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Abstract

We present a possible framework for speci�cations of data types with in�nitary

data, which can be de�ned by recursive equations. The basic tool is that, as usual,

a recursive de�nition determines an element given as the least �xed point of the

corresponding recursor, constructed naturally as the least upper bound of the usual

chain of approximations. Somewhat unusually, we limit the prerequisite assumptions

about the underlying ordering to the necessary minimum, arriving at the notion

of a regular algebra as introduced by Tiuryn (1978, 79). It follows then that the

framework of regular algebras can be naturally equipped with the notions permitting

behavioural interpretation of speci�cations.

1 Introduction

Behavioural semantics for speci�cation plays a crucial role in the formalisation of the develop-

ment process, where a speci�cation need not be implemented exactly but so that the required

system behaviour is achieved | the idea goes back to [GGM76], [Hoa72]; see e.g. [ST95] for

the context in which we view it now. There have been two basic approaches to behavioural

equivalence to achieve this e�ect. One introduces a new notion of a behavioural satisfaction of

formulae, based on the interpretation of equality as an internal indistinguishability relation in

each model de�ned so that two elements are considered equal if they are indistinguishable to

the user of the data type given by the model. The other is based on an external notion of a

behavioural equivalence of models, where two models are considered equivalent if they cannot be

distinguished by any computation the user can perform. For example, see [NO88] for a technical

presentation of the former and [ST87] of the latter approach. There have also been attempts

to unify the two views [Rei85], recently concluded in [BHW94], where it has been shown that

the class of models that behaviourally satisfy a speci�cation coincides with the class of mod-

els behaviourally equivalent to a fully abstract model (in the usual sense) of the speci�cation.

One goal of this paper is to show how these ideas work in the framework permitting recursive

de�nitions of data.



A well-know framework which facilitates such de�nitions and has been extensively studied

in the literature is that of continuous algebras (as presented e.g. in [GTWW77], [TW86]).

Unfortunately, under a closer scrutiny from the point of view of the machinery needed for

behavioural semantics, some technicalities of the continuous algebra framework turn out to be

rather cumbersome. In particular, we were not quite able to explicate some standard examples

(like implementation of streams of sets by streams of some lists) in a convincing way. The

technical source of the trouble was the need for limits of all (countable) chains in continuous

algebras, which led to the ideal closure construction [Nel81], [BN82] in the process of behavioural

quotienting of a continuous (implementation) algebra to obtain a continuous (implemented)

algebra. The resulting extra elements can of course enjoy di�erent properties from the ones

present in the implementation (even in the presence of the usual continuity requirements),

and hence render the idea of implementation via quotienting by an indistinguishability relation

intuitively questionable.

Instead of trying to bend our general views to cover this somewhat unintuitive case, we have

decided to explore another possibility and check whether ideal closure is in fact really needed.

The starting point for these considerations was that we tried to minimize the assumptions under

which we can meaningfully deal with recursively de�ned data in continuous algebras. The key

observation here is that limits of all the chains that can be formed in the partially ordered

carrier of the algebra are not needed for this: all we need are limits of the chains of subsequent

\�nitary" approximations of the data de�ned by recursive equations. Similarly, continuity of

operations of the algebras is not needed: the operations need not preserve limits of all the chains,

but only limits of such de�nable chains of approximations.

In this way the ordering relation on the algebra carriers becomes just a technical tool to

describe solutions of recursive equations, rather than a central element of the algebra structure

to be speci�ed and argued about by means of logical axioms, as is the case in the continuous

algebra framework.

In this paper we present some of the resulting technicalities. These will cover formal de�ni-

tions of basic algebraic concepts as well as some most standard facts, familiar from the standard

universal algebra, restated in this framework. We view this paper as a technical note report-

ing the technical progress made and largely recalling the technical developments presented in

[Tiu78], [Tiu79], much more than as an adequate presentation of the framework proposed. For

this, more work would be needed, both on the technical side, to complete the algebraic picture

we have in mind (see [Tiu78], [Tiu79] for some further technical developments we omit here),

and on the more practical side, where examples should be provided to check whether what we

propose applies to the situations typically studied.

2 Regular algebras and their homomorphisms

Let S be an arbitrary set (of sorts). By an S-sorted set we mean any familyX = hX

s

i

s2S

of sets.

The usual category of S-sorted sets will be denoted by Set

S

. We generalise all the standard

set-theoretic notions and notations to S-sorted sets. Moreover, the explicit quali�cations by the

set S of sorts and by speci�c sorts s 2 S will often be omitted whenever they are clear from the

context. For example, we write x 2 X meaning x 2 X

s

if s 2 S is clear (or unimportant); for
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R � X � Y (that is, R = hR

s

� X

s

� Y

s

i

s2S

) and x 2 X

s

, y 2 Y

s

, we will write xR y meaning

xR

s

y; for f :X ! Y and x 2 X we will write f(x) meaning f

s

(x) for the appropriate s 2 S;

etc.

An algebraic signature � = hS;
i consists of a set S (of sorts) and of a family 
 =

h


s;w

i

s2S;w2S

�

of sets (of operation names). When � is clear from the context, we will write

f : s

1

� : : :� s

n

! s for s

1

; : : : ; s

n

; s 2 S and f 2 


s;s

1

:::s

n

.

Let � = hS;
i be an algebraic signature, �xed throughout the rest of the paper.

De�nition 2.1

An ordered �-algebra A consists of

� an S-sorted set jAj 2 jSet

S

j,

� for each sort s 2 S, a partial order �

A

s

� jAj

s

�jAj

s

on jAj

s

,

� for each sort s 2 S, a distinguished element ?

A

s

2 jAj

s

,

� for each operation name f : s

1

� : : :� s

n

! s, a function f

A

: jAj

s

1

� : : :� jAj

s

n

! jAj

s

.

2

As usual, we will omit the formally given above sort and algebra decorations (subscripts s

and superscripts A) when no confusion is likely.

The above notion of an ordered algebra departs essentially from the more usual de�nitions

known in the literature, see e.g. [M�ol85]. All we assume here is that some ordering relation,

with a distinguished point, is given on the algebra carriers. This is quite orthogonal to the usual

structure of algebraic operations, which are not even assumed here to be monotone w.r.t. the

ordering.

De�nition 2.2

For any S-sorted set X 2 jSet

S

j (of variables), we de�ne the set T

�

�

(X) of �-terms with

variables X as the least S-sorted set such that:

� X � T

�

�

(X),

� for f : s

1

� : : :� s

n

! s and t

1

2 T

�

�

(X)

s

1

, : : : , t

n

2 T

�

�

(X)

s

n

, f(t

1

; : : : ; t

n

) 2 T

�

�

(X)

s

,

� for any t 2 T

�

�

(X [ fz:sg)

s

, where z:s is a distinguished variable of sort s 2 S,

�z:t 2 T

�

�

(X).

A term is algebraic if it does not contain any subterm of the form �z:t; the set of all algebraic

�-terms with variables X will be denoted by T

�

(X).

For each term t 2 T

�

�

(X) the (�nite) set FV(t) � X of variables that occur freely in t is

de�ned as usual (z does not occur freely in �z:t). 2

The idea is of course that terms of the form �z:t are to denote elements el de�ned recursively

by

val rec el = t[el]

3



where t[el] is t with el substituted for all the free occurrences of z. Terms t 2 T

�

�

(X [fz:sg)

s

with indicated \recursion variable" z:s will be called recursors on sort s (a bit ambiguously, we

will also use this name for the function on an algebra carrier such a recursor implicitly denotes).

Note that we do not equip the set of terms T

�

�

(X) with the structure of an ordered algebra:

no term is distinguished as ?, no partial order is given, no operations on terms are de�ned,

terms of the form �z:t are just formal symbols here, not least �xed points, etc.

De�nition 2.3

Given an ordered �-algebra A, a term t 2 T

�

�

(X)

s

and a valuation of variables v:X ! jAj,

we de�ne the value of t in A under v, written as t

A[v]

2 jAj

s

, by induction on the structure of

t as follows:

� for x 2 X, x

A[v]

= v(x),

� for f : s

1

� : : : � s

n

! s and t

1

2 T

�

�

(X)

s

1

, : : : , t

n

2 T

�

�

(X)

s

n

, (f(t

1

; : : : ; t

n

))

A[v]

is

de�ned if and only if all (t

1

)

A[v]

, : : : , (t

n

)

A[v]

are de�ned and then (f(t

1

; : : : ; t

n

))

A[v]

=

f

A

((t

1

)

A[v]

; : : : ; (t

n

)

A[v]

),

� for any t 2 T

�

�

(X [ fz:sg)

s

, where z is a distinguished variable of the sort s 2 S, put

{ t

0

A[v]

(?) = ?

s

,

{ for i � 0, t

i+1

A[v]

(?) = t

A[v

i

]

, where v

i

: (X [ fz:sg)! jAj extends v by v

i

(z) = t

i

A[v]

(?).

