Cut Polytope and its Lattices

M. DEZA V.P. GRISHUKHIN*

Laboratoire d'Informatique, URA 1327 du CNRS Département de Mathématiques et d'Informatique Ecole Normale Supérieure *CEMI RAN, Moscow

LIENS - 94 - 8

April 1994

Cut polytope and its lattices

M.Deza CNRS-LIENS, Ecole Normale Supérieure, Paris

> V.P.Grishukhin CEMI RAN, Moscow

> > July 5, 1994

Abstract

We show that the cut polytope $PCut_n$ is an L-polytope of the lattice L_n , affinely generated by its vertices. We consider cut-sub-lattices of L_n generated by subsets of cuts. If n is even, L_n is generated by an odd system. We give a detailed description of L_n and $PCut_n$ for small n and sets of equiangular lines related to these polytopes. In particular, we give all 4 types of L-polytopes of the lattice $L_4 = \sqrt{2}D_6^{+2}$.

1 Introduction

Let V be a ground set of cardinality |V| = n. The **cut vector**, or, simply, the **cut** $\delta(S)$, $S \subseteq V$, is a vector of the space of all functions $d: V^2 \to \mathbf{R}$, defined on the set V^2 of all unordered pairs of the set V. The component $\delta_{ij}(S)$ is defined as follows. Let

$$(S,T) = \{(ij) \in V^2 : i \in S, j \in T\} \text{ and } D(S) = (S,V-S).$$
(1)

Then

$$\delta_{ij}(S) = \begin{cases} 1 & \text{if } (ij) \in D(S) \\ 0 & \text{otherwise.} \end{cases}$$

The dimension of the space spanned by all $\delta(S)$'s is equal to $N = |V^2| = n(n-1)/2$. Since $\delta(S) = \delta(V - S)$, there are 2^{n-1} cuts, including the zero cut $\delta(\emptyset) = 0$.

Let \mathbf{Z}^{N} be the lattice of all integral N-vectors. Let \mathcal{K} be a family of cuts. Clearly $\mathcal{K} \subset \mathbf{Z}^{N}$. Hence the lattice $L(\mathcal{K})$, linearly generated by all the cuts $\delta(S) \in \mathcal{K}$, i.e.

$$L(\mathcal{K}) = \{ d : d = \sum_{\delta(S) \in \mathcal{K}} z_S \delta(S), \ z_S \in \mathbf{Z} \},\$$

is a sublattice of \mathbf{Z}^N . Let $\mathcal{K}_n = \{\delta(S) : S \subseteq V - \{n\}\}$ be the set of all cut vectors, and, for even n, let $\mathcal{K}_n^{odd} = \{\delta(S) \in \mathcal{K}_n : |S| \text{ is odd }\}, \mathcal{K}_n^{ev} = \{\delta(S) \in \mathcal{K}_n : |S| \text{ is even}\}$. We set

$$L_n = L(\mathcal{K}_n), \ L_n^{odd} = L(\mathcal{K}_n^{odd}), \ L_n^{ev} = L(\mathcal{K}_n^{ev}).$$

It is proved in [1], $d \in L_n$ if and only if $d_{ij} + d_{jk} + d_{ki} \equiv 0 \pmod{2}$ for all triples $\{ijk\}$. The condition is a special case of the following fact: cardinality of an intersection of a cut and a cycle in a graph is even. In fact, this is equivalent to the dual lattice of L_n is $\frac{1}{2}L(\mathcal{C})$, where \mathcal{C} is the set of all cycles of the complete graph K_n . \mathcal{C} itself is generated by triangles and trivial 2-circuits, $2e_{ij}$, containing 2 parallel edges (ij). Hence the dual lattice L_n^* contains the lattice \mathbf{Z} of all integral vectors.

The lattice L_n^{ev} , for even *n*, is characterized in Section 4 of [5].

We call a set $\mathcal{V} \subseteq \mathbf{R}^N$ of vectors an **odd system** if the inner product of any pair of vectors $u, v \in \mathcal{V}$, denoted by juxtaposition uv, is an odd number. In particular, the **norm** v^2 of any $v \in \mathcal{V}$, i.e. the inner product of v with itself, is odd, too. Note that for a $(0, \pm 1)$ -vector its norm equal to number of nonzero components.

A set of vectors \mathcal{V} is called **symmetric** if $-v \in \mathcal{V}$ for all $v \in \mathcal{V}$. If $-v \notin \mathcal{V}$ for all $v \in \mathcal{V}$, then \mathcal{V} is called **asymmetric**. Using the expression

$$\delta(S)\delta(T) = \frac{1}{2}[\delta^2(S) + \delta^2(T) - \delta^2(S\Delta T)],$$

it is easy to verify that, for even n, the set \mathcal{K}_n^{odd} of all **odd** cuts is an asymmetric odd system such that norm of each odd cut is equal to $n - 1 \pmod{4}$.

A set of vectors is called **uniform** if norm of all its vectors is the same. In the case, the common norm is called **norm** of the set of vectors. A uniform odd system \mathcal{V} of norm m is called **closed** if the set of all vectors of norm m of the lattice $L(\mathcal{V})$, generated by \mathcal{V} , coincides with \mathcal{V} .

It is proved in [4] the following facts about the lattice $L(\mathcal{V})$, generated by an odd system of vectors v of norm 4k(v) + p, where p = 1 or p = 3 is the same for all $v \in \mathcal{V}$.

(1) $a^2 \equiv 0$ or $p \pmod{4}$ for all $L(\mathcal{V})$.

(2) $L_0(\mathcal{V}) := \{a \in L(\mathcal{V}) : a^2 \equiv 0 \pmod{4}\}$ is a double even sublattice of $L(\mathcal{V})$. (A **double even** lattice is a lattice of vectors with even inner products and having norm divisible by 4).

(3) $L_1(\mathcal{V}) := \{a \in L(\mathcal{V}) : a^2 \equiv p \pmod{4}\} = L_0(\mathcal{V}) + a_1$, where a_1 is any vector of $L(\mathcal{V})$ of odd norm.

A special case of an odd system is represented by a set of vectors, spanning equiangular lines. A set of lines is **equiangular** if the acute angle between any pair of lines is the same. If there are sufficiently many of equiangular lines, then this angle is equal to $\arccos \frac{1}{m}$, where *m* is an odd integer. Hence the corresponding odd system is composed of vectors of norm *m* with inner products ± 1 .

We give here more detailed description of the lattice L_n . In particular, we show that the cut polytope $PCut_n$, i.e. the convex hull of all cut vectors, including zero cut, is an L-polytope of the lattice L_n .

2 Some properties of the lattice L_n

Let $\{e_{ij}: 1 \leq i \leq j \leq n\}$ be orthonormal basis of \mathbf{R}^N . The lattice generated by the basis is \mathbf{Z}^N . For $m \in \mathbf{Z}$, let $m\mathbf{Z}^N$ be the lattice of all integer vectors divisible by m. Then $\{me_{ij}\}$ is the basis of $m\mathbf{Z}^N$. Recall that \mathcal{K}_n is an Abelian group with respect to symmetric difference of vectors, i.e. the sum of vectors modulo 2. Similarly, L_n is an Abelian group with respect to usual addition. In Proposition 1 below we give two simple but important properties of the lattice L_n .

Proposition 1 (i) $2\mathbf{Z}^N \subset L_n$. (ii) $L_n/2\mathbf{Z}^N = \mathcal{K}_n$ i.e. $d \equiv \delta(S) \pmod{2}$ for some $\delta(S) \in \mathcal{K}_n$ for all $d \in L_n$.

Proof. (i) The equality

$$2e_{ij} = \delta(i) + \delta(j) - \delta(ij) \tag{2}$$

shows that $2e_{ij} \in L_n$ for every pair $(ij) \in V^2$.

(ii) Let $d \in L_n$, $d = \sum_S z_S \delta(S)$. Then $d \equiv \sum_{S \in S} \delta(S) \pmod{2}$, where $S = \{S : z_S \equiv 1 \pmod{2}\}$. Since $\delta(S) + \delta(T) \equiv \delta(S\Delta T) \pmod{2}$, using induction on number elements of S, we obtain that $d \equiv \delta(T) \pmod{2}$ for some $T \subseteq V$.

Proposition 1(ii) implies that every point $d \in L_n$ has the form

$$d = 2a + \delta(S), \text{ where } a \in \mathbf{Z}^N.$$
(3)

for some $S \subseteq V$.

Of course, the lattice L_n has infinitely many bases. Proposition 2 below gives an example of a basis of L_n , containing in \mathcal{K}_n .

Proposition 2 The following set of N cuts forms a basis of L_n $B = \{\delta(i), \ \delta(ij) : i, j \in V - \{n\}\}.$

Proof. Using (2), we have $\delta(S) = \sum_{j \in S} \delta(j) - 2 \sum_{i < j \in S} e_{ij} = \sum_{j \in S} \delta(j) - \sum_{i < j \in S} (\delta(i) + \delta(j) - \delta(ij))$, i.e. each cut $\delta(S)$, $S \subseteq V - \{n\}$ has the unique representation

$$\delta(S) = \sum_{i < j \in S} \delta(ij) - (|S| - 2) \sum_{i \in S} \delta(i). \Box$$
(4)

Note that the set of points $B_a = \{\delta(\emptyset)\} \cup B$ is an affine basis of the lattice L_n . Let the origin does not belong to L_n . Then we distinguish **lattice points** $d \in L_n$ and **lattice** vectors. Any point $d \in L_n$ has the following **affine** representation

$$d = \sum_{a \in B_a} z_a a, \quad \sum_{a \in B_a} z_a = 1.$$

The lattice points do not form a group.

A lattice vector is a difference of two lattice points. Lattice vectors form the same Abelian group L_n and have the following affine representation in the basis B_a

$$d = \sum_{a \in B_a} z_a a, \quad \sum_{a \in B_a} z_a = 0.$$

Let $\gamma(S) = \delta(S) - a_0$, where a_0 is the new origin. Then $\delta(S) = \gamma(S) - \gamma(\emptyset)$. Using (4), we obtain the following affine representation of the vectors $\gamma(S)$ in the basis B_a .

$$\gamma(S) = \sum_{i < j \in S} \gamma(ij) - (|S| - 2) \sum_{i \in S} \gamma(i) + (\frac{|S|(|S| - 3)}{2} + 1)\gamma(\emptyset).$$
(5)

The representation is useful if we take the center of $PCut_n$ as origin.

