
Bottom-up Evaluation of Datalog

Programs with Arithmetic Constraints:

The Case of 3 Recursive Rules

Laurent FRIBOURG

Marcos VELOSO PEIXOTO

Laboratoire d'Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

LIENS - 94 - 9

July 1994

Bottom-up Evaluation of Datalog

Programs with Arithmetic Constraints:

The case of 3 Recursive Rules

Laurent Fribourg Marcos Veloso Peixoto

45, rue d'Ulm, 75005 Paris - France

L.I.E.N.S (URA 1327 CNRS)

email: fribourg@dmi.ens.fr, veloso@dmi.ens.fr

Abstract

Datalog Programs with arithmetic constraints have received considerable attention dur-

ing the last few years. They have been studied as special forms of Constraint Logic

Programming languages, as models for temporal databases, and also as tools for Theo-

rem Proving.

We de�ne in this paper a class of Datalog programs over integers for which the bottom-

up evaluation always produces a linear arithmetic formula. A program within this class

is composed of three recursive rules. Each rule contains one arithmetic atom in its body

and increments its arithmetic arguments.

We adopt a geometric approach to construct the output of the bottom-up evaluation

process: each application of the immediate consequence operator T is represented either

as an horizontal movement, or as a vertical movement, or as a transversal movement.

In this report, we are more interested in showing that the output of this programs can

be expressed by a (�nite) arithmetic formula, rather than expressing it explicitly.

R�esum�e

Les bases de donn�ees avec contraintes arithm�etiques ont re�cu une attention consi-d�erable

depuis ces derni�eres ann�ees. Elles ont �et�e �etudi�ees �a la fois comme un genre nouveau

de langage de Programmation avec Contraintes, comme des mod�eles pour les bases de

donn�ees temporelles et comme outils de D�emonstration Automatique.

Nous d�e�nissons dans ce papier une classe de programmes Datalog sur des entiers dans

laquelle le processus d'�evaluation ascendante engendre toujours une formule arithm�e-

tique lin�eaire. Un programme appartenant �a cette classe contient trois r�egles r�ecursives,

qui poss�edent, chacune, un seul atome arithm�etique dans le corps, et qui incr�ementent

ses arguments arithm�etique.

Nous adoptons une approche g�eom�etrique pour construire le r�esultat du processus d'�evalua-

tion ascendante: chaque application de l'op�erateur de cons�equence imm�ediate T est

repr�esent�ee soit par un d�eplacement horizontal, soit par un d�eplacement vertical, soit

par un d�eplacement transversal.

Dans ce rapport, nous nous int�eressons �a montrer que le r�esultat de cette �evaluation as-

cendante peut être exprim�e par une formule arithm�etique �nie, mais nous ne chercherons

pas �a caract�eriser explicitement cette formule.

1 Motivations

There are two basic approaches for reasoning with logic programs. The �rst approach is

\top-down": it tries to solve a given query by backward chaining reasoning. The second

approach is \bottom-up": it infers atomic consequences of the program by forward chaining

reasoning. The �rst approach is rather used in Logic Programming (SLD-resolution) [21],

while the second one is rather used in Deductive Databases for querying Datalog programs

(i.e., logic programs with constants and variables, but no function symbol) [4].

We describe in this paper a bottom-up evaluation process for Datalog programs (or logic

programs) whose variables are interpreted as integers. Our initial motivation was to use

such a process in order to prove formulas combining lists and linear arithmetic [10]. Let

us illustrate this point with an example which corresponds to an adaptation of the Boyer-

Moore Majority Algorithm (see [24]). This algorithm determines the element of a list that

occurs more than half times the size of the list, if such an element exists.

Let p(L; v; w; x; y; z) be an atom where L is a list of (numeric) characters, y is the length

of L, x is the number of occurrences of a possible majority item v and z is the number

of occurrences of an item w in L. The predicate p can be recursively de�ned by the logic

program:

p([]; v; w; x; y; z) :� x = 0; y = 0; z = 0

p([ujL]; v;w; x+ 1; y + 1; z) :� u = v; u 6= w; p(L; v; w; x; y; z)

p([ujL]; v;w; x; y+ 1; z + 1) :� u 6= v; u = w; 2x > y; p(L; v; w; x; y; z)

p([ujL]; v;w; x; y+ 1; z) :� u 6= v; u 6= w; 2x > y; p(L; v; w; x; y; z)

Suppose now that we want to prove the formula:

8 L; v; w; x; y; z p(L; v; w; x; y; z) =) (v 6= w =) z � y div 2)

It is di�cult to prove this formula directly (e.g., by induction), but it becomes easy if we

are provided with a lemma saying that p(L; v; w; x; y; z) implies v 6= w) 2x � y ^ y �

z+ x^ x � 0. A priori such a lemma is not known, but a bottom-up evaluation process can

automatically generate such a lemma. The bottom-up evaluation process is not performed

directly on the p program, but instead over a simpli�ed form (that is merely obtained by

deletion of the list argument L and its argument u and by \pushing" the constraints on

v 6= w):

p

0

(v; w; y; z) :� x = 0; y = 0; z = 0

p

0

(v; w; x+ 1; y + 1; z) :� p

0

(v; w; x; y; z)

p

0

(v; w; x; y+ 1; z + 1) :� 2x > y; p

0

(v; w; x; y; z)

p

0

(v; w; x; y+ 1; z) :� 2x > y; p

0

(v; w; x; y; z)

A re�ned form of bottom-up evaluation over p

0

that we will explain in this paper pro-

duces the relation 2x � y ^ y � z + x ^ x � 0 as a generic output. The lemma

p(L; v; w; x; y; z) =) (v 6= w =) z � y div 2) then follows directly from the fact that,

by construction, p(L; v; w; x; y; z)) wedgev 6= w implies p

0

(v; w; x; y; z).

Apart from the automatic generation of lemmas, an interesting application of bottom-up

evaluation of Datalog programs over integers is the proof of termination of logic programs

[5, 13]. From a more general point of view, bottom-up evaluation procedures for Datalog

1

programs over integers constitute an interesting subject of research per se and have been ex-

tensively studied in recent years. One reason for this interest is the emergence of Constraint

Logic Programming and Constraint Query Languages (e.g. [15, 16, 18, 19, 22, 23, 27, 29]).

Another reason lies in the use of integers for representing temporal data and the use of

bottom-up evaluation for computing temporal queries [2, 3, 8].

The rest of this report is organized as follows:

In sections 2 we compare our results with related works, in section 3 and 4 we present

some basic de�nitions. In section 5 we explain our method for programs with two recursive

rules and in section 6 for programs with three recursive rules. Section 7 contains some

optimizations of our method. In section 8 we presents some applications of our method and

section 9 contains the conclusion of this report.

2 Comparison with related work

Bottom-up evaluation procedures for Datalog programs with integers have been developed by

researchers of the Deductive Database community [3, 8, 27] on one hand, and by researchers

interested by the proof of termination of Prolog programs [5, 13] on the other hand.

Revesz has elaborated a procedure that always terminates for a class of Datalog program

with integers, but this class does not allow for the incrementation of the recursion arguments

[27]. Chomicki and Imielinski have considered a class of programs that is useful for model-

ing time in Temporal Databases: time is represented by a numeric argument (\temporal"

argument) which is decremented at each recursive call. The class of Chomicki and Imielinski

allows for only one temporal argument [8]. Baudinet, Ni�ezette and Wolper consider a class

of Datalog programs that allows for several temporal arguments, but their procedure does

not terminate in general; besides, the tuples of the extensive database of their programs

(i.e., the tuples satisfying the non recursive rules) correspond to linear arithmetic formulas

of a restricted form (\linear repeating points") [3].

As in Baudinet, Ni�ezette and Wolper [3], our programs allow for incrementation over several

recursion arguments. In contrast to [3], our programs can take any linear arithmetic formula

as for an extensive database. We have besides identi�ed a subclass of programs for which our

bottom-up evaluation procedure is guaranteed to terminate (class of programs with three

recursive rules and one inequality constraint per rule).

The idea of automatically generating linear inequalities among variables of a program was

exploited in an imperative framework by [7], using linear programming techniques. Re-

searchers interested by the mechanization of termination proofs have designed bottom-up

evaluation procedures for Datalog programs with integers: given a Prolog procedure, the aim

is to infer inequalities among the sizes of the arguments of the auxiliary predicates called by

this procedure, and to use these inequalities for proving the procedure termination [5, 13].

