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Abstract. We study the combinatorial structure of the cut and metric polytopes on n

nodes for n � 5. Those two polytopes have a complicated geometrical structure, but using

their large symmetry group, we can completely describe their face lattices. We present,

for any n, some orbits of faces and give new result on the tightness of the wrapping of

the cut polytope by the metric polytope, disproving a conjecture of [14] on their lattices.
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1 Introduction

We �rst recall the de�nition of the metric polytope m

n

, the cut polytope c

n

, and their

relatives, the metric cone and the cut cone. Then we present some applications to well

known optimization problems and some combinatorial and geometric properties of those

polyhedra. The general references are [4, 24] for polytopes and [5] for graphs. For a

complete study of the applications and the combinatorial optimization aspects of those

polyhedra, we refer, respectively, to the surveys [13] and [21].

For all 3-sets fi; j; kg � f1; : : : ; ng, we consider the following inequalities:

x

ij

� x

ik

� x

jk

� 0 (1)

x

ij

+ x

ik

+ x

jk

� 2. (2)

The inequalities (1) de�ne the metric cone and the metric polytope m

n

is obtained by

bounding the latter by the inequalities (2). The 3

�

n

3

�

facets de�ned by the inequalities (1),

which can be seen as triangle inequalities for distance x

ij

on f1; 2; : : : ; ng, are called
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homogeneous triangle facets and are denoted by Tr

ij;k

. The

�

n

3

�

facets de�ned by the

inequalities (2) are called non-homogeneous triangle facets and are denoted by Tr

ijk

.

Given a subset S of V

n

= f1; 2; : : : ; ng, the cut determined by S consists of the pairs

(i; j) of elements of V

n

such that exactly one of i, j is in S. �(S) denotes both the cut

and its incidence vector in IR

(

n

2

)

, that is, �(S)

ij

= 1 if exactly one of i, j is in S and 0

otherwise for 1 � i < j � n. By abuse of language, we use the term cut for both the cut

itself and its incidence vector, so �(S)

ij

are considered as coordinates of a point in IR

(

n

2

)

.

The cut polytope of the complete graph c

n

, which is also called the complete bipartite

subgraphs polytope, is the convex hull of all 2

n�1

cuts, and the cut cone is the conic hull

of all 2

n�1

� 1 nonzero cuts. Those polyhedra were considered by many authors, see for

instance [2, 3, 9, 11, 12, 13, 14, 15, 17, 18] and references therein. One of the motivations

for the study of these polyhedra comes from their applications in combinatorial optimiza-

tion, the most important being the max-cut and multicommodity ow problems.

Given a graph G = (V

n

; E) and nonnegative weights w

e

, e 2 E, assigned to its edges,

the max-cut problem consists in �nding a cut �(S) whose weight

P

e2�(S)

w

e

is as large

as possible. It is a well-known NP -complete problem. By setting w

e

= 0 if e is not an

edge of G, we can consider without loss of generality the complete graph on V

n

. Then the

max-cut problem can be stated as a linear programming problem over the cut polytope

c

n

as follows:

(

max w

T

�x

x 2 c

n

:

Since the metric polytope is a relaxation of the cut polytope, optimizing w

T

�x over c

n

instead of m

n

provides an upper bound for the max-cut problem [3].

With E the set of edges of the complete graph on V

n

, an instance of the multicom-

modity ow problem is given by two nonnegative vectors indexed by E: a capacity c(e)

and a requirement r(e) for each e 2 E. Let U = fe 2 E : r(e) > 0g. If T denotes the

subset of V

n

spanned by the edges in U , then we say that the graph G = (T; U) denotes

the support of r. For each edge e = (s; t) in the support of r, we seek a ow of r(e) units

between s and t in the complete graph. The sum of all ows along any edge e

0

2 E must

not exceed c(e

0

). If such a ow exists, we call c; r feasible. A necessary and su�cient

condition for feasibility is given by the Japanese theorem [16]: a pair c; r is feasible if and

only if (c � r)

T

x � 0 is valid over the metric cone. For example, Tr

ij;k

can be seen as

an elementary solvable ow problem with c(ij) = r(ik) = r(jk) = 1 and c(e) = r(e) = 0

otherwise, so the inequalities (1) correspond to (c � r)

T

x � 0 for x in the metric cone.

