangle of some pseudo{

triangulation then they are comparable. The same conclusion holds if the two bitangents are

the diagonals of some pseudoquadrangle (viz the union of two adjacent pseudotriangles) of some

pseudo{triangulation. From this observation we deduce a more general condition of comparability.

10
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(a) (b)

(c)

Figure 7: (a) bit(t) and bit(t

0

) are crossing. The four added obstacles and the 12 added bitangents are

shown dashed. (b) seg(t) n bit(t) and bit(t

0

) are crossing. (c) seg(t) n bit(t) and seg(t

0

) n bit(t

0

) are crossing.

Lemma 3 Let t and t

0

be two bitangents in X

0

.

1. Assume that bit(t) and seg(t

0

) are crossing. Then t and t

0

are comparable with respect to �.

2. Assume that seg(t) n bit(t) and seg(t

0

) n bit(t

0

) are crossing, say in point p, and that there is

no free bitangent between p and the obstacles that lies in the wedge t

+

n t

0

+

(here t

+

is the

open half-plane bounded by the supporting line of bit(t), that contains the line segment bit(t

0

)).

Then t and t

0

are comparable with respect to �.

3. t � �

k

(t

0

), for all su�ciently large k.

Proof. Assume �rst that bit(t) and bit(t

0

) are crossing. Clearly it su�ces to prove that bit(t)

and bit(t

0

) are the diagonals of a pseudoquadrangle of some pseudo{triangulation. To show the

existence of a such pseudo{triangulation we add four su�ciently small obstacles near the crossing

point of bit(t) and bit(t

0

) as indicated in Figure 7a. Now we consider a pseudo{triangulation that

contains the bitangent bit(t), and the 3 � 4 = 12 bitangents as indicated in the �gure. Up to

some ip operations we can assume that each of these four new obstacles contributes exactly 3

11
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bitangents to the pseudo{triangulation. Removing these 4 added obstacles and their 12 bitangents

yields a pseudo{triangulation (since the number of remaining bitangents is 3n�3) with the desired

property. A similar construction yields the result in the case where bit(t) and bit(t

0

) are disjoint (see

Figure 7b, c). Now we prove claim (3). We can assume that bit(t) and bit(t

0

) are disjoint. Consider

a pseudotriangulation G that contains bit(t) and bit(t

0

), and consider a curve that joins bit(t) and

bit(t

0

). This curve crosses a �nite sequence of bitangents in G, say b

1

; b

2

; : : : ; b

l

. Let t

j

2 X

0

such

that bit(t

j

) = b

j

, with t

0

= t and t

l

= t

0

. Since t

j

and t

j+1

are bitangents in the boundary of a

pseudotriangle (or both on the convex hull), they are comparable. Therefore t

j

� �

k

j

(t

j+1

) for k

j

su�ciently large. It follows that t � �

k

(t

0

) for k su�ciently large (k =

P

j

k

j

).

Now we come to the lattice{like property. We denote by � the one{to{one mapping

t 2 X

0

7! sup sup t 2 X

0

; (3)

that is, �(t) is the ray with maximal slope in the (closure of the) face for which t is the ray with

minimal slope. On can easily check that � � � = � � �.

�(t)t

p

t

0

1

t

0

2

t

0

3

Figure 8: Illustration of the proof of the 'lattice-like' property.

Lemma 4 (Lattice-like property) Let t and t

0

be two interior crossing bitangents in X

0

(i.e.,

bit(t) and bit(t

0

) are crossing) with t � t

0

. Then �(t) � t

0

(and t � �

�1

(t

0

)). In other words, �(t)

is the smallest bitangent in the set of bitangents crossing t and larger than t.

Proof. Let p be the intersection point of bit(t) and bit(�(t)), and let u and u

�

be the slopes of t

and �(t), respectively. Let t(�) = (p; �u+ (1� �)u

�

), seg(t(�)) = [a(�); b(�)]

T =

[

�2[0;1]

seg(t(�)):

12
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Clearly T is a subset of free space. Therefore the slope of t

0

is greater than the slope of �(t), and

bit(�(t)) and seg(t

0

) are crossing (�rst case), or bit(t

0

) is tangent to the boundary of T (second

case). See Figure 8 for an illustration. Hence it su�ces to prove that t

0

and �(t) are comparable

with respect to � in order to conclude that �(t) � t

0

. The �rst case is covered by Lemma 3, claim

(1). In the second case bit(t

0

) is tangent to the arc fb(�) j � 2]0; 1[g, or to the arc fa(�) j � 2]0; 1[g.

Both cases are covered by claim (2) of Lemma 3.

Remark 2 Note that if t is an exterior bitangent then the set f�(t); �

2

(t); : : :g is the set of bitan-

gents greater than t and crossing t; its minimal element is �(t).

2.4 Filters, antichains and greedy pseudo{triangulations

A �lter is a proper (for our purpose) subset I of X

0

[ f

^

1g such that if x 2 I and x � y, then y 2 I .

The set of all �lters, ordered by reverse inclusion, form a (locally �nite) poset. Our main interest

in the notion of �lter is due to its relation with the topological sorting problem: the sequence

� � � b

�2

b

�1

b

0

b

+1

b

+2

� � � of bitangents in X

0

is a linear extension of (X

0

;�) if and only if the sequence

I

i

= fb

i

; b

i+1

; : : :g is a maximal chain of �lters. For a �nite subset A of X we de�ne the �lter A

+

by

A

+

= f x 2 X

0

j y � x for some y 2 A g: (4)

The complement of A

+

in X

0

is denoted by A

�

. For a �lter I we let

^

I be the subset of X n X

0

de�ned by

^

I = f x 2 X nX

0

j sup x 2 I; inf x 62 I g: (5)

Observe that the set of unbounded faces is a subset of

^

I.

Lemma 5 The mapping I 7!

^

I is a one-to-one correspondence between the set of �lters of (X

0

;�)

and the set of maximal antichains of (X nX

0

;�), whose inverse is the map A 7! A

+

.