The method of [5] is able to infer disjunctions of sets of inequalities, but each inequality

is necessarily of the form arg(i) + c > arg(j), thus involving at most two arguments. The

method of [13] can infer sets of more general inequalities (e.g., arg(i)+arg(j)> arg(k)+c),

but cannot infer disjunctions of such formulas. This is also the case in the work of [7] and in

methods that use top-down strategies instead of bottom-up [26, 30]. In contrast, our method

has no such limitation, and is able to infer the arithmetic formula that is characteristic of

the program.

The main limitation of our method comes from the syntactical restrictions attached to the

class of programs that we consider: the recursion scheme is necessarily direct and linear (no

2

mutual recursion, no multiple recursive calls), and within each recursive rule, the recursion

arguments are necessarily increased by a constant. We focus in this report on the case where

the programs have (at most) 3 recursive rules. We describe a method, based on bottom-up

evaluation, which allows to transform the recursive programs into linear arithmetic formu-

las. These arithmetic formulas will not be given explicitly, but only represented under a

geometric form. The explicit arithmetic formulations and subsequent possible simpli�ca-

tions (using, e.g., techniques of variable elimination [20, 28]) are beyond the scope of the

present report.

3 Preliminaries

Our goal is to prove that the output of the bottom-up evaluation of programs � de�ned by

a non-recursive base rule R

0

and three linear recursive rules can be expressed as a �nite

arithmetic formula. More precisely, we want to show that an atom p(u; v; w) belongs to the

output of the bottom-up evaluation of � i� u; v; w satisfy a �nite linear arithmetic formula.

We consider that our programs are of the form:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ a

1

; y + b

1

; z + c

1

) :� �

1

(x; y; z); p(x; y; z) rule R

1

p(x+ a

2

; y + b

2

; z + c

2

) :� �

2

(x; y; z); p(x; y; z) rule R

2

p(x+ a

3

; y + b

3

; z + c

3

) :� �

3

(x; y; z); p(x; y; z) rule R

3

where a

1

; a

2

; a

3

; b

1

; b

2

; b

3

; c

1

; c

2

; c

3

2Zand �(x; y; z) is a linear arithmetic formula, and

�

k

(x; y; z) denotes respectively the constraints d

k

x+ e

k

y+ f

k

z+ g

k

�

k

0, with k 2 f1; 2; 3g,

�

k

2 f<;>;�;�g and d

k

; e

k

; f

k

; g

k

2Z.

In this report, for the sake of algebraic simplicity, we will let �

1

(x; y; z), �

2

(x; y; z) and

�

3

(x; y; z) be respectively x � 0, y � 0 and z � 0. The results presented in this paper

remain valid for constraints of the form d

k

x+ e

k

y + f

k

z + g

k

�

k

0.

For the sake of notation simplicity, we have also assumed that the predicate p has arity 3.

(Our results remain valid for any other arity.)

We use arithmetic formulas to extend the notion of Herbrand atom. We de�ne a generalized

Herbrand atom as a pair composed of an atom and an arithmetic formula. Note that an

Herbrand atom of the form p(6; 5; 7) can be considered as a generalized Herbrand atom

composed of p(x; y; z) together with x = 6 ^ y = 5 ^ z = 7. The immediate consequence

operator for the program � (see [1, 9]) is adapted in order to be applied to generalized

Herbrand atoms (cf [14]). Given a set I of generalized Herbrand atoms, let, for 1 � k � 3:

T

k

(I) = f p(x+ a

k

; y + b

k

; z + c

k

)= �

k

(x; y; z) holds and p(x; y; z) 2 Ig

The operator T

k

can be seen as the immediate consequence operator associated with the rule

R

k

(1 � k � 3). The immediate consequence operator T associated with � can be de�ned by:

T (I) = T

1

(I)

S

T

2

(I)

S

T

3

(I)

3

Let now T

s

be de�ned inductively as:

T

1

(I) = T (I)

T

s+1

(I) = T (T

s

(I)); for s � 1

The output S of the bottom-up evaluation of � is

S

s>0

T

s

(I

�

), where

I

�

= f p(x; y; z) = �(x; y; z) holds g . This output is the least �xpoint of the operator

T . It is also the least generalized Herbrand model of � [14, 9].

We will use a geometrical representation for computing the output of the bottom-up evalu-

ation of �. This output can also be expressed as:

[

r

1

;r

2

;:::;r

s

2f1;2;3g

T

r

1

T

r

2

:::T

r

s

(I

�

)

We will associate a geometrical path connecting points of N�N�N to each operator composi-

tion T

r

1

T

r

2

:::T

r

s

: each number 1 in the sequence r

1

r

2

:::r

s

will be represented by a horizontal

movement, each number 2 by a vertical movement and each number 3 by a transversal

movement. This is schematized in �gure 1.

For short, we will also refer to horizontal movements as x-moves, vertical movements as

y-moves and transversal movements as z-moves.

T T
12

2
T T2

T2T
1

T T
1

T T
1 1

3

11 2
T T T ... T

3
T T T ... T

22 3 2

3T

32
T T

T T
33

T T T ... T
2 3 31

U T T ... Tr
1 r2 rs

r
1

r
s

... { 1,2,3 }

Figure 1

Within a path, the origin (0,0,0) represents actually the tuple < x; y; z > and each point M

of coordinates (�; �;) represents the tuple < x+ �a

1

+ �a

2

+ a

3

; y+ �b

1

+ �b

2

+ b

3

; z +

�c

1

+ �c

2

+ c

3

> generated after � applications of rule R

1

, � applications of rule R

2

and

 applications of R

3

.

Formally, a path P , denoted � (0; 0; 0); :::; (�; �; �) �, is a �nite sequence of points of

N � N � N, starting at point (0; 0; 0) and ending at point (�; �; �), such that if a point

(�; �;) distinct from (�; �; �) is in P , then either (�+1; �;) or (�; �+1;) or (�; �; +1)

is in P .

4

For each horizontal segment (�; �;)-(�+ 1; �;) of a given path P , there is an associated

constraint x+�a

1

+�a

2

+a

3

� 0 (denoted by �

1

(�; �;)), which represents the formula that

must be satis�ed for applying rule R

1

at point (�; �;). Likewise, for each vertical segment

(�; �;)-(�;�+ 1;), there is an associated constraint y + �b

1

+ �b

2

+ b

3

� 0 (denoted by

�

2

(�; �;)), which represents the formula that must be satis�ed for applying rule R

2

and for

each transversal segment (�; �;)-(�; �; +1), there is a constraint z+�c

1

+ �c

2

+ c

3

� 0

(denoted by �

3

(�; �;)), which represents the formula that must be satis�ed for applying

rule R

3

.

Let M = (�; �;) and M

0

= (�

0

; �

0

;

0

) be two points. We say that the point M is located

before M

0

, and write M < M

0

, i� (�; �;) 6= (�

0

; �

0

;

0

) and � � �

0

, � � �

0

, �

0

. The

constraint �

i

(�; �;) of a point M = (�; �;) will be also written sometimes as �

i

(M).

We say that a constraint of the point M , say �(M), is stronger than a constraint of the

point M

0

, say �(M

0

), i� �(M)) �(M

0

). We say also that �(M

0

) subsumes �(M), which

is denoted, at the risk of a notational abuse, by �(M) � �(M

0

)

Similarly, at the risk of a notational abuse, the formula:

�(M) � �(M

0

) denotes that �(M

0

)) �(M)

�(M) = �(M

0

) denotes that �(M

0

) , �(M)

�(M) > �(M

0

) denotes that �(M

0

)) �(M) ^ �(M) 6) �(M

0

)

�(M) < �(M

0

) denotes that �(M)) �(M

0

) ^ �(M

0

) 6) �(M)

�(M) 6= �(M

0

) denotes that �(M) > �(M

0

) _ �(M) < �(M

0

)

We say that a constraint � is strictly increasing i� 8M; 8M

0

> M �(M) < �(M

0

) and

that � is strictly decreasing i� 8M; 8M

0

> M �(M) > �(M

0

). We say that � in strictly

monotonic i� � is either strictly increasing or strictly decreasing.