Therefore, the metric cone is the dual cone to the cone of feasible multicommodity ow

problems.
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2 Combinatorial and geometric properties of the

cut and metric polytopes

The polytope c

n

is a

�

n

2

�

dimensional 0�1 polyhedron with 2

n�1

vertices and m

n

is

a polytope of same dimension with 4

�

n

3

�

facets inscribed in the cube [0; 1]

(

n

2

)

. We have

c

n

� m

n

with equality only for n � 4. It is easy to see that the point !

n

= (

1

2

;

1

2

; : : : ;

1

2

)

is the center of gravity of both c

n

and m

n

and is also the center of the sphere of radius

r =

1

2

p

n(n� 1) where all the cuts lie. Another two geometric characteristics of the

cut polytope c

n

are its width and geometric diameter. We recall that while the width of

a polytope P is equal to the minimum distance between a pair of parallel hyperplanes

containing P in the slice between them, the geometric diameter of P is the maximum

distance between a pair of supporting hyperplanes. The width of c

n

is 1 ([22]) and

its geometric diameter is

n

2

for n even and

1

2

p

n

2

� 1) for n odd, see [21]. Any facet,

respectively ridge (that is, a face of codimension 2), of the metric polytope contains a

facet, respectively a ridge, of the cut polytope and the vertices of the cut polytope are

vertices of the metric polytope, in fact the cuts are precisely the integral vertices of the

metric polytope. Actually the metric polytope m

n

wraps the cut polytope c

n

very tightly

since, in addition to the vertices, all edges and 2-faces of c

n

are also faces of m

n

([14]).

In other words, c

n

is a segment of order 2 of m

n

and its dual, m

�

n

, is a segment of order 1

of c

�

n

in terms of [19]: a polytope P is a segment of order s of a polytope Q if they have

the same dimension and if every i-face of P is a face of Q for 0 � i � s. The polytope

c

n

is 3-neighbourly ([14]). Any two cuts are adjacent both on c

n

([3]) and on m

n

([20]);

in other words m

n

is quasi-integral in terms of [23], that is, the skeleton of the convex

hull of its integral vertices, i.e. the skeleton of the c

n

, is an induced subgraph of the edge

graph of the metric polytope itself. While the diameter of m

�

n

is 2 ([6]), the diameters of

c

�

n

and m

n

are respectively conjectured to be 4 and 3 ([18, 6]). For a detailed study of

the combinatorial and geometric properties of c

n

and m

n

, we refer to [8].

The metric polytope and the cut polytope share the same symmetry group, that is, the

group of isometries preserving a polytope. This group is isomorphic to the automorphism

group of the folded n-cube, that is, Is(m

p

) = Is(c

p

) � Aut(2

n

), see [11, 17]. We recall

that the folded n-cube is the graph whose vertices are the partitions of V

n

= f1; : : : ; ng

into two subsets, two partitions being adjacent when their common re�nement contains

a set of size one, see [5]. More precisely, for n � 5, Is(m

n

) = Is(c

n

) is induced by

permutations on V

n

= f1; : : : ; ng and switching reections by a cut. Given a cut �(S), the

switching reection r

�(S)

is de�ned by y = r

�(S)

(x) where y

ij

= 1�x

ij

if (i; j) 2 �(S) and

y

ij

= x

ij

otherwise. These symmetries preserve the adjacency relations and the linear

independency. For the study of their face lattices, we frequently use the fact that the
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faces of m

n

and c

n

are partitioned into orbits of their symmetry group.

We �nally mention the following link with metrics: there is an evident 1 � 1 corre-

spondence between the elements of the metric cone and all the semi-metrics on n points,

and the elements of the cut cone correspond precisely to the semi-metrics on n points

that are isometrically embeddable into some l

m

1

, see [1], it is easy to check that m �

�

n

2

�

.

3 Face lattices of small cut and metric polytopes

3.1 Face lattice of the c

n

= m

n

for n � 4

For n � 4, we have c

n

= m

n

, moreover c

3

and c

4

are both well-known polytopes. While

c

3

is the regular tetrahedron of edge length

p

2 and volume v

3

=

1

3

, c

4

is combinatorially

equivalent to the 6-dimensional cyclic polytope with 8 vertices and its volume is v

4

=

2

45

.

