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Abstract

We show that the cut polytope PCut, is an L-polytope of the lattice L,,, affinely
generated by its vertices. We consider cut-sub-lattices of L, generated by subsets of
cuts. If n is even, L, is generated by an odd system. We give a detailed description
of L, and PCut,, for small n and sets of equiangular lines related to these polytopes.
In particular, we give all 4 types of L-polytopes of the lattice L4 = \/§Dg'2.

1 Introduction

Let V be a ground set of cardinality |V| = n. The cut vector, or, simply, the cut 6(5),
S C V, is a vector of the space of all functions d : V? — R, defined on the set V? of all
unordered pairs of the set V. The component 6;;(.5) is defined as follows. Let

(S, T)={(ij)eV*:1€S,5€T}and D(S)=(S,V —5). (1)
Then -
1= o B &2

The dimension of the space spanned by all §(5)’s is equal to N = |V?| = n(n — 1)/2.
Since 6(5) = §(V — 5), there are 2"~ cuts, including the zero cut 6(0) = 0.

Let ZV be the lattice of all integral N-vectors. Let K be a family of cuts. Clearly
K C ZV. Hence the lattice L(K), linearly generated by all the cuts §(S) € K, i.e.

LIK)y={d:d= ) zs8(5), zs € Z},
5(S)ek

is a sublattice of ZV. Let K,, = {6(S5) : S CV — {n}} be the set of all cut vectors, and,
for even n, let K2 = {§(S) € K,, : |S] is odd}, K= = {§(5) € K,, : |S| is even}. We set

L, = L(K,), L2 = LK), L = L(K™).



It is proved in [1], d € L, if and only if d;; + djx + dr; = 0 (mod 2) for all triples
{ijk}. The condition is a special case of the following fact: cardinality of an intersection
of a cut and a cycle in a graph is even. In fact, this is equivalent to the dual lattice of L,
is %L(C), where C is the set of all cycles of the complete graph K,,. C itself is generated
by triangles and trivial 2-circuits, 2¢;;, containing 2 parallel edges (i5). Hence the dual
lattice L7 contains the lattice Z of all integral vectors.

The lattice Lt, for even n, is characterized in Section 4 of [5].

We call a set YV C R" of vectors an odd system if the inner product of any pair
of vectors u,v € V, denoted by juxtaposition uv, is an odd number. In particular, the
norm v? of any v € V, i.e. the inner product of v with itself, is odd, too. Note that for
a (0, £1)-vector its norm equal to number of nonzero components.

A set of vectors V is called symmetric if —v € V for all v € V. If —v ¢ V for all

v €V, then V is called asymmetric. Using the expression
1
6(5)6(T) = 5[52(5) + 8*(T) — *(SAT)),

it is easy to verify that, for even n, the set K% of all odd cuts is an asymmetric odd
system such that norm of each odd cut is equal to n — 1 (mod 4).

A set of vectors is called uniform if norm of all its vectors is the same. In the case,
the common norm is called norm of the set of vectors. A uniform odd system V of norm
m is called closed if the set of all vectors of norm m of the lattice L(V), generated by V,
coincides with V.

It is proved in [4] the following facts about the lattice L(V), generated by an odd
system of vectors v of norm 4k(v) + p, where p = 1 or p = 3 is the same for all v € V.

(1) @* =0 or p (mod 4) for all L(V).

(2) Lo(V) := {a € L(V) : a* = 0 (mod 4)} is a double even sublattice of L(V). (A
double even lattice is a lattice of vectors with even inner products and having norm
divisible by 4).

(3) Li(V) :={a € L(V) : a* = p (mod 4)} = Lo(V) + a1, where a; is any vector of
L(V) of odd norm.

A special case of an odd system is represented by a set of vectors, spanning equiangular
lines. A set of lines is equiangular if the acute angle between any pair of lines is the same.
It there are sufficiently many of equiangular lines, then this angle is equal to arccos%,
where m is an odd integer. Hence the corresponding odd system is composed of vectors
of norm m with inner products +1.

We give here more detailed description of the lattice L,. In particular, we show that
the cut polytope PCut,, i.e. the convex hull of all cut vectors, including zero cut, is an
L-polytope of the lattice L,.

2 Some properties of the lattice L,

Let {e;;: 1 <@ <j < n} be orthonormal basis of R". The lattice generated by the basis
is ZN. For m € Z, let mZ" be the lattice of all integer vectors divisible by m. Then
{me;;} is the basis of mZ". Recall that K, is an Abelian group with respect to symmetric



difference of vectors, i.e. the sum of vectors modulo 2. Similarly, ,, is an Abelian group
with respect to usual addition. In Proposition 1 below we give two simple but important
properties of the lattice L,.

Proposition 1 (i) 2Z" C L,.
(ii) L,/2ZY = K, i.e. d=38(S) (mod 2) for some §(S) € K,, for alld € L,,.

Proof. (i) The equality
2ei; = 6(1) + 6(j) — &(ij) (2)
shows that 2e;; € L, for every pair (ij) € VZ.
(ii) Let d € L, d = 35 256(5). Then d = Y 525 6(5) (mod 2), where § = {5 : zg =
1 (mod 2)}. Since 6(S) + 6(T) = 6(SAT) (mod 2), using induction on number elements
of S, we obtain that d = 6(T") (mod 2) for some T"C V. O
Proposition 1(ii) implies that every point d € L,, has the form

d =2a+6(S), where a € Z. (3)

for some S C V.
Of course, the lattice L, has infinitely many bases. Proposition 2 below gives an
example of a basis of L,, containing in K,,.

Proposition 2 The following set of N cuts forms a basis of L,
B ={6(z), 6(ij) : 1,5 € V—{n}}.

Proof. Using (2), we have 6(5) = e 0(j) — 2Xicjes €ij = Xjes 0(7) — Yicjes(0(2) +
6(j) — 6(23)), i.e. each cut 6(5), S CV — {n} has the unique representation

(8) = 3 863) = (181 =2) T8 (4)

Note that the set of points B, = {6(0)} U B is an affine basis of the lattice L,. Let
the origin does not belong to L,. Then we distinguish lattice points d € L,, and lattice
vectors. Any point d € L, has the following affine representation

d= Zzaa, Zzazl.

a€B, a€B,

The lattice points do not form a group.
A lattice vector is a difference of two lattice points. Lattice vectors form the same
Abelian group L, and have the following affine representation in the basis B,

d= Zzaa, Zza:().

a€B, a€B,

Let (S) = 6(S) — ag, where ag is the new origin. Then 6(5) = v(5) — v(0). Using
(4), we obtain the following affine representation of the vectors v(.5) in the basis B,.