The equation (3) shows that the unique (0,1)-vectors $d \in L_n$ are cut vectors. Now we consider vectors of L_n modulo 3, i.e. vectors having $(0, \pm 1)$ -components only. Let $d \in L_n$ has $(0, \pm 1)$ -components. Since $d \pmod{2}$ is a cut vector, all such vectors have the form

$$d(S;X) = \delta(S) - 2\chi(X), \ X \subseteq D(S), \tag{6}$$

where

$$\chi(X) = \sum_{(ij)\in X} e_{ij},$$

and the set D(S) is defined in (1). Note that $\delta(S) = \chi(D(S))$. There are $2^{k(n-k)}$, k = |S|, such subsets X. So between $3^{\binom{N}{2}}$ of $(0, \pm 1)$ -vectors of \mathbf{R}^N , L_n contains $\sum_{k=0}^n \binom{n}{k} 2^{k(n-k)-1}$ (including $4^{n-1} - 2^{n-1} + 1$ of form $\delta(S) - \delta(S')$). Thus, the ratio (equal to 1, 13/27, 80/729 for n = 2, 3, 4) goes to 0 when $n \to \infty$; compare with $|L_n \cap [0, 1]^N|/|[0, 1]^N| = 2^{-\binom{n-1}{2}}$.

3 Cut-sub-lattices of L_n

We call a sublattice $L \subseteq L_n$ a **cut-lattice** if it is generated by a set \mathcal{K} of cuts, i.e. if $L = L(\mathcal{K})$. Call a cut-lattice $L(\mathcal{K})$ **uniform** if $Sym_n \subseteq Aut(L(\mathcal{K}))$. If \mathcal{K} is uniform, then $\mathcal{K}_n \cap L(\mathcal{K})$ is also uniform. Call a cut-sublattice $L(\mathcal{K})$ **maximal** if L_n is the only cut-lattice having $L(\mathcal{K})$ as a proper sublattice. Call a cut-lattice **minimal** if it has no proper full-dimensional cut sub-lattices. Call a set of cuts \mathcal{K} closed if $\mathcal{K}_n \cap L(\mathcal{K}) = \mathcal{K}$.

We shall see that $PCut(\mathcal{K})$ is an L-polytope in $L(\mathcal{K})$ for closed \mathcal{K} .

Set $\mathcal{K}_{n}^{j,k} = \{\delta(S) : |S| = j, k\}, \text{ for } 1 \leq j < k \leq \frac{n}{2} - 1, \text{ and } L_{n}^{j,k} = L(\mathcal{K}_{n}^{j,k}),$ $\mathcal{K}_{n}^{mod3} = \{\delta(S) : |S| \leq \frac{n}{2} \text{ and } |S| \not\equiv 1 \pmod{3}\}, \text{ and } L_{n}^{mod3} = L(\mathcal{K}_{n}^{mod3}),$ $\mathcal{K}_{n}^{\neq i} = \{\delta(S) : |S| \neq i, |S| \leq \frac{n}{2}\}, \text{ and } L_{n}^{\neq i} = L(\mathcal{K}_{n}^{\neq i}),$ $\mathcal{K}_{n}^{k} = \{\delta(S) : |S| = k\}, \text{ and } L_{n}^{k} = L(\mathcal{K}_{n}^{k}).$ $\mathcal{K}_{n}^{ev(mod3)} = \{\delta(S) \in \mathcal{K}_{n}^{ev} : \frac{|S|}{2} \equiv 0, 1 \pmod{3}, |S| \leq \frac{n}{2}\}, \text{ and } L_{n}^{ev(mod3)} = L(\mathcal{K}_{n}^{ev(mod3)}).$

Any proper generating subset of \mathcal{K} (examples, beside $\mathcal{K}_n^{1,2}$, will be given in Theorem 8 and following remark) is not closed. Also it seems that $L_n^{i,j} = L_n$ if and only if (ij) = (12).

Examples of closed \mathcal{K} are $\mathcal{K} = \mathcal{K}_n, \mathcal{K}_n^{ev}, \mathcal{K}_n^{odd}, \mathcal{K}_T = \{\delta(S) : |S \cap T| \text{ is even for given } T \in V\}$, and $\mathcal{K} = \mathcal{K}_n \cap H$, where H is a hyperplane in \mathbf{R}^N , containing 0 (for example, $\mathcal{K} = \mathcal{K}^1, \mathcal{K}^{\lfloor \frac{n}{2} \rfloor}$, see Proposition 6 below, or \mathcal{K} is a face of the cut cone $\mathbf{R}_+(\mathcal{K}_n)$).

We need the following

Lemma 3 Assume $\delta(S) = \sum_{h=1}^{k} z_h \delta(S_h)$, where $z_h \in \mathbf{Z}$, $z_h \neq 0$, and $|S|, |S_h| \leq \frac{n}{2}$. Then $\binom{|S|+1}{2} \equiv 0 \pmod{g.c.d._{1 \leq h \leq k} \binom{|S_h|+1}{2}}$.

Proof. Set $d = \sum_{h=1}^{k} z_h \delta(S_h)$. Define $\pi(d) \in \mathbf{R}^N$ by:

$$\begin{aligned} \pi(d)_{ii} &= \sum_{h:S_h \ni i} z_h & i = 1, ..., n \\ \pi(d)_{ij} &= \frac{1}{2} [\pi(d)_{ii} + \pi(d)_{jj} - d_{ij}] & 1 \le i < j \le n. \end{aligned}$$

Note that, for $d = \delta(S)$, $\pi(\delta(S))_{ij} = 1$ if $i, j \in S$ and = 0 otherwise. We have

$$\pi(d) = \sum_{h=1}^{k} z_h \pi(\delta(S_h)).$$

Taking inner product with j_N of both sides, we get

$$\sum_{1 \le i \le j \le n} \pi(d)_{ij} = \sum_{h=1}^{k} z_h \binom{|S_h| + 1}{2}.$$

Hence, taking $d = \delta(S)$, the result follows.

Lemma 3 is used in the proof of Proposition 6 below.

In what follows, we use the following characterization of the lattice L_n^k , $k \neq \frac{n}{2}$, given in Proposition 4.3 of [6] (see Proposition 4, below). This characterization was obtained as an adaptation of a theorem of R.M.Wilson.

For $d \in \mathbf{R}^N$, define

$$d_{i,n+1}^k := \frac{1}{n-2k} \left(\sum_{1 \le j \le n, j \ne i} d_{ij} - \frac{1}{n-k} \sum_{1 \le r < s \le n} d_{rs} \right) \text{ for } 1 \le i \le n.$$
(7)

Proposition 4 [6] Given $d \in \mathbb{Z}^N$, then $d \in L_n^k$, $k \neq \frac{n}{2}$, if and only if

$$\begin{array}{l} (i) \sum_{1 \le i < j \le n} d_{ij} \equiv 0 \pmod{k(n-k)}, \\ (ii) \ d_{i,n+1}^k \in \mathbf{Z} \ for \ all \ 1 \le i \le n, \\ (iii) \ d_{i,n+1}^k + d_{j,n+1}^k + d_{ij} \equiv 0 \pmod{2} \ for \ all \ 1 \le i < j \le n. \end{array}$$

The characterization of L_n^k , given in Proposition 4 implies, for example, that $\frac{n+1}{4}L_n^1 \subset L_n^{\frac{n-1}{2}}, \frac{n^2-1}{8}L_n \subset L_n^{\frac{n-1}{2}}$ for $n \equiv 1 \pmod{4}$.

Proposition 5 Given $d \in \mathbb{Z}^N$, then

a) $d \in L_n^{\frac{n}{2}}$, n is even, if and only if (i) $\sum_{1 \le i < j \le n} d_{ij} \equiv 0 \pmod{\frac{n^2}{4}}$, (ii) $\sum_{1 \le i < j \le n} d_{ij} = \frac{n}{2} \sum_{q=1}^n d_{pq}$ for any $p, 1 \le p \le n$. b) $d \in L_n^{\frac{n-1}{2}}$, n is odd, if and only if $\sum_{1 \le i < j \le n} d_{ij} \equiv 0 \pmod{\frac{n^2-1}{4}}$.

Proof. The conditions (i) and (ii) of a) are clearly necessary for membership in $L_n^{\frac{n}{2}}$. Conversely, suppose that d satisfies both the conditions, and let d' denote its projection on the set $V - \{n\}$. From (ii), we obtain

$$\sum_{1 \le r < s \le n-1} d'_{rs} = \left(\frac{n}{2} - 1\right) \sum_{1 \le q \le n-1} d_{qn}.$$
(8)

This implies that $\sum_{1 \leq r < s \leq n-1} d'_{rs} \equiv 0 \pmod{\frac{n(n-2)}{4}}$, since $\sum_{1 \leq i \leq n-1} d_{in} \equiv 0 \pmod{\frac{n}{2}}$ by (i) and (ii). Using Proposition 4, we deduce that $d' \in L_{n-1}^{\frac{n}{2}}$. Hence $d' = \sum_{S \subseteq V - \{n\}, |S| = \frac{n}{2}} \lambda_S \delta(S)$ with $\lambda_S \in \mathbb{Z}$ for all S.

We show that $d = \sum_{S} \lambda_S \delta(S)$. As $\sum_{1 \le r < s \le n-1} d'_{rs} = \frac{n(n-2)}{4} \sum_{S} \lambda_S$, (8) yields: $\sum_{1 \le i \le n-1} d_{in} = \frac{n}{2} \sum_{S} \lambda_S$. Hence $\sum_{1 \le r < s \le n} d_{rs} = \sum_{1 \le r < s \le n-1} d'_{rs} + \sum_{1 \le i \le n-1} d_{in} = \frac{n^2}{4} \sum_{S} \lambda_S$ and by (i) $\sum_{1 \le j \le n} d_{ij} = \frac{n}{2} \sum_{S} \lambda_S$ for each $i \in V$.

