
Département de Mathématiques et Informatique

UPERIEURESORMALENECOLE

CNRS URA 1327

ON BINARY METHODS

Kim B. BRUCE Luca CARDELLI

Giuseppe CASTAGNA

The Hopkins Objects Group

Gary T. LEAVENS Benjamin PIERCE

LIENS - 95 - 14

ON BINARY METHODS

Kim B. BRUCE

1

Luca CARDELLI

2

Giuseppe CASTAGNA

The Hopkins Objects Group

3

Gary T. LEAVENS

4

Benjamin PIERCE

5

LIENS - 95 - 14

May 1995

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45 rue d'Ulm 75230 PARIS Cedex 05

Tel : (33)(1) 44 32 00 00

Adresse �electronique : .. @dmi.ens.fr

1

Dept. of Computer Science

Williams College

Williamstown

Massachusetts 01267, USA

Internet: kim@cs.williams.edu

2

Digital Equipment Corporation

Systems Research Center

130 Lytton Ave, Palo Alto

California 94301, USA.

Internet: luca@src.dec.com.

3

Dept. of Computer Science

The Johns Hopkins University

Baltimore

Maryland 21218, USA

Internet: scott@cs.jhu.edu

4

Dept. of Computer Science

Iowa State University

229 Atanaso� Hall Ames

Iowa 50011, USA

Internet: leavens@cs.iastate.edu

5

Computer Laboratory

New Museums Site

Pembroke Street, Cambridge CB2 3QG

United Kingdom

Internet: benjamin.pierce@cl.cam.ac.uk

On Binary Methods

Kim Bruce

�

Luca Cardelli

y

Giuseppe Castagna

z

The Hopkins Objects Group

x

Gary T. Leavens

{

Benjamin Pierce

k

May 15, 1995

Abstract

Giving types to binary methods causes signi�cant problems for object-oriented language design-

ers and programmers. This paper o�ers a comprehensive description of the problems arising from

typing binary methods, and collects and contrasts diverse views and solutions. It is intended to

expose a wide audience of readers to the current debate on this question.

1 Introduction

Binary methods have caused great di�culty for designers of strongly typed object-oriented lan-

guages and for programmers using those languages. In this paper we study the sources of these

problems and compare and contrast a variety of solutions.

The authors of this paper have di�ering views on what the most appropriate solutions are. We

have attempted here to collect together the solutions that individuals among us advocate and to

present a consensus on what can be fairly stated as strengths and weaknesses of each approach.

This paper grew from presentations and discussions at the 2nd Workshop on Foundations of Object-

Oriented Languages, which was sponsored by NSF and ESPRIT and held in Paris in June, 1994 [18].

Informally, a simple binary method of some object is a method that expects to be passed another

object of the same class as an argument. Such a method is binary in the sense that it acts on two

objects: the object passed as argument and the receiving object itself. In general, a binary method

could also include other arguments; by a standard abuse of terminology we still refer to these as

binary methods. Simple examples of binary methods include arithmetic operations on number

objects, as well as binary relations such as = and <, and set operations like subset and union.

We can characterize binary methods more precisely in terms of types. A method m occurring

in some object of type � is a binary method if m has a type where one or more arguments are of

type � , the type of the object itself.

�

Department of Computer Science, Williams College, Williamstown, Massachusetts 01267, USA. Internet:

kim@cs.williams.edu. Bruce's research was partially supported by NSF grant CCR-9121778.

y

Digital Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301, USA. Internet:

luca@src.dec.com.

z

(CNRS) LIENS-DMI, 45 rue d'Ulm, 75005 Paris, FRANCE. Internet: castagna@dmi.ens.fr

x

Jonathan Eifrig, Scott Smith, Valery Trifonov. Contact Scott Smith, Department of Computer Science, The

Johns Hopkins University, Baltimore, Maryland 21218. Internet: scott@cs.jhu.edu. Research partially supported

by NSF grant CCR-9301340 and AFOSR grant F49620-93-1-0169.

{

229 Atanaso� Hall, Department of Computer Science, Iowa State University, Ames Iowa, 50011, USA. Internet:

leavens@cs.iastate.edu. Leavens's research was partially supported by NSF grant CCR-9108654.

k

Computer Laboratory, New Museums Site, Pembroke Street, Cambridge CB2 3QG, United Kingdom. Internet:

benjamin.pierce@cl.cam.ac.uk

1

class PointClass

instance variables

xValue: real

yValue: real

methods

x : real is return(xValue)

y : real is return(yValue)

equal(p: Point): bool is return((xValue==p.x) && (yValue==p.y))

end class

Figure 1: The class PointClass.

The most signi�cant problem with binary methods lies in their typing in the presence of inher-

itance. There is a conict between inheritance in the presence of binary methods and subtyping

[23]; binary methods seem to require that one of the two be sacri�ced. A second problem is the

asymmetry of a binary method: the method may have privileged access to only one of the two

objects the method is invoked on. These two problems are described in more detail in Section 2.

Sections 3 and 4 concentrate on solutions to the problem of typing binary methods in the

presence of inheritance. We consider the question from two sides: in Section 3, we reect on

whether it actually need be solved at all (i.e., whether binary operations might best not be treated

as methods); in Section 4, we meet the problem head-on and review some solutions that have been

proposed.

Turning to the problem of privileged access, Section 5 sketches a technique by which object-style

data encapsulation can be blended with conventional ADT-style encapsulation to allow implemen-

tation of binary operations with privileged access to object representations. Section 6 addresses

the problem of binary methods from the point of view of behavioral speci�cation. Section 7 o�ers

concluding remarks.

2 The Problem of Binary Methods

This section describes the problems caused by binary methods. The �rst section describes typing

problems in the presence of inheritance, and the second describes problems with privileged access.

2.1 Typing Binary Methods in the Presence of Inheritance

In procedural or functional languages, the type of a binary function that takes two arguments of

type � and returns a value of type � is written ��� ! �. In an object-oriented language, functions

or procedures are typically replaced by methods belonging to a class corresponding to one of the

arguments. Figure 1 shows a standard example of a class with a binary method.

1

In PointClass, the

method equal , which tests for equality with another instance of PointClass, is written with a single

parameter of type Point . As may be seen in this example, binary operations|when regarded as

1

A few notes on our notation follow. Methods are functions or procedures whose body occurs after the keyword is.

We write parameterless functions and procedures by omitting the parentheses. We write the type of parameterless

functions as if they were variables of their return type. That is, we omit an implicit unit ! before the result type.

Commented text is preceded by --.

2

class ColorPointClass subclass of PointClass

instance variables -- xValue and yValue are inherited

cValue : string

methods -- x and y are inherited

c: string is return(cValue)

equal(p: ColorPoint): bool is

return((cValue==p.c) && (xValue==p.x) && (yValue==p.y))

end class

Figure 2: The class ColorPointClass.

methods|are asymmetric: the receiver plays a role somewhat di�erent than the parameter. This

distinction is highlighted when we de�ne a subclass of a class with a binary method.

Figure 2 de�nes a subclass ColorPointClass of PointClass. In ColorPointClass, the type of

the parameter of equal is changed to ColorPoint to match the type of the receiver, allowing two

ColorPoint objects to be compared by the equal method. If we model objects as recursive records

with instance variables hidden, then instances of PointClass and ColorPointClass have the following

record types:

Point � hhx : real; y : real; equal :Point ! boolii

ColorPoint � hhx : real; y : real; c: string; equal :ColorPoint ! boolii

Note that both of these de�nitions are recursive: the type being de�ned appears on the right-hand

side of the �. Note also that the instance variables (such as xValue and yValue) are not visible in

the type of objects generated from a class.

Informally, a type � is a subtype of � , written � <: � , if an expression of type � can be used in any

context that expects an expression of type � (cf. [12, 14, 49]). Associated with subtyping is the prin-

ciple of subsumption (subtype polymorphism): if � <: � and a program fragment has type �, it also

has type � . A simple example of subtyping in object-oriented programming is that an object type

is a subtype of the type with some methods removed, as any context that expects the object with

fewer methods will not directly use the extra methods and thus no type errors will occur. Similar

reasoning can be applied to record types: a record r can be used where another record r

0

is expected

only if r has at least the same �elds as r

0

and the types of these �elds are subtypes of the types of the

corresponding �elds of r

0

. In other words hh`

1

:S

1

; : : : ; `

n

:S

n

; : : : ; `

n+k

:S

n+k

ii <: hh`

1

:T

1

; : : : ; `

n

:T

n

ii

(with k � 0) if and only if, for each i 2 f1::ng, S

i

<: T

i

.

The rule for subtyping functions states that � ! � <: �

0

! �

0

if and only if �

0

<: � and

� <: �

0

[12]. (This is sometimes called the \contravariant rule" because it is contravariant in

the left argument of !.) This rule is informally justi�ed by the following. If f is expected to

have type �

0

! �

0

, but actually has type � ! � , then f can be passed an argument of type �

0

when (by subsumption) �

0

<: �; furthermore, the result of such a call will have type � , which (by

subsumption) can be considered to be of type �

0

. Hence all functions of type � ! � can be used as

if they had type �

0

! �

0

without type error.

Subtype polymorphism is a useful feature of object-oriented programming: if subclasses corre-

sponded to subtypes, a subclass object could always be passed to a function or method expecting

a superclass object, allowing re-use of code. Unfortunately, subclasses do not always generate

subtypes, if the types of methods need to change in subclasses (and as the example illustrates,

3

procedure breakit(p: Point)

var

nuPt: Point

begin

nuPt := new PointClass(3.2, 4.5)

if p.equal(nuPt) then

: : :

end

Figure 3: The procedure breakit.

the types of binary methods evidently do need to change). Because of the contravariance of the

subtyping relation on the domain of equal , ColorPoint is not a subtype of Point . For the subtype

relation to hold, the type of equal in ColorPoint would have to be a subtype of the type in Point .

Thus ColorPoint ! bool must be a subtype of Point ! bool . But, by the subtyping principle for

functions, this requires Point to be a subtype of ColorPoint , exactly the opposite of what we are

after and clearly untrue.

This loss of subtyping in this case is not an artifact of the de�nition of subtyping for functions;

the procedure breakit of Figure 3 illustrates how allowing this subtyping would be unsound.

2

When

breakit is applied to an actual parameter of type Point , there is no problem. However if the actual

parameter is a ColorPoint, a run-time error will occur when p.equal(nuPt) is evaluated. Since the

value of p will be a ColorPoint , the code for equal in ColorPointClass will be executed. When nuPt

is sent the message c, it will fail because it has no corresponding method. Thus, in a sound type

system, a call of breakit with an actual parameter of type ColorPoint must not type check.

Most statically-typed object-oriented languages require subclasses to generate subtypes, even

in the presence of binary methods. One type requirement that has been used to this end is that

the types of methods may not be changed upon inheritance; this is done, for example, in C++ [51]

Object Pascal [52], and Modula-3 [45]. In such languages, the one cannot write ColorPointClass

as in Figure 2, with the typing discussed above.

Ei�el does allow these so-called \covariant" changes to the types of parameters rede�ned in

subclasses, and compensates for the resulting insecurity in the type system by performing a link-

time data-ow analysis of the program (called a system validity check) in order to catch possible

type errors [41]. Under this view, the \subtype" relation has no clear meaning: Ei�el would claim

ColorPoint to be a subtype of Point , but would not allow anything but a Point to be passed to

breakit. So even though Ei�el judges ColorPoint to be a \subtype" of Point , ColorPoint objects

cannot be used in all contexts where Point objects can be used.