38 = 3 i) — (151 -2 X300 + =Dy 1y500) 5)

i<jeS i€s
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The representation is useful if we take the center of PCut, as origin.

The equation (3) shows that the unique (0,1)-vectors d € L,, are cut vectors. Now we
consider vectors of L, modulo 3, i.e. vectors having (0, £1)-components only. Let d € L,
has (0,+1)-components. Since d (mod 2) is a cut vector, all such vectors have the form

d(5; X) = 6(5) = 2x(X), X € D(5), (6)

where
X(X)= > e
(i5)eX
and the set D(5) is defined in (1). Note that 6(S) = x(D(S)). There are 280:=% k= |S|,
such subsets X. So between 3(3) of (0, £1)-vectors of RN, L, contains Y7_, (Z) 2k(n—k)—1
(including 4"~ — 2771 4+ 1 of form §(S) —§(S’)). Thus, the ratio (equal to 1, 13/27, 80/729
for n = 2,3,4) goes to 0 when n — oo; compare with |L, N[0, 1]V|/][0,1]V] = 2= ("2"),

3 Cut-sub-lattices of L,

We call a sublattice L. C L, a cut-lattice if it is generated by a set K of cuts, i.e. if
L = L(K). Call a cut-lattice L(K) uniform if Sym, C Aut(L(K)). If £ is uniform,
then K, N L(K) is also uniform. Call a cut-sublattice L(K) maximal if L, is the only
cut-lattice having L(K) as a proper sublattice. Call a cut-lattice minimal if it has no
proper full-dimensional cut sub-lattices. Call a set of cuts K closed if X, N L(K) = K.

We shall see that PCut(K) is an L-polytope in L(K) for closed K.

Set

Kok ={6(5):|S| =gk}, for 1 <j <k <Z—1, and L% = L(KLF),

Kmed = {6(5) : |S| < 2 and [S| £ 1 (mod 3)}, and L% = L(Kmo%®),

KH = 8(5): |5] £1.15] < 5}, and LF = L(KP),

KE=1{6(5):|S| =k}, and Lk = L(KF).

Kevimeds) — £5(5) € Kev . |2ﬂ = 0,1 (mod 3) ,[S] < %}, and Levmods) — [ (oevimods)y,

Any proper generating subset of K (examples, beside K}, will be given in Theorem 8
and following remark) is not closed. Also it seems that L% = L, if and only if (¢7) = (12).

Examples of closed K are K = K,,,K«, K% K7 = {6(S) : |SNT]is even for given
T €V}, and K = K, N H, where H is a hyperplane in R", containing 0 (for example,
K =K', K21, see Proposition 6 below, or K is a face of the cut cone R4 (K,,)).

We need the following

Lemma 3 Assume 6(5) = S5y 2,.6(Sh), where z, € Z, z, # 0, and |S|,|Sy| < 2. Then
(|S|2+1) =0 (mod g-c.dy ooy ('Sh2|+1)).
Proof. Set d = S2F_, 2,6(S),). Define 7(d) € RY by:

m(d)ii = Yp.s,5i 2h 1=1,..,n
w(d)i; = Flr(d)i+7(d);; —di] 1<i<j<n.
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Note that, for d = 6(5), n(6(5));; = 1 if ¢,7 € S and = 0 otherwise. We have

= hz_: 2w (6(Sh))

Taking inner product with jx of both sides, we get

S Zi: (|Sh|+1)

1<i<i<n

Hence, taking d = 6(5), the result follows. O
Lemma 3 is used in the proof of Proposition 6 below.
In what follows, we use the following characterization of the lattice L¥, k # 2, given
in Proposition 4.3 of [6] (see Proposition 4, below). This characterization was obtained

as an adaptation of a theorem of R.M.Wilson.
For d € RV, define

1 1
dfn = ———( Z di; — —— Z d.s) for 1 <i < n. (7)
o n — 2k 1<j<n,j#i Ton—k 1<r<s<n
Proposition 4 [6] Given d € ZV, then d € L%, k # %, if and only if
(1) Lagicjgn di =0 (mod k(n — k),
(it) df .\ €Z forall1 <i<n,
(m)dm_l_l—l—dkn_l_l—l—d]_()(mod,?)foralll<z<]<n 0

The characterization of L¥, given in Proposition 4 implies, for example, that ”%1[/711 C

n—1 n—1
L2, ”28_1[% C L,? forn =1 (mod 4).

Proposition 5 Given d € ZV, then
a)d e L§, n is even, if and only if
(i) Yi<icj<n dij =0 (mod 721_2);
(i) Zl<z<]<n iy = %2221 dpg for any p, 1 < p < n.
b) de Ln , nis odd, if and only if

2-1
Zl§z<]§n iy = =0 (mOd - 4 :

Proof. The conditions (i) and (ii) of a) are clearly necessary for membership in L.
Conversely, suppose that d satisfies both the conditions, and let d' denote its projection
on the set V — {n}. From (ii), we obtain

Y d=(5-) X dn (8)

1<r<s<n—1 1<g<n—1

This implies that 3=, <, 7, = 0 (mod M), since 3o <icp1 din = 0 (mod 3)

by (i) and (ii). Using Proposition 4, we deduce that d’ € Lf_l. Hence
d/ = ZSQV—{n},|S|:% )\55(5) with )\S € Z for all S
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We show that d = 355 As6(5). As Ticpcscnt g = MZS As, (8) yields:

Zl<z<n 1 dln = ZS )‘S Hence Zl<r<s<n TS Zl<r<s<n 1 d —I_Zlgign—l dln = % ZS )‘S
and by (i) Zl<]<n ij =525 As for each s € V.

We compute, for mstance dy,. The above relations for ¢ = 1 yield: dy, = 535 Ag —
22<j<n—1 di;. Using the value of dy; = dj; given by the decomposition of d’, we obtain
that di, = Y g.1es As. This shows that d = g As8(5), i.e. that d € LZ.

It is not difficult to verify that b) is implied by Proposition 4, which can be applied,
since % < 5. a
Proposition 6 (i) L% C L, strictly.

(i) Lt = L, if and only if j = 1.

(iti) Leotmodd) C Lev strictly.

In particular, L2 C L% = L** for n = 8,10.

(iv) KF is closed if k(n — k) does not divide i(n —1) for all i # k, 1 <1 < 5]

In particular, K* is closed ZfL \/_)J <k < (%]

(v) K} is closed.

Proof. (i) We check that no cut §(7) belongs to L™°%. Else, §(:) = 22 5,15|#1 (mod3) 250(5),
from which we deduce that g.c.d.(|5|2+1) =1 for |S| # 1 (mod 3). But (|S|2+1) = 115115+
1) =0 (mod 3) if |S| = 0,2 (mod 3).