We compute, for instance, d_{1n} . The above relations for i = 1 yield: $d_{1n} = \frac{n}{2} \sum_{S} \lambda_{S} - \sum_{2 \leq j \leq n-1} d_{1j}$. Using the value of $d_{1j} = d'_{1j}$ given by the decomposition of d', we obtain that $d_{1n} = \sum_{S:1 \in S} \lambda_{S}$. This shows that $d = \sum_{S} \lambda_{S} \delta(S)$, i.e. that $d \in L_{n}^{\frac{n}{2}}$.

It is not difficult to verify that b) is implied by Proposition 4, which can be applied, since $\frac{n-1}{2} < \frac{n}{2}$.

 $\begin{array}{l} \textbf{Proposition 6} \quad (i) \ L_n^{mod3} \subset L_n \ strictly. \\ (ii) \ L_n^{j,j+1} = L_n \ if \ and \ only \ if \ j = 1. \\ (iii) \ L_n^{ev(mod3)} \subset L_n^{ev} \ strictly. \\ (iii) \ L_n^{ev(mod3)} \subset L_n^{ev} \ strictly. \\ In \ particular, \ L_n^4 \subset L_n^{ev} = L_n^{2,4} \ for \ n = 8, 10. \\ (iv) \ \mathcal{K}_n^k \ is \ closed \ if \ k(n-k) \ does \ not \ divide \ i(n-i) \ for \ all \ i \neq k, \ 1 \leq i \leq \lfloor \frac{n}{2} \rfloor. \\ In \ particular, \ \mathcal{K}_n^k \ is \ closed \ if \ \lfloor \frac{n(2-\sqrt{2})}{4} \rfloor < k \leq \lfloor \frac{n}{2} \rfloor. \\ (v) \ \mathcal{K}_n^1 \ is \ closed. \end{array}$

Proof. (i) We check that no cut $\delta(i)$ belongs to L_n^{mod3} . Else, $\delta(i) = \sum_{S,|S| \not\equiv 1 \pmod{3}} z_S \delta(S)$, from which we deduce that g.c.d. $\binom{|S|+1}{2} = 1$ for $|S| \not\equiv 1 \pmod{3}$. But $\binom{|S|+1}{2} = \frac{1}{2}|S|(|S|+1) \equiv 0 \pmod{3}$ if $|S| \equiv 0, 2 \pmod{3}$.

(ii) If $j \ge 2$, no cut $\delta(i)$ belongs to $L_n^{j,j+1}$, since g.c.d. $\binom{j+1}{2}, \binom{j+2}{2} \ne 1$.

If j = 1, the equality (4) shows that $L_n = L_n^{1,2}$.

(iii) Since $\binom{|S|+1}{2}$ is divided by 3 if and only if $\frac{|S|}{2} \equiv 0, 1 \pmod{3}$, we conclude, that $\delta(S)$ with $\frac{|S|}{2} \equiv 2 \pmod{3}$ does not belong to $L_n^{ev(mod3)}$.

(iv) We use (i) of Proposition 4. Therefore, if cut $\delta(S) \in L_n^k$ with |S| = i, then k(n-k) divides i(n-i), since $\sum_{1 \le i < j \le n} \delta(S) = i(n-i)$.

(v) Any point $d \in L^1_n$ satisfies the following condition

$$d_{ij} - d_{jk} + d_{kl} - d_{li} = 0 \text{ for all distinct } i, j, k, l \in V,$$

$$(9)$$

since this condition holds for all $\delta(i) \in \mathcal{K}_n^1$, generating L_n^1 . Take any $\delta(S)$ with $|S| \neq 1, n-1$. Then we can find distinct $i, j, k, l \in V$ such that $i, j \in S$ and $k, l \notin S$. Since (9) is violated by this $\delta(S)$, we conclude that $\delta(S) \notin L_n^1$. This implies that L_n^1 is closed. \Box

We group in Theorems 7, 8 below some interesting facts on uniform cut-lattices.

Theorem 7 (i) $\binom{n-3}{k-2} - \binom{n-3}{k-3} \delta(i) \in L_n^{k-1,k}$ if $n \equiv 0 \pmod{k}$ and so $(n-4)L_n \subset L_n^{2,3}$ if $n \equiv 0 \pmod{3}$. (ii) $(n-2)L_n \subset L_n^{2,3}$ and, for even $n, \frac{n-2}{2}L_n \subset L_n^{2,3}$. (iii) $(\delta(i) - \delta(j)) \in L_n^{k-1,k}$, $(k-2)L_n^k \subset L_n^{1,k-1}$. (iv) $(\delta(S) - \delta(S')) \in L_n^k$ with |S| = |S'| = l if and only if $\frac{n-2l}{n-2k}$ is an odd integer.

Proof. (i) Recall that j_N is all ones N-vector. The following identity is true

$$\binom{n-3}{k-2} - \binom{n-3}{k-3} \delta(i) + 2\binom{n-3}{k-3} j_N = \sum_{S:S \ni i, |S|=k-1} \delta(S).$$

If $n \equiv 0 \pmod{k}$, then we can partition V into $\frac{n}{k}$ disjoint k-sets A_j , $1 \leq j \leq \frac{n}{k}$. Then $\begin{array}{l} -2j_N = \sum_{j=1}^{\frac{n}{k}} [(k-2)\delta(A_j) - \sum_{t \in A_j} \delta(A_j - \{t\})].\\ (\text{ii}) \text{ is implied by the equalities (10) and (11) in the proof of Theorem 8 below.} \end{array}$

(iii) For any k-subset S of V, we have

$$(k-2)\delta(S) = \sum_{t \in S} (\delta(S - \{t\}) - \delta(t)).$$

Subtracting the equalities for $S = T \cup \{j\}$ and $S = T \cup \{i\}$, we obtain

$$\delta(i) - \delta(j) = (k - 2)(\delta(T \cup \{j\}) - \delta(T \cup \{i\})) + \sum_{t \in T} (\delta(T \cup \{i\} - \{t\}) - \delta(T \cup \{j\} - \{t\})).$$

The equality implies (iii).

(iv) We use Proposition 4. Let $d = \delta(S) - \delta(T)$. It is not difficult to verify the following identities.

$$\sum_{1 \le j \le n} d_{ij} = \pm (|S| - |T|) \text{ for } i \in V - (S\Delta T),$$
$$\sum_{1 \le j \le n} d_{ij} = \pm (n - |S| - |T|) \text{ for } i \in S\Delta T, \text{ and}$$
$$\sum_{1 \le i < j \le n} d_{ij} = (|S| - |T|)(n - |S| - |T|).$$

Suppose that |S| = |T| = l. Then $\sum_{1 \le i < j \le n} d_{ij} = 0$, and substituting the above expressions into (7) we obtain

$$d_{i,n+1}^k = \begin{cases} \frac{n-2l}{n-2k} & \text{for } i \in S - T, \\ -\frac{n-2l}{n-2k} & \text{for } i \in T - S, \\ 0 & \text{for } i \in V - (S\Delta T) \end{cases}$$

Besides, for any integer k, $1 \le k < \frac{n}{2}$, and integers i, j with $1 \le i < j \le n$, we have

$$\frac{1}{2}(d_{i,n+1}^{k} + d_{j,n+1}^{k} - d_{ij}) = \begin{cases} \frac{n-2l}{n-2k} & \text{for } i, j \in S - T, \\ -\frac{n-2l}{n-2k} & \text{for } i, j \in T - S, \\ \frac{1}{2}(\frac{n-2l}{n-2k} + 1) & \text{for } i \in S \cap T, j \in S \text{ or vice versa}, \\ -\frac{1}{2}(\frac{n-2l}{n-2k} + 1) & \text{for } i \in S \cap T, j \in T \text{ or vice versa}, \\ \frac{1}{2}(\frac{n-2l}{n-2k} - 1) & \text{for } i \in S, j \in V - (S \cup T) \text{ or vice versa}, \\ -\frac{1}{2}(\frac{n-2l}{n-2k} - 1) & \text{for } i \in T, j \in V - (S \cup T) \text{ or vice versa}. \end{cases}$$

We see that the conditions (i)-(iii) of Proposition 4 are satisfied if and only if $\frac{n-2l}{n-2k}$ is an odd integer.

Any cut-lattice containing $L_n^{\frac{n-1}{2}}$ is uniform, because the condition (iv) of Theorem 7 holds for any l if n is odd and $k = \frac{n-1}{2}$. It implies that $L_n^{\neq i}$ is maximal for odd $n, i \neq \frac{n-1}{2}$. Denote

$$t_n := \min\{t \in \mathbf{Z}_+ : tL_n \subset L_n^{\neq 1}\}.$$

Theorem 8 For $n \ge 5$, we have:

(i) if $n-2 = p^s$, s is an integer, then $t_n \in \{1, p\}$, and $t_n = 3, 2, 5$ for n = 5, 6, 7, respectively.

(*ii*) if $n - 2 \neq p^s$, then $t_n = 1$, *i.e.* $L_n^{\neq 1} = L_n$.

Proof. We supposed that $n \ge 5$ since $L_3^{\ne 1} = \emptyset$, and $L_4^{\ne 1} = L_4^2$ has dimension 3, i.e. it is not full dimensional, since dimension of L_4 is 6.

Clearly, the lattice $L_n^{\neq 1}$ contains elements

$$z_i = \sum_{S \subseteq V - \{1\}, |S| = i} \delta(S)$$
 for any $i, 2 \le i \le n - 2$.

We want to recognize when $\delta(1)$ is represented as sum of $\delta(S) \in L_n^{\neq 1}$. It is not difficult to verify that the following identity is true

$$z_i = \binom{n-2}{i-1}\delta(1) + 2\binom{n-3}{i-1}(j_N - \delta(1)).$$

Hence we have

$$\binom{n-2}{i-1}\delta(1) = iz_{i+1} - (n-2-i)z_i.$$
(10)

Moreover, for $n \equiv 2 \pmod{i}$, setting $f_i = \frac{\binom{n-2}{i-1}}{i}$, the above equality implies

$$f_i\delta(1) = z_{i+1} - (\frac{n-2}{i} - 1)z_i \tag{11}$$

with integer coefficients. Hence $f_i \delta(1) \in L_n^{\neq 1}$. We want to find g.c.d of numbers f_i .