The f -vector of c

4

is obviously f(c

4

) = (8; 28; 56; 68; 48; 16); more precisely all proper faces

of c

4

are partitioned into the following orbits of the symmetry group Is(c

4

) � Aut(2

4

):

� the 8 vertices of c

4

form the orbit O

1

0

,

� the 2 orbits O

1

1

and O

2

1

of edges f�(S); �(S

0

)g are respectively formed by the 16

edges with jS4S

0

j odd and the 12 ones with jS4S

0

j even, (that is respectively

represented by f�(;); �(1)g and f�(;); �(1; 2)g),

� the 2 orbits of 2-faces are: O

1

2

of size 48 which is represented by f�(;); �(2); �(1; 2)g,

and O

2

2

of size 8 which is represented by f�(1); �(2); �(3)g,

� the 3 orbits of 3-faces are: O

1

3

of size 12 which is represented by f�(;); �(1); �(2);

�(1; 2)g, O

2

3

of size 24 which is represented by f�(;); �(1); �(2); �(1; 3)g, and O

3

3

of

size 32 and represented by f�(;); �(1); �(2); �(3)g,

� the 48 ridges form the orbit O

1

4

; they are the cofaces (that is the convex hull of the

vertices not belonging to a face) corresponding to the 2-faces from the orbit O

1

2

.

� the 16 facets form the orbit O

1

5

; they are the cofaces corresponding to the edges

from the orbit O

1

1

.

Remark 3.1

(i) The skeleton of c

�

4

is the (4�4)-grid, which is also the line graph of K

4;4

= 2

4

.

(ii) A set of vertices is not a face of c

�

4

if and only if it contains one of the following 2

sets of 4 vertices: f�(1); �(2); �(3); �(4)g and f�(;); �(1; 2); �(1; 3); �(1; 4)g.
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3.2 Face lattices of c

5

and m

5

The face lattices of c

5

and m

5

were obtained in the following way. We �rst got

all the non-simplex faces by systematically checking all possible pairwise, 3-wise etc.

intersections of non-simplex facets. Then, considering all 2; 3 and 4-sets of vertices and

the remaining possible pairwise, 3-wise etc. intersections of facets, we obtained all i-faces

for i = 0; 1; 2; 3; 7; 8; 9. Finally, noticing that few i-faces contains the complete lower part

of the lattice (for example any 7-face of m

5

is a facet of a face belonging to a single orbit

of 8-face), we found by a case by case analysis all the remaining simplex 4; 5 and 6-faces

of m

5

and c

5

. The dimensions of the faces were computed using the list of all a�ne

dependencies of m

5

and c

5

given below.

Using [10] one can that check all a�ne dependencies on the vertices of m

5

and c

5

,

that is equations

P

�

i

x

i

= 0 with

P

�

i

= 0, are, up to permutations, switchings and the

bijection �(S)$

^

�(S) (which clearly preserves a�ne dependencies):

�

X

S�f1;2;3;4g

(�1)

jSj

�(S) = 0;

�

X

S�f1;2;3;4;5g; jf4;5g\Sj=1

(�1)

jSj

�(S) = 0;

� 2�(;)� 2�(1) +

5

X

i=2

(�(1; i)� �(i)) = 0;

� 3

^

�(;) + �(1)�

5

X

i=2

�(1; i) = 0:

The restriction of the face lattices of c

5

and m

5

to their non-simplex faces are respectively

given in Figures 3.1 and 3.8. All simplicial and all maximal (under inclusion) simplex

faces are given in Proposition 3.2 and their complete face lattices are presented in detail

in Section 3.2.1 and Section 3.2.2. The f -vectors of c

5

and m

5

are respectively:

� f(c

5

) = (16; 120; 560; 1780; : : : ; 3080; 640; 56),

� f(m

5

) = (32; 280; 1280; 3620; : : : ; 2840; 480; 40).

By f

i

j

and g

i

j

we respectively denote a representative j-face of the i

th

orbit C

i

j

, respectively

M

i

j

, of c

5

and m

5

.
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3.2.1 Face lattice of c

5

In Figure 3.1 all the 4 orbits of proper non-simplex faces of m

5

are given. Each orbit

is represented by the set of vertices belonging to a representative face of the orbit. A cut

�(i), respectively �(ij), is denoted by a circled point i and respectively by an edge fi; jg.

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

1

9
f 1

8
f

2

6f
7

f
6

Figure 3.1: Non-simplices of the face lattice of c

5

The face lattice of c

5

is partitioned into the following orbits of Is(c

5

):

� the 56 facets are partitioned into the 2 orbits C

1

9

and C

2

9

respectively formed by the

40 triangle facets represented by f

1

9

= Tr

123

and the 16 switchings of the equicut

facet f

2

9

which is de�ned by the inequality:

X

1�i<j�5

x

ij

� 6;

� the 640 ridges are partitioned into the 3 orbits C

1

8

, C

2

8

and C

3

8

of size 240, 240 and

160 and respectively represented by f

1

8

= Tr

123

\ Tr

124

, f

2

8

= Tr

123

\ Tr

145

and

f

3

8

= Tr

123

\ f

2

9

,

� the 3080 7-faces are partitioned into the 7 orbits C

1

7

, C

2

7

: : : C

7

7

of size 120, 960, 480,

240, 160, 160 and 960 respectively represented by the graphs given in Figure 3.2.