(i) If ; > 2, no cut §(¢) belongs to LZ/F! since g.c.d.((];l), (];2)) # 1.

If j =1, the equality (4) shows that L, = L.2.

(iii) Since (|S|+1) is divided by 3 if and only if | | = 0,1 (mod 3), we conclude, that
6(.5) with |S| = 2 (mod 3) does not belong to Lev(m°d3)

(iv) We use (i) of Proposition 4. Therefore, if cut 6(S) € L* with |S| =1, then k(n—k)
divides i(n — 1), since ;e i<, 0(5) = i(n — z).

(v) Any point d € L} satisfies the following condition

dij — dji + dig — di; = 0 for all distinct ¢, 5, k, [ €V, (9)

since this condition holds for all §(¢) € K., generating L.. Take any §(5) with |S| #

I,n — 1. Then we can find distinct ¢, j, k,] € V such that 7,j € S and k,[ ¢ S. Since (9)

is violated by this §(.9), we conclude that 6(S) ¢ LL.. This implies that L} is closed. O
We group in Theorems 7, 8 below some interesting facts on uniform cut-lattices.

Theorem 7 (i) ((173) — (125))6(i) € LY if n = 0 (mod k) and so (n —4)L, C L>* if
n=0 (mod 3).

(it) (n —2)L, C L2? and, for even n, “52L, C L2

(iii) (6(i) — 6(j)) € LEVF, (k—2)Ly C L.

(iv) (6(S)—6(5)) € LE with |S| =|S'| =1 if and only if “=2 is an odd inleger.

Proof. (i) Recall that jy is all ones N-vector. The following identity is true

(i2a) - (oape(i )= = as

5:831,|S|=k—-1



If n =0 (mod k), then we can partition V into 7 disjoint k-sets A;, 1 < j < 2. Then

—2jn = 3o [(k = 2)0(A;) — Yiea, 8(A; — {t})].
(ii) is implied by the equalities (10) and (11) in the proof of Theorem 8 below.
(iii) For any k-subset S of V, we have

(k= 2)8(5) = >_(8(S = {t}) = 6(1)).

tes

Subtracting the equalities for S =T U {j} and S =T U {¢}, we obtain

8(i) = 6(7) = (k= 2)(6(TU{7}) = 6(TU {i})) + _(8(T L {i} = {t}) = 8(T' U {5} = {t})).

tel
The equality implies (iii).
(iv) We use Proposition 4. Let d = 6(5)—46(T). It is not difficult to verify the following
identities.

S di = (S| = |T)) for i € V — (SAT),

1<5<n
> diy =+(n—1|S|—|T]) for i € SAT, and
1<5<n
> dij = (S| = T])(n—|S]=|T].
1<e<j<n

Suppose that [S] = |T'| = [. Then Y, «;c;<, dij = 0, and substituting the above expres-
sions into (7) we obtain

::2211 fore e S —T,
dfpgy =19 —2=2 forieT -5,

0 for i € V. — (SAT).

Besides, for any integer k, 1 < k < 2, and integers ¢, j with 1 <7 < j < n, we have

i
S

fore,7 € 5 -1,

fore,y € T — S,

k—l—l) fore e SNT,j €S or vice versa,

2211 +1) foree SNT,j5 €T or vice versa,

- 1) fori € 5,5 € V—(5SUT) or vice versa,

(ZZ 2211 —1) forieT,j eV —(SUT) or vice versa.

RI= |3
o |

33w
| |l|ol?v
310“??2

1
§(dﬁn—|—1 —I_ dfn—l—l - dl]) =

w|>—l3 3

—~
3

Sl
~—~
3

I

|
b [ =

We see that the conditions (i)—(iii) of Proposition 4 are satisfied if and only if 77;:22]1 is an

odd integer. O

n—1

Any cut-lattice containing Ln_ is uniform, because the condition (iv) of Theorem 7
holds for any [ if n is odd and k& = It 1mphes that L7 is maximal for odd n, ¢ # 2=t

Denote
ty:=min{t € Z, 1L, C L7'}.



Theorem 8 Forn > 5, we have:
(i) if n —2 = p°, s is an integer, then t, € {1,p}, and t, = 3,2,5 forn = 5,6,7,
respectively.

(ii) if n — 2 # p*, then t, =1, i.e. L7 =1,.

Proof. We supposed that n > 5 since L?l = (), and Lffl = L2 has dimension 3, i.e. it is
not full dimensional, since dimension of L4 is 6.
Clearly, the lattice L¥! contains elements

Z; = Z 6(5) for any ¢ ,2 <i<n—2.
SCV—_{1},|S|=i

We want to recognize when 6(1) is represented as sum of §(5) € L7!. Tt is not difficult
to verify that the following identity is true

Hence we have

(7;: 12) §(1) = izips — (n — 2 — i)z, (10)

n—2)
i—1

K3

l—

Moreover, for n = 2 (mod 1), setting f; = , the above equality implies

fio(1) = zip1 — (n Z 2 — 1)z (11)

with integer coefficients. Hence f;6(1) € L7'. We want to find g.c.d of numbers f;.

If n =2 (mod 7), and n # 2 (mod ¢?), then f; = 2== H;;zl % is an integer and it is
not divided by ¢, because 1 < j < ¢ implies (n —2) — j £ 0 (mod 7).

By its definition, ¢, divides any integer m such that mé(1) € L7

Let us prove (ii) at first. Suppose that n — 2 = pi* --- p2 is the prime decomposition
of n — 2. Apply equality(11), in turn, for ¢ = pi*,---,¢ = po. Then 1 is only common
divisor of r numbers f;, proving (ii).

If n —2 = p* s> 2, then apply (10) for i = 2 and (11) for ¢ = p**. Then 1 and p are
only possible common divisors of n —2 = p°® and f;. Finally, t,, # 1 for n = 5,6,7 because
L7 = L% for these n, and we can apply Proposition 6(i). O

Remark. The proof of Theorem 8(ii) above gives, actually, K1 C L(K®e+! U Lo+
if n — 2 has two divisors a,b > 1 such that «*,b* do not divide n — 2 and g.c.d.(a,b) = 1.
Such a, b exist if and only if n # 2 + p*. For example, L, = L(K%* U K2**1) if n is even
and n # 2 4 2°, for any odd divisor b of n — 2. In particular, Ly = L(K3> U K3~ ") for
t>2 and L, = L(K2*UK>?) for n = 2 4 6m with m = 1,5 (mod 6) (i.e. m Z 0 (mod
2,3)).