If $n \equiv 2 \pmod{i}$, and $n \not\equiv 2 \pmod{i^2}$, then $f_i = \frac{n-2}{i} \prod_{j=1}^{i-2} \frac{n-2-j}{i-j}$ is an integer and it is not divided by i, because $1 \leq j < i$ implies $(n-2) - j \not\equiv 0 \pmod{i}$.

By its definition, t_n divides any integer m such that $m\delta(1) \in L_n^{\neq 1}$.

Let us prove (ii) at first. Suppose that $n-2 = p_1^{s_1} \cdots p_r^{s_r}$ is the prime decomposition of n-2. Apply equality(11), in turn, for $i = p_1^{s_1}, \cdots, i = p_r^{s_r}$. Then 1 is only common divisor of r numbers f_i , proving (ii).

If $n-2 = p^s$, $s \ge 2$, then apply (10) for i = 2 and (11) for $i = p^{s-1}$. Then 1 and p are only possible common divisors of $n-2 = p^s$ and f_i . Finally, $t_n \ne 1$ for n = 5, 6, 7 because $L_n^{\ne 1} = L_n^{mod3}$ for these n, and we can apply Proposition 6(i).

Remark. The proof of Theorem 8(ii) above gives, actually, $\mathcal{K}^1 \subset L(\mathcal{K}_n^{a,a+1} \cup \mathcal{K}_n^{b,b+1})$ if n-2 has two divisors a, b > 1 such that a^2, b^2 do not divide n-2 and g.c.d.(a, b) = 1. Such a, b exist if and only if $n \neq 2 + p^s$. For example, $L_n = L(\mathcal{K}_n^{2,3} \cup \mathcal{K}_n^{b,b+1})$ if n is even and $n \neq 2 + 2^s$, for any odd divisor b of n-2. In particular, $L_{4t} = L(\mathcal{K}_{4t}^{2,3} \cup \mathcal{K}_{4t}^{2t-1,2t})$ for $t \geq 2$, and $L_n = L(\mathcal{K}_n^{2,3} \cup \mathcal{K}_n^{3,4})$ for n = 2 + 6m with $m \equiv 1, 5 \pmod{6}$ (i.e. $m \not\equiv 0 \pmod{2,3}$).

By the same way as in Theorem 8(ii), one can check that $\mathcal{K}_n^2 \subset L(\mathcal{K}_n^{a,a+1} \cup \mathcal{K}_n^{b,b+1})$ if n-3 has two divisors a, b > 2 such that g.c.d.(a, b) = 1 and a^2, b^2 do not divide n-3. Hence, for $n-2, n-3 \neq p^s, 2p^s$ (for $n \leq 50$ all such numbers are 23,38,42 and 47), the set $\mathcal{K}_n^{a,a+1} \cup \mathcal{K}_n^{b,b+1}$ contains cut bases of L_n , which are disjoint with $\mathcal{K}_n^{1,2}$. For example, since $23 - 2 = 3 \cdot 7$ and $23 - 3 = 4 \cdot 5$, we have $\mathcal{K}_{23}^1 \subseteq L(\mathcal{K}_{23}^{3,4} \cup \mathcal{K}_{23}^{7,8})$ and $\mathcal{K}_{23}^2 \subseteq L(\mathcal{K}_{23}^{4,5} \cup \mathcal{K}_{23}^{5,6})$. Similarly, since $38 - 2 = 4 \cdot 9$ and $38 - 3 = 5 \cdot 7$, we obtain $\mathcal{K}_{38}^1 \subseteq L(\mathcal{K}_{38}^{4,5} \cup \mathcal{K}_{38}^{9,10})$, and $\mathcal{K}_{38}^2 \subseteq L(\mathcal{K}_{38}^{5,6} \cup \mathcal{K}_{38}^{7,8})$. But $L_6^{\neq 2} = L_6^{odd}$, as well as $L_6^{\neq 1}$, are proper sub-lattices of L_6 , for example.

We can generalize the assertion of Theorem 8 as follows. Set $S_m := \{n - m + 2, ..., n\}$. For any $m, (\lceil \frac{n}{2} \rceil \le m \le n)$ and $i \ne m - 1, n - m + 1, (1 \le i \le m - 1)$, define

$$z_{m,i} := \sum_{S \subseteq S_m, |S|=i} \delta(S).$$

The following identity is true

$$z_{m,i} = \binom{m-2}{i-1} \delta(S_m) + 2\binom{m-3}{i-1} j_N^{(m)},$$

where $j_N^{(m)}(k, l) = 1$ if $n - m + 2 \le k < l \le n$ and $j_N^{(m)}(k, l) = 0$, otherwise.

For $1 \le i < k \le m-1$, let $g(i, k; m) = \text{g.c.d.}(\binom{k-1}{k-i}, \binom{m-i-2}{k-i})$. Using the above identity, we obtain

$$\frac{\binom{k-1}{k-i}}{g(i,k;m)} z_{m,k} - \frac{\binom{m-i-2}{k-i}}{g(i,k;m)} z_{m,i} = f_{i,k}\delta(S_m),$$

where $f_{i,k} = \frac{\binom{m-2}{i-1}\binom{m-i-2}{k-i-1}}{g(i,k;m)}$. If m = n and k = i+1, then $f_{i,i+1} = f_i$, g(i,k;m) = i, $S_m = V - \{1\}$, and the identity coincides with (11).

Let i + 1 < k < 2(i + 1) and m - 2 is divided by i, but not by i^2 . Then $\binom{m-2}{i-1}\binom{m-i-2}{k-i-1}$ is divided by i^2 , but not by i^3 . In fact,

$$\frac{\binom{m-2}{i-1}\binom{m-i-2}{k-i-1}}{i^2} = \left(\frac{m-2}{i}\right)\left(\frac{m-2-i}{i}\right)\prod_{j=1}^{i-2}\frac{m-2-j}{i-j}\prod_{j=1}^{k-i-2}\frac{m-2-i-j}{k-i-j}.$$

Note that $\frac{m-2-j}{i-j}$ is not divided by i, since $1 \le j < i$, and $\frac{m-2-i-j}{k-i-j}$ is not divided by i, since $1 \le j < k-i-2 < i$.

If g.c.d. $(f_{i,k}, f_{r,s}) = 1$ for some 4-subset $\{i, k, r, s\}$ of $\{1, \ldots, m-2\} - \{n - m + 1\}$, then

$$\mathcal{K}_n^{n-m+1} \subset L(\mathcal{K}_n^i \cup \mathcal{K}_n^k \cup \mathcal{K}_n^r \cup \mathcal{K}_n^s).$$

Corollary 9 For all $n \ge 5$ (except, possibly, $n = 2 + p^s$ with p > 2), we have $2\mathbf{Z}^N \subset L_n^{\neq 1}$.

Proof. In fact, for $n \neq 2 + p^s$, $L_n^{\neq 1} = L_n$. For $n = 2 + 2^s$, (i) of Theorem 8 implies that $2\delta(1)$ (and so, by uniformity of $L_n^{\neq 1}$, all $2\delta(j)$) belongs to $L_n^{\neq 1}$. By Theorem 7(i), $\delta(i) - \delta(j) \in L_n^{k-1,k}$, for $k = \frac{n}{2}$, say. Hence the equality

$$2e_{ij} = \delta(i) + \delta(j) - \delta(ij) = \delta(i) - \delta(j) + 2\delta(j) - \delta(ij)$$

shows that $2\mathbf{Z}^N \subset L_n^{\neq 1}$.

Some explicit decompositions for $\delta(1)$ are as follows:

(10) with
$$i = 2$$
:

$$(n-2)\delta(1) = 2z_3 - (n-4)z_2 \text{ for } n-2 \text{ prime, including } n = 5, 7, 9, 13, 15, \cdots$$

$$(11) \text{ with } i = 2:$$

$$\frac{n-2}{2}\delta(1) = z_3 - \frac{n-4}{2}z_2 \text{ for } n = 6, 12, \cdots$$

$$\delta(1) = -z_4 + 3z_3 - 4z_2 \text{ for } n = 8, \ 3\delta(1) = z_4 - 4z_3 + 7z_2 \text{ for } n = 11,$$

$$2\delta(1) = z_5 - 7z_3 + 16z_2 \text{ for } n = 10, \ 2\delta(1) = -z_4 + 7z_3 - 20z_2 \text{ for } n = 14.$$

3.1Cut-sub-lattices of L_n for small n

For $n \leq 4$, the lattice L_n has no proper full dimensional cut-sub-lattices, i.e. it is minimal. For n = 5, L_5^2 is the unique full dimensional cut-sublattice of L_5 . From Theorem 8(i), we have $3L_5 \subset L_5^2$.

Recall that the lattice L_6 has dimension 15. All full-dimensional proper uniform cutsub-lattices of L_6 are the lattices

$$L_6^{ev} = L_6^2$$
, $L_6^{odd} = L_6^{1,3}$, and $L_6^{\neq 1} = L_6^{(mod3)} = L_6^{2,3}$.

In fact, $L_6^{1,2} = L_6$, and dim $L_6^1 = 6$, dim $L_6^3 = 10$. We know that $2\mathbf{Z}^N \subset L_n$. For what minimal $t \in \mathbf{Z}_+$ and cut-sub-lattices $L \in L_6$ the inclusion $2t\mathbf{Z}^{15} \subset L$ is true?

The characterization of L_n^{ev} , given in [5], implies that t = 4 for L_6^2 . Similarly, the characterization of $L_6^{1,3}$, given in [8], implies that t = 6 for $L_6^{1,3}$.