(Notation t

i

A[v]

(?), as introduced here, will be used throughout the paper.)

Now, (�z:t)

A[v]

is de�ned if

{ t

i

A[v]

(?) are de�ned for all i � 0,

{ t

i

A[v]

(?) �

s

t

i+1

A[v]

(?) for all i � 0, and

{ the least upper bound

F

i�0

t

i

A[v]

(?) w.r.t. �

s

exists in jAj

s

.

Then (�z:t)

A[v]

=

F

i�0

t

i

A[v]

(?).

2

As follows from the above de�nition, the value of a term in an ordered algebra need not be

de�ned.

It is easy to check that the usual substitution properties for the values of terms hold:

Lemma 2.4

Consider an ordered �-algebra A, and a term t 2 T

�

�

(X).

� The value of a term depends only on the valuation of its free variables: for any two

valuations v; v

0

:X ! jAj such that v(x) = v

0

(x) for all x 2 FV(t), t

A[v]

is de�ned if and

only if t

A[v

0

]

is de�ned and if this is the case then t

A[v]

= t

A[v

0

]

.

� For any substitution �:X ! T

�

�

(Y ) and valuation v

0

:Y ! jAj such that for all x 2 X,

�(x)

A[v

0

]

is de�ned, t

A[v]

is de�ned if and only if �(t)

A[v

0

]

is de�ned and if this is the case

then t

A[v]

= �(t)

A[v

0

]

, where �(t) 2 T

�

�

(Y ) is the term resulting from t by substituting all

free occurrences of x 2 X by �(x) (substitution is de�ned so that unintended clashes of

variables are avoided) and v:X ! jAj is de�ned by v(x) = �(x)

A[v

0

]

.
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Proof: Follows by induction on the structure of t. 2

One consequence of the above lemma is that the subsequent iterations of a recursor, de�ned

semantically in De�nition 2.3, may in fact be rede�ned syntactically as follows.

Lemma 2.5

Consider an ordered �-algebra A and a recursor t 2 T

�

�

(X [ fz:sg)

s

. De�ne t

(0)

= z and

for i � 0, t

(i+1)

= �

i

(t

(i)

), where �

i

: (X [ fz:sg)! T

�

�

(X [ fz:sg) extends the identity on X by

�

i

(z) = t

(i)

. Then for any valuation v:X ! jAj, for i � 0, t

i

A[v]

(?) is de�ned if and only if t

(i)

A[v

?

]

is de�ned and if this is the case then t

i

A[v]

(?) = t

(i)

A[v

?

]

, where v

?

: (X [ fz:sg) ! jAj extends v

by v

?

(z) =?

s

.

Proof: Follows by an easy induction on i � 0 using Lemma 2.4. 2

De�nition 2.6

An ordered �-algebra A is called a regular �-algebra if it satis�es the following two condi-

tions:

(completeness condition): For all terms t 2 T

�

�

(X) and valuations v:X ! jAj, the value t

A[v]

of

t in A under v is de�ned.

(continuity condition): For all terms t 2 T

�

�

(X [ fy:sg)

s

0

, recursors q 2 T

�

�

(X [ fz:sg)

s

and

valuation v:X ! jAj,

� t

A[v

i

]

� t

A[v

i+1

]

, for i � 0, and

� t

A[v

0

]

=

F

i�0

t

A[v

i

]

,

where v

0

: (X[fy:sg)! jAj extends v by v

0

(y) = (�z:q)

A[v]

and for i � 0, v

i

: (X[fy:sg)!

jAj extends v by v

i

(y) = q

i

A[v]

(?).

2

More intuitively, regular algebras permit any recursive de�nitions of their elements, ensuring

that any recursor de�ned using their operations has a least �xed point given as the least upper

bound of the usual chain of approximations. The �rst requirement of the above de�nition gives

the su�cient completeness condition on the (partially ordered) carrier of the algebra. It is easy

to see that for each sort s 2 S, ?

s

is the least element in jAj

s

(since �z:x has a value under

any valuation of the free variable x). Notice however that not all the chains in jAj need to have

least upper bounds. Thus, the carriers of a regular algebra need not form complete posets in

the usual sense. The second condition ensures that the operations of the algebra are continuous

w.r.t. to the approximation chains involved in the de�nition of the meaning of such recursively

de�ned data. This implies that the denotation of a recursive term of the form �z:t is indeed the

least �xed point of the recursor t:

Proposition 2.7

Consider any regular �-algebra A, recursor t 2 T

�

�

(X [ fz:sg)

s

and valuation v:X ! jAj.

Then t

A[v

0

]

= (�z:t)

A[v]

, where v

0

: (X [ fz:sg) ! jAj extends v by v

0

(z) = (�z:t)

A[v]

. Moreover,

if for some a 2 jAj, t

A[v

a

]

= a, where v

a

: (X [ fz:sg) ! jAj extends v by v

a

(z) = a, then

(�z:t)

A[v]

� a.

5



Proof: The �rst part follows directly from the continuity condition of De�nition 2.6. For the

second part, �rst notice that again from the continuity condition, considering the term �z

0

:z,

we have t

1

A[v]

(?) = t

A[v

?

]

� t

A[v

a

]

= a, where v

?

: (X [ fz:sg) ! jAj extends v by v

?

(z) =?=

(z)

0

A[v

a

]

(?), since v

a

(z) = a = (z)

1

A[v

a

]

. In fact, for any i > 0, using the same argument and

Lemma 2.5, t

i

A[v]

(?) = t

(i)

A[v

?

]

� t

(i)

A[v

a

]

= a (since t

(i)

A[v

a

]

= a follows from t

A[v

a

]

= a by an easy

induction on i > 0 using Lemma 2.4). This directly implies that (�z:t)

A[v]

=

F

i�0

t

i

A[v]

(?) � a.

2

The operations of a regular algebra need not be continuous, nor even monotone, since they

in general do not preserve all least upper bounds of chains which may happen to exist in the

carriers of A. However, as the proof of the above proposition indicates, the image of ? under all

algebraic operations in A (including those denoted by complex recursive terms) is smaller than

the image of any other value under this operation. Therefore, our de�nition of regular algebra

does indeed coincide with the de�nition of a regular algebra as given in [Tiu78], [Tiu79].

De�nition 2.8

Given two regular �-algebras A and B, by a regular �-homomorphism h:A ! B from A

to B we mean any function h: jAj ! jBj such that for all terms t 2 T

�

�

(X) and valuations

v:X ! jAj, h(t

A[v]

) = t

B[v;h]

. 2

Again, one can check that regular homomorphisms as de�ned above coincide with the regular

homomorphisms of [Tiu78], [Tiu79].

It follows that regular homomorphisms preserve the distinguished elements and the values

of operations, as expected:

Proposition 2.9

Let h:A! B be a regular �-homomorphisms.

� h(?

A

) = ?

B

, and

� for f : s

1

� : : :� s

n

! s and a

1

2 jAj

s

1

, : : : , a

n

2 jAj

s

n

,

h(f

A

(a

1

; : : : ; a

n

)) = f

B

(h(a

1

); : : : ; h(a

n

)).

� for t 2 T

�

�

(X [ fz:sg)

s

and v:X ! jAj, for all i � 0, h(t

i

A[v]

(?

A

)) = t

i

B[v;h]

(?

B

).

Proof: ?

A

= (�z:z)

A

and f

A

(a

1

; : : : ; a

n

) = (f(x

1

; : : : ; x

n

))

A[v]

, where v(x

i

) = a

i

for i = 1; : : : ; n.

The last part follows by an easy induction on i � 0. 2

In general, regular homomorphisms need not be continuous or even monotone. They do,

however, preserve the limits of approximation chains that may occur in recursive de�nitions.

It is easy to check that regular homomorphisms are closed under composition and that

identities are regular homomorphisms. This yields a category RAlg(�) of regular �-algebras

and their homomorphisms.

Proposition 2.10

Let h:A ! B be a regular �-homomorphisms. Then h is an isomorphism (in RAlg(�) ) if

and only if it is a bijection.