By the same way as in Theorem 8(ii), one can check that K2 C L(K®et! U KhA+1) if
n — 3 has two divisors a,b > 2 such that g.c.d.(a,b) = 1 and a?,b* do not divide n — 3.
Hence, for n —2,n —3 # p*,2p® (for n < 50 all such numbers are 23,38,42 and 47), the set

Kaaett y Kb+L contains cut bases of L,, which are disjoint with K12, For example, since



23—2=3-Tand 23 —3 =4-5, we have K1, C L(K3' UKJY) and K2, € L(K3y UK5Y).
Similarly, since 38 — 2 = 4 -9 and 38 — 3 = 5- 7, we obtain K, C L(K33 UK3%'"°), and
K2, C LIK33 U IC;éS). But L7? = L& as well as L7, are proper sub-lattices of Lg, for
example.

We can generalize the assertion of Theorem 8 as follows. Set Sy, ;== {n—m+2,...,n}.
For any m,([5] <m <n)andi#m—1,n—m+1, (1 <¢<m — 1), define

The following identity is true

_(m =2 m =3\ (m)

where j](vm)(k ND=1lifn—m+2<k<l<nand j](vm)(k [) = 0, otherwise.

Forl <i<k<m—1,let g(i,k;m) g.c.d.((ij), (mki 2)) Using the above identity,

k—1 m—i—2
) ) e

we obtain

gl kym) T gl m) ™

where f;; = % If m =nand k = ¢+ 1, then fi,01 = fi, gi,k;m) = ¢,
Sm =V — {1}, and the identity coincides with (11).
Let i+1 <k <2(i+1) and m — 2 is divided by 7, but not by 2. Then (:”__2) (m—;’—z)

1 k—i—1
is divided by 2, but not by 3. In fact,

(i—l)(k—i—1):( —2)(m—2— lj —2—]1j —2—@—]‘

72 ? ? k—1—7

Note that ™ = — is not divided by 7, since 1 < j < 7, and %_j;] is not divided by 1,
since 1 < <k—i—2<i.
If g.c.d.(fik, frs) = 1 for some 4-subset {i,k,r,s} of {1,....,m —2} —{n —m + 1},
then
Kr=m+ ¢ LIKEUKFUKT uK?).

Corollary 9 For alln > 5 (except, possibly, n = 2+ p* with p > 2), we have 2ZN C L#'.

Proof. In fact, for n # 2 + p*, L7' = L,. For n = 2+ 2%, (i) of Theorem 8 implies
that 26(1) (and so, by uniformity of L7', all 28(;)) belongs to L¥'. By Theorem 7(i),
§(1) = 6(j) € LE1* for k = £, say. Hence the equality

2ei5 = 6(1) +6(5) — 6(i) = 8(1) — 6(5) + 28(j) — 6(iy)

shows that 2Z% C L7 O
Some explicit decompositions for 6(1) are as follows:

(10) with ¢ = 2:

9



(n—2)6(1) = 2z3 — (n — 4)2z, for n — 2 prime, including n = 5,7,9,13, 15, - -
(11) with ¢ = 2:

n—2 n—4

0(1) = —z44 323 —4zy for n =8, 36(1) = 24 — 423 + T2y for n = 11,
26(1) = z5 — Tzs + 1624 for n = 10, 26(1) = —z4 + Tz5 — 2025 for n = 14.

z9 forn =6,12,---

3.1 Cut-sub-lattices of L, for small n

For n < 4, the lattice L, has no proper full dimensional cut-sub-lattices, i.e. it is minimal.
For n =5, LZ is the unique full dimensional cut-sublattice of Ls. From Theorem 8(i),
we have 3L5 C LZ.
Recall that the lattice Lg has dimension 15. All full-dimensional proper uniform cut-
sub-lattices of Lg are the lattices

Ly =12, L3 = L°, and LZ' = L") = 127,

In fact, Ly* = Lg, and dimL! = 6, dimL3 = 10. We know that 2Z" C L,. For what
minimal ¢ € Z; and cut-sub-lattices L € Lg the inclusion 2¢Z'* C L is true?

The characterization of L%, given in [5], implies that ¢ = 4 for LZ. Similarly, the
characterization of Ly”, given in [8], implies that ¢ = 6 for L.

The representation (strangely asymmetric) of 2e;;, given below, illustrates explicitly
the fact, proved in Theorem 8, that t = 1 for L = L”). Let V = {ijkpgr}. Then

2ei; = 26(igk)+6(tkp)—8(iqr)+6(jp)+0(1q)+6(ir)—(6(2j)+6(ik)+6(pq)+6(pr)+6(qr)).

Proposition 6 implies that L7! is maximal proper cut-sublattice of L,, for n = 5,6, 7. For
example, adding a cut 6(i) to L3”, will give Lg, because

6(g) = 6(2) + (8(ikp) — 6(jkp)) + (8(sp) — 6(ip)) + (6(sk) — 6(ik)).

Using that 3o<;cjcrcs 0(17k) = 3 <i<6 6(2) is the unique linear dependency on the set
K&°, one can see that Ly” has exactly 6 proper full-dimensional cut-sub-lattices (obtained
by removing a cut 6(z), 1 <7 <6.)

Remark. It is clear that Z; (K,,) is the set of all integer-valued semi-metrics on V/,
which are embeddable isometrically into a hypercube {0,1}™. Clearly also, L, = {a —b:
a,beZi(K,)}.

Denote by M, the set {a — b : a,b are any integer-valued semi-metrics on n points}.
Using description of all extreme rays of the cone of all semi-metrics on 6 and 7 points,
one can check that M,, = L,, for n <6 and M,, = Z" for n > 7.

Remark. Consider the covariance map 7' : RY — R", defined by

7H(d)y = dy; for 2 <1 <mn,
Fl(d)ij = %(dh + dlj — d”) for 2 < <j < n.

10



This linear map of RY into itself is important, because the boolean quadric cone
™ (R4(K,)) = Ri(7Y(K,)) and boolean quadric polytope convr'(K,)) have many
applications (combinatorial optimization, quantum mechanics etc.). But the lattice
L(7Y(K,)) is nothing but Z%, because ¢; = 7(6(7)), e;; = 72(6(2) + 6(5) — 6(z5)) for
2 <i < j <n. Hence convr!(K,) is not an L-polytope in L(7'(K,)).

The map #(d), given in the proof of Lemma 3, is just 771((?), where d = (CZZ] 1 <<
j§n+1),c§1j:d17j_1 for 2 < §n—|—1,czij =diy1j1for2<i<j<n+l.

Compare, finally, evident 7' (6(5))x (6(T)) = 7' (6(SAT)) with 6(5)6(T) = L(6*(5) +
62(T) — 8*(SAT)) given in Introduction.