We have: f

1

7

= f

1

8

\ Tr

24;3

\ Tr

13;4

, f

2

7

= f

2

8

\ Tr

23;4

, f

3

7

= f

3

8

\ Tr

125

, f

4

7

= f

2

8

\ f

2

9

(= f

3

8

\ Tr

145

), f

5

7

= f

1

8

\ Tr

134

, f

6

7

= f

1

8

\ Tr

125

and f

7

7

= f

1

8

\ Tr

135

,

34

5 2

1

34

5 2

1

34

5 2

1

 

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

1

7
f

2

7
f

 

7
f
3

7
f
4

7
f
5

7
f
6

7
f
7

    

Figure 3.2: 7-faces of c

5
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� the 6-faces are partitioned into the 10 orbits C

1

6

; : : : ; C

10

6

respectively represented

by the graphs given in Figure 3.3,

34

5 2

1

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

34

5 2

1

2
f

1
f
6

f
6

6
f
5

6
f
4

6
f
3

66

f
6

9

f
6

10

34

5 2

1

f
6

7

f
6

8

 

 

 

  

   

Figure 3.3: 6-faces of c

5

� the 5-faces are partitioned into the 11 orbits C

1

5

; : : : ; C

11

5

respectively represented

by the graphs given in Figure 3.4,

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

f
4

5
f
3

5

2
f
5

1
f
5

f
6

5
f
5

5

f
5

8

f
5

9 

f
5

10 

f 5
11 

f
5

7

   

  

  

Figure 3.4: 5-faces of c

5
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� the 4-faces are partitioned into the 8 orbits C

1

4

; : : : ; C

8

4

respectively represented by

the graphs given in Figure 3.5,

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

 

  

34

5 2

1

34

5 2

1

 

34

5 2

1

 

f
6

4

7

f
4

f
4

4
f
3

4

2
f
4

1
f
4

f
5

4

f
4

8

 

Figure 3.5: 4-faces of c

5

� the 1780 3-faces are partitioned into the 7 orbits C

1

3

; : : : ; C

7

3

respectively represented

by the graphs given in Figure 3.6. Actually, the only sets of 4 cuts which are not

3-faces of c

5

are the 40 members of the orbit of f�(;); �(1; 2); �(1; 3); �(2; 3)g,

34

5 2

1

34

5 2

1

34

5 2

1

 

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

1
f

2
f

  

f
3

f
4

f
5

f
6

f
7

3 3 3 3 3 3 3

Figure 3.6: 3-faces of c

5

� the 560 2-faces are partitioned into the 3 orbits C

1

2

, C

2

2

and C

3

2

of size 160, 160

and 240, and respectively represented by f

1

2

= f�(;); �(1); �(2)g, f

2

2

= f�(;); �(1; 2);

�(1; 3)g and f

3

2

= f�(;); �(1); �(2; 3)g,
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� the 120 edges are partitioned into the 2 orbits C

1

1

and C

2

1

respectively formed by

the 40 edges f�(S); �(S

0

)g with jS4S

0

j = 1 or 4 and the 80 ones with jS4S

0

j = 2

or 3 (that is respectively represented by f

1

1

= f�(;); �(1)g and f

2

1

= f�(;); �(1; 2)g),

� the 16 vertices form the orbit C

1

0

.

3.2.2 Face lattice of m

5

In Figure 3.8 all the 8 orbits of proper non-simplex faces ofm

5

are given. As for c

5

, each

orbit is represented by the set of vertices belonging to one of its representative face. While

a straight line links 2 incident faces, a dotted one links 2 faces incident up to a permuta-

tion. Besides the 16 cuts, the vertices of m

5

are the 16 anticuts

^

�(S) =

2

3

(1; : : : ; 1)-

1

3

�(S).

A anticut

^

�(i), respectively

^

�(ij), is denoted by a grey circled point i and respectively

by a grey edge fi; jg. The anticut

^

�(;) is denoted by a grey ;. Note that a face cannot

contain both �(S) and

^

�(S).

The face lattice of m

5

is partitioned into the following orbits of Is(m

5

):

� the 40 triangle facets form the orbit M

1

9

represented by g

1

9

= Tr

123

,

� the 480 ridges are partitioned into the 2 orbits M

1

8

and M

2

8

, both of size 240 and

respectively represented by g

1

8

= Tr

123

\ Tr

124

and g

2

8

= Tr

123

\ Tr

145

,

� the 1880 7-faces are partitioned into the 6 orbits M

1

7

, M

2

7

; : : : ;M

6

7

of size 120, 960,

480, 160, 160 and 960 respectively represented by the graphs given in Figure 3.7.