6



Proof: The \only if" part is trivial. For the \if" part, assume that the regular homomorphism is

bijective. Let h

�1

: jBj ! jAj be the inverse of h. We have to show that h

�1

:B ! A is a regular

homomorphism. Consider t 2 T

�

�

(X) and v:X ! jBj. Then h

�1

(t

B[v]

) = h

�1

(t

B[v;h

�1

;h]

) =

h

�1

(h(t

A[v;h

�1

]

)) = t

A[v;h

�1

]

. 2

Consequently, in RAlg(�) there exist exact isomorphisms (that is, isomorphisms which are

identities as functions between carrier sets) that are not identities of RAlg(�).

Lemma 2.11

Let B be a nonempty family of exactly isomorphic regular �-algebras. Then an ordered

�-algebra A given by:

� jAj = jBj for any (and hence all) B 2 B,

� ?

A

= ?

B

for any (and hence all) B 2 B,

� for each operation name f in �, f

A

= f

B

for any (and hence all) B 2 B,

� �

A

=

T

B2B

�

B

is a regular �-algebra exactly isomorphic to those in B.

Proof: First, we have to show that all recursive terms have values in A. By induction on the

structure of a term t 2 T

�

�

(X) we show that for all valuations v:X ! jAj, t

A[v]

is de�ned and

moreover t

A[v]

= t

B[v]

for any (and hence for all) B 2 B.

� For variables the thesis is trivial.

� For terms of the form f(t

1

; : : : ; t

n

), the thesis follows easily by the inductive assumption.

� Consider q 2 T

�

�

(X[fz:sg)

s

and a valuation v:X ! jAj. Using the inductive assumption,

we show that for any (and hence all) B 2 B

{ q

0

A[v]

(?) = ?

A

= ?

B

= q

0

B[v]

, and

{ by induction on i � 0, q

i+1

A[v]

(?) = q

A[v

i

]

= q

B[v

i

]

= q

i+1

B[v]

, where v

i

: (X [ fz:sg) ! jAj

extends v by v

i

(z) = q

i

A[v]

= q

i

B[v]

.

It follows now that for all B 2 B, q

i

A[v]

(?) �

B

q

i+1

A[v]

(?), and so q

i

A[v]

(?) �

A

q

i+1

A[v]

(?). Let

now a = (�z:q)

B[v]

for any (hence all) B 2 B. Since a is the least upper bound of the chain

hq

i

A[v]

(?)i

i�0

w.r.t. the ordering �

B

for each B 2 B, a =

F

i�0

q

i

A[v]

(?) w.r.t. the ordering

�

A

, which shows (�z:q)

A[v]

= (�z:q)

B[v]

.

Then, we have to show that the continuity condition holds for A. So, consider t 2 T

�

�

(X [

fy:sg)

s

0

, q 2 T

�

�

(X [ fz:sg)

s

and v:X ! jAj. Since we have already proved the completeness

condition for A, by an easy induction on i � 0 it follows that t

A[v

i

]

= t

B[v

i

]

for any (hence

all) B 2 B, where v

i

: (X [ fy:sg) ! jAj extends v by v(y) = q

i

A[v]

(?) = q

i

B[v]

(?). Let now

a = t

B[v

0

]

for any (hence all) B 2 B, where v

0

: (X [ fy:sg)! jAj extends v by v(y) = (�z:q)

B[v]

.

Since ht

A[v

i

]

(?)i

i�0

is a chain with the least upper bound a w.r.t. each ordering �

B

, B 2 B,

ht

A[v

i

]

(?)i

i�0

is a chain with the least upper bound a w.r.t. the ordering �

A

, which proves the

continuity condition for A.

7



Finally, we have already shown that for all terms t 2 T

�

�

(X) and valuations v:X ! jAj,

t

A[v]

= t

B[v]

for each B 2 B, which completes the proof that A is a regular �-algebra exactly

isomorphic to all the regular algebras in B. 2

Corollary 2.12

Let A be a regular �-algebra. Then in the class of regular �-algebras exactly isomorphic to

A there exists a regular �-algebra �(A) with the smallest ordering relation.

Proof: Follows directly from Lemma 2.11. 2

3 Regular subalgebras

De�nition 3.1

Given two regular �-algebras A and B, we say that B is a regular �-subalgebra of A if

jBj � jAj and moreover, for each term t 2 T

�

�

(X) and valuation v:X ! jBj, t

B[v]

= t

A[v]

, that

is, if the inclusion �: jBj ,! jAj is in fact a regular �-homomorphism �:B ! A. 2

It is easy to see that if B is a regular subalgebra of A then ?

B

= ?

A

and for each operation

name f in �, f

B

is the restriction of f

A

to jBj. However, this is certainly not the su�cient

condition for B to be a regular subalgebra of A.

Example 3.2

Consider a signature �

0

with a single sort s and a unary operation name suc: s ! s. Let

then B be an ordered algebra with the carrier jBj = f?; b

0

; b

1

; : : : ; b

1

g, the ordering induced

by ? �

B

b

i

�

B

b

1

for i � 0 and b

i

�

B

b

j

for j � i � 0, and the operation suc

B

given by

suc

B

(?) = b

0

, suc

B

(b

i

) = b

i+1

for i � 0, and suc

B

(b

1

) = b

1

. B is a regular �

0

-algebra, with

(�z:suc(z))

B

= b

1

.

Then, let A be an ordered algebra with the carrier jAj = jBj [ fb

0

1

g, the least ordering �

A

such that �

B

� �

A

and ? �

A

b

i

�

A

b

0

1

�

A

b

1

for i � 0, and the operation suc

A

that extends

suc

B

by suc

A

(b

0

1

) = b

0

1

. Then A is a regular �

0

-algebra, jBj � jAj, suc

B

is a restriction of

suc

A

, �

B

= �

A

\ jBj � jBj, but (�z:suc(z))

A

= b

0

1

6= b

1

= (�z:suc(z))

B

. 2

If B is a regular subalgebra of A, the ordering on B need not in general be included in the

ordering on A | this is obvious, since a part of the ordering is irrelevant, as Proposition 2.10

indicates. When the minimal ordering as given by Corollary 2.12 is considered, the expected

inclusion holds:

�

�(B)

� �

�(A)

\ jBj � jBj

This follows easily from Lemma 3.4 below. First, let us point out though that, perhaps surpris-

ingly, the above inclusion may be proper.

Example 3.3

Consider a signature �

1

with one sort s and a binary operation f : s � s! s.

Let B be an ordered �

1

-algebra with the carrier jBj = f?; b

0

; b

1

; : : :g and the trivial order-

ing (induced by the requirement ? �

B

b

i

for i � 0). Let then f

B

(x;?) = f

B

(?; x) = x and

f

B

(b

i

; b

j

) = b

max(i;j)

(this does not really matter for the example, as long as some simple conti-

nuity requirements are satis�ed). Then B is a regular algebra (with no non-trivial recursively

de�ned elements) and �(B) = B.
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Let then A be an ordered �

1

-algebra with the carrier jAj = jBj [ fa; b

1

g and the ordering

induced by �

B

and ? �

A

a, b

i

�

A

b

j

for j � i � 0, and b

i

�

A

b

1

for i � 0. Moreover, let

f

A

extends f

B

as follows: f

A

(x;?) = f

A

(?; x) = x, f

A

(a; b

i

) = f

A

(b

i

; a) = b

i+1

for i � 0, and

f

A

(x; b

1

) = f

A

(b

1

; x) = b

1

. Then A is a regular algebra, with b

1

= (�z:f(x; z))

A[fx7!ag]

, and

here �(A) = A.

Finally, B is a regular �-subalgebra of A, �

�(B)

� �

�(A)

\ jBj � jBj, but clearly �

�(B)

6=

�

�(A)

\ jBj � jBj. 2

We will see, however, that if B is a regular �-subalgebra of A then up to an exact isomorphism,

the ordering on B is (may be chosen to be) the restriction of the ordering on A to the carrier

jBj.

Lemma 3.4

Let A be a regular �-algebra, and let K � jAj be a subset of its carrier that is closed

under the values of terms in A, that is such that for all terms t 2 T

�

�

(X) and valuations

v:X ! K � jAj, t

A[v]

2 K.

Then an ordered �-algebra B given by

� jBj = K,

� ?

B

= ?

A

,

� f

B

is the restriction of f

A

to K, for each operation name f in �,

� �

B

= �

A

\K �K,

is a regular �-subalgebra of A.