The global constraint C

P

associated with a path P from the origin (0; 0; 0) to some point

(�; �; �) is the conjunction of the constraints of all the segments of P . It contains �+ �+ �

atoms. Formally, it is de�ned as:

C

P

def

= C

P

(�; �; �)

where:

C

P

(0; 0; 0)

def

= true:

C

P

(�+ 1; �;)

def

= C

P

(�; �;)^ �

1

(�; �;) if (�+ 1; �;) 2 P :

C

P

(�; � + 1;)

def

= C

P

(�; �;)^ �

2

(�; �;); if (�; � + 1;) 2 P :

C

P

(�; �; + 1)

def

= C

P

(�; �;)^ �

3

(�; �;); if (�; �; + 1) 2 P :

We denote the set of all the paths P from the origin (0; 0; 0) to the point (�; �; �) by �(�; �; �).

Note that this set of paths corresponds geometrically to a cube (see �gure 2).

The disjunction of the global constraints of all the paths from (0; 0; 0) to (�; �; �) is denoted

by �(�; �; �), i.e.:

5

(0,0,0)

(, ,)

Figure 2:

�(�; �; �)

def

=

W

P2�(�;�;�)

C

P

The output S of the bottom-up evaluation of a program � is given by:

S = [

�;�;�2N

f p(x+�a

1

+ �a

2

+�a

3

; y+�b

1

+ �b

2

+�b

3

; z+�c

1

+ �c

2

+�c

3

) = �(x; y; z) ^ �(�; �; �)g

Our method for expressing S as an arithmetic formula proceeds by simplifying �(�; �; �) in

two steps:

W

-simpli�cation: we determine a subset �

0

(�; �; �) of the cube �(�; �; �), such that all

the paths in �

0

(�; �; �) have a characteristic form and subsume the other paths of

�(�; �; �) in the following sence:

_

P2�(�;�;�)

C

P

=

_

P2�

0

(�;�;�)

C

P

V

-simpli�cation: we simplify

W

P2�

0

(�;�;�)

C

P

to an arithmetic formula by reducing each

conjunction of constraints C

P

, for all P 2 �

0

(�; �; �).

We focus in this paper on the �rst step of the method. The second step of

V

-simpli�cation

to an arithmetic formula does not pose any serious di�culty because of some monotonicity

properties satis�ed by the paths of �

0

(�; �; �).

4 Periods and Patterns

The approach presented in this report basically relies on the notion of periodic constraint

and on the associated notion of pattern. Roughly speaking, a constraint � is periodic i�

there exists a vector ~� such that for all point M : �(M) = �(M+~�). The pattern associated

with � is the set of all the paths linking a given pointM to the pointM+~� . Without loss of

understanding, we will also denote the pattern by the vector ~� . In the following subsections,

we formally de�ne these notions in the case of programs with two and three recursive rules.

For programs with two recursive rules, let us consider a point M of coordinates (�; �). The

vector ~� will stand for (�

1

; �

2

) and the expression M + ~� will stand for (�+ �

1

; � + �

2

).

For programs with three recursive rules, let us consider a point M of coordinates (�; �;).

The vector ~� will stand for (�

1

; �

2

; �

3

) and the expression M + ~� will stand for (�+ �

1

; � +

6

�

2

; + �

3

).

Given a pattern ~� and a vector ~� (

~

0 � ~� � ~�), the set of all the paths linking a given point

M to M + ~� will be called a subpattern of ~� .

4.1 Two Recursive Rules

De�nition 4.1 (Periodicity) A constraint � is periodic i� there exists a nonnull vector

~� of positive integers of the form (�

1

; �

2

) such that:

8�; 8� �(�; �) = �(�+ �

1

; � + �

2

):

The period, say ~� , of � is the smallest vector satisfying the above equation. The pattern

associated with ~� (and also denoted ~�) is the set of all the paths linking a given point M to

M + ~� . See �gure 3.

1

2

M

M +

�(M) = �(M + ~�)

Figure 3: Pattern for �

Given a period ~� for a constraint �, we will say that a constraint is periodically increasing

(resp. periodically decreasing) i� (M) � (M + ~�) (resp. (M) � (M + ~�)).

4.2 Three Recursive Rules

De�nition 4.2 (Co-periodicity) Two constraints � and are co-periodic i� there exists

a nonnull vector ~� of positive integers of the form (�

1

; �

2

; �

3

) such that:

� 8�; �; �(�; �;) = �(�+ �

1

; � + �

2

; + �

3

):

and

� 8�; �; (�; �;) = (�+ �

1

; � + �

2

; + �

3

):

The co-period, say ~� , of � and is the smallest vector satisfying the above equations. The

co-pattern associated with ~� (and also denoted ~�) is the set of all the paths linking a given

point M to M + ~� . See �gure 4.

Given a co-period ~� for two constraints � and , we will say that a constraint � is co-

periodically increasing (resp. co-periodically decreasing) i� �(M) � �(M +~�) (resp. �(M) �

�(M + ~�)).

De�nition 4.3 (Bi-periodicity) A constraint � is bi-periodic i� there exist two nonnull

vectors ~� and ~� of positive integers of the form (�

1

; �

2

; �

3

) and (�

1

; �

2

; �

3

) such that:

7

1

2

M

M +

3

�(M) = �(M + ~�) (M) = (M + ~�)

Figure 4: Co-pattern for � and

� 9i; j 2 f1; 2; 3g i 6= j ^ �

i

= �

j

= 0

and

� 8M �(M) = �(M + ~�) = �(M + ~�):

Given two indices i; j satisfying the �rst relation, the bi-period, say f

~

�

1

;

~

�

2

g, of � is the pair

of smallest vectors satisfying the second double equation. For l = 1; 2, the pattern associated

with

~

�

l

(also denoted

~

�

l

) is the set of all the paths linking a given point M to M +

~

�

l

. See

�gure 5.

2

1

2

2

M

M +
2

M

1

2

3

1

M + 1

�(M) = �(M + ~�

1

) �(M) = �(M + ~�

2

)

Figure 5: Patterns for �

Given a bi-period f

~

�

1

;

~

�

2

g for a constraint �, we will say that a constraint is bi-periodically

strictly increasing (resp. bi-periodically strictly decreasing) i� (M) < (M+

~

�

1

)^ (M) <

 (M +

~

�

2

) (resp. (M) > (M +

~

�

1

) ^ (M) > (M +

~

�

2

)).

5 Programs with Two Recursive Rules

In this section, we consider programs � with two recursive rules and characterize the form

of the paths of the subset �

0

(�; �)

1

.

1

The third coordinate � is irrelevant in the case of two recursive rules

8

The method presented here di�ers substantially from the one in [11]. In [11], we used the

notion of constraint implication (see section 7), which leads to a classi�cation of programs

of two recursive rules into 16 classes of programs. For 14 of these classes, the formulas

generated to characterize the output of the bottom-up evaluation of � of our method were

quite simple. For the two other classes, a more sophisticated approach was required. The

method we adopt here is similar to the one used in [11] for these two remaining classes.

This method can be applied to any program of form � and will be generalized to programs

having three recursive rules in section 6. It is based on the concept of periodic constraint.

In the next two subsections, we exemplify the determination of �

0

(�; �) for two programs

�

1

and �

2

. These programs can be seen as typical examples of programs belonging to the

class of:

{ Programs with one periodic constraint.

{ Programs with two strictly monotonic constraints.

In the two subsequent subsections, we generalize this result for any program � with 2

recursive rules.

5.1 Example of a Program with One Periodic Constraint

Consider the program �

1

:

p(x; y; z) :� �(x; y; z): rule R

0

p(x� 3; y � 2; z � 2) :� x � 0; p(x; y; z) rule R

1

p(x+ 5; y + 3; z � 1) :� y � 0; p(x; y; z) rule R

2

We have:

Proposition 5.1 (Periodicity of �

2

)

8 �; 8� �

2

(�; �) = �

2

(�+ 3; � + 2).

Proposition 5.1 means that there exists a pattern (3,2) for �

2

(see �gure 6).

point M

point M’

�

2

(M) = �

2

(M

0

)

Figure 6: Pattern for �

2

The constraint �

1

is periodically increasing for the pattern (3,2):

Proposition 5.1bis (Periodical increase of �

1

)

8 �; 8� �

1

(�; �) � �

1

(�+ 3; � + 2).

It follows from propositions 5.1 and 5.1bis that one can compose the pattern (3,2) in an

increasing way (w.r.t. �

1

), as shown in �gure 7.

