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Abstract

We show that the cut polytope PCut

n

is an L-polytope of the lattice L

n

, a�nely

generated by its vertices. We consider cut-sub-lattices of L

n

generated by subsets of

cuts. If n is even, L

n

is generated by an odd system. We give a detailed description

of L

n

and PCut

n

for small n and sets of equiangular lines related to these polytopes.

In particular, we give all 4 types of L-polytopes of the lattice L

4

=

p

2D

+2

6

.

1 Introduction

Let V be a ground set of cardinality jV j = n. The cut vector, or, simply, the cut �(S),

S � V , is a vector of the space of all functions d : V

2

! R, de�ned on the set V

2

of all

unordered pairs of the set V . The component �

ij

(S) is de�ned as follows. Let

(S; T ) = f(ij) 2 V

2

: i 2 S; j 2 Tg and D(S) = (S; V � S): (1)

Then

�

ij

(S) =

(

1 if (ij) 2 D(S)

0 otherwise:

The dimension of the space spanned by all �(S)'s is equal to N = jV

2

j = n(n � 1)=2.

Since �(S) = �(V � S), there are 2

n�1

cuts, including the zero cut �(;) = 0.

Let Z

N

be the lattice of all integral N-vectors. Let K be a family of cuts. Clearly

K � Z

N

. Hence the lattice L(K), linearly generated by all the cuts �(S) 2 K, i.e.

L(K) = fd : d =

X

�(S)2K

z

S

�(S); z

S

2 Zg;

is a sublattice of Z

N

. Let K

n

= f�(S) : S � V � fngg be the set of all cut vectors, and,

for even n, let K

odd

n

= f�(S) 2 K

n

: jSj is oddg, K

ev

n

= f�(S) 2 K

n

: jSj is eveng. We set

L

n

= L(K

n

); L

odd

n

= L(K

odd

n

); L

ev

n

= L(K

ev

n

):

1



It is proved in [1], d 2 L

n

if and only if d

ij

+ d

jk

+ d

ki

� 0 (mod 2) for all triples

fijkg. The condition is a special case of the following fact: cardinality of an intersection

of a cut and a cycle in a graph is even. In fact, this is equivalent to the dual lattice of L

n

is

1

2

L(C), where C is the set of all cycles of the complete graph K

n

. C itself is generated

by triangles and trivial 2-circuits, 2e

ij

, containing 2 parallel edges (ij). Hence the dual

lattice L

�

n

contains the lattice Z of all integral vectors.

The lattice L

ev

n

, for even n, is characterized in Section 4 of [5].

We call a set V � R

N

of vectors an odd system if the inner product of any pair

of vectors u; v 2 V, denoted by juxtaposition uv, is an odd number. In particular, the

norm v

2

of any v 2 V, i.e. the inner product of v with itself, is odd, too. Note that for

a (0;�1)-vector its norm equal to number of nonzero components.

A set of vectors V is called symmetric if �v 2 V for all v 2 V. If �v 62 V for all

v 2 V, then V is called asymmetric. Using the expression

�(S)�(T ) =

1

2

[�

2

(S) + �

2

(T )� �

2

(S�T )];

it is easy to verify that, for even n, the set K

odd

n

of all odd cuts is an asymmetric odd

system such that norm of each odd cut is equal to n� 1 (mod 4).

A set of vectors is called uniform if norm of all its vectors is the same. In the case,

the common norm is called norm of the set of vectors. A uniform odd system V of norm

m is called closed if the set of all vectors of norm m of the lattice L(V), generated by V,

coincides with V.

It is proved in [4] the following facts about the lattice L(V), generated by an odd

system of vectors v of norm 4k(v) + p, where p = 1 or p = 3 is the same for all v 2 V.

(1) a

2

� 0 or p (mod 4) for all L(V).

(2) L

0

(V) := fa 2 L(V) : a

2

� 0 (mod 4)g is a double even sublattice of L(V). (A

double even lattice is a lattice of vectors with even inner products and having norm

divisible by 4).

(3) L

1

(V) := fa 2 L(V) : a

2

� p (mod 4)g = L

0

(V) + a

1

, where a

1

is any vector of

L(V) of odd norm.