Proof: We have to show that for each term t 2 T

�

�

(X) and valuation v:X ! K, t

B[v]

= t

A[v]

(and so in particular t

B[v]

is de�ned). This follows by an easy induction on the structure of t,

by the assumption that t

A[v]

2 K. Then, the continuity condition for B follows easily from the

continuity condition for A. 2

Lemma 3.5

Let A be a regular �-algebra and K � jAj. Then the set hKi

A

= ft

A[v]

j t 2 T

�

�

(X); v:X !

Kg is closed under the values of terms in A. Moreover, hKi

A

is the least subset of jAj which

has this property and includes K.

Proof: Obviously, whenever a subset of jAj is closed under values of terms in A and includes

K, it includes hKi

A

as well.

Consider now a term t 2 T

�

�

(X) and a valuation v:X ! hKi

A

. By de�nition, for each x 2 X

there exists a set Y

x

, term t

x

2 T

�

�

(Y

x

) and valuation v

x

:Y

x

! K such that v(x) = t

x

A[v

x

]

. We

can assume that for x 6= x

0

, Y

x

\ Y

x

0

= ;. Put now Y =

U

x2X

Y

x

and �v = (

U

x2X

v

x

):Y ! K.

Let �:X ! T

�

�

(Y ) be the substitution given by �(x) = t

x

for x 2 X. Then, by Lemma 2.4

t

A[�v]

= �(t)

A[�v]

2 hKi

A

, which proves that indeed hKi

A

is closed under the values of terms in A

and completes the proof of the lemma. 2

We will say that hKi

A

is the regular �-subalgebra of A generated by K. If jhKi

A

j = jAj

then we say that A is generated by K.
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Theorem 3.6

Let A be a regular �-algebra. Up to exact isomorphism, regular �-subalgebras of A are given

by all subsets of jAj closed under values of terms in A and only by such subsets. Moreover, for

any set K � jAj there exists the least regular �-subalgebra hKi

A

of A that (has the carrier

that) includes K.

Proof: The fact that the carriers of regular subalgebras of A are closed under the values of

terms in A follows directly from de�nition. Then Lemma 3.4 shows that every subset of jAj

closed under the values of terms in A is the carrier of a regular subalgebra of A. Moreover, it is

easy to check that any two regular subalgebras of A with the same carrier are exactly isomorphic.

Finally, for any set K � jAj, Lemma 3.5 gives the least (carrier of a) regular subalgebra of A

which contains K. 2

Another consequence of the characterisation of regular subalgebras is that the image and

coimage of a regular subalgebra under a regular homomorphism is a regular subalgebra:

Corollary 3.7

Let h:A ! B be a regular �-homomorphism, and let C be a regular �-subalgebra of A.

Then h(jCj) = fh(a) j a 2 jCjg is (the carrier of) a regular �-subalgebra of B.

Proof: Consider t 2 T

�

�

(X) and v:X ! h(jCj). Let ~v:X ! jCj be such that ~v;h = v. Then

t

A[v]

= t

A[~v;h]

= h(t

B[~v]

) = h(t

C[~v]

) 2 h(jCj) since t

C[~v]

2 jCj. 2

Corollary 3.8

Let h:A ! B be a regular �-homomorphism, and let C be a regular �-subalgebra of B.

Then h

�1

(jCj) = fa 2 jAj j h(a) 2 jCjg is (the carrier of) a regular �-subalgebra of A.

Proof: Consider t 2 T

�

�

(X) and v:X ! h

�1

(jCj). Then h(t

A[v]

) = t

B[v;h]

= t

C[v;h]

since

v;h:X ! jCj and C is a regular subalgebra of B. Hence, h(t

A[v]

) 2 jCj, and so t

A[v]

2 h

�1

(jCj).

The result then follows from Lemma 3.5. 2

Finally, it may be interesting to notice that all regular subalgebras are full in the following

sense:

Proposition 3.9

If B is a regular �-subalgebra of A and h:C ! A is a regular �-homomorphism such that

h: jCj ! jBj, then h:C ! B is a regular �-homomorphism as well.

Proof: We have to check that h, given as a map from jCj to jBj, preserves the values of terms.

Let t 2 T

�

�

(X), v:X ! jCj. Then h(t

C[v]

) = t

A[v;h]

= t

B[v;h]

, which completes the proof. 2

4 Regular congruences and quotients

By a kernel of an S-sorted function f :X ! Y we mean an S-sorted (equivalence) relation

ker(f) � X �X given by ker(f) = fhx; x

0

i j f(x) = f(x

0

)g.

De�nition 4.1

Given a regular �-algebra A, by a regular congruence on A we mean the kernel of any regular

�-homomorphism h:A! B. 2
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To give a more explicit characterisation of regular congruences, we need one more technical

concept:

De�nition 4.2

By a pre-congruence on a regular �-algebra A we mean a preorder v � jAj � jAj (that is,

v is a transitive, reexive, but not necessarily anti-symmetric relation) such that the following

conditions hold:

� For all recursors t 2 T

�

�

(X [ fz:sg)

s

and valuations v:X ! jAj, ht

i

A[v]

(?)i

i�0

is a chain

w.r.t. v with the least upper bound (�z:t)

A[v]

, that is:

{ t

i

A[v]

(?) v t

i+1

A[v]

(?), for i � 0,

{ t

i

A[v]

(?) v (�z:t)

A[v]

, for i � 0,

{ for all a 2 jAj, if t

i

A[v]

(?) v a for i � 0, then (�z:t)

A[v]

v a.

� For all t 2 T

�

�

(X [ fy:sg)

s

0

, q 2 T

�

�

(X [ fz:sg)

s

and v:X ! jAj, ht

A[v

i

]

i

i�0

forms a chain

w.r.t. v with the least upper bound t

A[v

0

]

, where for i � 0, v

i

: (X [ fy:sg)! jAj extends

v by v

i

(y) = q

i

A[v]

(?) and v

0

: (X [ fy:sg)! jAj extends v by v

0

(y) = (�z:q)

A[v]

, that is

{ t

A[v

i

]

v t

A[v

i+1

]

for i � 0,

{ t

A[v

i

]

v t

A[v

0

]

for i � 0,

{ for all a 2 jAj, if t

A[v

i

]

v a for i � 0 then t

A[v

0

]

v a,

� The equivalence generated by v is preserved by the operations: for all f : s

1

� : : :� s

n

! s

and a

1

; b

1

2 jAj

s

1

, : : : , a

n

; b

n

2 jAj

s

n

such that a

1

v b

1

and b

1

v a

1

, : : : , a

n

v b

n

and

b

n

v a

n

, we also have f

A

(a

1

; : : : ; a

n

) v f

A

(b

1

; : : : ; b

n

) and f

A

(b

1

; : : : ; b

n

) v f

A

(a

1

; : : : ; a

n

).

2

Lemma 4.3

The family of pre-congruences on a regular �-algebra A forms a complete lattice, with

greatest lower bounds given by set-theoretic intersection.

Proof: First notice that the total relation on jAj is a pre-congruence on A. Then, to complete

the proof it is enough to check that the intersection of any non-empty family of pre-congruences

on A is a pre-congruence on A as well | which is rather obvious since all the requirements

imposed on pre-congruences are \implicational". 2

Lemma 4.4

Let v � jAj � jAj be a pre-congruence on a regular �-algebra A, and let � = v \v

�1

be

the equivalence relation induced by the preordering v.

An ordered �-algebra B = A=v given by

� jBj = jAj=�,

� ?

B

= [?

A

]

�

,

� for all a; a

0

2 jAj, [a]

�

�

B

[a

0

]

�

() a v a

0

,

11



� for f : s

1

�: : :�s

n

! s and a

1

2 jAj

s

1

, : : : , a

n

2 jAj

s

n

, f

B

([a

1

]

�

; : : : ; [a

n

]

�

) = [f

A

(a

1

; : : : ; a

n

)]

�

is a regular �-algebra.

Moreover, the natural map a 7! [a]

�

, a 2 jAj, is a regular �-homomorphism from A to B.

Proof: The properties of pre-congruences ensure that � is indeed an equivalence relation,

that �

B

is well-de�ned (i.e., the de�nition of [a]

�

�

B

[a

0

]

�

does not depend on the choice of

the representants of the equivalence classes) and is an ordering relation on jBj, and that the

operations are well-de�ned functions on jBj. Thus, B as de�ned above is indeed an ordered

�-algebra.