Another problem related to the failure of ColorPoint <: Point in the presence of the binary

equal method is a methodological one. Suppose that version 0.9 of a commercial library includes

PointClass and ColorPointClass, but that neither has an equal method yet. In this version of

the library we have ColorPoint <: Point . Suppose also that the library includes a procedure

usePoint(p:Point), whose code of course does not involve equality.

Programmers using version 0.9 may take advantage of subsumption by treating a ColorPoint

2

More on our notation: The expression new OtypeClass(args) results in the creation of a new object of the

corresponding type whose instance variables are initialized to args. As a notational convention, we write OtypeClass

for the class generating objects of type Otype.

4

object as a Point . For example, they might write:

var nuCPt: ColorPoint ;

nuCpt := new ColorPointClass(8.7, 9.1, "red");

library.usePoint(nuCpt);

A few years later, Version 1.0 is released. Both PointClass and ColorPointClass have been extended

to include the binary equal method. Now the inclusion ColorPoint <: Point fails, and client code

that tries to call usePoint with a ColorPoint no longer typechecks.

Extending classes with new functionality is extremely common in large and evolving software

systems. One often relies on the intuitive property that a simple extension will not cause existing

client code to fail to typecheck. In the presence of binary methods this property fails. (Of course,

other kinds of changes can also break client code. For example, one might happen to add a new

attribute to a library class whose name already appears in a client subclass. But this kind of clash

is much easier to repair.)

The Point/ColorPoint example illustrates some but not all of the problems that arise in typing

binary methods in the presence of inheritance. Further examples that illustrate additional problems

will be presented in the sections below.

2.2 Privileged Access to Object Representations

A completely di�erent kind of problem with binary operations on objects|whether they are meth-

ods or free-standing procedures|is that they must often be given privileged access to the instance

variables of both of their arguments.

The equality methods of points and colored points are examples of the simpler case where

this need does not arise|the necessary attributes of the argument are already publicly available

through existing methods. In order to write the equal method for the point class, we only needed

to compare the receiver's instance variables xValue and yValue to the values returned by the x and

y methods of the argument p. There is no need to access p's instance variables directly. Indeed, p

might not even have instance variables named xValue and yValue; there is no need to know anything

at all about its internal representation. The situation is similar for the equal of the colored point

class.

On the other hand, suppose we want to write a class de�nition for simple integer set objects

with the following interface type:

IntSet � hhadd : int ! unit ; member : int ! bool ;

union: IntSet ! IntSet; superSetOf : IntSet ! boolii

We can easily choose a representation for integer sets, (say, as lists of integers) and implement

the add and member methods as in Figure 4. But when we come to implementing the union and

superSetOf methods, we get stuck: given the interface type we have chosen for sets, there is no

way to �nd out what elements a given set contains.

The obvious thing to do is to extend the public interface of sets with an enumerate method that

(for example) returns a list of the elements of the set. But suppose we want to use a more e�cient

internal representation for sets, storing the elements in a balanced tree. We would certainly expect

not only the add and member methods to be e�cient, but superSetOf and union as well. But,

to achieve good performance, union needs to work directly with the balanced tree representations

of the two sets, so the enumerate method has to be replaced by an asBalancedTree method that

returns the underlying representation. Doing so is unsatisfactory, because it makes representation

details visible to users.

5

class IntSetClass

instance variables

elts: IntList

methods

add(i: int): unit is elts := elts.cons(i)

member(i: int): bool is return(elts.memq(i))

union(s: IntSet): IntSet is ???

superSetOf (s: IntSet): bool is ???

end class

Figure 4: The class IntSetClass, for which writing superSetOf and union is problematic.

In order to handle binary operations like equal as methods, we needed a way of constraining the

type of a parameter of a method to be the same as the type of the receiving object; for methods like

superSetOf and union, we need an additional mechanism for constraining the implementation of a

parameter to be the same as the receiver's. Indeed, such a mechanism is required whether or not

we want to consider union a proper method of set objects: an external procedure for computing

the union of two set objects will also need to gain privileged access to the internal representations

of both of its arguments.

3 Avoiding Binary Methods

Sometimes the simplest solution to a problem is to ignore it. Here, one might take the position

that binary operations like equal , union , and + should not be regarded as methods of either of their

argument objects, thus sidestepping the thorny typing issues raised so far.

There are some theoretical bene�ts to taking this step. For example, aside from binary methods,

the types of methods are always positive, in the sense that the object type itself appears only in

result positions. In this case, the classic encoding of object types as recursive records (as sketched

above) may be replaced by an encoding where objects are modeled by existential types [48, 32, 21].

It may also be argued that keeping binary operations separate from their arguments avoids con-

ceptual confusion. Turning a symmetric operation like + into a method gives one of its arguments

an arti�cially special status, requiring programmers to think in terms of contorted locutions like

\Ask the number a to add itself to b and send back the result," instead of the more straightforward

\Compute the sum of a and b." (However, having said this, it is only fair to give the methodologi-

cal counterargument: An important property of objects is their appearance as active entities that

encapsulate both data and the code acting on that data. Removing binary methods from objects

disrupts this property, requiring an additional layer of module structure to encapsulate the binary

methods with their class. Section 5 suggests that when binary methods require privileged access

to both object states, such additional encapsulation may be needed anyway.)

With these arguments in mind, we consider in this section some alternatives to binary methods.

3.1 Using Functions Instead of Binary Methods

In languages that provide both objects and conventional procedural abstraction, an alternative to

using binary methods is simply to make binary operations into functions. These binary functions

6

can be de�ned outside of classes, and can be applied to pairs of arguments as usual.

function eqPoint(p1,p2: Point): bool is return((p1.x == p2.x) && (p1.y == p2.y));

function eqColorPoint(cp1,cp2: ColorPoint):bool is

return((cp1.x == cp2.x) && (cp1.y == cp2.y) && (cp1.c == cp2.c))

Ordinarily, one advantage of using methods instead of functions is dynamic dispatch: each class

can choose its own code to execute in response to a given message. Therefore, moving from binary

methods to binary functions may seem a step backwards. The programmer must now know when

to apply eqPoint and eqColorPoint, instead of relying on the objects themselves \knowing" which

equality is appropriate. But, when binary methods are used in conventional class-based object-

oriented languages, the objects themselves often have no choice. Consider an arbitrary proper

subclass of PointClass, such as ColorPointClass. Since ColorPoint has equal as a binary method,

it is not a subtype of Point , as we have seen. To be a subtype of Point it would have to have an

equal method whose argument type is Point . It is thus an operation on a Point and a ColorPoint,

so two ColorPoint objects could not be properly compared. Thus it would seem that we can

statically determine which equality test is performed. Consider a program variable pt of static type

Point . What values could pt acquire during program execution? It could be a Point of course. It

could also be a ColorPoint , but only in the case that ColorPoint 's equal method had argument

type Point . Therefore, just from the static type of pt, we infer that the only binary equality that is

soundly applicable to it is eqPoint. So in this example, there is no potential for dynamic dispatch

of binary equality.

However, in general there are cases where dynamic dispatch on a binary method will occur;

later, in Section 4.3, we present one such example.

The somewhat weaker \static dispatch" given by static overload resolution (as in C++ or Ada)

may also be desirable: the programmer would like to be able to simply type equal, not eqPoint or

eqColorPoint, even if the code that is invoked is statically determined.

A more serious problem with this approach is as follows: any method that in its body uses a

binary method that is overridden cannot be properly inherited. This can give rise to unnecessary

code duplication. Figure 5 is an example that illustrates this problem. LinkClass is a simple class

of linked list objects, and DoubleLinkClass is a subclass that uses double links (a more complete

implementation would include methods such as reverse, map , and length). The type MyType given

to variables next and link in the example represents the type of objects of the current class. That

is, it means Link in the class LinkClass, but means DoubleLink in the class DoubleLinkClass and

in the instance variables and methods it inherits from LinkClass. MyType will be discussed in

more detail in Section 4.1 below; also c.f. [41, 10, 27]. The objects now have only one interesting

method, append , which is inherited by DoubleLinkClass. This method uses setNext , a binary

method, to set the pointer next, and setNext is overridden in DoubleLinkClass to also properly

maintain the prev link to the previous object. In a hypothetical function encoding, the setNext

method would be replaced by functions setNextLink and setNextDoubleLink that lie outside the

class de�nition (ignoring for now questions of privileged access). However, since append invokes

setNext , it must be re-written as two almost identical functions, one invoking setNextLink and

the other invoking setNextDoubleLink, causing unnecessary code duplication. An in-place reverse

method of no arguments is another method for which inheritance would su�er under this encoding.

Thus dispatch can be statically resolved, but only at the cost of code duplication if this scheme is

used.

7

class LinkClass

instance variables

value: integer

next: MyType

methods

getValue: integer is return(value)

getNext : MyType is return(next)

setValue(n: integer): unit is value := n

setNext(link: MyType): unit is next := link

append(link: MyType): unit is

if next == nil then self.setNext(link) else next.append(link)

end class

class DoubleLinkClass subclass of LinkClass

instance variables -- value and next are inherited

prev: MyType

methods -- getValue, getNext, setValue, and append are inherited; setNext is overridden

getPrev : MyType is return(prev)

setNext(link: MyType): unit is next := link; link.setPrev(self)

setPrev(link: MyType): unit is prev := link

end class

Figure 5: The classes LinkClass and DoubleLinkClass.

3.2 Making Both Arguments into One Object

Even in a \purist" object-oriented language where every operation is treated as a message sent

to some object, we may place binary operations outside of the objects on which they operate by

turning the two argument objects into a single pair object and invoking the method on the pair.

To see how this would work, imagine that the types Point and ColorPoint do not have any binary

methods. For example, they could be:

Point � hhx : real; y : realii

ColorPoint � hhx : real; y : real; c: stringii

With this de�nition, ColorPoint would be a subtype of Point .

Now de�ne two new classes, PointPairClass and ColorPointPairClass, with two methods named

equal , as shown in Figure 6.

So the former binary methods are now unary methods of these new classes. What would

originally have been written as:

aCPoint.equal(anotherCPoint)

to compare two colored points, will now be written with these new classes as:

(new PointPairClass(aCPoint, anotherCPoint)).equal

If the types of aCPoint and anotherCPoint are both ColorPoint , then one might wish instead to

compare them as colored points, in which case one would write:

8

class PointPairClass

instance variables

p1: Point

p2: Point

methods

equal : bool is return((p1.x==p2.x) && (p1.y==p2.y))

class ColorPointPairClass

instance variables

p1: ColorPoint

p2: ColorPoint

methods

equal : bool is return((p1.c==p2.c) && (p1.x==p2.x) && (p1.y==p2.y))

Figure 6: The classes PointPairClass and ColorPointPairClass.

(new ColorPointPairClass(aCPoint, anotherCPoint)).equal

There is a bene�t in making these pair objects: it clari�es the perspective desired for the equality

comparison. When one creates a PointPair object, it is clear what behavior is expected from its

equal method; this expectation is borne out even when the two points that make up the PointPair

object are actually ColorPoint objects.

The types, PointPair and ColorPointPair , of objects of these pair classes, are as follows.