4 L-polytopes of the lattice L,

Since 6(5) is a (0,1)-vector, it is a vertex of the N-dimensional cube Qn. Let Sy be the
sphere circumscribing the cube ()n. The squared diameter of Sy is equal to N. Hence
the squared radius of Sy is equal to %.

Clearly PCut, C )n. Take the center of Sy as the new origin. Let jn be the all-one
vector of dimension N. Then each cut vector takes the form 6(5) — %j]\f and has :I:%
coordinates. Norm of all the vectors is equal to %.

An L-polytope of a lattice is the convex hull of all lattice points lying on an empty
sphere of the lattice, and the lattice points on the empty sphere have full rank. A sphere
is called empty if there is no lattice point strictly inside it. An L-polytope P is called
basic if the set of its vertices contains an affine basis of the lattice affinely generated
by vertices of P. An L-polytope P is called symmetric or asymmetric according to
whether the set of vectors, representing the vertices of P when the center of P is origin,

is symmetric or asymmetric, respectively.

Proposition 10 The cut polytope PCut, is a basic asymmetric L-polytope of the lattice
L,.

Proof. By definition, PCut, generates the lattice L,. Hence it is sufficient to prove, that
the sphere Sy, circumscribing PC'ut,, is empty. All integral points inside Sy are vertices
of Qn. The vertices lies on the sphere. Besides, by Proposition 1(ii), all (0,1)-vertices of
L,, are cut vectors. The expression (5) shows that PCut, is basic. It is easy to see that
the polytope is asymmetric. a

Let @ be the center of an L-polytope P of L,,, whose set of vertices V(P) contains the
origin 0 = (). Then, for all lattice points d € L, we have

(d - x)? > r27

with equality for d € V(P). Here r is the radius of the sphere circumscribing P. Since
0 € V(P), we have r* = 2%, and the above inequality takes the form

2dx < d?, for all d € L,. (12)

We say that x is of full rank if the system of inequalities (12) satisfied by « as
equalities uniquely determines x. Clearly, = of full rank is the center of an L-polytope

P(z) of the lattice L,.
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Proposition 11 Letz € RY satisfies (12) for d = 2e;; for all (ij) € V?, and for d = §(S)
forall S CV. Then

(i) |zi;] <1 for all (ij) € V?,

(ii) x;; = 1 if 2¢;; satisfies (12) as equality,

(tii) if © > 0, then x satisfies (12) for all d € L,,.

Proof. (i) is implied by the inequality (12) for d = +2¢,; € L,,.

(ii) If d = 2e;; satisfies (12) as equality, then the equality takes the form x,;; = 1.

(iii) If d € L,, then, according to (3), d = 2a + §(S) for « € ZY and S C V.
Recall that (12) is equivalent to (d — z)* > a?. Set y = §(S) — 2. Since @ > 0 and
zi; < 1, |yi] < 1 for all (ij). We have (d — 2)* = (2a + y)? = 4a(a + y) + y*. But
ala+y) = X(ijya,=0 [@ijlaij + 3| > 0. Hence (d — x)* > y* = (6(5) — z)? > 2*. 0

Corollary 12 Let x = x(E) + 6(T), where e =0 or 1, and E C V? be such a set that
20E N D(S)| +¢|D(T)Nn D(S)| < [S|(n—|S]) for all S C V. (13)

If « is of full rank, then x is the center of a symmetric L-polytope P(x) of the lattice L,
with the set of vertices

V(P(2)) = {20(A%) + d(S: A7) : AT C E— D(5),A~ € D(S) — (EU D(T))},

where S satisfies (13) as equality. In particular, 2x(E) € V(P(x)) and 6(T) € V(P(x))
ife =1.

Proof. We have to verify that = satisfies all inequalities (12). The inequality (13) implies
that @ satisfies (12) with d = 6(5) for all S C V. Since (13) is satisfied for S = T,
we have N D(T) = (). Hence z satisfies (12) for d = 2¢;; for all pairs (7). Now, by
Proposition 11(iii), = satisfies (12) for all d € L,,.

Let d = 2a + 6(5). In the proof of Proposition 11(iii) we see that

(d—2)? = (20 + 8(5) — 2)? = dala + 8(5) — o) + (6(5) — 2)” = (5(5) — 2)? = o7,

and a(a + 6(S) — x) > 0. Hence d € V(P(x)) if and only if §(5) € V(P(x)) and
a(a+ 6(5) — x(£) — 56(T)) = 0. The last equality can hold if and only if the supports
of the vectors a and a + 6(5) — x(E) — £6(T) do not intersect. Hence |a;;| < 1 (i.e.

d = \(A) — v(A7)) and A+ C E = D(S), A~ C D(S) — (E U D(T)). Note that
6(5) € V(P(x)) if and only if S satisfies (13) as equality. It is easy to verify that
6(T) € V(P(x)). This implies that 2y(F) € V(P(x)).

Recall that an L-polytope P of a lattice L with the vertex set V(P), containing origin
0, is symmetric if and only if the antipode of 0 in the sphere circumscribing P is a vertex
of P, too. Clearly, the point 2z is the antipode of 0 for P(x). Hence P(x) is symmetric
if and only if 22 € L,,. In our case 2¢ = 2x(E) +d6(T) € L,. O

Now we describe L-polytopes of L,, which are contiguous to the cut L-polytope. The
type of the new polytopes depends on the facet by that it is contiguous to PCut,,.

Denote by P,(F') the L-polytope which is adjacent to PCut, by a facet F. Let

() be the support of the facet F', i.e. the coefficients of the inequality defining F' are
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nonzero only for (¢5) such that 7,5 € (). Let S(F') be the set of all S C @ such that
6(5) belongs to the facet F. We suppose that § € S(F"). Note that Q — S € S(F) for
S € S(F). Then the cut 6(T) belong to the facet F'if and only if T' € T (F'), where
TF)={SUT":SeS(F)and T"CV —Q}.

Let @ be the center of P,(F'). Then the inequality (12) holds as equality for 6(7") for
all T € T(F),i.e.

1
o(Ta = 552(T), T eT(F). (14)
Since F'is a facet, rank of the matrix (6;;(T) : (ij) € V3, T € T(F)) of order |T(F)| x N

is equal to NV — 1. Hence the equation (14) determines all coordinates x,; of the vector
x up to a parameter t. The value of ¢ is uniquely determined by a vertex of P,(F') not
belonging to PCut,,.

Proposition 13 The system of equations (14) is equivalent to the following system

wij:% fori,j eV —Q
Zz’esl'ing forpeV —Q, S eS(F)
Y nes.a-s) tii = 51SI(1QI = [S])  for S € S(F).