To show the completeness condition of De�nition 2.6, consider t 2 T

�

�

(X) and �v:X ! jBj

where for x 2 X, �v(x) = [v(x)]

�

for some v:X ! jAj. By induction on the structure of t we

show that t

B[�v]

= [t

A[v]

]

�

and so in particular t

B[�v]

is de�ned.

� For variables the thesis is trivial.

� For terms of the form f(t

1

; : : : ; t

n

), the thesis follows easily by the inductive assumption.

� Consider a term t of the form �z:q, where q 2 T

�

�

(X [ fz:sg)

s

. Using the inductive

assumption, by easy induction on i � 0 we can show that q

i

B[�v]

(?) = [q

i

A[v]

(?)]

�

. Then

hq

i

B[�v]

(?)i

i�0

form a chain w.r.t. �

B

with the least upper bound [(�z:q)

A[v]

]

�

:

{ for i � 0, q

i

B[�v]

(?) �

B

q

i+1

B[�v]

(?), since q

i

A[v]

(?) v q

i+1

A[v]

(?) (by the de�nition of a

pre-congruence),

{ for i � 0, q

i

B[�v]

(?) �

B

[(�z:q)

A[v]

]

�

, since q

i

A[v]

(?) v (�z:q)

A[v]

(by the de�nition of a

pre-congruence),

{ for any [a]

�

2 jBj, a 2 jAj, if for all i � 0, q

i

B[�v]

(?) �

B

[a]

�

then for all i � 0,

q

i

A[v]

(?) v a, and so by the de�nition of a pre-congruence, (�z:q)

A[v]

v a, which

yields [(�z:q)

A[v]

]

�

�

B

[a]

�

.

This shows that indeed (�z:q)

B[�v]

is de�ned and (�z:q)

B[�v]

= [(�z:q)

A[v]

]

�

, which completes

the proof of the completeness condition for B.

To show the continuity condition, consider t 2 T

�

�

(X [ fy:sg)

s

0

, q 2 T

�

�

(X [ fz:sg)

s

, �v:X !

jBj such that for x 2 X, �v(x) = [v(x)]

�

for v:X ! jAj. By the above proof of the completeness

condition for B, we have that for i � 0, q

i

B[�v]

(?) = [q

i

A[v]

(?)]

�

, t

B[�v

i

]

= [t

A[v

i

]

]

�

, where �v

i

: (X [

fy:sg) ! jBj extends �v by �v

i

(y) = q

i

B[�v]

(?) and v

i

: (X [ fy:sg) ! jAj extends v by v

i

(y) =

q

i

A[v]

(?). Moreover, t

B[�v

0

]

= [t

A[v

0

]

]

�

, where �v

0

: (X [ fy:sg)! jBj extends �v by �v

0

(y) = (�z:q)

B[�v]

and v

0

: (X [fy:sg)! jAj extends v by v

0

(y) = (�z:q)

A[v]

. This is enough to show that ht

B[�v

i

]

i

i�0

forms a chain w.r.t. �

B

with the least upper bound t

B[�v

0

]

:

� for i � 0, t

B[�v

i

]

�

B

t

B[�v

i+1

]

, since t

A[v

i

]

v t

A[v

i+1

]

by the de�nition of a pre-congruence,

� for i � 0, t

B[�v

i

]

�

B

t

B[�v

0

]

, since t

A[v

i

]

v t

A[v

0

]

by the de�nition of a pre-congruence,

� for any [a]

�

2 jBj, a 2 jAj, if for all i � 0, t

B[�v

i

]

�

B

[a]

�

then for all i � 0, t

A[v

i

]

v a,

hence by the de�nition of a pre-congruence, t

A[v

0

]

v a and so t

B[�v

0

]

�

B

[a]

�

.

This completes the proof of the continuity condition for B, and thus of the lemma as well. 2
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In the following, given a regular �-algebra A and a pre-congruence v on A, we will refer to the

regular �-algebra A=v as the quotient of A by v.

Theorem 4.5

A relation � � jAj � jAj is a regular congruence on a regular �-algebra A if and only if

� = v \v

�1

for some pre-congruence v � jAj � jAj on A.

Proof: For the \only if" part, consider any regular �-homomorphism h:A! B. De�ne now a

relation v � jAj � jAj by

a v a

0

() h(a) �

B

h(a

0

):

It is easy to see that v is a preorder relation and that ker(h) = v\ v

�1

. We still have to show

that v is a pre-congruence on A.

� Consider t 2 T

�

�

(X [ fz:sg)

s

and v:X ! jAj. By Proposition 2.9, for i � 0, h(t

i

A[v]

(?)) =

t

i

B[v;h]

(?). Then clearly:

{ for i � 0, t

i

A[v]

(?) v t

i+1

A[v]

(?), since t

i

B[v;h]

(?) �

B

t

i+1

B[v;h]

(?),

{ for i � 0, t

i

A[v]

(?) v (�z:t)

A[v]

, since t

i

B[v;h]

(?) �

B

(�z:t)

B[v;h]

= h((�z:t)

A[v]

),

{ for a 2 jAj, if for all i � 0, t

i

A[v]

(?) v a then for all i � 0, t

i

B[v;h]

(?) �

B

h(a).

Therefore h(�z:t

A[v]

) = (�z:t)

B[v;h]

�

B

h(a), which proves (�z:t)

A[v]

v a.

� Consider t 2 T

�

�

(X [ fy:sg)

s

0

, q 2 T

�

�

(X [ fz:sg) and v:X ! jAj. Then for i � 0,

h(q

i

A[v]

(?)) = q

i

B[v;h]

(?), and so for v

i

: (X [ fy:sg) ! jAj that extends v by v

i

(y) =

q

i

A[v]

(?), v

i

;h: (X [ fy:sg) ! jBj extends v;h by (v

i

;h)(y) = q

i

B[v;h]

(?). Similarly, for

v

0

: (X [fy:sg)! jAj that extends v by v

0

(y) = (�z:q)

A[v]

, v

0

;h: (X [fy:sg)! jBj extends

v;h by (v

0

;h)(y) = (�z:q)

B[v;h]

. Given this:

{ for i � 0, t

A[v

i

]

v t

A[v

i+1

]

, since t

B[v

i

;h]

�

B

t

B[v

i+1

;h]

,

{ for i � 0, t

A[v

i

]

v t

A[v

0

]

, since t

B[v

i

;h]

�

B

t

B[v

0

;h]

,

{ for a 2 jAj, if for all i � 0, t

A[v

i

]

(?) v a then for all i � 0, t

B[v

i

;h]

(?) �

B

h(a).

Therefore h(t

A[v

0

]

) = t

B[v

0

;h]

�

B

h(a), which proves t

A[v

0

]

v a.

� Finally, for all f : s

1

� : : :� s

n

! s and a

1

; a

0

1

2 jAj

s

1

, : : : , a

n

; a

0

n

2 jAj

s

n

such that a

1

v a

0

1

and a

0

1

v a

1

, : : : , a

n

v a

0

n

and a

0

n

v a

n

, that is h(a

1

) = h(a

0

1

), : : : , h(a

n

) = h(a

0

n

), we

have h(f

A

(a

1

; : : : ; a

n

)) = f

B

(h(a

1

); : : : ; h(a

n

)) = f

B

(h(a

0

1

); : : : ; h(a

0

n

)) = h(f

A

(a

0

1

; : : : ; a

0

n

)),

which proves that f

A

(a

1

; : : : ; a

n

) v f

A

(a

0

1

; : : : ; a

0

n

) and f

A

(a

0

1

; : : : ; a

0

n

) v f

A

(a

1

; : : : ; a

n

).

This completes the proof of the \only if" part of the theorem.

For the \if" part, consider a pre-congruence v � jAj � jAj and let � = v\ v

�1

. Then

� = ker(h), where h:A! A=v is the natural regular �-homomorphism from A to its quotient

by v (as constructed in Lemma 4.4) given by h(a) = [a]

�

, for a 2 jAj. 2

Corollary 4.6

Let � be a regular congruence on a regular �-algebra A. Then for any term t 2 T

�

�

(X) and

valuations v

1

; v

2

:X ! jAj such that for all x 2 X, v

1

(x) � v

2

(x), t

A[v

1

]

� t

A[v

2

]

.

Proof: Let � = v \v

�1

for some pre-congruence v on A. Let then �v:X ! jA=vj be given by

�v(x) = [v

1

(x)]

�

= [v

2

(x)]

�

. Then, by Lemma 4.4, [t

A[v

1

]

]

�

= t

A=v[�v]

= [t

A[v

2

]

]

�

, which completes

the proof. 2
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Corollary 4.7

Let A be a regular �-algebra. For any relation R � jAj � jAj there exists the smallest regular

congruence � on A such that R � �.