We have: g

1

7

= g

1

8

\Tr

24;3

\Tr

13;4

, g

2

7

= g

1

8

\Tr

35;4

, g

3

7

= g

1

8

\Tr

345

, g

4

7

= g

1

8

\Tr

134

,

g

5

7

= g

1

8

\ Tr

125

and g

6

7

= g

1

8

\ Tr

135

,

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

  

1

7

g 2

7
g

7

3g
7

6g
7

5g
7

4g

 

Figure 3.7: 7-faces of m

5
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34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

 

   

   

 

1

9

8

1

8

2

7 7

4

7

6

2

6 6 6

5

4

g

g g

g g g

g g g g

g

g

65

9 1011

12

13

Figure 3.8: Non-simplices of the face lattice of m

5
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� the 6-faces are partitioned into the 11 orbits M

1

6

; : : : ;M

11

6

respectively represented

by the graphs given in Figure 3.9,

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

 

34

5 2

1

21

6

6

6

5

6

4

6

3

66

6

7

6

8

6

9

6

10

6

11

g g g

g g g

g

g

g

g

g

    

 

 

  

Figure 3.9: 6-faces of m

5

� the 5-faces are partitioned into the 13 orbits M

1

5

; : : : ;M

13

5

respectively represented

by the graphs given in Figure 3.10,

34

5 2

1

34

5 2

1

34
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1

34

5 2

1

34
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1

34

5 2

1

   

34

5 2

1

   

5

7
g3

5
g2

5
g1

5
g 4

5
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34
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34
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1

g
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9 g
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34
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1

g
5
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34

5 2

1

34

5 2

1

6

5
g5

5
g

5
g12 

5
g
13

 

Figure 3.10: 5-faces of m

5
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� the 4-faces are partitioned into the 12 orbits M

1

4

; : : : ;M

12

4

respectively represented

by the graphs given in Figure 3.11,

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

   

34

5 2

1

34

5 2

1

 

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

 

 

5

4
g4

4
g

3

4
g2

4
g 6

4
g

4

8g
4

7g

1

4
g

4
g 9

4

g11
4

g10
4

g
12

Figure 3.11: 4-faces of m

5

� the 3620 3-faces are partitioned into the 10 orbits M

1

3

; : : : ;M

10

3

respectively repre-

sented by the graphs given in Figure 3.12,

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

34

5 2

1

1 2

 

3 4 5

3 3 3 3 3

34

5 2

1

6

3

 

34

5 2

1

 

7

3

 

34

5 2

1

 

3

 

34

5 2

1

 

3

 

34

5 2

1

 

3

g g g g g

g g g g g8 9 10

Figure 3.12: 3-faces of m

5
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� the 1280 2-faces are partitioned into the 5 orbits M

1

2

, M

2

2

; : : : ;M

5

2

of size 160,

160, 240, 480 and 240, and respectively represented by g

1

2

= f�(;); �(1); �(2)g,

g

2

2

= f�(;); �(1; 2); �(1; 3)g, g

3

2

= f�(;); �(1); �(2; 3)g, g

4

2

= f

^

�(;); �(1; 2); �(1; 3)g

and g

5

2

= f

^

�(;); �(1; 2); �(3; 4)g,

� the 280 edges are partitioned into the 3 orbits M

1

1

, M

2

1

respectively formed by the

40 edges f�(S); �(S

0

)g with jS4S

0

j = 1 or 4 and the 80 ones with jS4S

0

j = 2 or

3, and the orbit M

3

1

formed by the 160 edges f

^

�(S); �(S

0

)g with jS4S

0

j = 2 or

3 (that is respectively represented by g

1

1

= f�(;); �(1)g, g

2

1

= f�(;); �(1; 2)g and

g

3

1

= f

^

�(;); �(1; 2)g).

� the 32 vertices are partitioned into the 2 orbits M

1

0

and M

2

0

respectively formed by

the 16 cuts and the 16 anticuts.

Proposition 3.2

(i) The maximal (under inclusion) simplex faces of c

5

are the faces belonging to the orbits

C

2

9

, C

2

8

, C

1

7

and C

5

7

.

(ii) The maximal (under inclusion) simplex faces of m

5

are the faces belonging to the

orbits M

1

7

, M

2

7

and M

3

7

.