Proof. Note that 6(T) € T(F) for all T C V — @, since § € S(F'). Consider equation
(14) for T' = {¢},{y} and {15}, 1,7 € V — Q. Using the equality (2), we obtain
1

2z = (8(1) +8(j) = é(iy))r = 5((n = 1) + (n = 1) = 2(n - 2)) = L,

i.e. the first system of equations.
Now consider equation (14) for T'= S and T' = SU{p}, where S € S(F')and p € V—Q.
Let |S| = s. Then 6*(S) = s(n —s) and 6*(SU{p}) = (s +1)(n — s — 1). We have

§(S)e= > a;= §S(n — 5), (15)

(17)€D(5)

U= X - Yrpt X ap= et s 1)

(i)eD(S) €S J€V—(Su{p})

Substituting the first equality in the second, and using the equality z;, = % for j €
V —(Q U {p}), we obtain the second system of equations.
We can rewrite the equation (15) as follows

1
Yo @it Y wip= Slsla = s)+s(n —q)).
(i5)€(8,Q-5) i€S,pEV—-Q

where ¢ = |()|. Using the second system of equations, we obtain the third system. a

Now, as an example, we consider a pure (2k + 1)-gonal facet F'= Fy, k € Z,,1 <k <
%, defined by the equation 35, bibjdi; = 0. Here Q = QT UQ~, [Q] = ¢ = 2k + 1,
QT =k+1,|Q | =k, and b; =1 fori € QT, b; = —1 for i € )~. Besides,

S(Fy) ={StUS,Q—(STUST): St C Q.5 CQ |57 =5 |=50<s<k)}.
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The second system of equations of Proposition 13 implies z;, = £ foralli € @, p € V—Q.
Using the symmetry of third system under permutations in Q@ and @~, we can suppose
that

z;=aforalli,j€Qt, vy =yforali,jeQ, a;;=z2forallicQt,jcQ .
Then the third system takes the form
sltk—s+Da+s(k—s)y+s2k—s)+1)z=52(k—s)+1), 0<s< k.

The solution of the system is @+ =y =t and z = 1 — ¢, where t is a parameter.

Denote P, (k) := P,(F}). Suppose that 2e;; € V(P,(k)) for some (ij) € V* Then,
according to Proposition 11(ii), #;; = 1. Hence 7,5 € Q.

The case i € Q1,j € ()~ is impossible. In fact, then z =1, x =y =0 and for i € Q~,
we have 26(i)x = 2(k + 1) + (n — ¢) > 6*(7) = 2k + (n — ¢q). This contradicts to (12).

Let 1,7 € Q. Then z =y = 1, z = 0. In this case, z = 2o(ij)eQ+? €ij T X (ijyeq— €ij T
%Z(ij)e‘ﬁ_cy e;;. Note that V? — Q? = D(Q) U (V — Q)*. Hence

20 = 2)(Q™) +2x(Q7%) + 6(Q) + x((V = Q)*). (16)

Since 0 < a;; < 1 for all (¢5), Proposition 11(iii) implies that P, (k) is an L-polytope,
i.e. the inequality (d — z)* > 2? is valid for all d € L,,.

Proposition 14 The L-polytope P, (k), n > 2, is symmetric if and only if n = 2k +1+¢
fore =0 or 1. Forn=2k+ 1+ ¢, the vertices of the polytope P,(k) are

2x(X) +d(T3Y),
where T'=S ife=0and T =5 and SU{n} ife =1, and
S=S5TUsT, STCQF, STCQ, ST =5T]=s 0<s<H,

X g (Q+2 - (Q+ - S+75+)) U (Q_2 - (Q_ - 5_75_))7
Y C(SH,Q7— ST U (57,QT — ST).

Proof. Note that (V — @Q)* # §(5) for all S if (V —Q)* # 0, and (V — Q)* = 0 if
|V — Q| < 1. Comparing (3) and (16), we see 2z € L,, if and only if (V — @Q)* = (). This
implies that the L-polytope P,(k) is symmetric if and only if n = 2k 4+ 1 + «.

Let V = Q Ue{n}. In this case 6(Q) = 6(V — Q) = €6(n) and x = x(E£) + 56(n) with
E =Qt U2 We can apply Corollary 12. We obtain that the vertices of P,(k) are as
in the assertion of this proposition. a

Let PCut(K) be convex hulls of all cuts, contained in the lattice L(K).

Since, for K C K,,, L(K) C L, Proposition 10 implies

Corollary 15 The polytope PCut(K) is an asymmetric (basic?) L-polytope of the lattice
L(K). O
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The symmetry group of PCut, consists of reflections rs7) and of transformations gener-
ated by all permutations of the set V. The reflection rsry reflects PCut, simultaneously
in all the hyperplanes, which contain the center of PCut, and are orthogonal to the
vectors e;; for (iy) € D(T).

Since rgry(6(5)) = 6(T'AS), for odd T, re(ry transforms PCut(Ky") and PCut(K2)
each into other. Hence PCut(K) and PCut(K2™) are congruent. Clearly, the symmetry
group of PCut(K,) (PCut(Kc")) is the symmetry group of L, (LS, respectively).

Remark.

Note that, since PCut,, is embedded into N-dimensional cube, we can define Hamming
distance d,,(6(.5),6(T)) = ||6(S) — 6(T)||;, between vertices of PC'ut,. We have d,(6(5) —
8(T)) = (3(8) — 8(T))? = 2(SAT).

On the other hand, since 6(5) = 6(V — 9), the vertices of PCut, relate to bipartitions
of the set V. There is the well known distance-regular graph, the folded cube O,,, defined
on all bipartitions. Two bipartitions are adjacent if its common refinement contains a one-
element set, i.e. 6(.5) is adjacent to 6(T') if |[SAT| = 1. The graphic distance d[0,](z,y)

and the distance d,,(x,y) are related as follows (we set e(n) := 2")
dn(,y) = d[O0,](z,y)(n — d[O.](z,y)),
ie. d, = d[0,)(nd[K (u-r)] — d[O,]) € Zo(KETH).
where K, is the complete graph on m vertices.