Proof: By Lemma 4.3 there exists the smallest pre-congruence v on A such that R [ R

�1

� v.

Then � = v\ v

�1

is the smallest congruence on A which contains R. 2

Theorem 4.8

Let A be a regular �-algebra, and R � jAj � jAj. Let then � be the least congruence on A

that contains R, and let v be any pre-congruence on A such that � = v \ v

�1

. Then A=v

is a categorical quotient of A by R in the following sense: for any regular �-homomorphism

h:A ! C such that R � ker(h) there exists a (unique) regular �-homomorphism g:A=v ! C

such that for all a 2 jAj, h(a) = g([a]

�

).

Proof: Under the assumptions of the theorem, the requirement that for all a 2 jAj, h(a) =

g([a]

�

) determines unambiguously a function g: jA=vj ! jCj. We have to check that it preserves

the values of terms.

Consider t 2 T

�

�

(X) and �v:X ! jA=vj where for x 2 X, �v(x) = [v(x)]

�

for some v:X ! jAj.

By Lemma 4.4, t

A=v[�v]

= [t

A[v]

]

�

. Therefore, g(t

A=v[�v]

) = h(t

A[v]

) = t

C[v;h]

= t

C[�v;g]

, which

completes the proof. 2

Corollary 4.9

Letv

1

and v

2

be two regular pre-congruences on a regular �-algebra A such thatv

1

\ v

1

�1

=

v

2

\ v

2

�1

. Then A=v

1

and A=v

2

are exactly isomorphic.

Proof: By the construction in Lemma 4.4, jA=v

1

j = jA=v

2

j. Moreover, by Theorem 4.8, the

identity function is a regular �-homomorphism from A=v

1

to A=v

2

and from A=v

2

to A=v

1

.

2

By this corollary, we can de�ne up to an isomorphism a quotient of a regular algebra by a

regular congruence as the quotient of the algebra by any pre-congruence that determines the

regular congruence:

De�nition 4.10

Given a regular �-algebra A and a regular congruence � on A, the quotient of A by �,

written A=�, is de�ned up to an (exact) isomorphism as A=v, where v is any pre-congruence

on A such that � = v\ v

�1

. 2

5 Observational indistinguishability and behavioural

equivalence of regular algebras

In this section we will present a de�nition of an observational indistinguishability relation be-

tween elements of a regular algebra. We will show that this indistinguishability relation is a

congruence and characterise explicitly the behavioural equivalence relation between regular al-

gebras \factorized" [BHW94] by the observational indistinguishability congruence. In this way

we will provide a basis for the further, rather standard now, development of behavioural seman-

tics for speci�cation in its two well-known versions: via observational satisfaction of formulae

and via behavioural closure of the usual model class of a speci�cation.
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As usual, let � = hS;
i be an algebraic signature �xed for the rest of this section. Moreover,

let OBS � S be a distinguished set of observable sorts.

For any S-sorted set X, by X

OBS

we will denote an S-sorted set such that

(X

OBS

)

s

=

(

X

s

for s 2 OBS

; for s 62 OBS

Following this notation, X

OBS

will denote any S-sorted set (of variables) such that (X

OBS

)

s

= ;

for all s 62 OBS .

By an observational context on sort s 2 S we mean any term  2 T

�

�

(X

OBS

[ fx:sg)

o

, where

o 2 OBS and x 62 X

OBS

is a special new variable.

Given any regular �-algebra A, observational context  2 T

�

�

(X

OBS

[ fx:sg)

o

, valuation

�:X

OBS

! jAj and value a 2 jAj

s

we will write 

A[�]

(a) for 

A[�

a

]

, where �

a

: (X

OBS

[fx:sg)! jAj

extends � by �

a

(x) = a.

De�nition 5.1

Let A be a regular �-algebra generated by jAj

OBS

. An observational indistinguishability

relation �

OBS

A

on A is de�ned so that for s 2 S, for a; b 2 jAj

s

, a �

OBS

A

b if for all observable

contexts  2 T

�

�

(X

OBS

[ fx:sg) and valuations �:X ! jAj, 

A[�]

(a) = 

A[�]

(b). 2

Theorem 5.2

Let A be a regular �-algebra generated by jAj

OBS

. Then the observational indistinguisha-

bility relation �

OBS

A

is the largest regular congruence on A that is the identity on the carriers

of observable sorts.

Proof: First, notice that since for any observable sort o 2 OBS , x 2 T

�

�

(fx:og)

o

is an observable

context, (�

OBS

A

)

o

is indeed the identity on jAj

o

.

To prove that �

OBS

A

as de�ned above is a congruence on A, de�ne a relationv

OBS

A

� jAj � jAj

so that for s 2 S and a; b 2 jAj

s

, a v

OBS

A

b if for all observable contexts  2 T

�

�

(X

OBS

[ fx:sg)

and valuations �:X ! jAj, 

A[�]

(a) �

A



A[�]

(b). Since clearly �

OBS

A

= v

OBS

A

\ (v

OBS

A

)

�1

, and

v

OBS

A

is a pre-order, it is enough to prove now that v

OBS

A

is a pre-congruence on A:

� Consider t 2 T

�

�

(Y [fy:sg)

s

and v:Y ! jAj. We have to show that ht

i

A[v]

(?)i

i�0

is a chain

w.r.t. v

OBS

A

with the least upper bound (�y:t)

A[v]

. Consider any  2 T

�

�

(X

OBS

[ fx:sg)

and valuation �:X

OBS

! jAj. We can assume (X

OBS

[ fx:sg) \ (Y [ fy:sg) = ;, hence

t 2 T

�

�

(Z [ fy:sg)

s

and  2 T

�

�

(Z [ fx:sg) where Z = X

OBS

] Y . Then, by the continuity

condition of De�nition 2.6, h

A[�]v]

(t

i

A[�]v]

(?))i

i�0

forms a chain w.r.t. �

A

with the least

upper bound 

A[�]v]

((�y:t)

A[�]v]

). Therefore, relying on the fact that a value of a term

depends on the valuation of its free variables only (Lemma 2.4):

{ for i � 0, t

i

A[v]

(?) v

OBS

A

t

i+1

A[v]

(?), since for all  and � as above,



A[�]

(t

i

A[v]

(?)) = 

A[�]v]

(t

i

A[�]v]

(?)) �

A



A[�]v]

(t

i+1

A[�]v]

(?)) = 

A[�]

(t

i+1

A[v]

(?));

{ for i � 0, t

i

A[v]

(?) v

OBS

A

(�y:t)

A[v]

, since for all  and � as above,



A[�]

(t

i

A[v]

(?)) = 

A[�]v]

(t

i

A[�]v]

(?)) �

A



A[�]v]

((�y:t)

A[�]v]

) = 

A[�]

((�y:t)

A[v]

);
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{ for a 2 jAj, if for all i � 0, t

i

A[v]

(?) v

OBS

A

a then for all  and � as above, for all i � 0,



A[�]v]

(t

i

A[�]v]

(?)) �

A



A[�]v]

(a), and so 

A[�]

((�y:t)

A[v]

) = 

A[�]v]

((�y:t)

A[�]v]

) �

A



A[�]v]

(a) = 

A[�]

(a), which proves that (�y:t)

A[v]

v

OBS

A

a.