(iii) The simplicial faces of c

5

and m

5

are respectively the faces the belonging to the orbit

C

2

6

and M

11

6

, M

2

6

and M

12

4

.

(iv) The faces belonging to C

2

6

and M

2

6

are combinatorially equivalent to m

4

= c

4

and so

to the 6-dimensional cyclic polytope with 8 vertices.

Proposition 3.3

(i) The maximal (under inclusion) simplex faces of m

5

containing an anticut are the faces

belonging to the orbit M

3

7

.

(ii) The number of simplex i-faces of m

5

containing an anticut is, for each anticut,

^

f

i

= 1; 10; 45; 120; 205; 222; 130; 30; 0; 0 for i = 0; 1; : : : ; 9.

Proof. Let g be a i-face of m

5

, with i � 6, containing an anticut, for example

^

�(;),

and denote g

0

:=

\

�(ijk)=2g

Tr

ijk

. Clearly, we have g � g

0

with equality if and only if g is a

simplex. Suppose that �(i) 2 g

0

� g, it will mean that i is a universal vertex, that is, the

graph G(g) representing g is one of the following graphs:

13



It turns out that those 4 graphs are respectively subgraphs (we require only inclusion

of the edge-set) of the graphs representing the non-simplex faces: g

9

6

; g

10

6

4 g

13

5

; g

12

4

(see

Figure 3.8). Now, since g

0

is the intersection of homogeneous triangle facets,

^

�(ij) 2 g

0

implies that

^

�(i);

^

�(j) 2 g

0

. Then

^

�(i) 2 g

0

� g if and only if G(g) contains the clique K

4

which turns out to be a subgraph of the non-simplex face: g

11

6

. 2

3.3 Wrapping of c

n

by m

n

Let call extra i-face of c

n

(respectively m

n

) a i-face of c

n

(resp. m

n

) which is not a

i-face of m

n

(resp. c

n

). We recall that all i-faces of c

n

are also i-faces of m

n

for i = 0; 1

and 2; moreover, it was conjectured in [14] that for n large enough (n > 2

i

) all i-faces of

c

n

are also i-faces of m

n

. We disprove this conjecture by exhibiting an extra 3-face of c

n

.

For n � 5, let consider the following face of c

n

:

f

3

= f�(12); �(13); �(14); �(15)g.

Proposition 3.4 For n � 5, the face f

3

is an extra 3-face of c

n

.

Proof. For n = 5, the face f

3

is the 3-face f

7

3

of c

5

which is itself a 10-face of c

n

(c

5

=

T

n

i=6

(Tr

12;i

\ Tr

2i;1

)), that is, f

3

is a 3-face of c

n

. Now let suppose that f

3

is also a

face of m

n

, it would implies that f

3

is a face of the following face of m

n

:

g = (

\

2�i<j�5

Tr

1ij

) \ (

n

\

i=6

(Tr

12;i

\ Tr

2i;1

)),

where the triangle facets are seen as facets of m

n

. For n = 5, we have g = g

12

4

. One

can easily check that g contains, besides the 5 cuts �(1); �(12); �(13); �(14) and �(15), the

vertex x which coordinates x

ij

: 1 � i � j � n are: x

ij

= 0 for i 6= 2; 3; 4; 5 < j and

2

3

otherwise. Then, to remove x we should intersect g with some Tr

ij;k

with 1 � i; j; k � 5,

but doing so will also eliminate one of the 4 cuts �(12); �(13); �(14) or �(15) of f

5

as well,

which implies that f

3

cannot be a face of m

n

. 2

Corollary 3.5 For n � 5, all i-faces of c

n

are also i-faces of m

n

for exactly i = 0; 1 and 2.

Proof. Let suppose that all i

0

-faces of c

n

are also i

0

-faces of m

n

with i

0

� 3. Then,

the face g

i

0

of m

n

equal to a face f

i

0

of c

n

containing f

3

will contain a face g

3

equal to

f

3

, which contradicts Proposition 3.4. 2

14



Proposition 3.6

(i) The representative extra i-faces of c

5

belong to F = ff

2

9

; f

3

8

; f

3

7

; f

4

7

; f

6

6

; f

7

6

; f

8

6

; f

8

5

; f

9

5

;

f

10

5

; f

7

4

, f

7

3

g (that is, all extra faces belonging to f

2

9

) and to F

0

= fc

5

= f

1

10

; f

1

9

; f

1

8

; f

2

8

; f

5

7

; f

6

7

;

f

7

7

; f

9

6

; f

10

6

; f

11

5

; f

8

4

g.