Proof. First we show that

^

I is a maximal antichain of (X nX

0

;�). Let x 2

^

I , y 2 X nX

0

with

x � y, or y � x. Then y 62

^

I . If x � y we have sup x � inf y and, therefore, inf y 2 I , since

sup x 2 I . This implies that y 62

^

I . A similar conclusion holds if we assume that y � x. This proves

that

^

I is an antichain.

Now we prove that the antichain

^

I is maximal. Let x 2 X n X

0

and consider the unre�nable

chain f sup

k

x j k 2 Z g. This chain joins X

0

n I and I . Consequently this chain intersects

^

I , and

x is comparable to an element in

^

I . Finally observe that (

^

I)

+

= I , since (1) min I � (

^

I)

+

and (2)

(min I)

+

= I .

Theorem 4 Let A be a maximal antichain in (X nX

0

;�). Then

1. A depends only on its subset of 1{faces. More precisely, A is the union of the cofaces in P (X)

of its 1{faces. Furthermore, P (A) is an abstract polytope of rank 3.

2. The numbers of 1{faces, 2{faces, and 3{faces in A are respectively 2n, 3n, and n + 2 (and

consequently P (A) is spherical).

Proof. Let x be an edge in A and let y be a 2{face incident to x. Clearly inf y � x � sup y, so

inf y 2 A

�

and sup y 2 A

+

. Therefore y 2 A.

Conversely let y be a 2{face in A. Clearly its upper chain and lower chain are unre�nable, and

join inf y 2 A

�

to sup y 2 A

+

. Therefore these two chains intersect A. This proves claim (1).

13



Visibility Graphs via Pseudo{triangulations April 1995

The curves 

i

, i 2 f�1; : : : ;�ng, are edge-disjoint maximal chains, that together cover the set

of edges of X . Therefore there is exactly one edge of the maximal antichain on each of these curves.

Hence the number of edges in the antichain is 2n. According to claim (1) the number of incidences

between edges and 2{faces of a maximal antichain is 3 times the number of edges, and 2 times

the number 2{faces. Therefore the number of 2{faces is 3n. Planarity is proved by computing the

Euler characteristic.

Let I be a �lter and let B

1

(I); B

2

(I); : : : be the sequence of subsets of I de�ned by (1) B

1

(I) is

the set of minimal bitangents in I , and (2) B

i+1

(I) is the set of minimal bitangents in the set

of bitangents in I disjoint from the bitangents in B

1

(I); : : : ; B

i

(I). Since the bitangents in B

j

(I)

are pairwise non comparable they are pairwise disjoint, and consequently

S

i�1

B

i

(I) is a pseudo{

triangulation in X (in particular B

i

(I) = ; for i su�ciently large). This pseudo{triangulation is

denoted by G(I) and is called the greedy pseudo{triangulation associated with the �lter I

3

. Finally,

for a �lter I we de�ne

S(I) = f b 2 I j �

�1

(b) 62 I g: (6)

Now we come to the proof of Theorem 2, announced in the introduction. We give a slightly stronger

form. For Y � X

0

we denote by Y

int

(resp. Y

ext

) the subset of Y consisting of interior (resp. exterior)

bitangents.

Theorem 5 1. For all �lters I, and all interior (exterior) bitangents b 2 min I, the set di�er-

ence G(I n fbg) nG(I) is equal to f�(b)g (f�(b)g).

2. For all �lters I, all bitangents b 2 G(I), and all t 2 I crossing b, one has b � t.

3. For all �lters I one has G

int

(I) = S

int

(I).

Proof. First observe that claims (1) and (2) are obvious in the case where b is an exterior bitangent

(see Remark 2). We show that (3)) (1)) (2), before proving claim (3).

(3) ) (1). First observe that �(b) is disjoint from any b

0

2 G(I) n fbg, otherwise �(b) and b

0

are

comparable, with b

0

� �(b) (indeed �(b) � b

0

implies that �

�1

(b

0

) 2 I and b

0

62 G(I)). According

to Lemma 4 this implies that b

0

� b, a contradiction with b 2 min I . Therefore it is su�cient to

prove that �(b) is a bitangent in G(I nfbg). Suppose the contrary holds. Then �(b) intersects some

b

0

2 G(I nfbg), with b

0

� �(b). But, according to Lemma 4, this implies that b

0

� b, a contradiction.

(1)) (2). Let I

1

; I

2

; : : : be the sequence of �lters de�ned by I

1

= I and I

k+1

= I

k

nB

1

(I

k

). Observe

that if b 2 G(I

k

) nB

1

(I

k

) and t 2 I

k

then b 2 G(I

k+1

) and t 2 I

k+1

. Therefore there exists a k such

that b 2 B

1

(I

k

). From this we deduce that b � t, since b is minimal in I

k

.

Now we prove claim (3). We will prove successively that (i) S

int

(I) � G

int

(I) (in particular the

bitangents in S

int

(I) are pairwise disjoint), (ii) G

ext

(I) � S

ext

(I) and Card S

ext

(I) = Card G

ext

(I)+

2, and (iii) Card S(I) = 3n � 1. These three properties imply that G

int

(I) = S

int

(I), since

Card G(I) = 3n� 3.

Let b be an interior bitangent. Then (�rst case) there is a b

0

2 G(I) crossing b, with b

0

� b, or

(second case) for all b

0

2 G(I) crossing b one has b � b

0

. In the �rst case Lemma 4 implies that

b

0

� �

�1

(b), and consequently that b 62 S(I). In the second case b is smaller than any bitangent in

G(I) crossing it, therefore b 2 G(I). This proves claim (i).