PointPair � hhequal : boolii

ColorPointPair � hhequal : boolii

Note that ColorPointPair is a subtype of the type PointPair . Therefore, one can have a variable

myPointPair of type PointPair that denotes an object of type ColorPointPair .

var myPointPair: PointPair := new ColorPointPairClass(aCPoint, anotherCPoint)

In this case a message send such as \myPointPair.equal" results in the invocation of the equal

method de�ned in class ColorPointPairClass. Thus, sending the equal message to a pair object

gets the view with which the pair was created, regardless of the dynamic type of the points in the

pair object. This should be contrasted with the function call \eqPoint(aCPoint, anotherCPoint),"

which always compares its two arguments as points. It can also be contrasted with a message-send

of the form \aCPoint.equal(anotherCPoint)," which always uses the equal code of ColorPointClass.

This approach has problems similar to the function approach that was discussed previously|

the LinkClass example of Figure 5 would require code duplication for inherited methods such as

append .

4 Embracing Binary Methods

Having presented some arguments that binary methods can be avoided, we now consider the typing

mechanisms that must come into play if we choose not to avoid them.

9

Two important solutions have been proposed to the typing problems posed by binary methods.

One solution, �rst proposed by the Abel project at HP labs [23], develops a method that partially

solves the Point/ColorPoint problem by relaxing the requirement that subclasses generate sub-

types. As they put it, \Inheritance is not subtyping." They did not, however, propose a concrete

mechanism for realizing their ideas in an object-oriented language. In Section 4.1, we show one

way this may be done using the concept of matching [9].

The other important solution was presented in two papers at the 1991 OOPSLA conference [2,

28]. These papers deal with the static type-checking of languages with multi-methods (also called

generic functions or overloaded functions). Multi-methods as in CLOS allow, as we show in Sec-

tion 4.2.1, the Point/ColorPoint example to be typed preserving the subtyping of the two classes.

But this is obtained at the expense of the encapsulation of the methods, since the generic func-

tions, like the functions in Section 3.1, are separated from objects (objects encapsulate only data).

In Section 4.2.2 we show how to reconcile multi-methods with objects encapsulating data and

code [15, 44].

Closely related to the solutions of Section 4.2 is Ingalls' solution to the multiple dispatch prob-

lem [33]. He presented his solution in an untyped framework, but it can be adapted to a typed

language, as Section 4.3 shows.

Lastly, we show in Section 4.4 how a general principle of giving more \precise" types to binary

methods produces more exible typings across a range of approaches, even in the case where binary

operations are not treated as methods.

4.1 Matching

This section describes how a relation called \matching," which is weaker than subtyping, can

replace subtyping in many situations [9]. In particular, we will see below that this generalization

of subtyping provides us with the ability to handle binary methods smoothly.

4.1.1 Generalizing subtyping to matching

As seen in Section 2.1, languages that insist that subclasses generate subtypes often compensate

for the resulting type problems by restricting the programmer's ability to change the types of

parameters of inherited methods. This e�ectively eliminates the use of binary methods in these

cases. If one feels that binary methods are important, then an obvious solution is to give up the

identi�cation of subclasses with subtypes. An important advantage of this decision, not discussed

further here, is to separate the notion of interface (type) from that of implementation (class). In

the remainder of this section we assume such a separation has been made, and thus that the notions

of subtyping and matching (de�ned below) depend only on the interfaces of objects, not the classes

generating them.

Most object-oriented languages provide a name for the receiver of a message (e.g., self or this),

which can be used inside method bodies. Similarly, we use MyType as a keyword that denotes the

type of the receiver [50]. It may be used in the de�nition of methods whose parameters or return

types should be the same as that of the receiver. By convention, the recursive record type in the

following is simply an abbreviation for the type Point given above, and it could also be the type

of objects of a polar implementation of points.

Point � hhx : real; y : real ; equal :MyType! boolii � PolarPoint

One advantage of MyType is that it makes it easier for human readers to compare types like

Point and PolarPoint . A more important advantage is that it works well with inheritance of

10

methods, because its meaning changes in the subclass. For example, when MyType is used in the

de�nition of ColorPointClass, all occurrences of MyType in the methods automatically represent

ColorPoint rather than Point .

ColorPoint � hhx : real; y : real; c: string; equal :MyType! boolii

Since this is just an abbreviation for the type of ColorPoint given earlier, the type ColorPoint is

still not a subtype of Point . However, there is a relationship between the types ColorPoint and

Point , which is clearly apparent when looking at their types written using MyType. One can see

that the only di�erence is the addition of a new method, c, to ColorPoint .

We say one object type matches another if the �rst has at least the methods of the second

and the corresponding method types are the same, considering MyType in one to be \the same" as

MyType in the other. We use <# to denote this relationship. In symbols,

hhm

1

: �

1

; : : : ;m

n

: �

n

ii <# hhm

1

: �

1

; : : : ;m

k

: �

k

ii

holds i� k � n. (In fact, a more general de�nition is possible in which the types of corresponding

methods of the �rst are all subtypes of the corresponding types of the second [9]. This means that

the corresponding result types are subtypes|vary in a covariant way|while the corresponding

parameter types are supertypes|vary in a contravariant way. However, this more general relation

will not be needed here.) Section 5 gives an interpretation of matching as subtyping on higher-order

operators.

Because the meaning of MyType changes in subclasses, the meanings of the types of methods in

subclasses need not be the same as those of the corresponding methods in the superclass. However,

type-safe rules for de�ning subclasses can ensure that the types of the objects from the subclass

always match the types of the objects generated from the superclass. In order to obtain type safety,

it is necessary to type check the methods of a class under the assumption thatMyType only matches

the type of objects being de�ned by the class. This ensures that these methods will continue to

be type-safe when inherited in subclasses [9]. While some routines will not type check with this

assumption, even though they would have passed under the stronger assumption that MyType is

exactly the type of objects generated by this class, in actual practice very few routines fail.

What about the earlier remark that ColorPoint is not a subtype of Point? Nothing has changed

that fact. ColorPoint and Point provide an example of two types which match, but are not

subtypes. Basically, if a class has a binary method, that is, a method with a parameter of type

MyType, subclasses of that class that add new methods will not generate subtypes. On the other

hand if a method's return type is MyType, this will not stand in the way of subtyping. Both of

these follow easily from the subtyping rule for recursive types mentioned in Section 2.1, and the

fact that MyType is used as an abbreviation for a recursive de�nition of types.

What if we want to use a ColorPoint as an actual parameter in a procedure or function that

originally expected a Point parameter? Since the example of breakit in the introduction showed

this could not always be done, another, more restrictive, construct is needed.

We can introduce a language feature to support a form of bounded polymorphism using match-

ing. With this feature, functions can be speci�ed to take type parameters whose values are restricted

to \match" another type. Of course, unrestricted type parameters can also be provided, but in a

large number of situations some sort of restriction is necessary.

As an example, suppose we wish to write a routine to sort an array whose elements are drawn

from some ordered set. In an object-oriented language, the requirement that the elements be

ordered can be modeled by demanding that they support (at least) less than and equal methods.

11

De�ne:

Comparable � hhless than :MyType ! bool ; equal :MyType ! boolii

With this de�nition, the header of our polymorphic sort routine is as follows, where the notation

\T<#Comparable" means that the type parameter T must match the type Comparable:

procedure sort(T<#Comparable; A: Array of T);

And the function then has type

3

sort : All(T<#Comparable) (Array of T) ! unit .

If PhoneEntry is an object type supporting at least methods less than and equal of type

PhoneEntry ! bool ;

and if PArray is an array of elements of type PhoneEntry , then sort(PhoneEntry, PArray) is a legal

call of sort.

It is worth noting here that the type Comparable has no useful proper subtypes because of the

appearance of MyType as the type of a parameter in its methods. Thus, if the bounds on type

parameters were only expressed in terms of subtyping, it would be impossible to apply the sort

routine to any interesting arguments.

The use of bounded matching is equivalent to the use of F-bounded polymorphism suggested in

[11]. It is also very similar in e�ect to the restrictions on type parameters expressible in CLU and

Ada (as well as the type classes of Haskell). For example, in Ada one would write the sort routine

as:

generic

type t is private;

with function "<"(x,y: t) return BOOLEAN is <>;

with function "="(x,y: t) return BOOLEAN is <>;

procedure sort (A: in out array (<>) of t) is : : :

This is similar to the sort procedure written with bounded matching. Object-oriented languages

containing similar constructs are Emerald [8] and Theta [38].

Returning to our example with Point , if f(p: Point) is a function accepting an argument of

type Point then it can often be rewritten in the form f(T<#Point ; p:T) so that it accepts a type

parameter matching Point and an object of that type. If this type checks, then it will be possible

to apply it to the type ColorPoint as well as an object of type ColorPoint. Of course this rewriting

will not succeed in all cases|breakit being a prime example. The reason this transformation will

not succeed in breakit is that the formal parameter nuPt will be of some type T <# Point , while p

will always be of type Point . Thus we cannot guarantee that the type of the argument to equal in

the body of breakit will be the same as the type of p, and the type check must fail.

What can actually be done with the information that one type matches another? The matching

relation guarantees that certain messages may be sent to an object. If T <# Comparable then

objects of type T can be sent messages less than and equal (and their parameters must also be of

type T). It turns out that for most situations this is all that is needed in order to ensure that the

3

The notation All(S <# T)E(S) is the universally polymorphic type that can be instantiated to E(S), for all S

such that S <# T .

12

object is usable. The stronger information that a type is actually a subtype of another is generally

not needed.

In particular, bounded matching can be viewed as an explicit, weakened (and hence more

generally applicable) form of subtyping. If subsumption were necessary to type a function call, the

code could be re-written so the function constrains the type parameter, like Comparable above, and

function invocations explicitly pass the \smaller" type as argument. Simple subtyping is handled

by the case where the type constraint contains no occurrences of MyType. The disadvantage of this

encoding of subtyping is that all subtypings must be explicitly given in the program.

In general the use of bounded matching requires one to \plan ahead," by identifying the type

parameter to be matched against. This was illustrated in the sort example: the type Comparable

needs to be discovered by the programmer, and every use of sort requires that an explicit type

parameter be passed. This is in contrast to subtyping, which is implicit and, as mentioned above,

does not require any explicit type instantiation to be given in the program. (It is an interesting

open problem to show how to automatically infer declarations that use matching.) If we were to

decide to eliminate subtyping altogether in favor of matching, then all object subtypings would

have to be recast as bounded matchings. Moreover, since matching only applies to object types, we

would not be able to capture the use of subtyping on other types without extending the de�nition

of matching.

Another di�culty with relying only on matching is that it is not type-safe to perform an

assignment to a variable of an object whose type only matches that of the variable. For example,

imagine a framework for graphical user interfaces, in which one creates a main window as a subclass

of some framework class, and has to store the window in some variable. In this case the type of

the subclass objects has to be a subtype of the declared type of the variable in the framework.

Subtyping seems to be required for this sort of cross-type assignment. While this can be worked

around by using type parameters to designate the types of instance variables, it does limit exibility

in handling heterogeneous data structures, all of whose elements are subtypes of a given type.

The use of MyType is su�cient to write examples such as linked lists or trees, where methods

for attaching a node to another or returning an adjoining node must be binary methods. The types

of the instance variables of these nodes also can be written in terms of MyType. If the de�nition

of singly-linked node is written using MyType in this way, it is easy to de�ne a doubly-linked

node as a subclass of singly-linked node. Figure 5 presents such an example. As expected, the

type of a doubly-linked node is not a subtype of singly-linked node, but it does match. It is then

relatively easy to write an implementation for lists which takes a type parameter which matches

singly-linked node. By applying this to either the type for singly-linked node or doubly-linked node,

the corresponding kind of list can be generated without code duplication. (See [10] for the details

of this parameterized example.)