The representation (strangely asymmetric) of $2e_{ij}$, given below, illustrates explicitly the fact, proved in Theorem 8, that t = 1 for $L = L_6^{2,3}$). Let $V = \{ijkpqr\}$. Then

$$2e_{ij} = 2\delta(ijk) + \delta(ikp) - \delta(iqr) + \delta(jp) + \delta(iq) + \delta(ir) - (\delta(ij) + \delta(ik) + \delta(pq) + \delta(pr) + \delta(qr)).$$

Proposition 6 implies that $L_n^{\neq 1}$ is maximal proper cut-sublattice of L_n for n = 5, 6, 7. For example, adding a cut $\delta(i)$ to $L_6^{2,3}$, will give L_6 , because

$$\delta(j) = \delta(i) + (\delta(ikp) - \delta(jkp)) + (\delta(jp) - \delta(ip)) + (\delta(jk) - \delta(ik)).$$

Using that $\sum_{2 \leq i < j < k \leq 6} \delta(ijk) = 3 \sum_{1 \leq i \leq 6} \delta(i)$ is the unique linear dependency on the set $\mathcal{K}_6^{1,3}$, one can see that $L_6^{\overline{1,3}}$ has exactly 6 proper full-dimensional cut-sub-lattices (obtained by removing a cut $\delta(i), 1 \leq i \leq 6$.)

Remark. It is clear that $\mathbf{Z}_{+}(\mathcal{K}_{n})$ is the set of all integer-valued semi-metrics on V, which are embeddable isometrically into a hypercube $\{0,1\}^m$. Clearly also, $L_n = \{a - b :$ $a, b \in \mathbf{Z}_+(\mathcal{K}_n)$.

Denote by M_n the set $\{a - b : a, b \text{ are any integer-valued semi-metrics on } n \text{ points}\}$. Using description of all extreme rays of the cone of all semi-metrics on 6 and 7 points, one can check that $M_n = L_n$ for $n \leq 6$ and $M_n = \mathbb{Z}^N$ for $n \geq 7$. **Remark.** Consider the **covariance map** $\pi^1 : \mathbb{R}^N \to \mathbb{R}^N$, defined by

$$\pi^{1}(d)_{ii} = d_{1i} \quad \text{for } 2 \le i \le n, \pi^{1}(d)_{ij} = \frac{1}{2}(d_{1i} + d_{1j} - d_{ij}) \quad \text{for } 2 \le i < j \le n.$$

This linear map of \mathbf{R}^N into itself is important, because the **boolean quadric cone** $\pi^1(\mathbf{R}_+(\mathcal{K}_n)) = \mathbf{R}_+(\pi^1(\mathcal{K}_n))$ and **boolean quadric polytope** $\operatorname{conv}\pi^1(\mathcal{K}_n)$) have many applications (combinatorial optimization, quantum mechanics etc.). But the lattice $L(\pi^1(\mathcal{K}_n))$ is nothing but \mathbf{Z}^N , because $e_{ii} = \pi^1(\delta(i))$, $e_{ij} = \pi^1(\delta(i) + \delta(j) - \delta(ij))$ for

 $j \leq n+1$), $\tilde{d}_{1j} = d_{1,j-1}$ for $2 \leq j \leq n+1$, $\tilde{d}_{ij} = d_{i-1,j-1}$ for $2 \leq i < j \leq n+1$. Compare, finally, evident $\pi^1(\delta(S))\pi^1(\delta(T)) = \pi^1(\delta(S\Delta T))$ with $\delta(S)\delta(T) = \frac{1}{2}(\delta^2(S) + \delta^2(T) - \delta^2(S\Delta T))$ given in Introduction.

4 L-polytopes of the lattice L_n

Since $\delta(S)$ is a (0,1)-vector, it is a vertex of the N-dimensional cube Q_N . Let S_N be the sphere circumscribing the cube Q_N . The squared diameter of S_N is equal to N. Hence the squared radius of S_N is equal to $\frac{N}{4}$.

Clearly $PCut_n \subset Q_N$. Take the center of S_N as the new origin. Let j_N be the all-one vector of dimension N. Then each cut vector takes the form $\delta(S) - \frac{1}{2}j_N$ and has $\pm \frac{1}{2}$ coordinates. Norm of all the vectors is equal to $\frac{N}{4}$.

An L-polytope of a lattice is the convex hull of all lattice points lying on an empty sphere of the lattice, and the lattice points on the empty sphere have full rank. A sphere is called empty if there is no lattice point strictly inside it. An L-polytope P is called **basic** if the set of its vertices contains an affine basis of the lattice affinely generated by vertices of P. An L-polytope P is called **symmetric** or **asymmetric** according to whether the set of vectors, representing the vertices of P when the center of P is origin, is symmetric or asymmetric, respectively.

Proposition 10 The cut polytope $PCut_n$ is a basic asymmetric L-polytope of the lattice L_n .

Proof. By definition, $PCut_n$ generates the lattice L_n . Hence it is sufficient to prove, that the sphere S_N , circumscribing $PCut_n$ is empty. All integral points inside S_N are vertices of Q_N . The vertices lies on the sphere. Besides, by Proposition 1(ii), all (0,1)-vertices of L_n are cut vectors. The expression (5) shows that $PCut_n$ is basic. It is easy to see that the polytope is asymmetric.

Let x be the center of an L-polytope P of L_n , whose set of vertices V(P) contains the origin $0 = \delta(\emptyset)$. Then, for all lattice points $d \in L_n$ we have

$$(d-x)^2 \ge r^2,$$

with equality for $d \in V(P)$. Here r is the radius of the sphere circumscribing P. Since $0 \in V(P)$, we have $r^2 = x^2$, and the above inequality takes the form

$$2dx \le d^2$$
, for all $d \in L_n$. (12)

We say that x is of **full rank** if the system of inequalities (12) satisfied by x as equalities uniquely determines x. Clearly, x of full rank is the center of an L-polytope P(x) of the lattice L_n .

Proposition 11 Let $x \in \mathbf{R}^N$ satisfies (12) for $d = 2e_{ij}$ for all $(ij) \in V^2$, and for $d = \delta(S)$ for all $S \subseteq V$. Then (i) $|x_{ij}| \leq 1$ for all $(ij) \in V^2$, (ii) $x_{ij} = 1$ if $2e_{ij}$ satisfies (12) as equality, (iii) if $x \geq 0$, then x satisfies (12) for all $d \in L_n$.

Proof. (i) is implied by the inequality (12) for $d = \pm 2e_{ij} \in L_n$.

(ii) If $d = 2e_{ij}$ satisfies (12) as equality, then the equality takes the form $x_{ij} = 1$.

(iii) If $d \in L_n$, then, according to (3), $d = 2a + \delta(S)$ for $a \in \mathbb{Z}^N$ and $S \subseteq V$. Recall that (12) is equivalent to $(d-x)^2 \ge x^2$. Set $y = \delta(S) - x$. Since $x \ge 0$ and $x_{ij} \le 1$, $|y_{ij}| \le 1$ for all (ij). We have $(d-x)^2 = (2a+y)^2 = 4a(a+y) + y^2$. But $a(a+y) = \sum_{(ij):a_{ij} \ne 0} |a_{ij}| |a_{ij} + y_{ij}| \ge 0$. Hence $(d-x)^2 \ge y^2 = (\delta(S) - x)^2 \ge x^2$. \Box

Corollary 12 Let $x = \chi(E) + \frac{\varepsilon}{2}\delta(T)$, where $\varepsilon = 0$ or 1, and $E \subseteq V^2$ be such a set that

$$2|E \cap D(S)| + \varepsilon |D(T) \cap D(S)| \le |S|(n - |S|) \text{ for all } S \subseteq V.$$
(13)

If x is of full rank, then x is the center of a symmetric L-polytope P(x) of the lattice L_n with the set of vertices

$$V(P(x)) = \{2\chi(A^+) + d(S; A^-) : A^+ \subseteq E - D(S), A^- \subseteq D(S) - (E \cup D(T))\},\$$

where S satisfies (13) as equality. In particular, $2\chi(E) \in V(P(x))$ and $\delta(T) \in V(P(x))$ if $\varepsilon = 1$.

Proof. We have to verify that x satisfies all inequalities (12). The inequality (13) implies that x satisfies (12) with $d = \delta(S)$ for all $S \subseteq V$. Since (13) is satisfied for S = T, we have $E \cap D(T) = \emptyset$. Hence x satisfies (12) for $d = 2e_{ij}$ for all pairs (ij). Now, by Proposition 11(iii), x satisfies (12) for all $d \in L_n$.

Let $d = 2a + \delta(S)$. In the proof of Proposition 11(iii) we see that

$$(d-x)^{2} = (2a + \delta(S) - x)^{2} = 4a(a + \delta(S) - x) + (\delta(S) - x)^{2} \ge (\delta(S) - x)^{2} \ge x^{2},$$

and $a(a + \delta(S) - x) \geq 0$. Hence $d \in V(P(x))$ if and only if $\delta(S) \in V(P(x))$ and $a(a + \delta(S) - \chi(E) - \frac{\varepsilon}{2}\delta(T)) = 0$. The last equality can hold if and only if the supports of the vectors a and $a + \delta(S) - \chi(E) - \frac{\varepsilon}{2}\delta(T)$ do not intersect. Hence $|a_{ij}| \leq 1$ (i.e. $a = \chi(A^+) - \chi(A^-)$) and $A^+ \subseteq E - D(S)$, $A^- \subseteq D(S) - (E \cup D(T))$. Note that $\delta(S) \in V(P(x))$ if and only if S satisfies (13) as equality. It is easy to verify that $\delta(T) \in V(P(x))$. This implies that $2\chi(E) \in V(P(x))$.

Recall that an L-polytope P of a lattice L with the vertex set V(P), containing origin 0, is symmetric if and only if the antipode of 0 in the sphere circumscribing P is a vertex of P, too. Clearly, the point 2x is the antipode of 0 for P(x). Hence P(x) is symmetric if and only if $2x \in L_n$. In our case $2x = 2\chi(E) + \varepsilon\delta(T) \in L_n$.

Now we describe L-polytopes of L_n , which are contiguous to the cut L-polytope. The type of the new polytopes depends on the facet by that it is contiguous to $PCut_n$.