Similarly, the graph on all even cuts is the halved folded cube %Dn. The vertices 6(5)
and 6(T') are adjacent in 0, if [SAT| = 2. We have

ev 1 - 1 e(n—
47 = 2d[50,](nd[K ) — 2d[50,] € Z.(K{2)).
Actually, we have O3 = %D4 = Ky, %Dgg = Kis, 04 = K44, where K, ,, is the complete
bipartite graph on n + m vertices. The complement of Oj, is the Clebsh graph, i.e. the
halved 5-cube %H(5). The halved folded cubes %Dn for n = 8,10 have diameter 2, and

therefore they are strongly regular. For small n we have

d3 = 2d[[(4], d4 = Qd[[(g] + d[[(474], div == 4d[[(4], dgv == 6d[[(16],

So d3 and dy belong to the interior of the hypermetric cone Hyp, := {x € R" :
Di<icjcn bibjryy < 0forallb € 27,3, 0, b = 1} with n = 4. Clearly, PCutz and
PCuty’ are regular 3-simplices in L3, and L3", respectively. One can check that the
minimal face of Hypg, containing d4 is the 5-face obtained as the intersection of 8 facets
Pi<icj<n Db = 0 for each cut a. Namely, b7 = 0 for the index i corresponding to «,
by = —1 for 3 other cuts of the same parity and b = 1 for 4 remaining cuts. Actually,
dy = 6(1256) +6(1278) +6(1357) +6(1368) + 6(1458) + 6(1467), where the numbers 1,2,3,4
correspond to 4 even cuts, and this representation in a 5-simplex seems to be the unique
representation of dy in C'uts.
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5 0Odd systems, related to the lattice L,

Denote d(S; X), defined in (6), by d(k; X) if S = {k}.
Let
Vo ={dk;X): X CD(k),k eV}

Proposition 16 The set V,, generates the lattice L, .
Proof is implied by the equality

8(8) =D d(k; X),

keS
where Xy, ={(kj):j € 5,5 < k}. O
Proposition 17 V, is a uniform odd system of norm n — 1 if n is even.

Proof. We have d(¢; X)d(5;Y)=+1ifi # 5, d(; X)d(#;Y)=n—1-2|XAY|=n -1
(mod 2). O

For n even, we can recognize in the odd system V subsystems spanning equiangular
lines. The simplest such a system is K} = {6(¢) : ¢ € V}. A maximal set of vectors with
mutual inner products £1 is constructed as follows.

If £k € V, then |D(k)| = n — 1 is odd. Consider on the set D(k) such a maximal
by inclusion family X of subsets X C D(k) of cardinality |X| = % — 1, that the inner
product ¢(X, X") := d(k; X)d(k; X') = £1 for any two subsets X, X’ of the family. The
conditions ¢(X, X') = 1 implies that either [X N X'| =2 —1 or [X N X'| = 222, Since
n is even, we have exactly one of these cases, i.e.

—1 and ¢(X,X')=—1 if n =0 (mod 4),
and (X, X")=1 ifn=2 (mod 4).

Sk (3

IX N X' = { _
4
Then the set
M, ={dk,X): X=0or X € Xy, ke V}
spans a set of equiangular lines at angle arccosnlj. Since d(k,0) = §(k), KL C M,,.
So, we have L, = L(V,). For even n, denote the sublattice Lo(V,,) by L2. According
to (3),
LY ={d€ L,:d=2a+6(S) where §(5) € K&}.
Besides, the lattice L,, has the double even sub-lattices L, 2Z.
There is another double even lattice related to odd cuts:

LK™y ={d:d= > =258(5), > z25=0, zs€Z}.

§(S)ekgad §(S)ekgad
Proposition 18 L% is isomorphic but not equal to Lo(K2?).

Proof. Let d € Lyo(K2™) has a representation d = g 256(S). Since Ygzs = 0, d =
S 525(6(S) — &(T)) for some odd T. The expression means that the lattice Lo(K°%) is
affinely generated by vertices of the polytope PCut®¥. But this polytope is congruent
to the polytope PCut:’, which affinely generate the lattice L". Hence the lattice L’ =

L(K) is isomorphic (in fact, congruent) to the lattice L(K2%?). Clearly, these lattices
are distinct. O
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6 Cut polytopes PCut, for small n

Consider PCut,, and corresponding lattices for small n in details.

(1) n=2, N = 1. PCuty is a unit segment, PCut?’ and PCut5¥ are zero-dimensional
points, ends of the segment. Ly = L2 =7 L' = {).

(2) n=38, N = 3. PCuts is the regular tetrahedron as with norms of edges (squared
lengths) 2. The lattice Ls is the 3-dimensional face-centered lattice A3 = Ds. The second
type of the L-polytopes of L3 is known, and it is described also in Proposition 14. They
are the cross-polytopes Ps(1) = 3 (octahedrons) for ¢ = 0 centered at the points e;; and
having edges of norm 2.

(3) n=4, N = 6. PCutyis the 6-dimensional repartitioning L-polytope with 8 vertices.
It is combinatorially equivalent to the cyclic 6-polytope with 8 vertices. PC'ut, relates to
a pure T-gonal facet F5 of the hypermetric cone Hyp; of hypermetrics on 7 points.

By Proposition 16, L, is generated by the odd system V4. The odd system V, coincides
with My, which is the maximal closed uniform odd system of norm 3 and dimension 6
with n(My) = 16. This odd system is related to the root system Fr. It is described in [4].
Table 1 of [4] shows that Ly = 2D}?, where DF? is described in [3]. The root lattice Dg
has (up to signs) 30 roots e; —e;, €; +e;, 1 <1 < j < 6. If we add 32 vectors of the shape
(:|:1/2)6 with even number of minus signs, we obtain D . Now take new orthonormal basis
{fi :1 <4 <6} of the space R®. Let ¢ = /2, then f; = (e; —e3)/g, f2 = (e1+¢€2)/g, f3 =
(es —eq)/g, f1 = (es + e1)/g, f5s = (e5 — €6)/g, fo = (e5 + €6)/g. In this basis the lattice
gDF takes the form L,. We obtain 30 (up to signs) vectors of norm 4, and 32 vectors of
norm 3.

We apply Corollary 12 to V' = {1234}, F = {(12),(34)} and ¢ = 0. The only S
satisfying (13) as equality are, up to complement, S = (), {13}, {14}. It is easy to verify
that @ = Y(F) = e12 + €34 is of full rank, and the set of vertices of P(x) is the set

Dy={2¢(X): X CFEF}U{d(S;X): X CD(S)—F, and S =(13) or (14)}.

Denote the polytope by Py.
It we take the origin in the center of P;, then the vertices of P, are represented by
vectors

i(€12 + 634)7 + (613 + 624)7 + (614 + 623)-

Now it is easy to see that Py is the symmetric 6-dimensional cross-polytope ¢ with edges
of norm 4.

Since all facets of PC'ut, are 0-extensions of triangle facets, the L-polytopes contiguous
to facets of PCuty all have the same type Py(1) described in Proposition 14. In the case
e=1,1Q" =2, |Q7| =1. Let QF = {12}, @~ = {3}. Then x = €1, + 36(4). The

vertices of Py(1) are
§(S) and 2e19 + 6({4}) — 8(S) for S € S(F1) = {0, {1}, {2}, {4}, {13},{23}}.