(ii) The representative extra i-faces of m

5

belong to G = fg

3

7

; g

6

6

; g

7

6

; g

8

6

; g

8

5

; g

9

5

; g

10

5

; g

11

5

;

g

12

5

; g

7

4

; g

8

4

; g

9

4

; g

10

4

; g

11

4

; g

7

3

; g

8

3

; g

9

3

; g

10

3

; g

4

2

; g

5

2

; g

3

1

; g

2

0

g (that is, all simplex extra faces, i.e. all

extra faces belonging to g

3

7

) and G

0

= fm

5

= g

1

10

; g

1

9

; g

1

8

; g

2

8

; g

4

7

; g

5

7

; g

6

7

; g

9

6

; g

10

6

; g

11

6

; g

13

5

; g

12

4

g

(that is, all faces given in Figure 3.8 except g

2

6

= f

2

6

which is the unique non-simplex com-

mon face of c

5

and m

5

).

(iii) All remaining faces, besides the ones given in (i) and (ii) are common faces of c

5

and

m

5

, we ordered them so that f

i

j

= g

i

j

. Their representative i-faces belong to H = ff

1

6

; f

1

5

;

f

2

5

; f

3

5

; f

1

4

; f

2

4

; f

3

4

; f

4

4

; f

5

4

; f

1

3

; f

2

3

; f

3

3

; f

4

3

; f

5

3

; f

1

2

; f

2

2

; f

3

2

; f

1

1

; f

2

1

; f

1

0

; f

1

�1

= ;g (that is, all

common faces belonging to f

1

6

) and to H

0

= ff

1

7

; f

2

7

; f

2

6

; f

3

6

; f

4

6

; f

5

6

; f

4

5

; f

5

5

; f

6

5

; f

7

5

; f

6

4

; f

6

3

g.

Remark 3.7 We observed that F = fg \ f

2

9

: g 2 G

0

g, F

0

= fg \ c

5

: g 2 G

0

� fg

11

6

gg,

H = fg \ c

5

: g 2 Gg and F � ff

10

5

g = ff \ f

2

9

: f 2 F

0

g and that the dimension of

those intersections is one less than the one of the corresponding face. The four above

equalities, g

7

3

\c

5

' g

10

3

\c

5

and g

11

6

\c

5

= f

10

5

give the following four bijections: F $ G

0

,

F

0

$ G

0

� fg

11

6

g, H $ G� fg

7

3

g and F

0

$ F � ff

10

5

g:

dimension -1 0 1 2 3 4 5 6 7 8 9 10

total # of orbits in c

5

1 1 2 3 7 8 11 10 7 3 2 1

# of orbits in F 1 1 3 3 2 1 1

# of orbits in F

0

1 1 2 3 2 1 1

# of orbits in H 1 1 2 3 5 5 3 1

# of orbits in H

0

1 1 4 4 2

# of orbits in G 1 1 2 4 5 5 3 1

# of orbits in G

0

1 1 3 3 2 1 1

total # of orbits in m

5

1 2 3 5 10 12 13 11 6 2 1 1

Figure 3.13: Number of orbits of i-faces

Remark 3.8

(i) All minimal (by inclusion) faces from F belong to the orbits of f

7

3

or f

10

5

= f

2

9

� f

7

3

.

(ii) All minimal (by inclusion) faces from H

0

belong to the orbits of f

6

3

or f

7

5

.

(iii) Besides f

7

3

and the cofacet f

6

3

= Tr

134

\Tr

13;4

\Tr

14;3

=

�

Tr

34;1

, any of the 5 remaining

representative 3-faces of c

5

belongs to exactly either 4 or 5 triangle facets.
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3.4 Some orbits of faces and nofaces of c

n

and m

n

In Figure 3.14, we present 5 orbits of c

n

and m

n

. For each orbit a representative

facet, the codimension, the size and the number of cuts (and anticuts for orbits of m

n

)

belonging to a face of the orbit are given. The orbit O

5

2

(respectively O

5

3

, O

5

4

and O

5

5

)

corresponds to C

1

8

and M

1

8

(respectively C

2

8

and M

2

8

, C

1

7

and M

1

7

, and C

2

6

and M

2

6

). In

m

n

, the faces belonging to O

n

5

are combinatorially equivalent to m

n�1

.

orbit representative codimension size # cuts # anticuts

O

n

1

Tr

135

\ Tr

246

2 160

�

n

6

�

9� 2

n�5

2

n�5

O

n

2

Tr

123

\ Tr

124

2 48

�

n

4

�

5� 2

n�4

2

n�4

O

n

3

Tr

123

\ Tr

145

2 240

�

n

5

�

9� 2

n�5

2

n�5

O

n

4

Tr

135

\ Tr

45;3

3 24

�

n

4

�

2

n�2

0

O

n

5

Tr

135

\ Tr

15;3

n� 1 2

�

n

2

�

2

n�2

0

Figure 3.14: All pairwise intersections of facets of m

n

We then consider the following set of cuts: A

n

= f�(i) : 1 � i � ng. It was remarked

in [14] that no triangle facet contains A

n

. Moreover, we have:

Proposition 3.9

(i) No proper face of c

n

contains A

n

.