The use of MyType in class de�nitions makes it easier to write useful subclasses in statically

typed object-oriented languages, especially when the superclasses contain binary methods. As il-

lustrated in the sorting example above, the matching relation is very useful in de�ning bounded

polymorphic functions. In fact, the use of these two features should provide a type-safe replace-

ment for the (unsafe) uses of covariant typing in languages like Ei�el, while providing comparable

expressiveness. The object-oriented language Loop [27] has no matching relation per se, but has

similar expressivity, achieved by circular subtype assertions � <: � where � and � may share free

type variable X . This can be viewed as a form of operator subtyping �(X) <: �(X). Addition of

a matching relation is thus one, but not the only, solution to this problem.

In the next two subsections we explore the mathematical aspects of the matching relation.

13

4.1.2 A Higher-Order Interpretation of Matching

We have seen that there exists a useful relation, matching, that holds between certain object types

even when the subtyping relation does not hold between them. Unlike subtyping, which can be

de�ned for all type constructions, matching is de�ned only for object types. Is matching, then,

an ad hoc relation, or can it be understood in some larger context?

We show in this section how matching can be seen as operator subtyping [13, 46, 48]. It also may

be seen as a form of F-bounded subtyping [23, 27]. With respect to these interpretations, matching

appears more elementary, and therefore is somewhat more appealing as a language construct.

However, the type rules for matching are not trivially determined, and one can acquire con�dence

by deriving them from better-known constructions. This argument is explained in more detail in

[1].

We assert that the relationship between Point and ColorPoint can best be seen by transforming

them from types into type operators, as in [43, 48, 32]. The following de�nitions are obtained by

uniformly abstracting the occurrences of MyType (or recursion variables) as type parameters.

PointOperator � �P : Type: hhx : real; y : real; equal :P ! boolii

ColorPointOperator � �CP : Type: hhx : real; y : real; c: string; equal :CP ! boolii

A type operator is a function from types to types|a function that, when applied to a type,

yields another type. For example, we have the following:

PointOperator(Point) � hhx : real; y : real; equal :Point ! boolii

PointOperator(ColorPoint) � hhx : real; y : real; equal :ColorPoint ! boolii

The original Point and ColorPoint types can be recovered by taking the �xed points of the respec-

tive operators

4

:

Point � Fix(PointOperator)

ColorPoint � Fix(ColorPointOperator)

To de�ne the operator translation we �rst need to extend subtyping from types to operators

(we use the same symbol, <:, for all these relations). Given two operators P and Q we de�ne:

P <: Q

def

= for all types X;P (X) <: Q(X):

We can verify that

ColorPointOperator <: PointOperator

because, for any type X :

hhx : real; y : real; c: string; equal :X ! boolii <: hhx : real; y : real; equal :X ! boolii

The unknown type X here has exactly the same purpose as MyType|it is an undetermined type

that is only a subtype of itself.

Thus, ColorPoint and Point are related by higher-order subtyping on their respective operators.

The matching relation can be de�ned, in general, as follows

5

:

A <# B

def

= AOperator <: BOperator

4

The notation Fix(F) means the least �xpoint of F .

5

The notation All(S <: T)E(S) is the universally polymorphic type that can be instantiated to E(S), for all S

such that S <: T [14].

14

Correspondingly, match-bounded quanti�cation can be de�ned as:

All(X <# B)C(X

ty

; X

op

)

def

= All(F <: BOperator)C(Fix(F); F)

where C(X

ty

; X

op

) is a type where X

ty

denotes occurrences of X that are used as types (as in

X ! Int), and X

op

denotes ones used as operators (as in All(Y <# X)D); the former are replaced

by �xed points of operators. Details appear in [1].

We can derive rules for matching from this higher-order interpretation, obtaining rules closely

approximating those of PolyTOIL [10].

4.1.3 Some Mathematical Weaknesses of Matching

We previously discussed a few practical weaknesses of matching, including having to plan ahead

and di�culties with assignment. The matching relation also has some undesirable mathematical

properties.

It is reasonable to allow recursive types to \unfold" by replacing MyType in an object type with

the type itself. However, matching does not respect this operation: one can construct types T , T

0

and T

00

such that T <# T

0

and T

0

unfolds to T

00

, but it would be inconsistent to allow T <# T

00

.

The reason for this is matching is \really" a relation on type operators, not on types themselves,

as suggested by the translation of the previous section. Inspection of the PolyTOIL rules in [10]

shows that every time matching is used, the upper bound must explicitly be an object type, and

this type can also be viewed as a type function applied to MyType.

Here is an example of the problems resulting from unrestricted use of unfolding of object types.

De�ne:

F = �X : Type:hhp:X ! Int; q: Intii

G = �X : Type:hhp:X ! Intii

H = �X : Type:hhp : Fix(G)! Intii

As before, the corresponding object types are found as �xed points: Fobj = Fix(F), Gobj =

Fix(G), and Hobj = Fix(H). Then Fobj <# Gobj , and Gobj � Hobj by unfolding, but it is not the

case that Fobj <# Hobj . As a result of this problem with unrestricted unfolding, PolyTOIL does

not have an \unfold" rule. Instead, objects are automatically unfolded when a message is sent to

them.

4.2 Multi-methods

A di�erent solution whereby binary methods can be embraced is to use multi-methods. Contrary

to matching, this solution does not introduce a new relation on types, since with multi-methods

one can have both type safety and subtyping relations such as ColorPoint <: Point .

A multi-method is a collection of method bodies associated with one message name. The

selection of which method body to execute depends on the classes of one or more of the parameters

of the method (rather than just on the class of the receiver as in ordinary object-oriented languages).

In this survey we distinguish two di�erent kinds of multi-methods: the ones used by the language

CLOS [24], and the encapsulated multi-methods of [15, 44]. A uni�ed analysis of both kinds of

multi-methods is given in [15]. We now describe each kind in turn.

15

class PointClass

includes

xValue: real

yValue: real

end class

class ColorPointClass subclass of PointClass

includes -- xValue and yValue are inherited

cValue : string

end class

method x (p: PointClass):real is return(p.xValue)

method y(p: PointClass):real is return(p.yValue)

method c(p: ColorPointClass):real is return(p.cValue)

method equal(p:PointClass , q:PointClass):bool is

return((x(p)==x(q)) && (y(p)==y(q)))

method equal(p:ColorPointClass , q:ColorPointClass): bool is

return((x(p)==x(q)) && (y(p)==y(q)) && (c(p)==c(q)))

Figure 7: PointClass and ColorPointClass written using multi-methods �a la CLOS.

4.2.1 Multi-methods �a la CLOS

Intuitively the idea is to consider (multi-)methods (in CLOS jargon, generic functions) as global

functions that are dynamically bound to di�erent method bodies according to the classes of the ac-

tual arguments. An object does not encapsulate its methods, just the data (the instance variables).

There no longer exists the notion of a privileged receiver for a method (the one that encapsulates

it, usually denoted by self or this) since a multi-method is applied to several arguments that

equally participate in the selection of the body. In this case we talk of \multiple dispatching"

languages, in antithesis to \single dispatching" ones where a privileged receiver is used. A class of

objects is then characterized just by the internal variables of its instances. For example, in a typed

multi-method-based language, the classes given in Figures 1 and 2 would be de�ned as in Figure 7.

In order to simplify the exposition in this section, we identify classes and types, in the sense

that the name of a class is used as the type of its instances; therefore in this section (and in this

section only) p : PointClass will also mean \p is an instance of PointClass." Thus, when discussing

multi-methods �a la CLOS, we write class names where types would otherwise appear.

6

This allows

one to consider multi-methods as overloaded functions, whose actual code is dynamically selected

according to the type (i.e., the class) of the arguments they are applied to.

The de�nitions of the methods in Figure 7 are completely disconnected from those of classes.

There are two distinct de�nitions for equal , one for arguments of types PointClass�PointClass and

the other for arguments of type ColorPointClass�ColorPointClass. We say that the message equal

6

If we were to distinguish between types and classes (i.e. between interfaces and implementations: cf 4.1.1) , then

a new notation would be needed to specify both a class and a type parameter for multi-methods. One possibility is

to use the notation of Cecil [19, 20], which does separate these concepts.

16

denotes a multi-method (or a generic function, or an overloaded function) formed by two branches

(or method bodies). The type of a multi-method is the set of the types of its branches; thus equal

has type:

(PointClass � PointClass ! bool ; ColorPointClass � ColorPointClass ! bool)

When equal is applied to a pair of arguments, the system executes the branch de�ned for those

parameters whose type \best matches" the type of the arguments. For example if equal is applied

to two arguments in which at least one of them is of type PointClass and the other is a subtype

of it, then the �rst de�nition of equal is executed; if both arguments have as type a subtype of

ColorPointClass then the second de�nition is selected. More generally, when a multi-method of

type

(S

1

! T

1

; S

2

! T

2

; : : : ; S

n

! T

n

)

is applied to an argument of type S, the system executes the body de�ned for the parameter of

type S

j

= min

i=1::n

fS

i

j S <: S

i

g. This selection is performed at run-time. In this way one obtains

dynamic dispatch. Note that in this paradigm binary methods are really binary, since the implicit

argument given by the receiver of the message is, in this case, explicit.

In [17] it is proved that to have type safety it su�ces that every multi-method of type (S

1

!

T

1

; S

2

! T

2

; : : : ; S

n

! T

n

) satis�es the following condition.

7

8i; j 2 [1::n] if S

i

<: S

j

then T

i

<: T

j

(1)

(This is similar to the monotonicity condition of [49] and, independently, [40].) Note that all

the multi-methods de�ned in Figure 7 (and in particular equal) satisfy this condition. Therefore

ColorPointClass <: PointClass does not cause type insecurities.

Intuitively, the problem with binary methods is that, in general, it is not possible to choose

the branch to execute according to the type of just one argument. To determine which method

body must be executed one needs to know the types of all the arguments of the method. In single

dispatching the branch selection is based only on one argument|the receiver; therefore binary

methods and subtyping cannot be type safely combined. On the contrary by a multi-method we

can re�ne the selection by considering all the arguments. Thus it need never happen that the

argument of a method has a supertype of the type of the corresponding parameter (as in the case

of breakit).

Note also that multi-methods allow one to specialize equal in a di�erent way for each possible

combination of arguments. It su�ces to add the branches for the remaining cases:

method equal(p: PointClass, q: ColorPointClass):bool is : : :

method equal(p: ColorPointClass, q: PointClass): bool is : : :

As we have seen, CLOS's multi-methods induce an object-oriented style of programming that

is rather di�erent from the one of traditional single dispatching object-oriented languages. Most

of the languages that use multi-methods are untyped (e.g. CLOS [24], Dylan [5], which use classes

instead of types to drive the selection of multi-methods). The only strongly-typed languages in our

ken that use multi-methods are Cecil [20], and Polyglot [2].

The lack of encapsulation in multi-methods is both an advantage and a drawback. The drawback

is methodological: an object (or a class of objects) is no longer associated with a �xed set of methods

that have privileged access to its internal representation. The usual rule is that any method with a

7

Some further conditions are required to assure that a best matching branch always exists for the selection (see [2],

[20], and [17]).