9

2

Pattern for

point M
k+1

point M
1

point M
k

point M
m

�

2

(M

1

) = : : : �

2

(M

k

) = �

2

(M

k+1

) = : : : �

2

(M

m

)

�

1

(M

1

) � : : : �

1

(M

k

) � �

1

(M

k+1

) � : : : �

1

(M

m

)

Figure 7: Composing patterns for �

2

Theorem 5.2 For program �

1

, the subset �

0

(�; �) of characteristic paths is depicted in �g-

ure 8.

5.2 Example of a Program with Two Strictly Monotonic Constraints

Consider the program �

2

:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ 2; y � 5; z � 2) :� x � 0; p(x; y; z) rule R

1

p(x+ 3; y � 1; z � 1) :� y � 0; p(x; y; z) rule R

2

We have:

Lemma 5.3 (Strictly monotonic constraints) 8 M; 8 � >

~

0:

{ �

1

(M) < �

1

(M + �)

{ �

2

(M) > �

2

(M + �)

It follows that:

Theorem 5.4 For program �

2

, the subset �

0

(�; �) of characteristic paths is depicted in �g-

ure 9.

10

2

Pattern for

2

Any subpattern for
2

Any subpattern for

2

Pattern for

2

Pattern for

2

Any subpattern for
2

Any subpattern for

2

Pattern for

Figure 8:

fi
rs

t
h

o
ri
z
o

n
ta

l
m

o
v
e

 o
f

P

last vertical move of P

Figure 9:

5.3 De�nition of the Classes

We now de�ne the two di�erent classes which appear in the case of programs with two

recursive rules.

Consider a program �:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ a

1

; y + b

1

; z + c

1

) :� x � 0; p(x; y; z) rule R

1

p(x+ a

2

; y + b

2

; z + c

2

) :� y � 0; p(x; y; z) rule R

2

where a

1

; a

2

; a

3

; b

1

; b

2

; b

3

; c

1

; c

2

; c

3

2Zand �(x; y; z) is an arithmetic formula.

For programs �, given a point M , the following situations can occur:

I. { 9i 2 f1; 2g; 9 ~� >

~

0; 8 M; �

i

(M) = �

i

(M + ~�).

11

{ For j 6= i:

Either 8M�

j

(M) � �

i

(M + ~�);

or 8M�

j

(M) � �

i

(M + ~�):

II. { 8i 2 f1; 2g:

Either (8M; 8 ~� >

~

0 �

i

(M) < �

i

(M + �))

or (8M; 8 ~� >

~

0 �

i

(M) > �

i

(M + �):

Situation (I) means that �

i

is periodic of pattern ~� and that �

j

is either periodically increas-

ing or periodically decreasing. Situation (II) means that �

1

and �

2

are strictly monotonic

constraints. This provides a classi�cation of programs � into two classes of programs.

5.4 Algebraic Characterization of the classes

Consider a program of the form �. Consider now the equations below:

a

1

� + a

2

� = 0 equation (?)

b

1

�+ b

2

� = 0 equation (??)

Equation (?) states that the value of x (and consequently the constraint �

1

of rule R

1

)

has not changed after � applications of R

1

and � applications of R

2

. Equation (??) states

that the value of y (and consequently the constraint �

2

of rule R

2

) has not changed after �

applications of R

1

and � applications of R

2

.

The program � has a periodic constraint �

1

i� equation (?) admits a positive solution on �

and �, i.e., i� a

1

:a

2

� 0. A pattern

~

�

1

for �

1

is determined by a couple (�

1

1

; �

1

2

), which is

the smallest couple of positive integers solution of equation (?).

The program � has a periodic constraint �

2

i� equation (??) admits a positive solution on

� and �, i.e., i� b

1

:b

2

� 0. A pattern

~

�

2

for �

2

is determined by a couple (�

2

1

; �

2

2

), which is

the smallest couple of positive integers solution of equation (??).

The program � has two strictly monotonic constraints �

1

and �

2

i� neither (?) nor (??)

admits a positive solution, i.e, i� a

1

:a

2

> 0 and b

1

:b

2

> 0.

This gives an algebraic characterization of the classes of programs with one periodic con-

straint or with two strictly monotonic constraints.

5.5 General Results

In this subsection, we generalize theorem 5.2 for any program with one periodic constraint

and theorem 5.4 for programs with two strictly monotonic constraints.

Theorem 5.5 (Programs with one periodic constraint �

i

) Given a program � of class

I, the subset �

0

(�; �) of characteristic paths is depicted in �gure 10.

There are two di�erent subclasses depending on whether �

j

(j 6= i) is periodically increasing

or periodically decreasing. This monotonicity property of �

j

is useful for the second step of

V

-simpli�cation of �(�; �) (see section 3).

12

Pattern for
i

Side effects

i
Any subpattern for

Side effects

Figure 10:

Theorem 5.6 (Programs with two strictly monotonic constraints) Given a program

� of class II, the subset �

0

(�; �) of characteristic paths is depicted in �gure 11.

fi
rs

t
h
o
ri
z
o
n
ta

l
m

o
v
e
 o

f
P

last vertical move of P

Figure 11:

For class II, we can simplify the form of the paths of �gure 11 according to the signs of a

i

and b

i

, as shown in �gure 12.

We can algebraically characterize the classes of programs with two recursive rules as shown

in table 5.5.

a

1

� 0; a

2

� 0 Class I pattern for �

1

�

2

periodically monotonic

a

1

� 0; a

2

� 0 Class I pattern for �

1

�

2

periodically monotonic

b

1

� 0; b

2

� 0 Class I pattern for �

2

�

1

periodically monotonic

b

1

� 0; b

2

� 0 Class I pattern for �

2

�

1

periodically monotonic

a

1

> 0; a

2

> 0; b

1

> 0; b

2

> 0 Class II �

1

strictly increasing �

2

strictly increasing

a

1

< 0; a

2

< 0; b

1

< 0; b

2

< 0 Class II �

1

strictly decreasing �

2

strictly decreasing

a

1

> 0; a

2

> 0; b

1

< 0; b

2

< 0 Class II �

1

strictly increasing �

2

strictly decreasing

a

1

< 0; a

2

< 0; b

1

> 0; b

2

> 0 Class II �

1

strictly decreasing �

2

strictly increasing

13

la
s
t
h
o
ri
z
o
n
ta

l
m

o
v
e
 o

f
P

last vertical move of Plast vertical move of P

last horizontal move of P

first horizontal move of P

first vertical move of P

fi
rs

t
h

o
ri
z
o

n
ta

l
m

o
v
e

 o
f

P

first vertical move of P

last horizontal move of P

first vertical move of P

fi
rs

t
h

o
ri
z
o

n
ta

l
m

o
v
e

 o
f

P

last vertical move of P

(1) (2)

(3)

(4) (4)

(3)

(1) a

i

< 0 and b

i

> 0 (2) a

i

> 0 and b

i

< 0

(3) a

i

> 0 and b

i

> 0 (4) a

i

< 0 and b

i

< 0

Figure 12:

6 Programs with Three Recursive Rules

In this section, we extend the results of the previous section for programs with three re-

cursive rules. We follow the same aim as before, i.e. , to determine a subset �

0

(�; �; �) of

characteristic paths that subsume all the paths of the cube �(�; �; �).

For the case of three recursive rules, we have 3 classes of programs. In the next three

subsections we exemplify the determination of �

0

(�; �; �) for three programs �

3

, �

4

and �

5

.

These programs can be seen as typical examples of programs belonging to the classes of:

I. Programs with two co-periodic constraints.

II. Programs with one bi-periodic constraint.

III. Programs with three strictly monotonic constraints.

14

As in section 5, we generalize our results for any program of form � in the subsequent

subsections.

6.1 Example of a Program with Two Co-periodic Constraints

Consider the program �

3

:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ 2; y � 4; z � 2) :� x � 0; p(x; y; z) rule R

1

p(x� 5; y + 9; z � 1) :� y � 0; p(x; y; z) rule R

2

p(x+ 2; y � 3; z + 1) :� z � 0; p(x; y; z) rule R

3

We have:

Proposition 6.1 (Co-periodicity of �

1

and �

2

)

8�; 8�; 8 �

1

(�; �;) = �

1

(�+ 3; � + 2; + 2) ^ �

2

(�; �;) = �

2

(�+ 3; � + 2; + 2):

Proposition 6.1 means that there exists a same pattern (3,2,2) for the constraints �

1

and

�

2

. (see �gure 13).

point M

point M’

�

1

(M) = �

1

(M

0

) �

2

(M) = �

2

(M

0

)

Figure 13: Co-pattern for �

1

and �

2

The constraint �

3

is co-periodically increasing:

Proposition 6.1bis (Co-periodical increase of �

3

)

8�; 8�; 8 �

3

(�; �;)� �

3

(�+ 3; � + 2; + 2)

It follows from propositions 6.1 and 6.1bis that one can compose the pattern (3,2,2) in an

increasing way (w.r.t. �

3

), as shown in �gure 14.