3

Observe that if �

1

is a total order on I compatible with � on I then the set G(I) can be enumerate as the

sequence b

1

; b

2

; : : : ; b

3n�3

where (1) b

1

is the minimal bitangent in (I;�

1

) ,and (2) b

i+1

is the minimal bitangent in

(I;�

1

) disjoint from b

1

; b

2

; : : : ; b

i

:

14
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For an exterior bitangent t lying on 

+O

(

�O

) we denote by succ(t) the minimal exterior

bitangent greater than t lying on 

+O

(

�O

). Observe that succ�� (= � � succ) is the restriction of

� to the set of exterior bitangents in X

0

, and that the number h of exterior bitangents in B is de�ned

by succ

h

= �

2

. Let t be the minimal element in I lying on 

+O

. Since �

�1

(t) = �

�1

� succ

�1

(t) it

follows that t and �(t) are both in S(I). A similar result holds for the minimal element in I , say

t

0

, lying on 

�O

. Now we consider the sequence

t; succ(t); succ

2

(t); : : :

Clearly, if succ

j+1

(t) 2 S(I) then succ

j

2 S(I). Therefore there is a k such that succ

j

(t) 2 S(I)

for j = 0; 1; : : : ; k and succ

j

(t) 62 S(I) for j > k. Now observe that �(t

0

) lies on 

+O

. Therefore

succ

k

(t) = �(t

0

), since �(t

0

) 2 S(I) and succ(�(t

0

)) = �(t

0

) 62 S(I). Similarly, succ

k

0

(t

0

) = �(t),

where k

0

is the greater index such that succ

k

0

(t

0

) 2 S(I). It follows that succ

k+k

0

(t) = �

2

(t) and,

consequently, that k + k

0

= h. Now observe that G

ext

(I) is a subset of

ft; t

0

; succ(t); succ(t

0

); succ

2

(t); succ

2

(t

0

); : : : ; g;

and that succ

j+1

(t) 62 G(I) if succ

j

(t) 62 G(I). Therefore, G

ext

(I) � S

ext

(I), since �(t) and �(t

0

) are

not in G

ext

(I). Furthermore, a cardinality argument shows that S

ext

(I) = G

ext

(I) [ f�(t); �(t

0

)g.

This proves claim (ii). Finally note that S(I) = sup

^

I = sup

^

I nX

1

, and consequently Card S(I) =

3n� 1, according to Theorem 4. This completes the proof.
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3 The greedy ip algorithm and its analysis

3.1 The algorithm

For u in R we denote by I(u) the �lter of bitangents in X

0

with slope � u. Theorem 2 suggests a

very simple algorithm : maintain the greedy pseudo-triangulation G(I) while I describes a maximal

chain of �lters in the interval [I(0); I(�)].

Greedy Flip Algorithm

1 compute the greedy pseudo-triangulation G := G(I(0));

2 repeat

3 select a minimal bitangent b in G with slope less than �;

4 ip b; (i.e., replace b by �(b) (�(b)) if b is an interior (exterior) bitangent.)

See Appendix D for an illustration of this algorithm on the con�guration of Figure 1. Theorem 2

proves the correctness of this algorithm. Of course we still have to explain how to implement the

ip operation (viz step 4) and how to select a minimal bitangent with slope less than � (viz step

3), so that the total cost of these operations is O(k) time.

In Section 3.2 (and Appendix B) the construction of the initial pseudo{triangulation G(I(0)) is

described in detail. Section 3.3 describes how to select a minimal bitangent. Section 3.4 describes

an e�cient implementation of the ip-operation, whose amortized cost is analyzed in Section 3.4.5.

3.2 Construction of the initial greedy pseudo{triangulation G(I(0))

Lemma 6 The greedy pseudo{triangulation G(I(0)) of a collection of n disjoint convex obstacles

in the plane can be computed in O(n logn) time.

Proof. The construction is based on a standard rotational sweep �a la Bentley{Ottmann, from

direction 0 to direction �, during which we maintain the visibility map associated to the current

direction. See Appendix B for more details.

3.3 Minimal bitangents

Consider a �lter I , a bitangent b in the greedy pseudo-triangulation G(I), and a pseudotriangle T of

G(I). We denote by B

T

the set of bitangents t 2 G(I) such that bit(t) appears in the boundary of

T . The partial order � restricted to B

T

is a linear order. The minimal element of B

T

is denoted b

T

.

We denote by Ltri(b) (Rtri(b)) the pseudotriangle of G(I) incident upon bit(b) and |locally|to

the left (right) of bit(b), oriented along the direction of b. The base{point of T , denoted by p

T

,

is the tail of b

T

, if T = Rtri(b

T

), or the head of b

T

, if T = Ltri(b

T

). A subsegment of @T with

counterclockwise (clockwise) orientation is called a walk (reverse walk) along @T . In particular,

the walk starting at the base-point of T de�nes a linear order on the set of bitangents in bit(B

T

),

called the slope order , which coincides, via the mapping bit, with the linear order � on B

T

. We

denote by b

+

(b

�

) the minimal bitangent in G(I) lying on 

+O

(

�O

), if it exits.

Lemma 7 Let I be a �lter. Then an interior (exterior) bitangent b is minimal in I if and only if

b = b

Rtri(b)

= b

Ltri(b)

(b = b

Rtri(b)

= b

�

, or b = b

Ltri(b)

= b

+

).

16



Visibility Graphs via Pseudo{triangulations April 1995

Proof. Indeed b is minimal in I if and only if the (two) edges e 2 X

1

with sup e = b are in

^

I.

The successive cusps we pass during a walk starting at the base{point of T , are denoted by

x

T

, y

T

and z

T

. The forward and backward view of point p in @T are the points of intersection of

@T with the tangent line at p, lying ahead and behind p, respectively. The point, whose forward

(backward) view is p

T

, if T = Rtri(b

T

) (T = Ltri(b

T

)), is denoted by q

T

, see also Figure 13.

For later use we isolate a simple, but crucial feature of pseudotriangles of greedy pseudo-

triangulations.

Lemma 8 Let T be a pseudotriangle of a greedy pseudo-triangulation.

1. If z

T

6= p

T

, then the part of @T between z

T

and p

T

is an arc.

2. If y

T

lies between x

T

and q

T

, then the part of @T between y

T

and q

T

is an arc (i.e. it contains

no bitangents).

Proof. We shall prove that no bitangent t 2 B

T

has forward an backward views of smaller slope.

This will prove 1, since all points on the segments z

T

p

T

have both forward and backward view of

smaller slope. A similar argument proves 2.

To prove the claim, suppose that both the backward and forward view, p

0

and p

1

say, of t have

smaller slopes than t. We only consider the case in which p

0

has smaller slope than p

1

, see Figure 9.