Denote by $P_n(F)$ the L-polytope which is adjacent to $PCut_n$ by a facet F. Let Q be the support of the facet F, i.e. the coefficients of the inequality defining F are

nonzero only for (ij) such that $i, j \in Q$. Let $\mathcal{S}(F)$ be the set of all $S \subseteq Q$ such that $\delta(S)$ belongs to the facet F. We suppose that $\emptyset \in \mathcal{S}(F)$. Note that $Q - S \in \mathcal{S}(F)$ for $S \in \mathcal{S}(F)$. Then the cut $\delta(T)$ belong to the facet F if and only if $T \in \mathcal{T}(F)$, where $\mathcal{T}(F) = \{S \cup T' : S \in \mathcal{S}(F) \text{ and } T' \subseteq V - Q\}.$

Let x be the center of $P_n(F)$. Then the inequality (12) holds as equality for $\delta(T)$ for all $T \in \mathcal{T}(F)$, i.e.

$$\delta(T)x = \frac{1}{2}\delta^2(T), \ T \in \mathcal{T}(F).$$
(14)

Since F is a facet, rank of the matrix $(\delta_{ij}(T) : (ij) \in V^2, T \in \mathcal{T}(F))$ of order $|\mathcal{T}(F)| \times N$ is equal to N - 1. Hence the equation (14) determines all coordinates x_{ij} of the vector x up to a parameter t. The value of t is uniquely determined by a vertex of $P_n(F)$ not belonging to $PCut_n$.

Proposition 13 The system of equations (14) is equivalent to the following system

$$\begin{aligned} x_{ij} &= \frac{1}{2} & \text{for } i, j \in V - Q \\ \sum_{i \in S} x_{ip} &= \frac{|S|}{2} & \text{for } p \in V - Q, S \in \mathcal{S}(F) \\ \sum_{(ij) \in (S,Q-S)} x_{ij} &= \frac{1}{2} |S| (|Q| - |S|) & \text{for } S \in \mathcal{S}(F). \end{aligned}$$

Proof. Note that $\delta(T) \in \mathcal{T}(F)$ for all $T \subseteq V - Q$, since $\emptyset \in \mathcal{S}(F)$. Consider equation (14) for $T = \{i\}, \{j\}$ and $\{ij\}, i, j \in V - Q$. Using the equality (2), we obtain

$$2x_{ij} = (\delta(i) + \delta(j) - \delta(ij))x = \frac{1}{2}((n-1) + (n-1) - 2(n-2)) = 1,$$

i.e. the first system of equations.

Now consider equation (14) for T = S and $T = S \cup \{p\}$, where $S \in \mathcal{S}(F)$ and $p \in V - Q$. Let |S| = s. Then $\delta^2(S) = s(n-s)$ and $\delta^2(S \cup \{p\}) = (s+1)(n-s-1)$. We have

$$\delta(S)x = \sum_{(ij)\in D(S)} x_{ij} = \frac{1}{2}s(n-s),$$
(15)

$$\delta(S \cup \{p\}) = \sum_{(ij) \in D(S)} x_{ij} - \sum_{i \in S} x_{ip} + \sum_{j \in V - (S \cup \{p\})} x_{jp} = \frac{1}{2}(s+1)(n-s-1).$$

Substituting the first equality in the second, and using the equality $x_{jp} = \frac{1}{2}$ for $j \in V - (Q \cup \{p\})$, we obtain the second system of equations.

We can rewrite the equation (15) as follows

$$\sum_{(ij)\in(S,Q-S)} x_{ij} + \sum_{i\in S, p\in V-Q} x_{ip} = \frac{1}{2} [s(q-s) + s(n-q)],$$

where q = |Q|. Using the second system of equations, we obtain the third system. \Box

Now, as an example, we consider a pure (2k+1)-gonal facet $F = F_k$, $k \in \mathbb{Z}_+$, $1 \le k < \frac{n}{2}$, defined by the equation $\sum_{1 \le i < j \le q} b_i b_j d_{ij} = 0$. Here $Q = Q^+ \cup Q^-$, |Q| = q = 2k + 1, $|Q^+| = k + 1$, $|Q^-| = k$, and $b_i = 1$ for $i \in Q^+$, $b_i = -1$ for $i \in Q^-$. Besides,

$$\mathcal{S}(F_k) = \{ S^+ \cup S^-, Q - (S^+ \cup S^-) : S^+ \subseteq Q^+, S^- \subseteq Q^-, |S^+| = |S^-| = s, 0 \le s \le k \}.$$

The second system of equations of Proposition 13 implies $x_{ip} = \frac{1}{2}$ for all $i \in Q, p \in V-Q$. Using the symmetry of third system under permutations in Q^+ and Q^- , we can suppose that

$$x_{ij} = x$$
 for all $i, j \in Q^+$, $x_{ij} = y$ for all $i, j \in Q^-$, $x_{ij} = z$ for all $i \in Q^+, j \in Q^-$.

Then the third system takes the form

$$s(k-s+1)x + s(k-s)y + s(2(k-s)+1)z = s(2(k-s)+1), \ 0 \le s \le k.$$

The solution of the system is x = y = t and z = 1 - t, where t is a parameter.

Denote $P_n(k) := P_n(F_k)$. Suppose that $2e_{ij} \in V(P_n(k))$ for some $(ij) \in V^2$. Then, according to Proposition 11(ii), $x_{ij} = 1$. Hence $i, j \in Q$.

The case $i \in Q^+$, $j \in Q^-$ is impossible. In fact, then z = 1, x = y = 0 and for $i \in Q^-$, we have $2\delta(i)x = 2(k+1) + (n-q) > \delta^2(i) = 2k + (n-q)$. This contradicts to (12).

Let $i, j \in Q^+$. Then x = y = 1, z = 0. In this case, $x = \sum_{(ij)\in Q^{+2}} e_{ij} + \sum_{(ij)\in Q^{-2}} e_{ij} + \frac{1}{2}\sum_{(ij)\in V^2-Q^2} e_{ij}$. Note that $V^2 - Q^2 = D(Q) \cup (V - Q)^2$. Hence

$$2x = 2\chi(Q^{+2}) + 2\chi(Q^{-2}) + \delta(Q) + \chi((V - Q)^2).$$
(16)

Since $0 \le x_{ij} \le 1$ for all (ij), Proposition 11(iii) implies that $P_n(k)$ is an L-polytope, i.e. the inequality $(d-x)^2 \ge x^2$ is valid for all $d \in L_n$.

Proposition 14 The L-polytope $P_n(k)$, n > 2, is symmetric if and only if $n = 2k + 1 + \varepsilon$ for $\varepsilon = 0$ or 1. For $n = 2k + 1 + \varepsilon$, the vertices of the polytope $P_n(k)$ are

$$2\chi(X) + d(T;Y),$$

where T = S if $\varepsilon = 0$ and T = S and $S \cup \{n\}$ if $\varepsilon = 1$, and

$$S = S^+ \cup S^-, \ S^+ \subseteq Q^+, \ S^- \subseteq Q^-, \ |S^+| = |S^-| = s, \ 0 \le s \le k,$$
$$X \subseteq (Q^{+2} - (Q^+ - S^+, S^+)) \cup (Q^{-2} - (Q^- - S^-, S^-)),$$
$$Y \subseteq (S^+, Q^- - S^-) \cup (S^-, Q^+ - S^+).$$

Proof. Note that $(V - Q)^2 \neq \delta(S)$ for all S if $(V - Q)^2 \neq \emptyset$, and $(V - Q)^2 = \emptyset$ if $|V - Q| \leq 1$. Comparing (3) and (16), we see $2x \in L_n$ if and only if $(V - Q)^2 = \emptyset$. This implies that the L-polytope $P_n(k)$ is symmetric if and only if $n = 2k + 1 + \varepsilon$.

Let $V = Q \cup \varepsilon\{n\}$. In this case $\delta(Q) \equiv \delta(V - Q) = \varepsilon \delta(n)$ and $x = \chi(E) + \frac{\varepsilon}{2} \delta(n)$ with $E = Q^{+2} \cup Q^{-2}$. We can apply Corollary 12. We obtain that the vertices of $P_n(k)$ are as in the assertion of this proposition.

Let $PCut(\mathcal{K})$ be convex hulls of all cuts, contained in the lattice $L(\mathcal{K})$. Since, for $\mathcal{K} \subseteq \mathcal{K}_n$, $L(\mathcal{K}) \subset L_n$, Proposition 10 implies

Corollary 15 The polytope $PCut(\mathcal{K})$ is an asymmetric (basic?) L-polytope of the lattice $L(\mathcal{K})$.

The symmetry group of $PCut_n$ consists of reflections $r_{\delta(T)}$ and of transformations generated by all permutations of the set V. The reflection $r_{\delta(T)}$ reflects $PCut_n$ simultaneously in all the hyperplanes, which contain the center of $PCut_n$ and are orthogonal to the vectors e_{ij} for $(ij) \in D(T)$.

Since $r_{\delta(T)}(\delta(S)) = \delta(T\Delta S)$, for odd T, $r_{\delta(T)}$ transforms $PCut(\mathcal{K}_n^{ev})$ and $PCut(\mathcal{K}_n^{odd})$ each into other. Hence $PCut(\mathcal{K}_n^{ev})$ and $PCut(\mathcal{K}_n^{odd})$ are congruent. Clearly, the symmetry group of $PCut(\mathcal{K}_n)$ ($PCut(\mathcal{K}_n^{ev})$) is the symmetry group of L_n (L_n^{ev} , respectively).

Remark.

Note that, since $PCut_n$ is embedded into N-dimensional cube, we can define Hamming distance $d_n(\delta(S), \delta(T)) = \|\delta(S) - \delta(T)\|_{l_1}$ between vertices of $PCut_n$. We have $d_n(\delta(S) - \delta(T)) = (\delta(S) - \delta(T))^2 = \delta^2(S\Delta T)$.

On the other hand, since $\delta(S) = \delta(V - S)$, the vertices of $PCut_n$ relate to bipartitions of the set V. There is the well known distance-regular graph, the **folded cube** \Box_n , defined on all bipartitions. Two bipartitions are adjacent if its common refinement contains a oneelement set, i.e. $\delta(S)$ is adjacent to $\delta(T)$ if $|S\Delta T| = 1$. The graphic distance $d[\Box_n](x, y)$ and the distance $d_n(x, y)$ are related as follows (we set $e(n) := 2^n$)

$$d_n(x,y) = d[\Box_n](x,y)(n-d[\Box_n](x,y)),$$

i.e. $d_n = d[\Box_n](nd[K_{e(n-1)}] - d[\Box_n]) \in \mathbf{Z}_+(\mathcal{K}_{e(n-1)}^{e(n-2)}).$

where K_m is the complete graph on m vertices.