Theorem 6.2 For program �

3

, the subset �

0

(�; �; �) of characteristic paths is depicted in

�gure 15.

There are nine possible combinations of planar moves before and after the composition of

the co-pattern.

15

point M
1

point M
k

point M
k+1

m
point M

�

1

(M

1

) = : : : �

1

(M

k

) = �

1

(M

k+1

) = : : : �

1

(M

m

)

�

2

(M

1

) = : : : �

2

(M

k

) = �

2

(M

k+1

) = : : : �

2

(M

m

)

�

3

(M

1

) � : : : �

3

(M

k

) � �

3

(M

k+1

) � : : : �

3

(M

m

)

Figure 14: Composing co-patterns for �

1

and �

2

21

Co−pattern for and

21

Subco−pattern for and

Figure 15:

6.2 Example of a Program with One Bi-Periodic Constraint

Consider the program �

4

:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ 1; y � 3; z � 4) :� x � 0; p(x; y; z) rule R

1

p(x� 1; y + 6; z � 3) :� y � 0; p(x; y; z) rule R

2

p(x+ 2; y � 4; z + 1) :� z � 0; p(x; y; z) rule R

3

We have:

Proposition 6.3 (Bi-periodicity of �

2

)

8�; 8�; 8 �

2

(�; �;) = �

2

(�; � + 2; + 3) = �

2

(�+ 2; � + 1;).

Proposition 6.3 means that there exists two di�erent patterns (0,2,3) and (2,1,0) for con-

straint �

2

, which are located in di�erent planes (see �gure 16).

16

point M
point M’

point N

point N’

�

2

(M) = �

2

(M

0

) and �

2

(N) = �

2

(N

0

)

Figure 16: Bi-periodicity of �

2

The constraint �

1

(resp. �

3

) is bi-periodically strictly increasing (resp. decreasing):

Proposition 6.3bis (Bi-periodical strict increase of �

1

and decrease of �

3

)

� 8�; 8�; 8 (�

1

(�; �;)< �

1

(�+ 2; � + 1;) ^ �

1

(�; �;)< �

1

(�; � + 2; + 3))

and

� 8�; 8�; 8 (�

3

(�; �;)> �

3

(�+ 2; � + 1;) ^ �

3

(�; �;)> �

3

(�; � + 2; + 3)).

It follows from propositions 6.3 and 6.3bis that one can compose �rst the pattern (0,2,3),

and then pattern (2,1,0) in a globally monotonic way (w.r.t �

1

and �

3

), as shown in �gure

17.

17

on xy
2

Pattern for

1
point N

k+1
point N

k
point N

n
point N

on xy
2

Subpattern for

on yz
2

Pattern for

point M
m

point M
1

point M
k

point M
k+1

on yz 2

Subpattern for

�

2

(M

1

) = : : : �

2

(M

k

) = �

2

(M

k+1

) = : : : �

2

(M

m

) � �

2

(N

1

) = : : : �

2

(N

k

) = �

2

(N

k+1

) = : : : �

2

(N

n

)

�

1

(M

1

) < : : : �

1

(M

k

) < : : : �

1

(M

k+1

) < �

1

(M

m

) � �

1

(N

1

) < : : : �

1

(N

k

) < : : : �

1

(N

k+1

) < �

1

(N

n

)

�

3

(M

1

) > : : : �

3

(M

k

) > �

3

(M

k+1

) > : : : �

3

(M

m

) � �

3

(N

1

) > : : : �

3

(N

k

) > �

3

(N

k+1

) > : : : �

3

(N

n

)

Figure 17: Bi-periodicity of �

2

18

Theorem 6.4 For program �

4

, the subset �

0

(�; �; �) of characteristic paths is depicted in

�gures 18 and 19 .

on yz 2

Pattern for

point M
1

Figure 18: Relative shortage of y-moves w.r.t. z-moves

on xy 2

Pattern for
on yz 2

Pattern for

point N
1

point M
1

Figure 19: Relative shortage of z-moves w.r.t. y-moves.

19

6.3 Example of a Program with Three Strictly Monotonic Constraints

Consider the program �

5

:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ 2; y � 5; z � 2) :� x � 0; p(x; y; z) rule R

1

p(x+ 3; y � 1; z � 1) :� y � 0; p(x; y; z) rule R

2

p(x+ 5; y � 1; z � 3) :� z � 0; p(x; y; z) rule R

3

We have:

Proposition 6.5 (Strictly monotonic constraints) 8 M; 8 M

0

> M :

{ �

1

(M) < �

1

(M

0

)

{ �

2

(M) > �

2

(M

0

)

{ �

3

(M) > �

3

(M

0

)

It follows that:

Theorem 6.6 For program �

5

, the subset �

0

(�; �; �) of characteristic paths is depicted in

�gure 20.

Figure 20:

6.4 De�nition of the Classes

We now de�ne the three di�erent classes which appear in the case of programs with three

recursive rules.

Consider a program �:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ a

1

; y + b

1

; z + c

1

) :� x � 0; p(x; y; z) rule R

1

p(x+ a

2

; y + b

2

; z + c

2

) :� y � 0; p(x; y; z) rule R

2

p(x+ a

3

; y + b

3

; z + c

3

) :� z � 0; p(x; y; z) rule R

3

20

where a

1

; a

2

; a

3

; b

1

; b

2

; b

3

; c

1

; c

2

; c

3

2Zand �(x; y; z) is an arithmetic formula.

For programs of form �, given a point M , the following situations can occur:

I. 9i; j 2 f1; 2; 3g; 9~� >

~

0 :

{ 8 M �

i

(M) = �

i

(M + ~�) ^ �

j

(M) = �

j

(M + ~�).

{ For k 6= i and k 6= j:

Either 8M �

k

(M) � �

k

(M + ~�);

or 8M �

k

(M) � �

k

(M + ~�):

II. 9i 2 f1; 2; 3g; 9~� >

~

0; 9~� >

~

0 with �

l

= 0; �

j

= 0 and l 6= j, such that:

{ 8M �

i

(M) = �

i

(M + ~�) = �

i

(M + ~�).

{ 8 k 2 f1; 2; 3g; k 6= i:

Either 8M (�

k

(M) < �

k

(M + ~�) ^ �

k

(M) < �

k

(M + ~�));

or 8M (�

k

(M) > �

k

(M + ~�) ^ �

k

(M) > �

k

(M + ~�)):

III. 8i 2 f1; 2; 3g:

Either 8M; 8 ~� >

~

0 �

i

(M) < �

i

(M + ~�);

or 8M; 8 ~� >

~

0 �

i

(M) > �

i

(M + ~�):

Situation (I) means that �

i

and �

j

are co-periodic of pattern ~� . The constraint �

k

is either

co-periodically increasing or co-periodically decreasing. Programs in this situation are called

co-periodic programs.

Situation (II) means that �

i

is bi-periodic of patterns f~�; ~�g. The others constraints are

either bi-periodically strictly increasing or bi-periodically strictly decreasing. Programs in

this situation are called bi-periodic programs.

Situation (III) means that �

1

, �

2

and �

3

are strictly monotonic constraints. Programs in

this situation are called strictly monotonic programs.

This provides a classi�cation of programs � into three classes of programs.

6.5 Algebraic Characterization of the classes

Consider the program �:

p(x; y; z) :� �(x; y; z): rule R

0

p(x+ a

1

; y + b

1

; z + c

1

) :� x � 0; p(x; y; z) rule R

1

p(x+ a

2

; y + b

2

; z + c

2

) :� y � 0; p(x; y; z) rule R

2

p(x+ a

3

; y + b

3

; z + c

3

) :� z � 0; p(x; y; z) rule R

3

Let �, � and be respectively the number of applications of rules R

1

, R

2

and R

3

in the

bottom-up evaluation of � and consider the equations below:

a

1

�+ a

2

� + a

3

 = 0 equation (?)

b

1

� + b

2

� + b

3

 = 0 equation (??)

c

1

� + c

2

� + c

3

 = 0 equation (? ? ?)