Then T = Ltri(t), and the part of @T between p

0

and p

1

lies completely to the left of the line

supporting t. Let t

0

be the bitangent between T = Ltri(t) and Rtri(t). The bitangent t

0

intersects

t

p

0

p

1

t

0

p

0

T

Figure 9: Forward and backward views p

0

and p

1

of t can't both have smaller slope than t.

t and its tail p

0

is a point on @T between p

0

and p

1

, therefore its slope is less than the slope of

t. But t and t

0

are crossing; and consequently t

0

� t in contradiction with the greedyness of the

pseudo-triangulation (claim 2 of Theorem 5). This proves the lemma.

3.4 Flipping minimal bitangents

3.4.1 The new pseudotriangles R

0

and L

0

Consider a minimal bitangent b (with respect to some �lter I), with R = Rtri(b) and L = Ltri(b).

Let b

�

= �(b) be the bitangent obtained by ipping b. The right and left pseudotriangles of b

�

(with
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respect to the �lter I n fbg) are denoted by R

0

and L

0

, respectively. We denote by G and G

0

the

pseudotriangulation G(I) and G(I nfbg), respectively. We consider the bitangent b

T

for T = R

0

; L

0

.

First consider the pseudotriangle R

0

. Let b

0

R

be the successor of b in B

R

. The minimal element

of B

R

0
is one of the bitangents b

0

R

and b

�

, viz the one with minimal slope. So b

�

= minB

R

0
, if

p

�

= Tail(b

�

) lies between b and b

0

R

, and b

0

R

= minB

R

0
, otherwise. Hence there are three basic

cases, that will return throughout this section, see Figure 10.

Case 1 Case 2 Case 3

x

R

x

R

x

R

z

L

z

L

b b

b

b

�

b

�

b

�

b

0

R

b

0

R

b

0

R

p

�

Figure 10: The pseudotriangle R

0

= Rtrib

�

(shaded) is obtained by ipping bitangent b. Further-

more R

0

is the left or right triangle of b

0

R

(case 1 and 2, respectively), or @R

0

doesn't contain b

0

R

(case 3).

Case 1 b and b

0

R

are not separated by a cusp of R.

Then R

0

= Rtri(b

0

R

), and p

�

doesn't lie on the arc between b and b

0

R

. Therefore minB

R

0
= b

0

R

.

Case 2 b and b

0

R

are separated by a cusp of R, but p

�

doesn't lie on the arc between b and b

0

R

.

Then R

0

= Ltri(b

0

R

) and minB

R

0

= b

0

R

. (Note: in this case x

R

= Head(b

0

R

), as in Figure 10,

or x

R

= Head(b).)

Case 3 b and b

0

R

are separated by a cusp of R, but p

�

lies on the arc between b and b

0

R

.

Then R

0

= Rtri(b

�

) and minB

R

0
= b

�

.

The bitangent minB

L

0
is de�ned similarly.

We now consider the pseudotriangle R

0

in more detail, in particular its cusps x

R

0
, y

R

0
and z

R

0
.

(The story for L

0

is completely similar.)

Case 1 R

0

= Rtri(b

0

R

).

In this situation b and b

0

R

are not separated by a cusp, so x

R

0

= x

R

. Furthermore, if p

�

lies

between x

R

and y

R

, then the second cusp y

R

0
is equal to p

�

, otherwise it is equal to y

R

, see

Figure 11a. Similarly the third cusp z

R

0

is equal to y

L

, if q

�

lies between x

L

and y

L

, otherwise

it is equal to q

�

, see Figure 11b.

Case 2 R

0

= Ltri(b

0

R

) and b

0

R

= minB

R

0

.

In this case the basepoint of R

0

is Head(b

0

R

), which lies between x

R

and y

R

. Therefore the �rst

cusp x

R

0

is equal to p

�

, if p

�

lies between x

R

and y

R

, otherwise it is equal to y

R

, see Figure 11a.

Similarly the second cusp y

R

0
is equal to y

L

, if q

�

lies between x

L

and y

L

, otherwise it is equal

to q

�

, see Figure 11b. Finally the third cusp z

R

0

is equal to z

L

, if Head(b) = x

R

, otherwise it

is equal to x

R

, see Figure 11c.
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p

�

y

R

b

�

p

�

y

R

b

�

a

q

�

y

L

b

�

q

�

y

L

b

�

b

b

b

0

R

x

R

z

L

b

b

0

R

x

R

z

L

c

Figure 11: The cusps of R

0

.

Case 3 R

0

= Rtri(b

�

) and b

�

= minB

R

0
.

In this case Head(b) = x

R

, and the tail p

�

of b

�

lies on the arc of @R separating b and b

0

R

.

Therefore the basepoint of R

0

is p

�

, which is also equal to the third cusp z

R

0
, see the left part

of Figure 11a. Since in this case x

R

is a cusp of R, the second cusp y

R

0

is equal to z

L

, see the

left part of Figure 11c. Finally the �rst cusp x

R

0
is equal to y

L

or q

�

, depending on whether

q

�

lies between y

L

and z

L

, or between x

L

and y

L

, see Figure 11b.

The table in Figure 12 summarizes the previous discussion.

x

R

0
y

R

0
z

R

0

Case 1 x

R

y

R

or p

�

y

L

or q

�

Case 2 y

R

or p

�

y

L

or q

�

z

L

or x

R

Case 3 y

L

or q

�

z

L

p

�

Figure 12: The cusps of R

0

.

3.4.2 The splittable queue Awake[T]

Conceptually the ipping can be done by walking|in positive direction, starting at the base{

point|along the boundaries of the triangles L (left) and R (right) incident upon the ipped bi-

tangent b, with one leg in every triangle, such that at any moment the tangent lines at the points

underneath our left and right legs are parallel. We keep walking until these tangent lines coincide.