17

class ColorPointClass subclass of PointClass

instance variables -- xValue and yValue are inherited

cValue : string

methods

c:string is return(cValue)

equal(p: Point):bool is return((xValue==p.x) && (yValue==p.y))

equal(p: ColorPoint):bool is

return((cValue==p.c) && (xValue==p.x) && (yValue==p.y))

end class

Figure 8: The class ColorPointClass written using encapsulated multi-methods.

formal parameter of a given class can access the instance variables of the actual parameter object.

The advantage is that this solves the privileged access problem described in Section 2.2, because a

binary method can gain privileged access to both its arguments. However, because such methods

can be de�ned anywhere in the program, one cannot restrict direct access to instance variables

to a small area of the program text. One way to �x such problems may be to add a separate

module system to control instance variable access [20]. Instead of pursuing that idea, in the next

subsection, we show how to apply the ideas of multi-methods in more traditional object-oriented

languages with single dispatching and classes.

Moreover, multi-method dispatch as in CLOS is more expensive than single-dispatch. This is

because it is more expensive to compute the branch of the multi-method that matches the arguments

best, whereas with single-dispatching, a single look-up su�ces. A �nal drawback of multi-methods

�a la CLOS is the di�culty of combining independently developed systems of multi-methods [22].

While other ways to solve this problem have been studied [20], the problem nearly disappears when

multi-methods are combined with single dispatching, as described next.

4.2.2 Encapsulated multi-methods

To solve the encapsulation problems of multi-methods �a la CLOS, we seek to emulate the Smalltalk

model, where every method is the method of one object. Thus each method has a privileged

receiver argument (self), which is the only argument whose internal state can be accessed by the

method. Instead of de�ning multi-methods as global functions, the idea is to use them to de�ne the

bodies of some methods in a class de�nition [15]. In this way a multi-method is always associated

to a message m of a class C . When m is sent to an object of class C , it is dispatched to the

corresponding method. If this method happens to be a multi-method, then the branch is selected

according to the types of the further arguments of m . Thus, the selection of the method is still

based on the receiver, but the actual code is selected among several bodies that are encapsulated

inside the object. Inside these bodies, the receiver is still denoted by the keyword self (or this).

Encapsulated multi-methods are to be distinguished from static overloading (as found in Ada,

Haskell, C++, and other languages), because the selection of code must be made dynamically.

As an example of this technique, take the class PointClass as in Figure 1 and rewrite the class

ColorPointClass as in Figure 8. In that Figure there are two de�nitions for equal : the �rst is

executed when the argument of equal is of type Point , the other when it is of type ColorPoint.

The selection of the appropriate de�nition is done at run-time when the argument of equal has been

fully evaluated. The selection is based on the type of the additional argument. In other words, we

18

have transformed the method associated to equal into a multi-method, where arguments of di�erent

types are associated to di�erent codes.

There are two di�erences from multi-methods �a la CLOS. The �rst is that multi-methods are

de�ned in particular classes, whereas in CLOS they are a property of a global (generic function)

names. This solves the encapsulation problems of CLOS multi-methods, because access to instance

variables is restricted to the methods of a class, as only the receiver's instance variables can be

accessed. The second di�erence is that dispatch is not based on actual argument classes, but rather

on actual argument types. This is possible because no privileged access is obtained to the addi-

tional arguments. However, unless types are equated with classes (as in the previous section), the

technique cannot solve the problem of privileged access to other arguments (of Section 2.2), be-

cause several di�erent classes might implement the same type. (If a method is de�ned to work with

objects of a given interface (type) and it is selected according to the type, it cannot access the inter-

nal implementation of these objects, since the same type may have many di�erent implementations

(classes) active in a program.)

The type of a multi-method is the set of the types of its di�erent codes. Thus the type of an

instance of ColorPointClass now becomes

ColorPoint � hhx : real; y : real; c: string; equal : (Point ! bool ;ColorPoint ! bool)ii

and ColorPoint <: Point holds, since in the type system for multi-methods (see [15]) one can

deduce: (Point ! bool ;ColorPoint ! bool) <: (Point ! bool).

More precisely, the subtyping relation between sets of types states that one set of types is

smaller than another if and only if for every type contained in the latter there exists a type in the

former smaller than it. This �ts the intuition that one multi-method can be replaced by another

multi-method of di�erent type when for every branch that can be selected in the former there is

one branch in the latter that can replace it (for the subtyping, ordinary methods are considered as

multi-methods with just one branch: their type is a singleton set).

Thus, if in writing a subclass one wants the type of the instances to be a subtype of the type of

the instances of the superclass, then some care in overriding binary methods is required. Indeed,

the rule of the thumb for this approach is that to override a binary method one must use an

(encapsulated) multi-method with (at least) two branches: one with a parameter whose type is the

type of the instances of the class being de�ned, the other with a parameter whose type is the type

of the instances of the original superclass in which the message associated with the binary method

has been �rst de�ned. Thus, when a binary method is overridden in a new class, it is not enough

to specify what the new method has to do with the objects of the new class. It is also necessary

to specify what it has to do when the argument is an object of a superclass. Fortunately, this

does not require a large amount of extra programming. The number of branches that su�ce to

override a binary (or n-ary) method is independent of both the size and the depth of the inheritance

hierarchy; indeed, it is always equal to two. For example, suppose that we further specialize our

Point hierarchy by adding further dimensions:

class 3DPointClass subclass of PointClass

instance variables x3Value: real

methods : : :

class 4DPointClass subclass of 3DPointClass

instance variables x4Value: real

methods : : :

19

: : :and so on, up to a dimension n. The new classes form a chain in the inheritance hierarchy. If

we want to override equal , what do we have to do in order for this to be a chain of the subtyping

hierarchy too (i.e., nDPoint <: : : : <: 4DPoint <: 3DPoint <: Point)? If we want to override

equal in nDPointClass (thus we want that in the description of nDPointClass a de�nition of the

form equal(p : nDPoint) = : : : appears), then the �rst idea is to write for the class nDPointClass

a multi-method with n� 1 branches, one for each class in the chain

8

. This is possible, but for type

safety a multi-method with two branches is enough: one for arguments of type nDPoint , which is

the one we want to de�ne, and the other for arguments of type Point , which will handle all the

arguments of a supertype of nDPoint . Type safety stems from the observation that, according to

the subtyping rule given above, if for all i 2 1::n; T

i

<: T then (T ! S) <: (T

1

! S; : : : ; T

n

! S)

(and of course (T

n

! S; T ! S) <: (T ! S)); take Point for T , bool for S and iDPoint for T

i

and

the result follows.

A �nal remark is in order. The di�erent branches that compose a single multi-method are

not required to return the same type. For type safety it su�ces to have the condition (1) as for

multi-methods �a la CLOS: for each pair of multi-method branches c

1

; c

2

with the same name and

number of arguments,

9

if the parameter types of c

1

are smaller than the corresponding parameter

types of c

2

, then the result type of c

1

must be smaller than the result type of c

2

[49, 17]. Some

further consistency conditions are required in case of multiple inheritance [28, 44, 17, 20].

One of the main advantages of this approach is that the extra branch required to assure type

safety of subtyping can be generated in an automatic way. Therefore this technique can be em-

bedded directly in the technology of the compiler, and used to \patch" the already existing code

of languages that use covariant specialization, like Ei�el and O

2

[6]. Thus, like the solution given

in the next section, this solution can be directly applied to languages with covariant specializa-

tion without requiring any modi�cation of the code: a recompilation of existing code will su�ce

(see [16]).

On the other hand this approach has some disadvantages. One disadvantage compared to multi-

methods �a la CLOS is that it does not solve the problem of obtaining privileged access to other

arguments in a binary method. Another disadvantage of this approach is that in case of multiple

inheritance additional type checking constraints are needed. The problem is that when multiple

inheritance is used, the notion of a \best matching branch" to select or to inherit may be lost.

Consequently, unconstrained use of multi-methods can break the modularity of programming [22],

since the addition of a new class to the system might require the addition of some new code

in a di�erent class to assure the existence of the best branch (see, for example, [20]). However

the problem with modularity is less critical than in the case of multi-method �a la CLOS. An

additional disadvantage is again the performance penalty imposed by multi-methods. One extra

test and branch is required to decide which code is to be executed. The overhead to resolve uses

of encapsulated multi-methods is however smaller than in the case of CLOS multi-methods since

there is no special lookup needed for the privileged receiver.

There are also some less important disadvantages. The �rst one is that, as it depends on an avant

garde type theory, the interactions of this theory with fairly standard features like polymorphism

(both implicit and explicit) are not yet clear. (Models based on records have been more deeply

studied than those based on overloading.) Also, with multiple inheritance, the automatic generation

8

Of course, if in the de�nition of nDPointClass we do not give any de�nition for equal then nDPointClass inherits

the last (multi-)method de�ned for equal in the upper hierarchy. It is important to be clear that, in the formalization

we use, a new de�nition of a (multi-)method completely overrides the old one (i.e. it is not possible to inherit some

branches and override others: this could by obtained by adding some extra syntax.)

9

Indeed multi-methods may have more than one parameter (this allows us to deal with n-ary methods), and the

multi-method branches are not all required to have the same number of parameters.

20

class PointClass

: : :

methods

: : :

equal(p: Point): bool is return(p.equalPoint(self))

equalPoint(p: Point): bool is return((xValue==p.x) && (yValue==p.y))

equalColorPoint(p: ColorPoint): bool is return(self.equalPoint(p))

class ColorPointClass subclass of PointClass

: : :

methods

equal(p: Point): bool is return(p.equalColorPoint(self))

-- equalPoint is inherited

equalColorPoint(p: ColorPoint): bool is

return((cValue==p.c) && (xValue==p.x) && (yValue==p.y))

Figure 9: Ingalls' simulation of multi-methods.

of the code to \patch" existing programs is not as satisfactory as in case of single inheritance. As

a consequence, in some pathological cases the automatically generated code may not have the

expected behavior. And, even though there is not a blowup of the number of extra method bodies

that must be written, there is at least a doubling of the number of method bodies that must be

written each time a binary method is overridden. Some further negative remarks are to be found

at the end of the next section.

4.3 Simulating Multi-methods in a Single-Dispatching Language

Ingalls o�ered a solution to what he called the problem of \multiple polymorphism" in the �rst

OOPSLA conference [33]. His solution to the binary method problem, o�ered in the context of

single-dispatching languages such as Smalltalk-80 [29], was to use two message dispatches, one to

resolve the polymorphism of each argument.

In the example of points, colored points, and equality, the equal method would be coded as

in Figure 9. As usual, the class ColorPointClass inherits the method equalPoint from the class

PointClass. Now the (recursive) types of the instances of PointClass and ColorPointClass are:

Point � hhx : real; y : real;

equal :Point ! bool ;

equalPoint :Point ! bool ;

equalColorPoint :ColorPoint ! boolii

ColorPoint � hhx : real; y : real ; c: string;

equal :Point ! bool ;

equalPoint :Point ! bool ;

equalColorPoint :ColorPoint ! boolii

Notice that, with this typing, ColorPoint is a subtype of Point . Also, equal in ColorPoint is a

binary method, since by subsumption it can have argument type ColorPoint as well. This typing

21

can be said to be more precise than the typing of ColorPoint given in the introduction; the general

issue of the use of more precise typings is taken up in Section 4.4.