� Consider t 2 T

�

�

(Y [ fy:sg)

s

0

, q 2 T

�

�

(Y [ fz:sg)

s

and v:X ! jAj. We have to show that

ht

A[v

i

]

i

i�0

, where v

i

: (Y [ fy:sg)! jAj extends v by v

i

(y) = q

i

A[v]

(?), forms a chain w.r.t.

v

OBS

A

with a least upper bound t

A[v

0

]

, where v

0

: (Y [ fy:sg) ! jAj extends v by v

0

(y) =

(�z:q)

A[v]

. Consider any  2 T

�

�

(X

OBS

[ fx:s

0

g) and valuation �:X

OBS

! jAj. We can

assume (X

OBS

[ fx:s

0

g) \ (Y [ fy; z:sg) = ;, hence t 2 T

�

�

(Z[fy:sg)

s

0

, q 2 T

�

�

(Z[fz:sg)

s

and  2 T

�

�

(Z [ fx:s

0

g) where Z = X

OBS

] Y . Let then [t=x] 2 T

�

�

(Z [ fy:sg) be the

result of substituting the term t for all free occurrences of x in . By the continuity

condition of De�nition 2.6, h[t=x]

A[�]v

i

]

i

i�0

forms a chain w.r.t. �

A

with the least upper

bound [t=x]

A[�]v

0

]

. Therefore, using Lemma 2.4 a few times:

{ for i � 0, t

A[v

i

]

v

OBS

A

t

A[v

i+1

]

, since for all  and � as above,



A[�]

(t

A[v

i

]

) = ([t=x])

A[�]v

i

]

�

A

([t=x])

A[�]v

i+1

]

= 

A[�]

(t

A[v

i+1

]

);

{ for i � 0, t

A[v

i

]

v

OBS

A

t

A[v

0

]

, since for all  and � as above,



A[�]

(t

A[v

i

]

) = ([t=x])

A[�]v

i

]

�

A

([t=x])

A[�]v

0

]

= 

A[�]

(t

A[v

0

]

);

{ for a 2 jAj, if for all i � 0, t

A[v

i

]

v

OBS

A

a then for all  and � as above, for all i � 0,

([t=x])

A[�]v

i

]

= 

A[�]

(t

A[v

i

]

) �

A



A[�]

(a);

and so



A[�]

(t

A[v

0

]

) = ([t=x])

A[�]v

0

]

�

A



A[�]

(a);

which proves that t

A[v

0

]

v

OBS

A

a.

� Consider f : s

1

� : : :� s

n

! s and a

1

; b

1

2 jAj

s

1

, : : : , a

n

; b

n

2 jAj

s

n

such that a

1

�

OBS

A

b

1

,

: : : , a

n

�

OBS

A

b

n

. We have to show that f

A

(a

1

; : : : ; a

n

) �

OBS

A

f

A

(b

1

; : : : ; b

n

), that is for

all  2 T

�

�

(X

OBS

[ fx:sg)

o

for o 2 OBS and �:X

OBS

! jAj, 

A[�]

(f

A

(a

1

; : : : ; a

n

)) =



A[�]

(f

A

(b

1

; : : : ; b

n

)).

Since A is generated by jAj

OBS

, by Lemma 3.5, there exist terms t

1

2 T

�

�

(Y

1

OBS

), q

1

2

T

�

�

(Z

1

OBS

), : : : , t

n

2 T

�

�

(Y

n

OBS

), q

n

2 T

�

�

(Z

n

OBS

) and valuations �

1

:Y

1

OBS

! jAj

OBS

,

�

1

:Z

1

OBS

! jAj

OBS

, : : : , �

n

:Y

n

OBS

! jAj

OBS

, �

n

:Z

n

OBS

! jAj

OBS

, such that a

1

= (t

1

)

A[�

1

]

,

b

1

= (q

1

)

A[�

1

]

, : : : , a

n

= (t

n

)

A[�

n

]

, b

n

= (q

n

)

A[�

n

]

. Moreover, we can assume that the sets of

variables involved are mutually disjoint.

For 1 � j � n we have then:



A[�]

(f

A

(b

1

; : : : ; b

j�1

; a

j

; a

j+1

; : : : ; a

n

))

= ([f(q

1

; : : : ; q

j�1

; x

j

; t

j+1

: : : ; t

n

)=x])

A[�]�

1

]:::]�

j�1

]�

j+1

:::]�

n

]

(a

j

)

= ([f(q

1

; : : : ; q

j�1

; x

j

; t

j+1

: : : ; t

n

)=x])

A[�]�

1

]:::]�

j�1

]�

j+1

:::]�

n

]

(b

j

)

= 

A[�]

(f

A

(b

1

; : : : ; b

j�1

; b

j

; a

j+1

; : : : ; a

n

)):

Thus, it follows by easy induction that 

A[�]

(f

A

(a

1

; : : : ; a

n

)) = 

A[�]

(f

A

(b

1

; : : : ; b

n

)).
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The above proves that indeed v

OBS

A

is a pre-congruence on A, and so �

OBS

A

is a regular congru-

ence on A, which moreover is the identity on the observable sorts.

To show that �

OBS

A

is the largest regular congruence with this property, consider any regular

congruence � on A and assume that for o 2 OBS , �

o

is the identity on jAj

o

. Let a; b 2 jAj

s

be such that a � b. Consider an observable context  2 T

�

�

(X

OBS

[ fx:sg) and valuation

�:X

OBS

! jAj

OBS

. By Corollary 4.6, 

A[�]

(a) � 

A[�]

(b), but since the result sort of  is

observable, this means that 

A[�]

(a) = 

A[�]

(b). Hence, a �

OBS

A

b, which proves � � �

OBS

A

and

completes the proof of the theorem. 2

De�nition 5.3

Let A and B be regular �-algebras. We say that A and B are behaviourally equivalent if the

quotients A

O

=�

OBS

A

O

and B

O

=�

OBS

B

O

are isomorphic, where A

O

= hjAj

OBS

i

A

and B

O

= hjBj

OBS

i

B

are the regular �-subalgebras of A and B, respectively, generated by the carriers of observable

sorts. 2

The following theorem gives a more explicit, expected characterisation of the behavioural

equivalence of regular algebras.

Theorem 5.4

Two regular �-algebras A and B are behaviourally equivalent if and only if there exist a set

X

OBS

(of variables of observable sorts only) and surjective valuations v

A

:X

OBS

! jAj

OBS

and

v

B

:X

OBS

! jBj

OBS

such that for all terms t; t

0

2 T

�

�

(X

OBS

)

o

with o 2 OBS ,

t

A[v

A

]

= t

0

A[v

A

]

() t

B[v

B

]

= t

0

B[v

B

]

:

Proof: Let A

O

= hjAj

OBS

i

A

and B

O

= hjBj

OBS

i

B

be the regular �-subalgebras of A and B,

respectively, generated by the carriers of observable sorts.

For the proof of the \only if" part of the theorem, consider an isomorphism i:A

O

=�

OBS

A

O

!

B

O

=�

OBS

B

O

. Recall that by Proposition 2.10, i is bijective. Let X

OBS

be any set of the same

cardinality as jAj

OBS

(and jBj

OBS

) and let v

A

:X

OBS

! jAj

OBS

and v

B

:X

OBS

! jBj

OBS

be

bijections such that ~v

A

; i = ~v

B

, where ~v

A

:X

OBS

! jA

O

=�

OBS

A

O

j and ~v

B

:X

OBS

! jB

O

=�

OBS

B

O

j

are valuations de�ned by ~v

A

= [v

A

(x)]

�

OBS

A

O

= fv

A

(x)g and ~v

B

= [v

B

(x)]

�

OBS

B

O

= fv

B

(x)g for all

x 2 X

OBS

. Then for any term t 2 T

�

�

(X

OBS

),

[t

B[v

B

]

]

�

OBS

B

O

= t

B

O

=�

OBS

B

O

[~v

B

]

= i(t

A

O

=�

OBS

A

O

[~v

A

]

) = i([t

A[v

A

]

]

�

OBS

A

O

):

Therefore, since i is bijective, for any two terms t; t

0

2 T

�

�

(X

OBS

)

s

,

t

A[v

A

]

�

OBS

A

O

t

0

A[v

A

]

() t

B[v

B

]

�

OBS

B

O

t

0

B[v

B

]

;

Thus, for s 2 OBS , in which case (�

OBS

A

O

)

s

is the identity on jAj

s

and (�

OBS

B

O

)

s

is the identity

on jBj

s

,

t

A[v

A

]

= t

0

A[v

A

]

() t

B[v

B

]

= t

0

B[v

B

]

;

which completes the proof on the \only if" part.
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For the proof of the \if" part, �rst note that since all variables x 2 X

OBS

are terms of

observable sorts, under the assumptions for this part of the theorem, ker(v

A

) = ker(v

B

). Hence,

for any set Y

OBS

of variables of observable sorts we can de�ne a bijection to

B

( ) between

valuations of Y

OBS

into jAj

OBS

and valuations of Y

OBS

into jBj

OBS

as follows: for v:Y

OBS

!

jAj

OBS

, to

B

(v):Y

OBS

! jBj

OBS

is given by to

B

(v)(y) = v

B

(x) for y 2 Y

OBS

and any x 2 X

OBS

such that v

A

(x) = v(y). Then, for any terms t; t

0

2 T

�

�

(Y

OBS

)

o

, o 2 OBS , and valuation

v:Y

OBS

! jAj

OBS

, by the assumptions for the \if" part of the theorem

t

A[v]

= t

0

A[v]

() t

B[to

B

(v)]

= t

0

B[to

B

(v)]

;

since by Lemma 2.4 we have t

A[v]

= (�

v

(t))

A[v

A

]

, t

0

A[v]

= (�

v

(t

0

))

A[v

A

]

, t

B[to

B

(v)]

= (�

v

(t))

B[v

B

]

, and

t

0

B[to

B

(v)]

= (�

v

(t

0

))

B[v

B

]

, where �

v

(y) = x for y 2 Y

OBS

and any x 2 X

OBS

such that v

A

(x) = v(y).