At that point we have found b

�

. This is too expensive, since some bitangents may be passed during

many walks involved in the ip operations. To cut the budget, we shall need an auxiliary data

structure, that enables us to start the walk at a more favorable point.
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Observe that the tail p

�

of b

�

lies between the �rst cusp x

R

and the point q

R

, whose tangent

contains the base{point Tail(b) of R. Similarly q

�

lies between x

L

and q

L

. For a pseudotriangle T ,

a point in @T is called awake if it lies between x

T

and q

T

. Note that the points of @R that are

awake have forward view of smaller slope, whereas the points awake in L have backward view of

smaller slope, see Figure 13. Lemma 8 tells us that the set of points that are awake is a sequence

of arcs and bitangents on a convex chain, possibly followed by a single arc between y

T

and q

T

(in

case q

T

does not lie between x

T

and y

T

).

If b and its successor b

0

R

in B

R

are not separated by the cusp x

R

, corresponding to case 1 in

section 3.4.1, the point p

�

lies even between q

0

R

and q

R

, where q

0

R

is the point whose tangent contains

Tail(b

0

R

), see Figure 13.

So the walk along @R starts at q

0

R

in case 1, and in x

R

, otherwise. Similarly the walk along

@L starts in q

0

L

or in x

L

, where q

0

L

is the point on @L

0

whose tangent contains Head(b

0

L

). Now x

T

x

R

y

R

z

R

b = b

R

q

R

q

0

R

b

0

R

x

L

y

L

z

L

= q

L

q

0

L

b

0

L

b = b

L

Figure 13: The set of points that are awake in T is the segment x

T

q

T

, for T = L;R. When the

algorithm ips b = b

R

= b

L

, the walk on @T starts in q

0

T

(case 1), or in the cusp x

T

(cases 2 and 3).

can be determined in O(1) time, but how do we determine q

0

T

e�ciently, for T = L;R? To this

end we consider the segment x

T

q

T

of points in @T , that are awake, as an alternating sequence of

bitangents and arcs, or atoms for short, where the atoms are in slope order. This sequence will

be represented by a splittable queue, denoted by Awake[T], a data structure for ordered lists that

allows for the following operations:

1. enqueue an atom, either at the head or at the tail of the list;

2. dequeue the head or the tail of the list;

3. split the sequence at an atom x; this split is preceeded by a search for the atom x.

A few comments on the split operation are in order. We assume that the initial search for the atom

x is guided by a real-valued function, f say, de�ned for atoms in the sequence, that is monotonous

with respect to the order of the atoms in the sequence. Now a split amounts to determining

the atom x for which f(x) = 0, and successively splitting the sequence (destructively) into the

subsequences of atoms with negative f{values and those with positive f{values. More speci�cally,

to �nd the point q

0

T

(in case 1) we do a split operation in Awake[T], where the search for q

0

T

is
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guided by the position of Tail(b

0

T

) with respect to the tangent lines at the endpoints of an atom.

See section 3.4.3 for more details.

Lemma 9 There is a data structure, implementing a splittable queue, such that an enqueue or

dequeue operation takes O(1) amortized time, and a split operation at an atom x on a queue of n

atoms takes O(logmin(d; n�d)) amortized time, where d is the rank of x in the sequence represented

by the queue.

Moreover, a sequence of m enqueue, dequeue and split operations on a collection of n initially

empty splittable queues is performed in O(m) time.

For more details and a sketch of the proof we refer to appendix A.

We now describe in more detail (i) how to compute b

�

, using Awake[R] and Awake[L], and (ii)

how to compute the queues Awake[R'] and Awake[L']. Subsequently we prove that the total cost

of (i) and (ii) amortizes to O(k).

3.4.3 Construction of b

�

.

If b and its successor b

0

R

in B

R

are not separated by the cusp x

R

of R (case 1), then during the

construction of b � the walk along @R starts in q

0

R

. In this case we split Awake[R] at q

0

R

into

AwakeMin[R] and AwakeMax[R], where the atoms in the former queue have smaller slope than

the atoms in the latter queue. Otherwise, viz if b and b

0

R

are separated by the cusp x

R

, we set

AwakeMin[R] ; and AwakeMax[R] Awake[R]. Here ; denotes the empty queue. In either case

p

�

lies on an arc, represented by an atom in the queue AwakeMax[R]. We similarly initialize the

splittable queues AwakeMin[L] and AwakeMax[L].

Now the simultaneous walk along @R and @L can be implemented by dequeueing atoms from

AwakeMax[R] and AwakeMax[L], until the atoms (arcs) are found that contain p

�

and q

�

, respec-

tively. Obviously, this sequence of synchronous dequeue{operations takes time proportional to the

number of dequeued atoms. So we construct b

�

at the cost of at most one split on Awake[R] and

at most one split on Awake[L], followed by a number of successive dequeue operations.

We �nally adjust the �rst atoms in the queues AwakeMax[R] and Awake[L], (viz the atoms

containing p

�

and q

�

, respectively), by replacing their endpoints of smaller slope with p

�

and

q

�

, respectively. After this �nal operation the splittable queues AwakeMax[R] and AwakeMax[L]

represent the segments p

�

q

R

of @R and q

�

q

L

of @L, respectively. We shall use these queues in the

construction of the queues Awake[R'] and Awake[L'].

3.4.4 Construction of Awake[R'] and Awake[L']

To facilitate e�cient maintenance of the collection of queues Awake[T], for all pseudotriangles T ,

we also maintain the set of points of @T between the second cusp y

T

and the third cusp z

T

, that are

not awake. These points are called asleep. They form a convex chain, viz the segment y

T

z

T

or q

T

z

T

of @T , depending on whether q

T

lies between x

T

and y

T

or between y

T

and z

T

. This convex chain

is also represented by a splittable queue Asleep[T], whose atoms represent the arcs and bitangents

of the chain in order of increasing slope.

We shall only describe the construction of the queues Awake[R'] and Asleep[R'] from the

queues AwakeMin[R], AwakeMax[R], Asleep[R], AwakeMin[L], AwakeMax[L] and Asleep[L], since

the queues of L

0

are constructed similarly. In particular we show that this construction requires

only a number of dequeue and at most 4 enqueue operations. Again we consider each of the cases,

introduced in section 3.4.1, separately.
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Case 1. R

0

= Rtri(b

0

R

).

Since in this case Head(b) is not a cusp of R, it is a cusp of L, see Figure 10, case 1. More precisely,

Head(b) = z

L

. Moreover, the point of @L whose tangent contains the basepoint Head(b) of @L,

coincides with Head(b), so we also have z

L

= q

L

. In particular all points of @L between x

L

and z

L

are awake in L.