The solution o�ered by Ingalls is probably the best-known way to simulate multiple dispatch

in a language with only single dispatch. With respect to true multiple-dispatch, the Ingalls simu-

lation is a more exact simulation than the function simulation o�ered in Section 3.1, since it can

arrange for equal with two arguments whose dynamic type is ColorPoint to always take color into

account, regardless of the static types of the argument expressions. This is because of the second

dynamic dispatch in the equal method. Such a result is not possible with the function simulation

of Section 3.1: one will always be able to apply the eqPoint function to two ColorPoint objects and

lose exact type information. This example is thus one case for which dynamic dispatch on binary

methods occurs. In this respect, the simulation of multiple-dispatch with external functions is less

faithful and exible than the Ingalls simulation.

This translation can also be contrasted with encapsulated multi-methods as described in Sec-

tion 4.2.2. Ingalls' translation lacks modularity in that it requires equalColorPoint to be added

to the PointClass class when ColorPointClass is de�ned. With multi-methods, modularity can be

preserved since the rede�nition of the equal method inside ColorPointClass does not require any

modi�cation of the code for PointClass; however, this introduces an unnatural asymmetry, since

the rede�nition of equal requires one to write code for how a ColorPoint behaves when its equal

method is passed a Point , but not vice-versa. The natural symmetry cannot be restored except by

breaking the modularity of the multi-method solution.

It should be pointed out that the above argument only holds if we require (multi-)methods to

be written in classes, as in Section 4.2.2. For multi-methods �a la CLOS there is no problem of

asymmetry, although there is still a modularity problem. However, the multi-method approach

still requires one to go back and add code for types that appeared to have been completed earlier.

Ingalls' solution is surprisingly general|by overriding equalPoint in ColorPointClass, a di�erent

method can be executed for all four combinations of Point and ColorPoint. Ingalls' solution could in

fact be used as one technique for implementing encapsulated multi-methods in a compiler, provided

the compiler had access to all of the code at compilation time.

Finally, for large inheritance hierarchies the number of cases required by Ingalls' solution can,

in principle, become quite cumbersome.

4.4 Precise Typings

It is sometimes advantageous to use more precise typings for methods. A binary method only needs

its argument to have the methods that are explicitly used. Generally this is a weaker requirement

than having the argument be an object of the current class, and it may allow for a \larger" (with

respect to the <: relation) type of the argument of this method; by the contravariant subtyping

rule for functions this produces a smaller type for the method. The informal idea is thus to give

methods smaller types [7, 8]. By subsumption, these types can always be lifted to \true binary"

form, allowing objects of the same class to be passed as arguments to the method. Thus, specifying

a smaller type of a method can only increase its usability.

Ingalls' solution in Section 4.3 in fact depends on the use of precise types, for the key to its

typability is the use of Point for the type of the argument of equal in ColorPointClass. This

gives the method a smaller type than if the argument were of type ColorPoint . In this section we

elaborate on this technique.

By way of illustration, consider the original Point/ColorPoint example of Figures 1 and 2.

Since neither equal method calls equal recursively, the types

Point

min

� hhx : real; y : real; equal : hhx : real; y : realii ! boolii

22

ColorPoint

min

� hhx : real; y : real; c: string; equal : hhx : real; y : real; c: stringii ! boolii

may also be given. These types are subtypes of the types given originally. Note that the objects

passed to equal themselves require no equal method be present. Since Point

min

is a subtype of

hhx : real ; y : realii and similarly for ColorPoint

min

, it is easy to see that

Point

min

<: hhx : real; y : real; equal :Point

min

! boolii

ColorPoint

min

<: hhx : real; y : real; c: string; equal :ColorPoint

min

! boolii

so equal is indeed a binary method, and no typings are lost in this approach. In fact, something

is gained over the matching interpretation described in Section 4.1: it is possible to invoke the

equal method of a Point

(min)

with a ColorPoint

(min)

as argument. Typing this \heterogeneous"

invocation is crucial for a class de�ning binary methods intended to be inherited without rede�nition

and able to take as arguments objects of any subclass [25]. In a type system based on matching,

a method declared to take arguments of type MyType cannot, in general, accept an object of a

subclass as argument; it is necessary to use bounded matching to realize this (see the discussion at

the end of Section 4.1.1). Precise types here provide a simpler solution based on subtyping. Note

that ColorPoint

min

does not match, nor is it a subtype of, Point

min

.

Use of precise types also overcomes some problems with modularity. Continuing an example

given in Section 2.1, the library procedure usePoint, which in version 0.9 did not use the equal

method for Points, can be given a precise type in which its parameter is explicitly required to

provide certain methods that Points have, but not equal . Thus the addition of equal to the methods

of Point and ColorPoint in version 1.0 will have no e�ect on the applications of usePoint to objects

of these classes | they will still type-check.

As shown in Section 4.3, typing Ingalls' solution when MyType appears only in the types of

method parameters is possible simply by using subsumption, e.g., to lift a ColorPoint to a Point

in cp1:equal(cp2), where both cp1 and cp2 are objects of type ColorPoint. However this technique

cannot be directly applied to binary methods with result of type MyType (or involving MyType),

because subsumption on the type of the argument may cause loss of interesting type information.

Consider the example in Figure 10, de�ning classes of points and colored points with a method

max which among its argument and the receiver (self) returns the one further from the origin.

Objects of MPointClass and ColorMPointClass could be given the following types, which are

simple modi�cations of the types of Points in Section 4.3.

MPoint � hhx : real; y : real ;

max :MPoint ! MPoint;

maxMPoint :MPoint ! MPoint ;

maxColorMPoint :ColorMPoint ! MPointii

ColorMPoint � hhx : real ; y : real; c: string;

max :MPoint ! MPoint;

maxMPoint :MPoint ! MPoint ;

maxColorMPoint :ColorMPoint ! ColorMPointii

The subtyping ColorMPoint <: MPoint still holds, but note that the result of method max of

ColorMPointClass is of type MPoint ; type checking would fail if we assigned this method the type

MPoint ! ColorMPoint . Thus the static type of taking the max of two ColorMPoints will have to

be merely MPoint (unless the method maxColorMPoint was used explicitly). True multi-methods

do not su�er from this shortcoming.

We can overcome this problem in a more expressive type system that provides for polymorphism

in addition to recursive types. The idea is to make the type of max more precise, and in this case,

23

class MPointClass

: : :

methods

: : :

max (p: MPoint): MPoint is return(p.maxMPoint(self))

maxMPoint(p: MPoint): MPoint is

if xValue **2 + yValue **2 < p.x**2+ p.y**2

then return(p) else return(self)

maxColorMPoint(p: ColorMPoint): MPoint is return(self.maxMPoint(p))

class ColorMPointClass subclass of MPointClass

: : :

methods

max (p: MPoint): MPoint is return(p.maxColorMPoint(self))

-- maxMPoint is inherited

maxColorMPoint(p: ColorMPoint): ColorMPoint is

if (xValue **2 + yValue **2) � brightness(cValue)

< (p.x**2+ p.y**2) � brightness(p.c)

then return(p) else return(self)

Figure 10: Ingalls simulation of points with a max method: �rst attempt.

polymorphic. The code for the max methods with their new type annotations is given in Figure 11.

This modi�cation yields the following types for the objects of MPointClass and ColorMPointClass.

MPoint � hhx : real; y : real ;

max :All(X)hhmaxMPoint :MPoint ! X ; maxColorMPoint :ColorMPoint ! X ii ! X ;

maxMPoint :MPoint ! MPoint ;

maxColorMPoint :ColorMPoint ! MPointii

ColorMPoint � hhx : real ; y : real; c: string;

max :All(X)hhmaxColorMPoint :ColorMPoint ! X ii ! X ;

maxMPoint :MPoint ! MPoint ;

maxColorMPoint :ColorMPoint ! ColorMPointii

If p is a MPoint, its max method can still be specialized to a binary method: p:max [MPoint] is of

type MPoint ! MPoint , and similarly for the max method of a ColorMPoint . The relation with

the types of the \true binary" methods is more direct in an implicitly typed language, where the

precise types are smaller [26, 25].

With this typing, taking the max of two elements of ColorMPoint returns a ColorMPoint; any

other combination returns a MPoint , the best static type possible. Note that ColorMPoint is still

a subtype of MPoint in a system with implicit unfolding of recursive types. So, this typing has all

the desired properties of the typing via pure multi-methods of Section 4.2, giving more situations

in which Ingalls' method may be usefully applied.

Soop and PolyTOIL are two languages in which all of the precise typings of this section may be

expressed. Precise types are complex, however, and it is di�cult to imagine programmers writing

them routinely. A solution to this problem is to automatically infer minimal types. See [25] for

a type inference algorithm for the I-Loop object-oriented language. The algorithm infers a form

24

class MPointClass

: : :

max [X :Type](p:hhmaxMPoint :MPoint ! X ; maxColorMPoint :ColorMPoint ! X ii):X is

return(p.maxMPoint(self))

: : :

class ColorMPointClass subclass of MPointClass

: : :

max [X : Type](p: hhmaxColorMPoint :ColorMPoint ! X ii): X is

return(p.maxColorMPoint(self))

: : :

Figure 11: Ingalls simulation of points with a max method: precise typing.

of F-bounded polymorphic type for classes and objects. It infers minimal types for the original

Point/ColorPoint example that are very similar to the \small" types presented above. The types

inferred for objects of MPointClass and ColorMPointClass are slightly more general than the form

above.

To summarize some of the advantages and disadvantages of precise typing:

+ Precise types allow more exibility in typing than matching alone. They may be expressed

using bounded matching, but bounded matching requires explicit quanti�cation and instan-

tiation where subtyping alone may su�ce.

+ Precise types are a critical component of a typed version of Ingalls' solution.

+ More precise types in module interfaces can be used to overcome some of the limitations of

matching.

- The generally more complicated form of the precise types suggests that a type inference

algorithm may be the only practical alternative.

- In de�ning a subclass, one may have to go back and modify the type annotations of the su-

perclass (and, in general, the superclass of the superclass, etc.) in order to generate subtypes.

This may be seen as another argument in favor of type inference, since no modi�cations will

be required in an implicitly typed language.

5 Privileged Access to Object Representations

In Section 2.2, we saw that the problems of typing binary methods are often accompanied by dif-

�culties in implementing binary operations without exposing object internals to public view. This

section sketches a technique whereby such \overexposed objects" can be wrapped in an additional

layer of abstraction, creating a limited scope in which their internal structure is visible. The tech-

nique was developed by Pierce and Turner [47] and by Katiyar, Luckham, and Mitchell [34]; we

refer the reader to these papers for further details. In particular, [47] demonstrates that the mech-

anism shown here is compatible with inheritance (though it requires some additional machinery).

These ideas give a semantic basis for some aspects of the encapsulation via friends found in C++

25

class IntSetExposedClass

instance variables

elts: IntList

methods

add(i: int): unit is elts := elts.cons(i)

member(i: int): bool is return(elts.memq(i))

superSetOf (s: IntSet): bool is return(elts.superListOf (s.rep))

rep: IntList is return(elts)

end class

Figure 12: The class IntSetExposedClass, for which writing superSetOf is straightforward

and the encapsulation in Cecil [19]. Returning to the example of integer set objects (and dropping

the union method, for brevity), it is clear that the typing

IntSet � hhadd : int ! unit ; member : int ! bool ; superSetOf : IntSet ! boolii

does not provide a su�ciently rich protocol to allow the superSetOf method to be implemented:

there is no way to �nd out what are the elements of the other set (the one provided as argument

to superSetOf). We have no choice but to extend the interface of set objects with a method that

provides access to this information; let us call it rep, as a reminder that, in general, it may need to

provide access to the whole internal representation of the object.