Similarly, the graph on all even cuts is the halved folded cube $\frac{1}{2}\Box_n$. The vertices $\delta(S)$ and $\delta(T)$ are adjacent in $\frac{1}{2}\Box_n$ if $|S\Delta T| = 2$. We have

$$d_n^{ev} = 2d[\frac{1}{2}\Box_n](nd[K_{e(n-2)}] - 2d[\frac{1}{2}\Box_n] \in \mathbf{Z}_+(\mathcal{K}_{e(n-2)}^{e(n-3)}).$$

Actually, we have $\Box_3 = \frac{1}{2}\Box_4 = K_4$, $\frac{1}{2}\Box_6 = K_{16}$, $\Box_4 = K_{4,4}$, where $K_{n,m}$ is the complete bipartite graph on n + m vertices. The complement of \Box_5 , is the Clebsh graph, i.e. the halved 5-cube $\frac{1}{2}H(5)$. The halved folded cubes $\frac{1}{2}\Box_n$ for n = 8, 10 have diameter 2, and therefore they are strongly regular. For small n we have

$$d_{3} = 2d[K_{4}]; d_{4} = 2d[K_{8}] + d[K_{4,4}]; d_{4}^{ev} = 4d[K_{4}]; d_{6}^{ev} = 6d[K_{16}];$$
$$d_{5} = d[\Box_{5}](2d[K_{16}] + d[\frac{1}{2}H(5)]) = 2d[K_{16}] + 2d[\Box_{5}].$$

So d_3 and d_4 belong to the interior of the hypermetric cone $Hyp_n := \{x \in \mathbf{R}^N : \sum_{1 \leq i < j \leq n} b_i b_j x_{ij} \leq 0 \text{ for all } b \in \mathbf{Z}^n, \sum_{1 \leq i \leq n} b_i = 1\}$ with n = 4. Clearly, $PCut_3$ and $PCut_4^{ev}$ are regular 3-simplices in L_3 , and L_4^{ev} , respectively. One can check that the minimal face of Hyp_8 , containing d_4 is the 5-face obtained as the intersection of 8 facets $\sum_{1 \leq i < j \leq n} b_i^a b_j^a x_{ij} = 0$ for each cut a. Namely, $b_i^a = 0$ for the index i corresponding to a, $b_i^a = -1$ for 3 other cuts of the same parity and $b_i^a = 1$ for 4 remaining cuts. Actually, $d_4 = \delta(1256) + \delta(1278) + \delta(1357) + \delta(1368) + \delta(1458) + \delta(1467)$, where the numbers 1,2,3,4 correspond to 4 even cuts, and this representation in a 5-simplex seems to be the unique representation of d_4 in Cut_8 .

5 Odd systems, related to the lattice L_n

Denote d(S; X), defined in (6), by d(k; X) if $S = \{k\}$.

Let

$$\mathcal{V}_n = \{ d(k; X) : X \subseteq D(k), k \in V \}.$$

Proposition 16 The set \mathcal{V}_n generates the lattice L_n .

Proof is implied by the equality

$$\delta(S) = \sum_{k \in S} d(k; X_k),$$

where $X_k = \{(kj) : j \in S, j < k\}.$

Proposition 17 \mathcal{V}_n is a uniform odd system of norm n-1 if n is even.

Proof. We have $d(i; X)d(j; Y) = \pm 1$ if $i \neq j$, $d(i; X)d(i; Y) = n - 1 - 2|X\Delta Y| \equiv n - 1$ (mod 2).

For *n* even, we can recognize in the odd system \mathcal{V} subsystems spanning equiangular lines. The simplest such a system is $\mathcal{K}_n^1 = \{\delta(i) : i \in V\}$. A maximal set of vectors with mutual inner products ± 1 is constructed as follows.

If $k \in V$, then |D(k)| = n - 1 is odd. Consider on the set D(k) such a maximal by inclusion family \mathcal{X}_k of subsets $X \subseteq D(k)$ of cardinality $|X| = \frac{n}{2} - 1$, that the inner product $i(X, X') := d(k; X)d(k; X') = \pm 1$ for any two subsets X, X' of the family. The conditions $i(X, X') = \pm 1$ implies that either $|X \cap X'| = \frac{n}{4} - 1$ or $|X \cap X'| = \frac{n-2}{4}$. Since n is even, we have exactly one of these cases, i.e.

$$|X \cap X'| = \begin{cases} \frac{n}{4} - 1 & \text{and } i(X, X') = -1 & \text{if } n \equiv 0 \pmod{4}, \\ \frac{n-2}{4} & \text{and } i(X, X') = 1 & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Then the set

$$\mathcal{M}_n = \{ d(k, X) : X = \emptyset \text{ or } X \in \mathcal{X}_k, \ k \in V \}$$

spans a set of equiangular lines at angle $\arccos \frac{1}{n-1}$. Since $d(k, \emptyset) = \delta(k), \mathcal{K}_n^1 \subset \mathcal{M}_n$.

So, we have $L_n = L(\mathcal{V}_n)$. For even *n*, denote the sublattice $L_0(\mathcal{V}_n)$ by L_n^0 . According to (3),

$$L_n^0 = \{ d \in L_n : d = 2a + \delta(S) \text{ where } \delta(S) \in \mathcal{K}_n^{ev} \}.$$

Besides, the lattice L_n has the double even sub-lattices L_n^{ev} , $2\mathbf{Z}^N$.

There is another double even lattice related to odd cuts:

$$L_0(\mathcal{K}_n^{odd}) = \{ d : d = \sum_{\delta(S) \in \mathcal{K}_n^{odd}} z_S \delta(S), \sum_{\delta(S) \in \mathcal{K}_n^{odd}} z_S = 0, \ z_S \in \mathbf{Z} \}.$$

Proposition 18 L_n^{ev} is isomorphic but not equal to $L_0(\mathcal{K}_n^{odd})$.

Proof. Let $d \in L_0(\mathcal{K}_n^{odd})$ has a representation $d = \sum_S z_S \delta(S)$. Since $\sum_S z_S = 0$, $d = \sum_S z_S(\delta(S) - \delta(T))$ for some odd T. The expression means that the lattice $L_0(\mathcal{K}_n^{odd})$ is affinely generated by vertices of the polytope $PCut_n^{odd}$. But this polytope is congruent to the polytope $PCut_n^{ev}$, which affinely generate the lattice L_n^{ev} . Hence the lattice $L_n^{ev} = L(\mathcal{K}_n^{ev})$ is isomorphic (in fact, congruent) to the lattice $L(\mathcal{K}_n^{odd})$. Clearly, these lattices are distinct.

6 Cut polytopes $PCut_n$ for small n

Consider $PCut_n$ and corresponding lattices for small n in details.

(1) $\mathbf{n=2}$, N = 1. $PCut_2$ is a unit segment, $PCut_n^{ev}$ and $PCut_2^{odd}$ are zero-dimensional points, ends of the segment. $L_2 = L_n^{odd} = \mathbf{Z}$, $L_2^{ev} = \emptyset$.

(2) **n=3**, N = 3. $PCut_3$ is the regular tetrahedron α_3 with norms of edges (squared lengths) 2. The lattice L_3 is the 3-dimensional face-centered lattice $A_3 = D_3$. The second type of the L-polytopes of L_3 is known, and it is described also in Proposition 14. They are the cross-polytopes $P_3(1) = \beta_3$ (octahedrons) for $\varepsilon = 0$ centered at the points e_{ij} and having edges of norm 2.

(3) n=4, N=6. $PCut_4$ is the 6-dimensional repartitioning L-polytope with 8 vertices. It is combinatorially equivalent to the cyclic 6-polytope with 8 vertices. $PCut_4$ relates to a pure 7-gonal facet F_3 of the hypermetric cone Hyp_7 of hypermetrics on 7 points.

By Proposition 16, L_4 is generated by the odd system \mathcal{V}_4 . The odd system \mathcal{V}_4 coincides with \mathcal{M}_4 , which is the maximal closed uniform odd system of norm 3 and dimension 6 with $n(\mathcal{M}_4) = 16$. This odd system is related to the root system E_7 . It is described in [4]. Table 1 of [4] shows that $L_4 = \sqrt{2}D_6^{+2}$, where D_6^{+2} is described in [3]. The root lattice D_6 has (up to signs) 30 roots $e_i - e_j$, $e_i + e_j$, $1 \le i < j \le 6$. If we add 32 vectors of the shape $(\pm 1/2)^6$ with even number of minus signs, we obtain D_6^+ . Now take new orthonormal basis $\{f_i : 1 \le i \le 6\}$ of the space R^6 . Let $g = \sqrt{2}$, then $f_1 = (e_1 - e_2)/g$, $f_2 = (e_1 + e_2)/g$, $f_3 = (e_3 - e_4)/g$, $f_4 = (e_3 + e_4)/g$, $f_5 = (e_5 - e_6)/g$, $f_6 = (e_5 + e_6)/g$. In this basis the lattice gD_6^+ takes the form L_4 . We obtain 30 (up to signs) vectors of norm 4, and 32 vectors of norm 3.

We apply Corollary 12 to $V = \{1234\}, E = \{(12), (34)\}$ and $\varepsilon = 0$. The only S satisfying (13) as equality are, up to complement, $S = \emptyset, \{13\}, \{14\}$. It is easy to verify that $x = \chi(E) = e_{12} + e_{34}$ is of full rank, and the set of vertices of P(x) is the set

$$\mathcal{D}_4 = \{2\chi(X) : X \subseteq E\} \cup \{d(S;X) : X \subseteq D(S) - E, \text{ and } S = (13) \text{ or } (14)\}.$$

Denote the polytope by P_4 .

If we take the origin in the center of P_4 , then the vertices of P_4 are represented by vectors

$$\pm (e_{12} \pm e_{34}), \pm (e_{13} \pm e_{24}), \pm (e_{14} \pm e_{23}).$$

Now it is easy to see that P_4 is the symmetric 6-dimensional cross-polytope β_6 with edges of norm 4.