Furthermore, the basepoint of R

0

is Tail(b

0

R

), so we have q

R

0

= q

0

R

. Hence, by de�nition, all

points that are awake in R

0

lie between x

R

(= x

R

0
) and q

0

R

, so we set Awake[R'] AwakeMin[R].

To see how Asleep[R'] is constructed, �rst observe that b

�

is asleep in R

0

, since it lies on the

segment y

R

0
z

R

0
of @R

0

, beyond the point q

0

R

(= q

R

0
). We �rst describe how to initialize Asleep[R']

so that it represents the chain of points on q

�

z

R

0

, that are asleep in R

0

. To this end recall that

AwakeMax[L] represents the segment q

�

z

L

of @L, since q

L

= z

L

, see the end of section 3.4.3.

Furthermore, the segment y

L

z

L

is a single arc, see Lemma 8. Therefore this arc is the last atom

in AwakeMax[L]. So if z

R

0
= y

L

, (cf the table in Figure 12), we initialize by setting Asleep[R'] 

AwakeMax[L], after which we dequeue the last atom from this queue. If z

R

0

= q

�

the segment q

�

z

R

0

is empty, so we initialize by setting Asleep[R'] ;.

To complete the construction, observe that b

�

is asleep in R

0

. Therefore we enqueue an atom

representing b

�

onto Asleep[R'], after which this queue represents the chain p

�

z

R

0

. If y

R

0

= p

�

this completes the construction of Asleep[R']. So it remains to consider the case y

R

0
= y

R

, see

the table in Figure 12. The segment y

R

p

�

is a single arc, see again lemma 8. If q

R

0

(= q

0

R

) lies

between x

R

and y

R

, all points on the arc y

R

p

�

are asleep in R

0

, so the �rst atom of Asleep[R']

should represent this arc. Finally, if q

0

R

2 y

R

z

R

, the �rst atom of Asleep[R'] should represent the

arc q

0

R

p

�

. In either case we enqueue an atom at the head of Awake[R'], which represents an arc

with end{point p

�

, and begin{point y

R

or q

0

R

. This completes the construction of Asleep[R'] in

this case.

Case 2. R

0

= Ltri(b

0

R

) and b

0

R

= minB

R

0
.

Now b

�

is awake in R

0

. The construction of the splittable queue Awake[R'] from AwakeMax[L] is

quite similar to the construction of Asleep[R'] in case 2, although there is a slight di�erence in

the construction of the tail of this queue. In this case R

0

is the left pseudotriangle of b

0

R

, so q

R

0

is the tangent of @R

0

that contains Head(b

0

R

). It is not hard to see that q

R

0
lies on the segment

q

�

q

L

of @L. But this segment is represented by AwakeMax[L], see the end of section 3.4.3. So

we start a reverse walk along @L, starting at q

L

, until we have found q

R

0
. We know when to

stop by considering the position of Head(b

0

R

) with respect to the tangent line in the current point

of @L. This walk can be implemented by dequeuing atoms from the tail of AwakeMax[L] (cf the

construction of b

�

). When q

R

0

is found, the queue AwakeMax[L] represents the segment q

�

q

R

0

. So

we set Awake[R'] AwakeMax[L]. The construction of Awake[R'] is completed by enqueueing an

atom representing b

�

, followed by enqueing an atom representing the arc y

R

p

�

in case y

R

0
6= p

�

.

It remains to describe the construction of Asleep[R'], viz the sequence of points of @R

0

between

y

R

0
and z

R

0
that are not awake. Note that all these points belong to @L.

If z

R

0

= x

R

, we also know that q

R

0

= z

R

. In this case none of the points of @R

0

is asleep, so we

set Asleep[R'] ;.

So suppose z

R

0

= z

L

. In this case the base{point of L is x

R

, see Figure 11c. We have already seen

that q

R

0
lies between q

�

and q

L

. So if q

L

62 y

L

z

L

, then also q

R

0
does not lie on y

L

z

L

, and furthermore

the latter segment coincides with the segment y

R

0

z

R

0

of @R

0

. Therefore we set Asleep[R']  

Asleep[L] in this case. If q

L

2 y

L

z

L

, then the segment y

L

q

L

of @L is a single arc, see Lemma 8.

So all atoms of Asleep[R'], except for the �rst one, are equal to the corresponding atoms of

Asleep[L]. The �rst atom of Asleep[R'] represents an arc that starts at either y

R

0
or q

R

0
,

depending on whether q

R

0
lies on the arc between y

L

and q

L

or not (we can decide in O(1) time
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which situation occurs). Hence we set Asleep[R']  Asleep[L], after which we update the

begin{point of the �rst atom as indicated.

Case 3. R

0

= Ltri(b

0

R

) and b

�

= minB

R

0
.

In this case R

0

is the right pseudotriangle of b

�

, so p

�

is the base{point of R

0

, and q

R

0

= p

�

, see

Figure 10, case 3. Hence no point of @R

0

is asleep, so we set Asleep[R'] ;. The construction of

Awake[R'] from Asleep[L] is similar to the construction of Asleep[R'] from Asleep[L] in case

2. More precisely, if q

L

62 y

L

z

L

, we have x

R

0
y

R

0
= y

L

z

L

, which is represented by Asleep[L]. So set

Awake[R'] Asleep[L] in this case.

If q

L

2 y

L

z

L

, we also set Awake[R']  Asleep[L], but we have to change the begin{point of

the �rst arc from q

L

into y

R

0

, which is either q

�

or y

L

, see the table in Figure 12.