IntSetExposed � hhadd : int ! unit ; member : int ! bool ; superSetOf : IntSetExposed ! bool ;

rep: IntListii

Now we can easily implement all the methods of IntSetExposedClass, as shown in Figure 12.

It remains to show how to package the class IntSetExposedClass so that the rep method can only

be called by other instances of the same class. For this, we generalize Mitchell and Plotkin's motto

that \abstract types have existential type" [42], combining it with the idea of object interfaces as

type operators from Section 4.1.2 and Cardelli and Wegner's partially abstract types [14].

Using the notation from Section 4.1.2, the interface of exposed integer set objects can be written:

IntSetExposedOperator(S) � hhadd : int ! unit ; member : int ! bool ; superSetOf : S ! bool ;

rep: IntListii

Similarly, the interface of ordinary integer set objects (without rep) can be written:

IntSetOperator(S) � hhadd : int ! unit ; member : int ! bool ; superSetOf : S ! boolii

Now comes the key point. Instead of de�ning IntSet = Fix(IntSetOperator) as we did before, we

build an abstract data type (ADT) and then open it to obtain IntSet. The implementation of the

ADT uses IntSetExposedOperator, so that superSetOf makes sense, but the rep method is hidden

from public view.

The integer set package (or module) is de�ned in Figure 13. To verify that its type is

intSetPackage : Some(ISOp <: IntSetOperator) hhnewIntSet : Fix(ISOp)ii

26

intSetPackage =

pack

procedure newIntSet() is

var

nuSet: Fix(IntSetExposedOperator)

begin

nuSet := new IntSetExposedClass();

return(nuSet)

end

as

Some(ISOp <: IntSetOperator) hhnewIntSet : Fix(ISOp)ii

hiding

IntSetExposedOperator

end

Figure 13: The package intSetPackage.

we need only check that when the hidden \witness type" IntSetExposedOperator is replaced by

the abstract placeholder ISOp in the type of the body of the package

hhnewIntSet : Fix(IntSetExposedOperator)ii

we obtain the body of the abstract type:

hhnewIntSet : Fix(ISOp)ii:

Having built intSetPackage, we can open it to obtain the creation procedure newIntSet and the

abstract interface ISOp, from which we de�ne the type IntSet:

open intSetPackage

as ISOp with hhnewIntSetii

type IntSet = Fix(ISOp)

In the remainder of the program, objects created using newIntSet have type IntSet. In particular,

they can be sent the superSetOf message.

In e�ect, what we have accomplished is to blend object- and ADT-style abstraction mechanisms.

The primary mechanism is objects: both ordinary (unary) operations like add and binary operations

like superSetOf are methods of objects rather than free-standing procedures. The extra layer of

packaging guarantees that elements of IntSet can only be created by calling newIntSet|i.e., that

every element of IntSet is actually an instance of IntSetExposedClass, and hence supports the rep

message.

6 Binary Methods and Behavioral Speci�cation

Although our example of ColorPoint , Point , and their equal methods is standard, it can be criticized

on methodological grounds. To understand the criticism, consider one of two ways one might

27

type speci�cation Point

uses PointTrait

methods

x : real

ensures result = xCoord(self)

y : real

ensures result = yCoord(self)

equal(p: Point): bool

ensures result � (xCoord(self) = xCoord(p)

^ yCoord(self) = yCoord(p))

end type speci�cation

Figure 14: A �rst speci�cation of the behavior of the type Point , which has a strong speci�cation

of the equal method.

PointTrait : trait

includes Rational(real for Q)

introduces

makePoint: real, real ! Point

xCoord, yCoord: Point ! real

asserts Point generated by makePoint

8 x, y:real

xCoord(makePoint(x,y)) == x

yCoord(makePoint(x,y)) == y

Figure 15: The trait PointTrait, which de�nes a mathematical model of points.

possibly specify the behavior of the type Point , which is shown in Figure 14. In the �gure, the

abstract values [31] of the type Point are de�ned in the Larch Shared Language (LSL) [30] trait

\PointTrait" of Figure 15. The postconditions of the methods follow the keyword ensures. They

are stated using the mathematical vocabulary de�ned in PointTrait, and the keyword result, which

stands for the value returned by the method. With this speci�cation, one can verify that objects

of class PointClass in Figure 1 correctly implement the speci�cation of the type Point .

The mechanisms of Sections 4.2, 4.3, and 4.4, above allow ColorPoint to be a subtype of Point .

Suppose that the code in Figure 8 correctly implements a speci�cation of the type ColorPoint.

Then by virtue of the subtyping, one can use instances of ColorPointClass where objects of type

Point are required. For example, one could call the function testPointEqual given in Figure 16,

and pass it two instances of ColorPointClass. Looking just at the speci�cation of the type Point

and the code in the function testPointEqual, one would conclude that it should always return true.

However, if one passes it two instances of ColorPointClass with the same x and y coordinates,

but with di�erent colors, then it will return false. This happens even if the type theory, as in

Section 4.2, allows the type ColorPoint to be a subtype of Point . After briey introducing some

terminology, we return to the problem of what to do about such examples below.

28

function testPointEqual(p1: Point , p2: Point): bool is

return(((p1.x == p2.x) && (p1.y ==p2.y))

== p1.equal(p2))

Figure 16: The function testPointEqual.

It is useful to distinguish among three relationships: subclassing (or inheritance), subtyping,

and behavioral subtyping. We have consistently distinguished subclasses from subtypes in this

paper. For example, we noted that, without multi-methods, ColorPoint is not a subtype of Point ,

even when ColorPointClass is a subclass of PointClass.

A subtype relationship means that objects of the subtype can be used in any situation where

objects of the supertype can be used, without the possibility of encountering type errors. Behavioral

subtyping is a stronger relationship than subtyping, and, in addition to guarantees about lack of

type errors, makes behavioral guarantees.

In order to decide when one ADT

10

is a behavioral subtype of another, one needs behavioral

speci�cations of the types in question. A type S is a behavioral subtype of T [3, 4, 36, 35, 39, 37]

when objects of type S can be manipulated according to the speci�cation of type T , and when this

is done, they behave as dictated by the speci�cation of type T . For example, one can compare

the types Point as speci�ed in Figure 14 and ColorPoint as speci�ed in Figure 17 (and the trait

in Figure 18). For these two types, ColorPoint is not a behavioral subtype of Point . The reason

is that ColorPoint objects can be observed to di�er from the speci�cation in Figure 14; one such

observation is given by the function testPointEqual of Figure 16. (If one passes two ColorPoint

objects with the same x and y coordinates, but with di�erent colors, to this function, it returns

false, which cannot happen according to the speci�cation of the type Point .) Hence ColorPoint is

not a behavioral subtype of Point as speci�ed in Figure 14.

If an ADT S has an interface that is not a subtype of T 's, then objects of type S cannot be

manipulated as objects of type T , and so S cannot be a behavioral subtype of T . However, in

Sections 4.2, 4.3, and 4.4, (the interface type) of ColorPoint is a subtype of Point . Hence this is an

example of two types that are in a subtype relationship but not a behavioral subtype relationship.

There are (at least) two conclusions one can draw from such examples. The �rst is that struc-

tural type information alone is not enough to decide behavioral subtype relationships, especially

for ADTs. For example, if one intends ColorPoint and Point to be ADTs, and not simply record

types, then di�erent type rules might be desired. Since ADTs are de�ned by type speci�cations,

one might not want their types to be identi�ed with the types of their interfaces (a record type for

their operations). Then one would base type checking for ADT objects on the name of the ADTs,

and not on the structure of the interface record type. Similarly, subtyping for ADTs might be based

on declared subtype relationships. (This is done, for example, in the subtyping rule for the witness

types of existential types [14, 12].) The advantage of declaring subtype relationships for ADTs

is that the type system can be prevented from using a subtype relationship that the programmer

knows is not a behavioral subtype relationship. That is, if the programmer can declare subtype

10

In this section we use the term \ADT" with a di�erent meaning than earlier. Before we discussed ADT-style

encapsulation, by which we meant encapsulation enforced by a module system or a type system as in Ada or CLU.

In this section ADT means what it does in software engineering: a set of objects whose behavior is characterized by

a speci�cation. The behavioral speci�cations of types such as record and function types are �xed by the semantics

of the programming language, and hence we use the word \types" in this section to mean both ADTs and composite

or higher-order types built from them.

29

type speci�cation ColorPoint

uses ColorPointTrait

methods

x : real

ensures result = xCoord(self)

y : real

ensures result = yCoord(self)

c: string

ensures result = colorOf(self)

equal(p: ColorPoint): bool

ensures result � (xCoord(self) = xCoord(p)

^ yCoord(self) = yCoord(p)

^ colorOf(self) = colorOf(p))

end type speci�cation

Figure 17: A speci�cation of the behavior of the type ColorPoint .

ColorPointTrait : trait

includes Rational(real for Q), String(string for C)

introduces

makeColorPoint: real, real, string ! ColorPoint

xCoord, yCoord: ColorPoint ! real

colorOf: ColorPoint ! string

asserts ColorPoint generated by makeColorPoint

8 x, y:real, s: string

xCoord(makeColorPoint(x,y,s)) == x

yCoord(makeColorPoint(x,y,s)) == y

colorOf(makeColorPoint(x,y,s)) == s

Figure 18: The trait ColorPointTrait, which de�nes a mathematical model of colored points.

30

type speci�cation Point

uses PointTrait

methods

x : real

ensures result = xCoord(self)

y : real

ensures result = yCoord(self)

equal(p: Point): bool

ensures result) (xCoord(self) = xCoord(p)

^ yCoord(self) = yCoord(p))

end type speci�cation

Figure 19: A second speci�cation of the behavior of the type Point , which has a weaker speci�-

cation of the equal method.

relationships among ADTs, the programmer can use the type system to enforce behavioral subtyp-

ing, and thus the type system can aid in reasoning about programs that use behavioral subtyping

[36, 35, 37]. The disadvantage, however, is that the programmer must then declare all subtype

relationships among ADTs: the language would not be allowed to infer any.

The second conclusion is that one should think about potential behavioral subtypes when spec-

ifying types, especially those with binary operations. For example, if the type Point is speci�ed as

in Figure 19, then the ColorPoint speci�ed in Figure 17 can be a behavioral subtype (when the

type theory allows it to be a subtype). This is because of the weaker speci�cation of the equal ,

which only requires that when the result is true, that the x and y coordinates be equal, not vice

versa. Hence a behavioral subtype, such as ColorPoint , can have an equal method that takes extra

information (such as color) into account.

The disadvantage of such a weak speci�cation of Point and its method equal is that it may be

too weak to prove some desired properties of programs. For example, assuming extra methods to

mutate points, one might write a loop that compares a given point to the origin; if the two points

are really ColorPoint objects, then the comparison may fail even though the x and y coordinates

are the same.

One can also examine the question of whether to avoid binary methods from the perspective

of behavioral subtyping. Depending on how one writes type speci�cations, having binary methods

may limit behavioral subtyping, whereas not having binary methods, such as equal , allows more

behavioral subtype relationships. Thus, it might sometimes be wise to avoid binary methods as a

way of promoting behavioral subtyping among ADTs.

7 Summary and Conclusions

Binary methods pose real problems in object-oriented programming languages. There is a typing

problem because types with binary methods have few interesting subtypes, and there is a problem

obtaining privileged access to additional arguments in binary methods. Because of the latter

problem, it is not always possible to avoid binary methods.

We discussed the following solutions to the typing problem for binary methods.