Consider now two arbitrary terms q 2 T

�

�

(Y

OBS

)

s

and q

0

2 T

�

�

(Y

0

OBS

)

s

of the same sort s 2 S,

and two valuations v:Y

OBS

! jAj

OBS

and v

0

:Y

0

OBS

! jAj

OBS

. Assume that Y

OBS

\ Y

0

OBS

= ;.

For any observable context  2 T

�

�

(Z

OBS

[ fz:sg), with Z

OBS

[ fz:sg disjoint from Y

OBS

and

Y

0

OBS

, and valuation �:Z

OBS

! jAj

OBS

, we have then:



A[�]

(q

A[v]

) = 

A[�]

(q

0

A[v

0

]

) () 

B[to

B

(�)]

(q

B[to

B

(v)]

) = 

B[to

B

(�)]

(q

0

B[to

B

(v

0

)]

)

since by Lemma 2.4 again,



A[�]

(q

A[v]

) = ([q=z])

A[�]v]v

0

]



A[�]

(q

0

A[v

0

]

) = ([q

0

=z])

A[�]v]v

0

]

and



B[to

B

(�)]

(q

B[to

B

(v)]

) = ([q=z])

B[to

B

(�]v]v

0

)]



B[to

B

(�)]

(q

0

B[to

B

(v

0

)]

) = ([q

0

=z])

B[to

B

(�]v]v

0

)]

:

Since to

B

( ) is a bijection between valuations, this shows that

q

A[v]

�

OBS

A

O

q

0

A[v

0

]

() q

B[to

B

(v)]

�

OBS

B

O

q

0

B[to

B

(v

0

)]

:

De�ne now a map i: jA

O

=�

OBS

A

O

j ! jB

O

=�

OBS

B

O

j by i([q

A[v]

]

�

OBS

A

O

) = [q

B[to

B

(v)]

]

�

OBS

B

O

. By

Lemma 3.5, since A

O

is generated by jAj

OBS

, i is de�ned on all equivalence classes in jA

O

=�

OBS

A

O

j

and the above argument shows that its de�nition does not depend on the choice of represen-

tants for the equivalence classes. Moreover, again by the above argument, i is injective, and

by Lemma 3.5, since B

O

is generated by jBj

OBS

and to

B

( ) is a bijection between the sets of

valuations, i is surjective as well.

It remains to be proved that i as de�ned above is indeed a regular �-homomorphism

i:A

O

=�

OBS

A

O

! B

O

=�

OBS

B

O

, that is, that i preserves values of terms. For this, consider any term

q 2 T

�

�

(Z) and valuation ~v:Z ! jA

O

=�

OBS

A

O

j. Let then v:Z ! jAj be such that ~v(z) = [v(z)]

�

OBS

A

O

for all z 2 Z. Moreover, by Lemma 3.5, for all z 2 Z there exist a term q

z

2 T

�

�

(Z

z

OBS

) and a val-

uation �

z

:Z

z

OBS

! jAj

OBS

such that v(z) = q

z

A[�

z

]

. De�ne now v

0

:Z ! jBj by v

0

(z) = q

z

B[to

B

(�

z

)]

.

We can assume that the sets Z

z

OBS

, z 2 Z, are mutually disjoint. De�ne �(z) = q

z

and

� =

U

z2Z

�

z

. We have then, by Lemmas 2.4 and 4.4:

i(q

A

O

=�

OBS

A

O

[~v]

) = i([q

A[v]

]

�

OBS

A

O

) = i([�(q)

A[�]

]

�

OBS

A

O

) = [�(q)

B[to

B

(�)]

]

�

OBS

B

O

= [q

B[v

0

]

]

�

OBS

B

O

= q

B

O

=�

OBS

B

O

[~v;i]

where the last identity follows by the homomorphism property of the natural quotient map

(Lemma 4.4) since for z 2 Z we have

i(~v(z)) = i([v(z)]

�

OBS

A

O

) = i([q

z

A[�

z

]

]

�

OBS

A

O

) = [q

z

B[to

B

(�

z

)]

]

�

OBS

B

O

= [v

0

(z)]

�

OBS

B

O

:
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This shows that indeed i:A

O

=�

OBS

A

O

! B

O

=�

OBS

B

O

is a regular isomorphism, and thus com-

pletes the proof of the theorem. 2

6 Final remarks and further work

In this paper we have re-introduced the framework of regular algebras, which we want to propose

as an algebraic framework for speci�cation of algebras with in�nitary data de�ned by recursive

equations. Following [Tiu78], [Tiu79], we have introduced the basic concept of a regular alge-

bra, the related notions of regular homomorphism, subalgebra, congruence and quotient, and

presented some expected relationships between these notions (only some of those can be found

in [Tiu78], [Tiu79]). In particular we have de�ned the natural notion of an observational in-

distinguishability of elements in regular algebra, proved that it is a regular congruence, and

shown that it factorizes the expected natural notion of behavioural equivalence between regular

algebras. Of course, this is but a preliminary proposal, and much work remains to be done.

First, we have not introduced in this report any formal notion of a logical formula and

satisfaction: for equations this is trivial, and so is an extension to �rst-order logic. It would be

much less trivial to try to develop some proof calculus for the equational logic, even admitting

in�nitary rules which seem to be necessary here to handle in�nitary data.

Then, all these de�nitions should be put together to de�ne an institution of equational logic

for regular algebras: we do not expect any trouble here either, with the reduct functors and

translation of sentences along algebraic signature morphisms de�ned in the standard way; the

satisfaction condition should follow as usual.

In [Tiu79] the existence of initial (and more generally, free) regular algebras is proved. This

should be generalised to the existence of left adjoints to all reduct functors induced by signature

morphisms, and the institution of equations in regular algebras should be proved to admit initial

models. Again, we expect no troubles here. One consequence of the existence of free regular

algebras is the Birkho�-style characterisation of equationally de�nable classes of regular algebras

given in [Tiu79].

Corollary 3.7 shows that all dense epimorphisms in RAlg(�) are surjective (a regular ho-

momorphism is dense if the least full subobject of the target algebra that contains the image of

the source algebra is the whole target algebra). It is an interesting open question whether all

epimorphisms in RAlg(�) are dense (i.e., in this framework, surjective). This is known not to

be the case for continuous algebras, and perhaps the well-known example due to Lehman and

Pasztor [LP82] can be adapted to the framework of regular algebras as well.

Section 5 gives the preliminaries for the study of observational satisfaction and behavioural

equivalence in regular algebras. We expect this can be done along the general lines we try to

develop for an arbitrary (concrete) institution. But a lot of work speci�c for regular algebras

would be needed here as well. Some (in�nitary) proof system in the style of context induction

or �nitary proof techniques could perhaps be developed following the pattern known for the

standard algebraic framework.

Finally, there is a lot of polishing to be done on the proofs already reported here. For

example, many of the proofs have a similar character and one would hope that there should be

a way to simplify them by extracting the intuitively common induction scheme. Indeed, some
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proofs of elementary facts in [Tiu78], [Tiu79] seem simpler than those given here (Lemma 2.5

as used in the proof of Proposition 2.7 may be crucial in this context).

However, even before all this technical and mathematical analysis is attempted, it is necessary

to make sure that the proposed framework is indeed useful. Some typical examples of the

use of continuous algebras (like in speci�cations based on streams) should be checked to be

meaningful in this framework (we can see no reason why not). It is important to make sure

that the resulting observational satisfaction implicit in the developments in Section 5 applies

in such speci�c examples. Is it really the case that a regular algebra with an observational

quotient (i.e., the quotient by the observational indistinguishability congruence) satisfying the

speci�cation is intuitively an admissible realisation of this speci�cation? And vice versa, do

admissible realisations of a speci�cation have quotients which satisfy the axioms in the standard

way (at least to the same extent as in the standard algebraic case)?
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