3.4.5 Amortized complexity

As for the amortized time complexity, observe that the initial collection of splittable queues|one

for each pseudotriangle in the greedy pseudotriangulation we start out with|can be computed in

O(n logn) time (for instance simply by enqueueing the bitangents and arcs, that are awake in the

boundary of each pseudotriangle). This amounts to O(n) enqueue{operations. As we have just

indicated, doing all ips and maintaining the collection of queues Awake[T] and Asleep[T], T 2 T ,

cost O(k) further enqueue, dequeue and split operations. Note that at any time the storage needed

for all these queues is O(n), see Lemma 1. Together with Lemma 9 this observation implies our

main result, viz Theorem 1.
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4 Conclusion

In this paper we have presented an optimal time and linear space algorithm for constructing the

visibility graph of a set of pairwise disjoint convex obstacles in the plane. Our algorithm realizes a

topological sweep of the visibility complex (a 2-dimensional cell complexe whose vertices correspond

to the free bitangents of the collection of obstacles), and is based on new combinatorial properties

of visibility graphs/complexes.

This work raises two questions that we intend to study in the future. The �rst question is

whether our method can be extented to non-convex obstacles|It seems clear that the method

can be extented to the computation of the visibility graph of the collection of relative convex

hulls of non-convex obstacles (mainly because, in that case, free space remains decomposable into

pseudotriangles); however the general case remains elusive. The second question is whether our

algorithm can be turned into an algorithmic characterization of (some abstraction of) visibility

graphs| as, for example, the greedy algorithm characterizes the independence set systems which

are matroids (see [15]).
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A Splittable queues

Here we sketch a proof of Lemma 9. It is well known that �nger trees suit our purpose, see e.g. [11],

but even the much simpler red{black trees with father pointers will do. In this way we avoid the

use of level links, which are rather complicated to maintain.

We augment a red{black tree with two special pointers, to the maximal and minimal atoms

in the tree. Atoms (arcs) are stored in a leaf oriented fashion; they are represented by their

endpoints and the tangent lines at their endpoints. In general, the same representation can be

used to represent convex chains that are unions of atoms of the type just described. So we store

a chain in a red-black tree in the following way: (i) store the atoms at the leaf; (ii) at an internal

node, store the convex chain that is the union of all atoms in the subtree rooted at this leaf. This

information is su�cient to guide the search for the atom at which we want to split the queue

(chain), since the basic operation is to determine whether from a given point there is a tangent

line to the convex chain. Furthermore the information at internal nodes can be maintained after

rebalancing (recoloring, and a constant number of rotations).

The amortized O(1) cost of the enqueue and dequeue operation follows from a standard ar-

gument, since it is well known that the amortized rebalancing cost of an insert operation on a

red{black tree, i.e., the time spent after locating the father of the new node, is O(1), see e.g. [18,

chapter III], or [19, chapter 3.3]. Since upon enqueueing a new atom at the head or the tail of the

list, the father of the new atom is either the maximal or the minimal node, it can be found in O(1)

time. One similarly shows that dequeueing takes O(1) amortized time.

A similar argument holds for the split operation. Suppose we search for an atom x of rank

d. By synchronously walking upward along the left and right ridge of the red{black tree, starting

from the minimal and maximal node, we �nd the root of a subtree of height O(logmin(d; n� d))

containing the atom x. Descending in this subtree, towards the leaf representing the atom x, takes

O(logmin(d; n� d)) time, after which we can do the actual split in O(logmin(d; n� d)) time. The

amortized time for rebalancing is also O(logmin(d; n� d)).

To prove that a sequence of O(m) operations on n initially empty splittable queues can be

performed in O(m) time, we provide each queue with r� log r credits, where r is the size (number

of atoms) of the queue (we consider logarithms in base 2), see [4] for a similar analysis. Suppose

that, due to a split operation, a queue of size r is split into two queues of size r

1

and r

2

, where

r

1

� r

2

. To restore the credit invariant we deposit one additional credit for this split operation.

Then the credits r

1

� log r

1

and r

2

� log r

2

for the new queues are available, since 2r

1

� r implies

that:

r � log r + 1 � (r

1

� log r

1

) + (r

2

� log r

2

) + log r

2

:

Restoring the credit invariants for the collection of queues upon an enqueue or dequeue operation

is similar.
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B Construction of a greedy pseudo{triangulation

This section is concerned with the proof of Lemma 6, that is, the construction in time O(n logn)

of the greedy pseudo{triangulation G = G(I(0)). For simplicity assume that no free bitangent has

slope 0. A useful aid in the construction of G is the greedy visibility map M(u), associated with a

slope u 2 [0; �]. Let B(u) be the bitangents in G with slope less than u. Note that B(0) = ;, and

B(�) is the set of bitangents in G.

Every object O contains two points having a tangent line with slope u. These points are said

to be of type left and right depending on whether the tangent line contains the object in its left or

right half plane. The points are denoted by O(u; left) and O(u; right). The collection of all these

points is denoted by V (u).

Two distinct objectsO and O

0

have exactly 8 common directed tangent lines. They form 4 pairs,

denoted by (O;O

0

; �; �

0

), where � and �

0

are either left or right . For instance, (O;O

0

; left; right) is

one of the two common tangent lines of O and O

0

, containing O in its left half plane and O

0

in its

right half plane.

From each point of V (u) we shoot two rays, one with slope u, the other one with slope �u. We

extend these rays until they hit an object, or a bitangent in the collection B(u). In this way we

partition free space into a number of regions that contain either one or two points of V (u) in their

boundary. These regions are called triangular and quadrangular, respectively. For convenience the

two unbounded regions, in which we can walk in direction u + �=2 and u � �=2, respectively, are

called quadrangular as well, even though they contain one point of V (u) in their boundary.

If two triangular regions contain the same point p of V (u) in their boundary, they are incident

along one of the rays emerging from this point. We then merge these two regions by removing

this ray. The point p is still the only point of V (u) in the boundary of the merged region, which

therefore is still triangular. The subdivision of free space that remains after removing all rays

shared by triangular regions is called the greedy visibility map with respect to u. It is denoted by

M(u). Figure 14 depicts M(u) for the initial direction u = 0, and the direction u = �=2. The

greedy visibility map M(0) coincides with what is usually called the horizontal visibility map of

the collection O. It can be constructed in O(n logn) time using a standard sweep line algorithm.

Furthermore, the subdivision M(�) is just the greedy pseudo{triangulation G (if we forget about

the 4 unbounded faces that partition the complement of the convex hull). So we try to maintain

M(u) as u ranges over [0; �]

First we describe the construction of the sequence B(�) of bitangents belonging to the pseudo{

triangulation. Afterwards we briey explain how to extend this method to maintain M(u) as well.