21

Equation (?) states that the value of x (and consequently the constraint of rule R

1

) has not

changed after � applications of R

1

, � applications of R

2

and applications of R

3

. Equation

(??) states that the value of y has not changed and equation (? ? ?) states that the value of

z has not changed.

Let �

1

, �

2

and �

3

be the systems:

�

1

�

a

1

�+ a

2

� + a

3

 = 0 equation (?)

b

1

� + b

2

� + b

3

 = 0 equation (??)

�

2

�

a

1

�+ a

2

� + a

3

 = 0 equation (?)

c

1

� + c

2

� + c

3

 = 0 equation (? ? ?)

�

3

�

b

1

� + b

2

� + b

3

 = 0 equation (??)

c

1

� + c

2

� + c

3

 = 0 equation (? ? ?)

We distinguish the following situations:

{ There exists a nontrivial solution (�; �;) for system �

1

or �

2

or �

3

, with � � 0,

� � 0 and � 0.

{ None of the systems �

1

, �

2

and �

3

admits a nontrivial solution (�; �;) with � � 0,

� � 0 and � 0, but one of the equations (?), (??) and (? ? ?) admits a positive

solution.

{ None of the equations (?), (??) and (? ? ?) admits a positive solution.

It is clear that the �rst situation corresponds to the class (I) described in the previous sub-

section. For programs in this class, there exists a co-pattern for two constraints (see example

in subsection 6.1). More precisely, �

1

admits a positive solution i� we have a co-pattern for

�

1

and �

2

; �

2

admits a positive solution i� we have a co-pattern for �

1

and �

3

; �

3

admits

a positive solution i� we have a co-pattern for �

2

and �

3

.

It can be proved that the second situation corresponds to the class (II) described in the

previous subsection. For programs in this class, there exits two patterns for one constraint

on two di�erent planes (see example in section 6.2).

It is also clear that the last situation corresponds to the class (III) described in the previous

subsection. For programs in this class the constraints are strictly monotonic (see example

in section 6.3).

Hence, we have an algebraic characterization of each class of programs with three recursive

rules.

6.6 General Results

In this subsection, we generalize the results obtained for program �

3

, �

4

and �

5

.

22

Theorem 6.7 (Co-periodic Programs) Given a program in class (I) (with co-pattern

for �

i

and �

j

), the subset �

0

(�; �; �) of characteristic paths is depicted in �gure 21.

i

ji

j
Co−pattern for and

Any subco−pattern for and

Figure 21:

As in theorem 6.2, there are nine possible combinations of planar moves before and after

the composition of the co-pattern to be considered.

There are two subclasses of programs depending on whether �

k

(k 6= i; j) is co-periodically

increasing or decreasing. This monotonicity property is useful for the second step of

V

-

simpli�cation of we reduce �(�; �; �) (see section 3).

For class II, we have:

Theorem 6.8 (Bi-periodic Programs) Given a program in class (II), the subset�

0

(�; �; �)

of characteristic paths is depicted in �gure 22.

23

(1) (2)

(3) (4)

(5) (6)

(1) Bi-periodicity of �

i

with �

1

1

= 0 and �

2

3

= 0 (2) Bi-periodicity of �

i

with �

1

3

= 0 and �

2

1

= 0

(3) Bi-periodicity of �

i

with �

1

2

= 0 and �

2

3

= 0 (4) Bi-periodicity of �

i

with �

1

3

= 0 and �

2

2

= 0

(5) Bi-periodicity of �

i

with �

1

1

= 0 and �

2

2

= 0 (6) Bi-periodicity of �

i

with �

1

2

= 0 and �

2

1

= 0

Figure 22:

The grey boxes at the beginning and at the end this paths represent a certain set of paths

contained in a bounded number of planes. The size and form of these boxes are determined

by the values of the coe�cients a

i

, b

i

and c

i

(being therefore bounded).

For class III, we have:

Theorem 6.9 (Strictly Monotonic Programs) Given a program in class III, the subset

�

0

(�; �; �) of characteristic paths is depicted in �gure 23.

24

Figure 23:

We can simplify the form of the paths of �gure 23, according to the signs of a

i

, b

i

and c

i

,

as shown in �gure 24.

1

3

5

7

2

4

6

8

(1) a

i

> 0; b

i

> 0; c

i

> 0 (2) a

i

< 0; b

i

< 0; c

i

< 0

(3) a

i

> 0; b

i

> 0; c

i

< 0 (4) a

i

< 0; b

i

< 0; c

i

> 0

(5) a

i

> 0; b

i

< 0; c

i

< 0 (6) a

i

< 0; b

i

> 0; c

i

> 0

(7) a

i

> 0; b

i

< 0; c

i

> 0 (8) a

i

< 0; b

i

> 0; c

i

< 0

Figure 24:

We can algebraically characterize the classes of programs of three recursive rules as shown

in tables 6.6, 6.6 and 6.6.

Let us denote by:

25

Inequations 1

8

>

>

>

>

<

>

>

>

>

:

a

2

b

3

� a

3

b

2

a

1

b

2

� a

2

b

1

� 0

a

3

b

1

� a

1

b

3

a

1

b

2

� a

2

b

1

� 0

a

2

b

3

� a

3

b

2

a

3

b

1

� a

1

b

3

� 0

a

1

b

2

� a

2

b

1

a

2

b

3

� a

3

b

2

� 0

a

1

b

2

� a

2

b

1

a

3

b

1

� a

1

b

3

� 0

a

3

b

1

� a

1

b

3

a

2

b

3

� a

3

b

2

� 0

Inequations 2

8

>

>

>

<

>

>

>

:

a

2

c

3

� a

3

c

2

a

1

c

2

� a

2

c

1

� 0

a

3

c

1

� a

1

c

3

a

1

c

2

� a

2

c

1

� 0

a

3

c

1

� a

1

c

3

a

2

c

3

� a

3

c

2

� 0

a

1

c

2

� a

2

c

1

a

2

c

3

� a

3

c

2

� 0

a

1

c

2

� a

2

c

1

a

3

c

1

� a

1

c

3

� 0

a

2

c

3

� a

3

c

2

a

3

c

1

� a

1

c

3

� 0

Inequations 3

8

>

>

>

>

<

>

>

>

>

:

b

2

c

3

� b

3

c

2

b

1

c

2

� b

2

c

1

� 0

b

3

c

1

� b

1

c

3

b

1

c

2

� b

2

c

1

� 0

b

3

c

1

� b

1

c

3

b

2

c

3

� b

3

c

2

� 0

b

1

c

2

� b

2

c

1

b

2

c

3

� b

3

c

2

� 0

b

1

c

2

� b

2

c

1

b

3

c

1

� b

1

c

3

� 0

b

3

c

1

� b

1

c

3

b

2

c

3

� b

3

c

2

� 0

For the class of programs I, we have:

Inequations 1 hold Co-periodic constraint �

1

and �

2

Inequations 2 hold Co-periodic constraint �

1

and �

3

Inequations 3 hold Co-periodic constraint �

2

and �

3

For the class of programs II, when equation (?) admits a positive solution (analogous for

equations (??) and (? ? ?)), we have:

a

1

> 0; a

2

� 0; a

3

� 0;

a

3

b

1

� a

1

b

3

a

1

b

2

� a

2

b

1

< 0;

a

3

c

1

� a

1

c

3

a

1

c

2

� a

2

c

1

< 0

bi-periodicity of �

1

with �

2

= 0

and �

3

= 0

a

1

< 0; a

2

� 0; a

3

� 0;

a

3

b

1

� a

1

b

3

a

1

b

2

� a

2

b

1

< 0;

a

3

c

1

� a

1

c

3

a

1

c

2

� a

2

c

1

< 0

bi-periodicity of �

1

with �

2

= 0

and �

3

= 0

a

1

� 0; a

2

> 0; a

3

� 0;

a

2

b

3

� a

3

b

2

a

1

b

2

� a

2

b

1

< 0;

a

2

c

3

� a

3

c

2

a

1

c

2

� a

2

c

1

< 0

bi-periodicity of �

1

with �

1

= 0

and �

3

= 0

a

1

� 0; a

2

< 0; a

3

� 0;

a

2

b

3

� a

3

b

2

a

1

b

2

� a

2

b

1

< 0;