(ii) For n � 5, any (n� 1)-subset of A

n

forms an extra (n� 2)-face of c

n

.

(iii) The size of the orbit represented by A

n

is jO(A

n

)j = 1; 2; 2

n�1

for n = 3; 4;� 5.

Proof. Let F be a facet induced by the inequality:

X

1�i<j�n

f

ij

x

ij

� a and F (S) the

value of the left hand side of the inequality on the cut �(S). Since we have

F (�(ij)) = F (�(i)) + F (�(j)) � 2f

ij

� a, A

n

belongs to F will implies that f

ij

�

a

2

.

So, we have a � F (�(S)) �

ajSj(n�jSj)

2

, this implies a = 0 and therefore, for n � 4 all

f

ij

�

a

2

= 0 which contradicts F (�(1)) � a = 0. To prove (ii), remark that A

n

�f�(1)g is

the following face of c

n

: A

n

� f�(1)g = E

�(1)

\(

\

2�i<j�n

Tr

ij;1

) where E

�(1)

is the switch-

ing by the cut �(1) of the face de�ned by the inequality:

X

1�i<j�n

x

ij

� d

n

2

e � b

n

2

c. On

the other hand,

\

2�i<j�n

Tr

ij;1

contains �(;) which can be removed only by intersecting

A

n

�f�(1)g with a non-homogeneous triangle facet, but this will also eliminate some cuts

�(i), that is, A

n

�f�(1)g cannot be a face of m

n

. Since for n � 5 all switchings of A

n

are

di�erent and any permutation amounts to a switching, jO(A

n

)j = 2

n�1

; cases n = 3 and

4 are clear. 2
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Remark 3.10 Proposition 3.9 means that A

n

is a minimal (by inclusion) blocker, that

is A

n

\

�

f 6= ;, for the clutter T

c

:= f

�

f : f is a facet of c

n

g of complements of facets of

c

n

and, a fortiori, for the clutter T

m

:= f�g : g is a facet of m

n

g. Perhaps, A

n

is also a

minimum, that is of minimal cardinality, blocker for T

c

. Remark that minimum blockers

for T

m

are exactly the pairs f�(S);

^

�(S)g.

We call noface of c

n

a set of cuts which does not form a face of c

n

.

Proposition 3.11

(i) For n � 4, any set containing member of O(A

n

) is a noface (see Proposition 3.9).

(ii) For n = 4, any noface contains a member of O(A

4

); the only nofaces which are cofaces

belong to the orbits represented by

�

f

2

1

and

�

f

2

2

.

(iii) For n = 5, there are exactly 1; 2; 3; 8; 13 orbits of i-sets of cuts in c

5

for i = 1; 2; 3; 4; 5

and among there is exactly 6 orbits of nofaces represented by the following graphs:

One can check that the following holds for any n � 3:

� the 2

n�1

vertices of c

n

form the orbit represented by f�(;)g,

� the

�

2

n�1

2

�

edges of c

n

are partitioned into the b

n

2

c orbits respectively represented by

f

i

1

= f�(;); �(1; : : : ; i)g for i = 1; : : : ; b

n

2

c with jO

i

1

j = 2

n�2

�

n

i

�

for 1 � i < b

n

2

c and

jO

i

1

j = 2

n�3

�

n

n

2

�

for n even,

� the

�

2

n�1

3

�

2-faces of c

n

are partitioned into the orbits respectively represented by

f

r;s;t

2

= f�(;); �(1; : : : ; r+s); �(r+1; : : : ; r+s+ t)g for all triplets of integers fr; s; tg

such that 1 � r � b

n

3

c, 0 � s � r, r � t � min(b

n�r

2

c; b

n

2

c � s; n� 2r � s),

� for n � 6, the

16(n

2

�7)

(

n

4

)

3

ridges, that is (

�

n

2

�

� 2)-face of m

n

, are partitioned into

the 3 orbits O

n

1

; O

n

2

and O

n

3

given in Figure 3.14 (see [6]),

� the 4

�

n

3

�

facets of m

n

form the orbit represented by Tr

123

.
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