The appearance of a free bitangent corresponds to the disappearance of a quadrangular region. E.g.

in the situation depicted in the lower left part of Figure 14 the topology of M(u) will not change

as u rotates beyond �=2, until u passes the slope of the bitangent contained in the quadrangular

region labeled '6'. We represent the subdivision corresponding to the quadrangular regions of M(u)

by a directed graph G(u), de�ned as follows.

Each quadrangular region of M(u) contains two points of V (u) in its boundary; We connect

these points by drawing a path in this region that is increasing with respect to the direction u+�=2.

In this way we obtain a directed plane graph G(u), whose set of edges is in 1{1 correspondence

with the set of quadrangular faces of M(u), and whose vertices are the points of V (u) in the

boundary of the quadrangular faces, see Figure 14. There are two in�nite edges, corresponding to

the quadrangular faces that contain only one point of V (u) in their boundary. The graph G(0)

contains 3n + 1 edges, and G(�) contains 4 edges. We shall see that there are 3n � 3 events

corresponding to the disappearance of an edge, and therefore to the appearance of a bitangent, cf
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Figure 14: The visibility map: (a) Initial map (b) After ccw{rotation over �=2.
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Lemma 1.

Consider now an edge e of the graph G(u). Its endpoints are O

0

(u; �

0

) and O

00

(u; �

00

). There are

at most two tangent lines of type (O

0

; O

00

; �

0

; �

00

), whose slopes lies between 0 and u. Let death(e)

be the direction of these lines that is minimal, if this minimal element exists, or � otherwise, see

Figure 15.

e

death(e)

e

death(e)

Figure 15: death(e) is the critical direction associated with region e.

Let D(u) be the set of directions de�ned by

D(u) = fdeath(e) j e is an edge of G(u) and death(e) precedes �g:

The following obvious result is crucial for the correctness of our algorithm for the construction of

the initial pseudo{triangulation.

Lemma 10 Let the unit vectors u

0

and u

00

be the directions of two consecutive elements of B.

1. The set D(u) does not change when u ranges over the open interval (u

0

; u

00

).

2. The critical direction u

00

is the minimal element of D(u), for u between u

0

and u

00

.

We now describe the transition at the next critical direction, viz (i) updating the graph G(u)

when u passes this critical direction, and (ii) updating the set D(u). It is not hard to see that (i)

takes O(1) time, and (ii) takes O(logn) time, due to the maintenance of a priority queue. Figure 16

depicts a few cases.

We also describe the birth of pseudotriangles: the number of vertices of degree 3, plus the

number of triangular regions, is invariant. This is obvious in the situations depicted in Figure 16.

It also holds in the case where at least one of the regions a, b, c and d is triangular, see Figure 17.

Note that the triangular regions grow during the sweep, so not all combinations of triangular and

quadrangular regions are possible. For instance, in the topmost{leftmost part of Figure 16 it is not

possible that region a is triangular whilst at the same time d is quadrangular, since in that case

triangular region a doesn't grow: it shrinks near the edge along which it is incident with d. Finally

the pseudo{triangulation G(I(0)) can easily be computed from the set of bitangents B(�).
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Figure 16: Transitions during the construction of the pseudo{triangulation.

31



Visibility Graphs via Pseudo{triangulations April 1995

a b

c

e

a

b

c

a

b

c

e

a

b

c

a

b

e

a

b

a

b

e

a

b

Figure 17: Transitions during the construction of the pseudo{triangulation: at least one of the

regions a, b, c and d is triangular, and hence not represented by an edge in the graph G(u).
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C Poset terminology

In this section we review poset terminology, that we borrow from the book of Stanley [25, Chap. 3].

A partially ordered set P (or poset , for short) is a set, together with a partial order relation

denoted by �. A subposet of P is a subset of P with the induced order. A special type of subposet

is the interval [x; y] = fz 2 P j x � z � yg. A poset P is called a locally �nite poset if every

interval of P is �nite. If x; y 2 P , then we say that y covers x if x < y and if no element z 2 P

satis�es x < z < y. The Hasse diagram of a poset is the graph whose vertices are the elements of

P and whose edges are the cover relations.

A chain is a poset in which any two elements are comparable. A subset C of a poset P is

called a chain if C is a chain when regarded as a subposet of P . The chain C of P is saturated (or

unre�nable) if there does not exist z 2 P nC such that x < z < y for some x; y 2 C and such that

C [ fzg is a chain. An antichain is a subset A of a poset P such that any two distinct elements of

A are incomparable. A �lter is a subset of P such that if x 2 I and y � x, then y 2 I .

Finally we review the de�nition of an abstract polytope (see [17]).

An abstract n{polytope is a poset (P;�), with elements called faces, which satis�es the following

properties.

1. P has a unique minimal face F

�1

and a unique maximal face F

n

.

2. The ags (i.e. maximal chains) of P all contain exactly n+2 faces. Therefore P has a strictly

monotone rank function with range f�1; 0; : : : ; ng. The elements of rank i are called the

i-faces of P , or vertices, edges, and facets of P if i = 0; 1 or n� 1, respectively.

3. P is strongly ag{connected, meaning that any two ags � and 	 of P can be joined by

a sequence of ags � = �

0

;�

1

; : : : ;�

k

= 	, which are such that �

i�1

and �

i

are adjacent

(di�er by just one face), and such that � \	 � �

i

for each i.

4. Finally, if F and G are an (i� 1){face and an (i+1){face with F < G, then there are exactly

two i-faces H such that F < H < G. (Diamond Property.)

For a face F the interval [F; F

n

] is called the coface of P at F , or the vertex{�gure at F , if F is a

vertex.

D Example

In Figure 18 we depict the sequence of pseudo-triangulations, computed by the greedy-ip algorithm

applied to the con�guration of Figure 1, when at each step the bitangent with minimal slope is

ipped.
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Figure 18: The greedy ip algorithm. In this example at each step the internal bitangent of minimal

slope in the current pseudo-triangulation is ipped.
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