a

2

c

3

� a

3

c

2

a

1

c

2

� a

2

c

1

< 0

bi-periodicity of �

1

with �

1

= 0

and �

3

= 0

a

1

� 0; a

2

� 0; a

3

> 0;

a

2

b

3

� a

3

b

2

a

3

b

1

� a

1

b

3

< 0;

a

2

c

3

� a

3

c

2

a

3

c

1

� a

1

c

3

< 0

bi-periodicity of �

1

with �

1

= 0

and �

2

= 0

a

1

� 0; a

2

� 0; a

3

< 0;

a

2

b

3

� a

3

b

2

a

3

b

1

� a

1

b

3

< 0;

a

2

c

3

� a

3

c

2

a

3

c

1

� a

1

c

3

< 0

bi-periodicity of �

1

with �

1

= 0

and �

2

= 0

26

For the classes of programs III, we have:

a

i

> 0; b

i

> 0; c

i

> 0 �

1

strictly increasing �

2

strictly increasing �

3

strictly increasing

a

i

< 0; b

i

< 0; c

i

< 0 �

1

strictly decreasing �

2

strictly decreasing �

3

strictly decreasing

a

i

> 0; b

i

> 0; c

i

< 0 �

1

strictly increasing �

2

strictly increasing �

3

strictly decreasing

a

i

< 0; b

i

< 0; c

i

> 0 �

1

strictly decreasing �

2

strictly decreasing �

3

strictly increasing

a

i

> 0; b

i

< 0; c

i

< 0 �

1

strictly increasing �

2

strictly decreasing �

3

strictly decreasing

a

i

< 0; b

i

> 0; c

i

> 0 �

1

strictly decreasing �

2

strictly increasing �

3

strictly increasing

a

i

> 0; b

i

< 0; c

i

> 0 �

1

strictly increasing �

2

strictly decreasing �

3

strictly increasing

a

i

< 0; b

i

> 0; c

i

< 0 �

1

strictly decreasing �

2

strictly increasing �

3

strictly decreasing

7 Optimization

As seen in the previous section, if the systems �

1

, �

2

and �

3

do not admit a positive trivial

solution, we can replace �(�; �; �) in the disjunction

W

P2�(�;�;�)

C

P

by a subset �

0

(�; �; �),

where all the paths in �

0

(�; �; �) are contained on a �xed number of planes.

Using the notion of constraint implication [11], we show in this section that this replacement

can sometimes be done even if the systems �

1

, �

2

and �

3

admit a positive solutions.

This simpli�cation is due to a combination of directions of the constraint implications of

the program. Unfortunately, this simpli�cation does not work for any possible combination.

Let us �rst explain the notion of constraint implication.

Constraint implications are ordering relations on the constraints of adjacent points of N�

N�N. For programs of form �, the existence of those constraints is obvious. Proposition 7.1

states the existence of these constraint implications when the recursive rule R

k

(1 � n � 3)

is of the form:

p(x+ a

k

; y + b

k

; z + c

k

) :� �

k

(x; y; z); p(x; y; z)

where �

k

(x; y; z) denotes an inequality of the form d

k

x + e

k

y + f

k

z + g

k

�

k

0, with �

k

2

f<;>;�;�g.

Proposition 7.1 Consider a program � and �

k

(x; y; z) (1 � k � 3) be the constraint of

the recursive rule R

k

. For all �, � and :

I. Either �

k

(�; �;) is stronger than �

k

(�+ 1; �;) or vice-versa.

II. Either �

k

(�; �;) is stronger than �

k

(�; � + 1;) or vice-versa.

III. Either �

k

(�; �;) is stronger than �

k

(�; �; + 1) or vice-versa.

Proposition 7.1 de�nes 9 constraint implications, 3 for each constraint �

k

(�; �;). These

constraint can be represented graphically in �gure 25.

Example 7.2 For the program �

3

of subsection 6.1, the directions of the constraint impli-

cations are represented in �gure 26.

27

(, , +1)

(+1, ,)
(, ,)

(, +1,)

Figure 25: Constraint implications

If a program has its constraint implications oriented in a certain direction, we can determine

the form of the paths in �(�; �; �) without solving the systems �

1

, �

2

and �

3

.

This optimization consists in simplifying the forms of the paths in �

0

(�; �; �), i.e, to obtain

a \smaller"

2

subset �

00

(�; �; �) such that:

_

P2�(�;�;�)

C

P

=

_

P2�

00

(�;�;�)

C

P

For programs with two recursive rules, the form of these paths sets was studied at [11].

In the next three subsections, we consider some combinations of the directions of constraint

implications of programs with three recursive rules, for which the form of the paths in

�(�; �; �) does not depend on the values of a

1

, a

2

, a

3

, b

1

, b

2

, b

3

, c

1

, c

2

and c

3

. These three

classes cover approximately 80 % of all the possible combinations of these implications.

(Further optimizations allow to simplify �(�; �; �) in a similar way more than 87 % of all

the possible combinations.)

Note that a program � can belong to more than one of this classes.

7.1 Three Constraint Implications in a Same Direction

For a program � having constraint implications as shown in �gure 27 (left), the set of paths

in �

00

(�; �; �) are of the form depicted in �gure 27 (right).

There are 6 combinations of constraint implications that lead to simpli�cations analogous

to this one.

2

By \smaller" subset, we mean a subset that has a simpler form than the one of �

0

(�; �; �)

28

Figure 26: Constraint implications for program �

3

(0,0,0)

(, ,) (, ,)

(0,0,0)

Figure 27:

7.2 Two co-planar constraint implications with same direction

For a program � having constraint implications as shown in �gure 28 (left), the set of paths

in �

00

(�; �; �) are of the form depicted in �gure 28 (right).

There are 6 combinations of constraint implications that lead to simpli�cations analogous

to this one. The remaining 5 cases are depicted in �gure 29.

29

(, ,)

(0,0,0)(0,0,0)

(, ,)

Figure 28:

Figure 29:

7.3 Two co-linear constraint implications with opposed directions

For a program � having constraint implications as shown in �gure 30 (top), the set of paths

in �

00

(�; �; �) are of the form depicted in �gure 30 (bottom).

Figure 30:

There are 15 others combinations of constraint implications like the ones shown in �gure

30, corresponding to other positions of the two single arrows.

30

8 Applications

8.1 Generation of lemmas

As explained at the beginning of this paper, our initial motivation for studying bottom-up

evaluation of Datalog programs with integers, is its applicability to the automatic generation

of lemmas. More precisely, given a logic program de�ning a predicate of the form p(L; x; y; z)

where L is a variable denoting a list of integers, and x; y; z are variables denoting integers,

it is often possible to transform the atom p(L; x; y; z) into an atom of the form p

0

(x; y; z)

de�ned only over integer arguments (see [10]). The bottom-up evaluation of p

0

(x; y; z) then

yields an arithmetic relation (x; y; z) that also holds for p(L; x; y; z), generating the lemma:

p(L; x; y; z)) (x; y; z).

In the motivation section, we have thus sketched out how to generate the lemma

p(L; v; w; x; y; z) =) (v 6= w =) z � y div 2). The method applies also if the hy-

pothesis contains more than one predicate. For example, one can generate lemmas of the

form p

1

(L; x

1

; y

1

; z

1

)^p

2

(L; x

2

; y

2

; z

2

)) (x

1

; y

1

; z

1

; x

2

; y

2

; z

2

); it su�ces to replace the con-

junction p

1

(L; x

1

; y

1

; z

1

) ^ p

2

(L; x

2

; y

2

; z

2

) by an equivalent atom p

3

(L; x

1

; y

1

; z

1

; x

2

; y

2

; z

2

)

and to apply the previous method to this new atom. This application to the automatic

generation of lemmas is useful for proving safety properties of communicating automata

and protocols [12].

8.2 Termination of Prolog programs

As seen in section 2, bottom-up evaluation of Datalog programs with integers is useful for

proving the termination of logic programs. The Datalog programs correspond to logic pro-

grams in which the original arguments have been replaced by their sizes. (This can be

viewed as a form of \abstract interpretation" [6].) As an illustration consider the following

Prolog program (borrowed from [26]).

split([]; y; []; []):

split([ujL]; y; [ujM];N) :� u � y; split(L; y;M;N):

split([ujL]; y;M; [ujN]) :� u > y; split(L; y;M;N):

By replacing the list arguments by their sizes (numbers of elements) and removing the aux-

iliary constraints u � y and u > y, one transforms the above program into the Datalog

program:

split

0

(x; y; z; v) :� x = 0; z = 0; v = 0:

split

0

(x+ 1; y; z + 1; v) :� split

0

(x; y; z; v):

split

0

(x+ 1; y; z; v+ 1) :� split

0

(x; y; z; v):

Our method applied to split

0

generates an arithmetical formula equivalent to x = z + v.