� Using a notion of matching, which is weaker than subtyping. This allows more polymorphism

31

in the presence of types with binary methods. However, it seems to require programmers to

plan ahead more than they would using subtyping, and its exibility is not as great as with

multi-methods.

� Using multi-methods, either as a basis for object-oriented programming, or as a solution

within the framework of single-dispatched languages. This gives the programmer more ex-

ibility in programming binary methods, and consequently allows more subtyping. However,

there are modularity and e�ciency problems with these approaches.

� Using more precise typings for methods (including the Ingalls simulation of multi-methods).

This allows more exibility than matching. However, it seems to require type inference to be

practical [25], and the resulting types may be more complicated than programmers want to

see.

To solve the problem of privileged access to additional arguments, we discussed adding addi-

tional layers of abstraction. However, this by itself does not seem to solve the typing problems of

binary methods, and so would have to be combined with one of the previous solutions.

So, which solution is the best? If the authors agreed on the answer, this paper would not

have been written to begin with. None of the solutions is perfect, and for practical programming

languages the question may boil down to what sort of inconvenience the programmer is most likely

to tolerate. Some work also remains in determining if some of the solutions will scale up to full-

featured languages.

Acknowledgements

Thanks to the US National Science Foundation and ESPRIT for their support of the workshop

that resulted in this paper.

References

[1] Mart��n Abadi and Luca Cardelli. On subtyping and matching. In Proceedings ECOOP '95,

1995. To appear.

[2] Rakesh Agrawal, Lindga G. DeMichiel, and Bruce G. Lindsay. Static type checking of multi-

methods. ACM SIGPLAN Notices, 26(11):113{128, November 1991. OOPSLA '91 Conference

Proceedings, Andreas Paepcke (editor), October 1991, Phoenix, Arizona.

[3] Pierre America. Inheritance and subtyping in a parallel object-oriented language. In Jean

Bezivin et al., editors, ECOOP '87, European Conference on Object-Oriented Programming,

Paris, France, pages 234{242, New York, NY, June 1987. Springer-Verlag. Lecture Notes in

Computer Science, Volume 276.

[4] Pierre America. Designing an object-oriented programming language with behavioural subtyp-

ing. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-

Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June

1990, volume 489 of Lecture Notes in Computer Science, pages 60{90. Springer-Verlag, New

York, NY, 1991.

[5] Apple Computer Inc., Eastern Research and Technology. Dylan: an object-oriented dynamic

language, April 1992.

32

[6] Fran�cois Bancilhon, Claude Delobel, and Paris Kanellakis (eds.). Implementing an Object-

Oriented database system: The story of O

2

. Morgan Kaufmann, 1992.

[7] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in the Emerald

system. ACM SIGPLAN Notices, 21(11):78{86, November 1986. OOPSLA '86 Conference

Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

[8] Andrew P. Black and Norman Hutchinson. Typechecking polymorphism in Emerald. Tech-

nical Report CRL 91/1 (Revised), Digital Equipment Corporation, Cambridge Research Lab,

Cambridge, Mass., July 1991.

[9] Kim Bruce. A paradigmatic object-oriented programming language: design, static typing and

semantics. Journal of Functional Programming, 4(2):127{206, 1994.

[10] Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe polymorphic

object-oriented language. In Proceedings ECOOP '95, 1995. To appear.

[11] Peter Canning, William Cook, Walter Hill, Walter Oltho�, and John Mitchell. F-bounded

quanti�cation for object-oriented programming. In Fourth International Conference on Func-

tional Programming Languages and Computer Architecture, pages 273{280, September 1989.

[12] Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and G. Plotkin,

editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages

51{67. Springer-Verlag, 1984. Full version in Information and Computation 76(2/3):138{164,

1988.

[13] Luca Cardelli. Notes about F

!

<:

. Unpublished manuscript, October 1990.

[14] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-

phism. Computing Surveys, 17(4), December 1985.

[15] Giuseppe Castagna. Covariance and contravariance: conict without a cause. ACM Transac-

tions on Programming Languages and Systems, 17(3), 1995.

[16] Giuseppe Castagna. A proposal for making O

2

more type safe. Technical Report

LIENS-95-4, Laboratoire d'Informatique de l'Ecole Normale Sup�erieure, February 1995.

To appear in BDA'95 . Currently available by anonymous ftp from ftp.ens.fr in �le

/pub/dmi/users/castagna/o2.dvi.Z.

[17] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions

with subtyping. Information and Computation, 117(1):115{135, February 1995. A preliminary

version appeared in ACM Conference on LISP and Functional Programming , June 1992 (pp.

182{192).

[18] Giuseppe Castagna and Gary T. Leavens. Foundation of object-oriented languages: 2nd work-

shop report. SIGPLAN Notices, 30(2):5{11, February 1995.

[19] Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann Madsen, editor,

ECOOP '92, European Conference on Object-Oriented Programming, Utrecht, The Nether-

lands, volume 615 of Lecture Notes in Computer Science, pages 33{56. Springer-Verlag, New

York, NY, 1992.

33

[20] Craig Chambers and Gary T. Leavens. Typechecking and modules for multi-methods. ACM

SIGPLAN Notices, 29(10):1{15, October 1994. OOPSLA '94 Conference Proceedings, October

1994, Portland, Oregon.

[21] Adriana B. Compagnoni and Benjamin C. Pierce. Multiple inheritance via intersection types.

Mathematical Structures in Computer Science, 1995. To appear. Preliminary version avail-

able as University of Edinburgh technical report ECS-LFCS-93-275 and Catholic University

Nijmegen computer science technical report 93-18, Aug. 1993.

[22] William R. Cook. Object-oriented programming versus abstract data types. In J. W. de Bakker,

W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX

School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of Lecture

Notes in Computer Science, pages 151{178. Springer-Verlag, New York, NY, 1991.

[23] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In Proc.

17th ACM Symp. on Principles of Programming Languages, pages 125{135, January 1990.

[24] L.G. DeMichiel and R.P. Gabriel. Common Lisp Object System overview. In B�ezivin, Hullot,

Cointe, and Lieberman, editors, Proc. of ECOOP '87 European Conference on Object-Oriented

Programming, number 276 in LNCS, pages 151{170, Paris, France, June 1987. Springer-Verlag.

[25] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type in-

ference for objects. In OOPSLA, 1995. To appear. Currently available as

ftp://ftp.cs.jhu.edu/pub/scott/sptio.ps.Z.

[26] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for recursively constrained

types and its application to OOP. In Mathematical Foundations of Programming Semantics,

New Orleans, volume 1 of Electronic Notes in Theoretical Computer Science. Elsevier, 1995.

To Appear. Currently available as ftp://ftp.cs.jhu.edu/pub/scott/ooinfer.ps.Z.

[27] Jonathan Eifrig, Scott Smith, Valery Trifonov, and Amy Zwarico. Application of OOP type

theory: State, decidability, integration. In OOPSLA, 1994.

[28] Giorgio Ghelli. A static type system for message passing. In Proc. OOPSLA, pages 129{145,

1991.

[29] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.

Addison-Wesley, Reading, MA, 1983.

[30] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing.

Larch: Languages and Tools for Formal Speci�cation. Springer-Verlag, New York, NY, 1993.

[31] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271{281,

1972.

[32] Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework for objects. Jour-

nal of Functional Programming, 1995. To appear. Previous versions appeared in the Symposium

on Theoretical Aspects of Computer Science, 1994, and, under the title \An Abstract View

of Objects and Subtyping (Preliminary Report)," as University of Edinburgh, LFCS technical

report ECS-LFCS-92-226, 1992.

34

[33] Daniel H. H. Ingalls. A simple technique for handling multiple polymorphism. In Norman

Meyrowitz, editor, OOPSLA '86 Conference Proceedings, Portland, Oregon, September 1986,

volume 21(11) of ACM SIGPLAN Notices, pages 347{349. ACM, November 1986.

[34] Dinesh Katiyar, David Luckham, and John Mitchell. A type system for prototyping languages.

In Conference Record of POPL '94: 21st ACM SIGPLAN{SIGACT Symposium of Principles

of Programming Languages, Portland, Oregon, pages 138{150. ACM, January 1994.

[35] Gary T. Leavens. Modular speci�cation and veri�cation of object-oriented programs. IEEE

Software, 8(4):72{80, July 1991.

[36] Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programs that use

subtypes (extended abstract). In N. Meyrowitz, editor, OOPSLA ECOOP '90 Proceedings,

volume 25(10) of ACM SIGPLAN Notices, pages 212{223. ACM, October 1990.

[37] Gary T. Leavens and William E. Weihl. Speci�cation and veri�cation of object-oriented pro-

grams using supertype abstraction. Acta Informatica, 1994. To appear. An expanded version

is Department of Computer Science, Iowa State University, Technical Report 92-28d, August

1994.

[38] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghemawat, Robert Gruber, Paul Johnson,

and Andrew C. Myers. Theta reference manual. Technical Report Programming Methodology

Group Memo 88, MIT, February 1995.

[39] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM Transactions

on Programming Languages and Systems, 16(6):1811{1841, November 1994.

[40] Narciso Mart��-Oliet and Jos�e Meseguer. Inclusions and subtypes. Technical Report SRI-CSL-

90-16, Computer Science Laboratory, SRI International, December 1990.

[41] Bertrand Meyer. Ei�el: the language. Prentice-Hall, 1992.

[42] John Mitchell and Gordon Plotkin. Abstract types have existential type. ACM Transactions

on Programming Languages and Systems, 10(3), July 1988.

[43] John C. Mitchell. Toward a typed foundation for method specialization and inheritance. In

Proceedings of the 17th ACM Symposium on Principles of Programming Languages, pages 109{

124, January 1990. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects

of Object-Oriented Programming: Types, Semantics, and Language Design (MIT Press, 1994).

[44] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-methods in a statically-typed pro-

gramming language. In Pierre America, editor, ECOOP '91 Conference Proceedings, Geneva,

Switzerland, volume 512 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[45] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[46] Benjamin Pierce and Martin Ste�en. Higher-order subtyping. Submitted for publication. A

preliminary version appeared in IFIP Working Conference on Programming Concepts, Methods

and Calculi (PROCOMET), June 1994, and as University of Edinburgh technical report ECS-

LFCS-94-280 and Universit�at Erlangen-N�urnberg Interner Bericht IMMD7-01/94, January

1994.

35

[47] Benjamin C. Pierce and David N. Turner. Statically typed friendly functions via partially

abstract types. Technical Report ECS-LFCS-93-256, University of Edinburgh, LFCS, April

1993. Also available as INRIA-Rocquencourt Rapport de Recherche No. 1899.

[48] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-oriented

programming. Journal of Functional Programming, 4(2):207{247, April 1994. A preliminary

version appeared in Principles of Programming Languages, 1993, and as University of Ed-

inburgh technical report ECS-LFCS-92-225, under the title \Object-Oriented Programming

Without Recursive Types".

[49] John Reynolds. Three approaches to type structure. In Mathematical Foundations of Software

Development. Springer-Verlag, 1985. Lecture Notes in Computer Science No. 185.

[50] Craig Scha�ert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An intro-

duction to Trellis/Owl. In Norman Meyrowitz, editor, OOPSLA '86 Conference Proceedings,

Portland, Oregon, September 1986, volume 21(11) of ACM SIGPLAN Notices, pages 9{16.

ACM, November 1986.

[51] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mass, 1986.

[52] Larry Tesler. Object Pascal report. Technical Report 1, Apple Computer, 1985.

36