Since all facets of $PCut_4$ are 0-extensions of triangle facets, the L-polytopes contiguous to facets of $PCut_4$ all have the same type $P_4(1)$ described in Proposition 14. In the case $\varepsilon = 1, |Q^+| = 2, |Q^-| = 1$. Let $Q^+ = \{12\}, Q^- = \{3\}$. Then $x = e_{12} + \frac{1}{2}\delta(4)$. The vertices of $P_4(1)$ are

$$\delta(S)$$
 and $2e_{12} + \delta(\{4\}) - \delta(S)$ for $S \in \mathcal{S}(F_1) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{13\}, \{23\}\}.$

Since the vectors $\delta(S)$ for $S \in \mathcal{S}(F_1)$, $S \neq \emptyset$, and $2e_{12}$ form the basis of L_4 , $P_4(1)$ is basic.

If we take origin in the center of $P_4(1)$, then the vertices of $P_4(1)$ are represented by vectors

$$\pm \frac{1}{2}(2e_{12} \pm (e_{14} + e_{24} + e_{34})), \pm \frac{1}{2}(2e_{13} \pm (-e_{14} + e_{24} + e_{34})), \pm \frac{1}{2}(2e_{23} \pm (e_{14} - e_{24} + e_{34})).$$

It is easy to see that the vectors multiplied by 2 have norm 7 and mutual inner products ± 1 . Hence they span 6 equiangular lines at angle $\arccos \frac{1}{7}$.

Let e_0 be a unit vector orthogonal to the space spanned by L_4 . If we add two pairs of vectors

$$\pm \frac{1}{2} (2e_0 \pm (e_{14} + e_{24} - e_{34}))$$

we obtain 8 pairs of vectors spanning in 7-dimensional space 8 equiangular lines at angle $\arccos \frac{1}{7}$. The convex hull of all these vectors is, up to the multiple $\sqrt{2}$, the unique (basic) L-polytope of the lattice E_7^* (see, for example, [2]). Hence $\frac{1}{\sqrt{2}}L_4 = D_6^{+2}$ is a section of the lattice E_7^* .

There is the forth L-polytope of the lattice L_4 , a 6-dimensional simplex Σ . The norms of its edges are equal to 3 and 4. The 6 edges of norm 3 are adjacent to the same vertex.

The adjacencies between these 4 types of L-polytopes of the lattice L_4 are as follows. $PCut_4$ is adjacent only to L-polytopes of the type $P_4(1)$. A cross-polytope $P_4 = \beta_6$ is adjacent to L-polytopes of the types $P_4(1)$ and Σ . The simplex Σ is adjacent to Lpolytopes of the types β_6 and $P_4(1)$. The polytope $P_4(1)$ is adjacent to L-polytopes of all the 4 types.

The norms of vectors x of centers of polytopes $PCut_4$, Σ , $P_4(1)$ and β_6 are, respectively, $\frac{3}{2} < \frac{27}{16} < \frac{7}{4} < 2$. So, the deep hole is the cross-polytope β_6 .

We call L-polytopes P and P' lattice equivalent if either P' = -P or P' = P + afor some lattice vector a. Note that if P is symmetric and $0 \in V(P)$, then -P = P - 2x, where x is the center of P. In this case, $2x \in V(P)$.

For an L-polytope P, we denote

the center of P by x(P),

the number of vertices of P by v(P),

the ratio of the volume of P to the volume of a basic simplex by $V_r(P)$,

the number of lattice nonequivalent L-polytopes of type P in the star at 0 by N(P).

Let s(P) = 1 if P is symmetric, and s(P) = 2 if P is asymmetric. Then the number of L-polytopes congruent to P in a star is equal to s(P)v(P)N(P). Besides we have $\sum_{P} s(P)N(P)V_r(P) = N!$, where $N = dimL_n$

The star at $0 \in L_4$ and corresponding Voronoi's polytope of L_4 are described by the following table. All indexes in the table are distinct.

P	V_r (P)	s(P)	v(P)	N(P)	$\mathbf{x}(\mathbf{P})$
$PCut_4$	4	2	8	10	$\frac{1}{2}\sum_{(ij)\in V^2} \pm e_{ij}, \pm e_{ij} + \frac{1}{2}(\pm e_{ik} \pm e_{jk})$
$P_4(1)$	32	1	12	16	$\pm e_{ij} + \frac{1}{2} (\pm e_{ik} \pm e_{jk} \pm e_{kl})$
β_6	64	1	12	1	$\pm e_{ij} \pm e_{kl}$
Σ	2	2	7	16	$\pm \frac{3}{4}e_{ij} \pm e_{kl} + \frac{1}{4}(\pm e_{ik} \pm e_{jk}), \ \frac{3}{4}(\pm e_{ij} \pm e_{jk} \pm e_{ki})$

The centers off all L-polytopes of type P can be obtained from x(P) by taking $i, j, k, l \in \{1, 2, 3, 4\}$ and taking signs + or - in \pm independently. For example, $x(P) = \pm e_{ij} \pm e_{kl}$ has 4 distinct patterns of signs and 3 distinct partitions of $V = \{1, 2, 3, 4\}$ into equal parts. Hence there are 3.4=12 cross-polytopes β_6 in the star.

Note that there are $\sum_{P} s(P)v(P)N(P) = 588$ L-polytopes in a star, and therefore the Voronoi's polytope has 588 vertices.

The Voronoi's polytope P_V has 60+32=92 facets. The 60 facets of $P_V(0)$ with center in $0 \in L_4$ are orthogonal to the 60 vectors of norm 4 and 32 facets are orthogonal to 32 vectors of norm 3. Each facet contains the middle point of the corresponding vector. A facet orthogonal to a vector of norm 4 contains 42 vertices. A facet orthogonal to a vector of norm 3 contains 56 vertices.

 $PCut_4^{ev}$ and $PCut_4^{odd}$ are 3-dimensional simplexes with edge length 2 (norm 4), spanning orthogonal 3-spaces. These simplexes intersect in the center of both, which is the center of the sphere S_6 circumscribing $PCut_4$. The squared distance between vertices of different simplexes is 3. $L_4^{ev} = \sqrt{2}A_3$, where A_3 is the 3-dimensional root lattice. The 4-dimensional lattice L_4^{odd} can be obtained from the root lattice $\sqrt{2}A_5$ as its section by a hyperplane orthogonal to an arbitrary root and going through the midpoint of the root.

(4) n=5, N = 10. $PCut_5$ is a 10-dimensional L-polytope.

Note that there are only 2 values of norms of edges of $PCut_5$, namely 4 and 6. Hence if we take origin in the center of $PCut_5$, then the vectors $\sqrt{2}(\delta(S) - \frac{1}{2}j_{10})$, representing vertices of $\sqrt{2}PCut_5$, have norm 5 and inner products ± 1 , i.e. they span equiangular lines at angle $\arccos \frac{1}{5}$.

The graph on the vertices of $PCut_5$ with edges of norm 6 is the Clebsh graph, i.e. the Halved cube $\frac{1}{2}H(5)$.

(5) $\mathbf{n=6}$, N = 15. $PCut_6^{ev}$ and $PCut_6^{odd}$ are 15-dimensional simplexes with squared length 8. They intersect in the center of $PCut_6$. The lattice L_6^{ev} is $2A_{15}$, the root lattice A_{15} multiplied by 2.

The set \mathcal{M}_6 contains 30 vectors spanning 30 equiangular lines at angle $\arccos \frac{1}{5}$ in 15-dimensional space. A maximal set of such lines contains 36 lines.

(6) $\mathbf{n=8}$, N = 28. The 28-dimensional L-polytopes $PCut_8^{ev}$ and $PCut_8^{odd}$ have only 2 squared Euclidean distances between vertices: 12 and 16. Hence if we take origin in the common center $\frac{1}{2}j_{28}$ of these polytopes, then the vectors $\delta(S) - \frac{1}{2}j_{28}$, (say, |S| is even), have norm 7 and inner products ± 1 , i.e. they span $2^{8-2} = 64$ equiangular lines at angle $\arccos \frac{1}{7}$ in 28-dimensional space, we conclude that this graph on vertices of $PCut_8^{ev}$ (or $PCut_8^{odd}$) with edges of norm 16 is a strongly regular graph of the Pseudo Latin square type with parameters (64,35,18,20). The complement of the graph is the halved folded 8-cube. The graph (and its complement) has 2-transitive automorphism group.

The similar set of 64 equiangular lines with the graph with the same parameters of strongly regular graph as above spans the odd system \mathcal{M}_8 . In this case, each family \mathcal{X}_k , $k \in \{1, 2, ..., 8\}$, is the unique Steiner triple system on 7 points, containing 7 triples. We don't know whether the graphs are isomorphic.

References

- P.Assouad, Sous espace de L¹ et inégalités hypermétriques, Comptes Rendues de L'Académie des Sciences de Paris, 294A (1982) 439-442.
- [2] E.P.Baranovskii, Perfect lattices $\Gamma(\mathcal{A}^n)$, and covering density of $\Gamma(\mathcal{A}^9)$, to appear in Europ.J.Combinatorics (1994)

- [3] J.H.Conway, N.J.A.Sloane, Low-dimensional lattices. II. Subgroups of GL(n,Z), Proc. Roy. Soc. London A419 (1988) 29–68.
- [4] M.Deza, V.P.Grishukhin, Odd systems of vectors and related lattices, Rapport de Recherche du LIENS, LIENS-94-5, 1994.
- [5] M.Deza, M.Laurent, S.Poljak, The cut cone III: on the role of triangle facets, Graphs and Combinatorics, 8 (1992) 125-142.
- [6] M.Deza, M.Laurent, Extension operations for cuts, Discrete Math., 106/107 (1992) 163-179.
- [7] M.Deza, M.Laurent, The even and odd cut polytopes, Discrete Math., 119 (1993) 49-66.
- [8] M.Deza, M.Laurent, The cut cone: simplicial faces and linear dependencies, Bull. of Inst. Math. Acad. Sinica, 21 (1993) 143-182.