This means that the size of the fourth argument of split is the sum of the sizes of the �rst

and third arguments. This relation among the sizes of the arguments of split can be used for

showing the termination of a quicksort program (see [26]). Note that Pl�umer's (top-down)

procedure generates the weaker relation x � z + v.

31

8.3 Temporal Deductive Databases

A Datalog program is a logic program without function symbols. A Temporal Datalog

program is a logic program where function symbols (e.g. succ, +) are allowed for the

\temporal" arguments. Given a Temporal Datalog program and a query p(x; y; z), the query

processing problem consists to determine whether or not there exists a ground substitution

� such that �(p(x; y; z)) logically follows from the program (and to determine all of these

substitutions, if any). This problem is undecidable for general temporal Datalog programs,

but has been proven decidable for temporal Datalog programs which have a unique temporal

argument over which incrementation is done systematically (no arithmetic constraint) [8].

Our process of bottom-up evaluation makes the query processing problem decidable for a new

class of temporal Datalog programs: these programs have an arbitrary number of temporal

arguments over which incrementation is done conditionally (according to the satisfaction of

an arithmetic constraint); on the other hand, our programs contain at most three recursive

rules.

9 Conclusion

We have described a bottom-up evaluation method for a special class of recursive Datalog

programs over integers that are often met in Temporal Deductive Databases, or when proving

termination of logic programs.

The method shows how to construct a linear arithmetic formula which characterizes the

least �xpoint associated with the program. The recursive rules of the programs that we

consider increment the arithmetic arguments according to one arithmetic constraint. We

have described here the method for the case where programs were made of at most three

recursive rules. We believe that the underlying idea of the method is general and can be

applied to the general case of n recursive rules.

Moreover, using additional techniques such as constraint \pushing" (see, e.g., [29]), our

method can be applied in many cases where the programs have more than one constraint

per rule.

We have assumed in this paper that the domain of the variables and constants were the

domain of integer numbers, but our method can be applied if the domain of the variables

and constants is the domain of rational or real numbers. We have also assumed that � was

a linear arithmetic formula, but the method applies as well for general arithmetic formulas.

Further generalizations on the form of program � are given in [11].

References

[1] K. R. Apt, M. H. Van Emden. \Contributions to the Theory of Logic Programming".

J.ACM 29, 1982, pp. 841-862.

[2] M. Baudinet. \Temporal Logic Programming is Complete and Expressive". Proc. 16th

ACM Symp. on Principles of Programming Languages, Austin, 1989, pp. 267-280.

[3] M. Baudinet, M. Niezette and P. Wolper. \On the Representation of In�nite Temporal

Data Queries". Proc. 10th ACM Symp. on Principles of Database Systems, Denver,

1991, pp. 280-290.

32

[4] F. Bancillon and R. Ramakrishnan. \An Amateur's Introduction to Recursive Query

Processing Strategies", Proc. ACM Conf. on Management of Data, Washington, 1986,

pp. 16-52.

[5] A. Brodsky and Y. Sagiv. \Inference of Inequality Constraints in Logic Programs".

Proc. 10th ACM Symp. on Principles of Database Systems, Denver, 1991, pp. 227-240.

[6] P. Cousot and R. Cousot. \Abstract Interpretation: A Uni�ed Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints", Conference

Record of the 4th ACM Symposium on Principles of Programming Languages, Los An-

geles, 1977, pp. 238-252.

[7] P. Cousot and N. Halbwachs. \Automatic Discovery of Linear Restraints among Vari-

ables of a Program". Conference Record 5th ACM Symp. on Principles of Programming

Languages, Tucson, 1978, pp. 84-96.

[8] J. Chomicki and T. Imielinski. \Temporal Deductive Databases and In�nite Objects".

Proc. 7th ACM Symp. on Principles of Database Systems, Austin, 1988, pp. 61-81.

[9] M. H. Van Emden and R. A. Kowalski. \The Semantics of Predicate Logic as a Pro-

gramming Language", J.ACM 23:4, 1976, pp. 733-742.

[10] L. Fribourg. \Mixing List Recursion and Arithmetic". Proc. 7th IEEE Symp. on Logic

in Computer Science, Santa Cruz, 1992, pp. 419-429.

[11] L. Fribourg and M. Veloso Peixoto. \Bottom-up Evaluation of Datalog Programs with

Arithmetic Constraints". Technical report, LIENS 92-13, June 1992. Short version in

Proc. CADE-12, LNAI 814, pp. 311-325, June 1994.

[12] L. Fribourg and M. Veloso Peixoto. \Concurrent Constraint Automata". Technical

report, LIENS 93-10, May 1993.

[13] A. Van Gelder. \Deriving Constraints among Argument Sizes in Logic Programs",

Proc. 9th ACM Symp. on Principles of Database Systems, Nashville, 1990, pp. 47-60.

[14] J. Ja�ar and J.L. Lassez. \Constraint Logic Programming", Proc. 14th ACM Symp. on

Principles of Programming Languages, 1987, pp. 111-119.

[15] G. Kuper. \On the Expressive Power of the Relational Calculus with Arithmetic Con-

straints". Proc. 3rd International Conference on Database Theory, Paris, 1990, pp.

203-313.

[16] P. Kanellakis, G. Kuper and P. Revesz. \Constraint Query Languages". Proc. 9th ACM

Symp. on Principles of Database Systems, Nashville, 1990, pp. 299-313.

[17] D.B. Kemp and P.J. Stuckey. \Analysis Based Constraint Query Optimization". Proc.

10th Intl. Conf. on Logic Programming, Budapest, The MIT Press, 1993, pp. 666-682.

[18] F. Kabanza, J.M. Stevenne and P. Wolper. \Handling In�nite Temporal Data". Proc.

9th ACM Symp. on Principles of Database Systems, Nashville, 1990, pp. 392-403.

33

[19] J-L Lassez. \Querying Constraints". Proc. 9th ACM Symp. on Principles of Database

Systems, Nashville, 1990, pp. 288-298.

[20] J-L Lassez. \Parametric Queries, linear constraints and variable elimination". Proc.

Conference on Design and Implementation of Symbolic Computer, LNCS 429, 1990,

pp. 164-173.

[21] J. Lloyd. \Foundations of Logic Programming". Second Edition, Springer Verlag,

Berlin, 1987.

[22] A. Levy and Y. Sagiv. \Constraints and Redundancy in Datalog". Proc. 11th ACM

Symp. on Principles of Database Systems, San Diego, 1992, pp. 67-80.

[23] R. Van der Meyden. \Reasoning with Recursive Relations: Negation, Inequality and

Linear Order (Extended Abstract)". Proc. ILPS Workshop on Deductive Databases,

San Diego, 1991.

[24] J. Misra and D. Gries. \Finding Repeated Elements", Science of Computer Program-

ming 2, 1982, pp. 143-152.

[25] K. Marriot and P.J. Stuckey. \The 3 R's of Optimizing Constraint Logic Programs:

Re�nement, Removal and Reordering". Proc. 20th ACM Symp. on Principles of Pro-

gramming Languages, Charleston, 1993, pp. 334-344.

[26] L. Pl�umer. \Termination Proofs for Logic Programs based on Predicate Inequali-

ties".Proc. 7th International Conference on Logic Programming, Jerusalem, 1990, pp.

634-648.

[27] P. Revesz . \A Closed Form for Datalog Queries with Integer Order". Proc. 3rd Inter-

national Conference on Database Theory, Paris, 1990, pp. 187-201.

[28] D. Srivastava. \Subsumption in Constraint Query Languages with Linear Arithmetic

Constraints".Proc. 2nd International Symp. on Arti�cial Intelligence and Mathematics,

Fort Lauderdale, 1992.

[29] D. Srivastava and R. Ramakrishnan. \Pushing Constraint Selections". Proc. 11th ACM

Symp. on Principles of Database Systems, San Diego, 1992, pp. 301-315.

[30] J. D. Ullman and A. Van Gelder. \E�cient Test for Top-Down Termination", J.ACM

35:2, 1988, pp. 345-373.

34