Since the vectors 6(5) for S € S(F1), S # 0, and 2eq5 form the basis of Ly, Py(1) is basic.
If we take origin in the center of Py(1), then the vertices of P4(1) are represented by
vectors

1 1 1
i§(2€12 + (€14 + €24 + €34)), i§(2€13 + (—e14 + €24 + €34)), i§(2€23 + (€14 — €24 + €34)).
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It is easy to see that the vectors multiplied by 2 have norm 7 and mutual inner products
+1. Hence they span 6 equiangular lines at angle arccos%.

Let ey be a unit vector orthogonal to the space spanned by Ly. If we add two pairs of
vectors

1
:|:§(260 + (e14 + €24 — €34)),

we obtain 8 pairs of vectors spanning in 7-dimensional space 8 equiangular lines at angle
arccos%. The convex hull of all these vectors is, up to the multiple v/2, the unique (basic)
L-polytope of the lattice % (see, for example, [2]). Hence %Lzl = D}? is a section of the
lattice £Z.

There is the forth L-polytope of the lattice Ly, a 6-dimensional simplex ¥. The norms
of its edges are equal to 3 and 4. The 6 edges of norm 3 are adjacent to the same vertex.

The adjacencies between these 4 types of L-polytopes of the lattice L, are as follows.
PCuty is adjacent only to L-polytopes of the type Py(1). A cross-polytope Py = [
is adjacent to L-polytopes of the types Pys(1) and ¥. The simplex ¥ is adjacent to L-
polytopes of the types s and P4(1). The polytope P4(1) is adjacent to L-polytopes of all
the 4 types.

The norms of vectors x of centers of polytopes PCuty, ¥, Py(1) and [ are, respectively,
% < % < % < 2. So, the deep hole is the cross-polytope [.

We call L-polytopes P and P’ lattice equivalent if either P = —P or P = P+ a
for some lattice vector a. Note that if P is symmetric and 0 € V(P), then —P = P — 2z,
where x is the center of P. In this case, 2z € V(P).

For an L-polytope P, we denote

the center of P by x(P),

the number of vertices of P by v(P),

the ratio of the volume of P to the volume of a basic simplex by V,(P),

the number of lattice nonequivalent L-polytopes of type P in the star at 0 by N(P).

Let s(P) = 1if P is symmetric, and s(P) = 2 if P is asymmetric. Then the number
of L-polytopes congruent to P in a star is equal to s(P)v(P)N(P). Besides we have
S ps(P)N(P)V.(P)= NI, where N = dimL,

The star at 0 € L4 and corresponding Voronoi’s polytope of L4 are described by the
following table. All indexes in the table are distinct.

P Vo (P) [s(P) [ ~(P) [ N{P) [ =(P)

PCuty | 4 2 8 10 %Z(ij)e‘ﬁ :|:€Z']‘, :|:€Z']‘ + %(j:ezk + ejk)

P4(1) 32 1 12 16 :|:€Z']‘ + %(ieik + €5k + ekl)

ﬂgg 64 1 12 1 :|:€Z']‘ + €Ll

by 2 2 7 16 :I:%eij + e + i(iezk + ejk), %(j:eij + €k + eki)

The centers off all L-polytopes of type P can be obtained from x(P) by taking ¢, 5, k,[ €
{1,2,3,4} and taking signs + or - in &+ independently. For example, ©(P) = +e;; +ex has
4 distinct patterns of signs and 3 distinct partitions of V' = {1,2,3,4} into equal parts.
Hence there are 3.4=12 cross-polytopes g in the star.

Note that there are 3 p s(P)v(P)N(P) = 588 L-polytopes in a star, and therefore the
Voronoi’s polytope has 588 vertices.
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The Voronoi’s polytope Py has 60+32=92 facets. The 60 facets of Py (0) with center
in 0 € Ly are orthogonal to the 60 vectors of norm 4 and 32 facets are orthogonal to 32
vectors of norm 3. Each facet contains the middle point of the corresponding vector. A
facet orthogonal to a vector of norm 4 contains 42 vertices. A facet orthogonal to a vector
of norm 3 contains 56 vertices.

PCut?® and PCut$™ are 3-dimensional simplexes with edge length 2 (norm 4), span-
ning orthogonal 3-spaces. These simplexes intersect in the center of both, which is the
center of the sphere Sg circumscribing PCuty. The squared distance between vertices of
different simplexes is 3. L§’ = \/§A3, where As is the 3-dimensional root lattice. The
4-dimensional lattice Ljdd can be obtained from the root lattice v/2A5 as its section by a
hyperplane orthogonal to an arbitrary root and going through the midpoint of the root.

(4) n=5, N = 10. PCuts is a 10-dimensional L-polytope.

Note that there are only 2 values of norms of edges of PCuts, namely 4 and 6. Hence
if we take origin in the center of PCuts, then the vectors v/2(6(S5) — 1710), representing
vertices of \/2PCuts, have norm 5 and inner products %1, i.e. they span equiangular
lines at angle arccost.

The graph on the vertices of PC'uts; with edges of norm 6 is the Clebsh graph, i.e. the
Halved cube $H(5).

(5) n=6, N = 15. PCutg’ and PCut3™ are 15-dimensional simplexes with squared
length 8. They intersect in the center of PCuts. The lattice Lg" is 2415, the root lattice
Aqs multiplied by 2.

The set Mg contains 30 vectors spanning 30 equiangular lines at angle arccost in

5
15-dimensional space. A maximal set of such lines contains 36 lines.

(6) n=8, N = 28. The 28-dimensional L-polytopes PCutg’ and PCut3* have only 2
squared Fuclidean distances between vertices: 12 and 16. Hence if we take origin in the
common center £jss of these polytopes, then the vectors §(.5) — Ljas, (say, |S] is even),
have norm 7 and inner products 41, i.e. they span 2572 = 64 equiangular lines at angle
arccos%. Since 64 is the maximal number of lines at angle arccos% in 28-dimensional
space, we conclude that this graph on vertices of PCutg’ (or PCut3?) with edges of
norm 16 is a strongly regular graph of the Pseudo Latin square type with parameters
(64,35,18,20). The complement of the graph is the halved folded 8-cube. The graph (and
its complement) has 2-transitive automorphism group.

The similar set of 64 equiangular lines with the graph with the same parameters of
strongly regular graph as above spans the odd system Mg. In this case, each family A%,
k€ {1,2,...,8}, is the unique Steiner triple system on 7 points, containing 7 triples. We
don’t know whether the graphs are isomorphic.
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