A special case of an odd system is represented by a set of vectors, spanning equiangular

lines. A set of lines is equiangular if the acute angle between any pair of lines is the same.

If there are su�ciently many of equiangular lines, then this angle is equal to arccos

1

m

,

where m is an odd integer. Hence the corresponding odd system is composed of vectors

of norm m with inner products �1.

We give here more detailed description of the lattice L

n

. In particular, we show that

the cut polytope PCut

n

, i.e. the convex hull of all cut vectors, including zero cut, is an

L-polytope of the lattice L

n

.

2 Some properties of the lattice L

n

Let fe

ij

: 1 � i � j � ng be orthonormal basis of R

N

. The lattice generated by the basis

is Z

N

. For m 2 Z, let mZ

N

be the lattice of all integer vectors divisible by m. Then

fme

ij

g is the basis of mZ

N

. Recall that K

n

is an Abelian group with respect to symmetric

2



di�erence of vectors, i.e. the sum of vectors modulo 2. Similarly, L

n

is an Abelian group

with respect to usual addition. In Proposition 1 below we give two simple but important

properties of the lattice L

n

.

Proposition 1 (i) 2Z

N

� L

n

.

(ii) L

n

=2Z

N

= K

n

i.e. d � �(S) (mod 2) for some �(S) 2 K

n

for all d 2 L

n

.

Proof. (i) The equality

2e

ij

= �(i) + �(j)� �(ij) (2)

shows that 2e

ij

2 L

n

for every pair (ij) 2 V

2

.

(ii) Let d 2 L

n

, d =

P

S

z

S

�(S). Then d �

P

S2S

�(S) (mod 2), where S = fS : z

S

�

1 (mod 2)g. Since �(S) + �(T ) � �(S�T ) (mod 2), using induction on number elements

of S, we obtain that d � �(T ) (mod 2) for some T � V . 2

Proposition 1(ii) implies that every point d 2 L

n

has the form

d = 2a+ �(S); where a 2 Z

N

: (3)

for some S � V .

Of course, the lattice L

n

has in�nitely many bases. Proposition 2 below gives an

example of a basis of L

n

, containing in K

n

.

Proposition 2 The following set of N cuts forms a basis of L

n

B = f�(i); �(ij) : i; j 2 V � fngg.

Proof. Using (2), we have �(S) =

P

j2S

�(j) � 2

P

i<j2S

e

ij

=

P

j2S

�(j)�

P

i<j2S

(�(i) +

�(j)� �(ij)), i.e. each cut �(S), S � V � fng has the unique representation

�(S) =

X

i<j2S

�(ij)� (jSj � 2)

X

i2S

�(i):2 (4)

Note that the set of points B

a

= f�(;)g [ B is an a�ne basis of the lattice L

n

. Let

the origin does not belong to L

n

. Then we distinguish lattice points d 2 L

n

and lattice

vectors. Any point d 2 L

n

has the following a�ne representation

d =

X

a2B

a

z

a

a;

X

a2B

a

z

a

= 1:

The lattice points do not form a group.

A lattice vector is a di�erence of two lattice points. Lattice vectors form the same

Abelian group L

n

and have the following a�ne representation in the basis B

a

d =

X

a2B

a

z

a

a;

X

a2B

a

z

a

= 0:

Let 
(S) = �(S) � a

0

, where a

0

is the new origin. Then �(S) = 
(S) � 
(;). Using

(4), we obtain the following a�ne representation of the vectors 
(S) in the basis B

a

.


(S) =

X

i<j2S


(ij)� (jSj � 2)

X

i2S


(i) + (

jSj(jSj � 3)

2

+ 1)
(;): (5)
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The representation is useful if we take the center of PCut

n

as origin.

The equation (3) shows that the unique (0,1)-vectors d 2 L

n

are cut vectors. Now we

consider vectors of L

n

modulo 3, i.e. vectors having (0;�1)-components only. Let d 2 L

n

has (0;�1)-components. Since d (mod 2) is a cut vector, all such vectors have the form

d(S;X) = �(S)� 2�(X); X � D(S); (6)

where

�(X) =

X

(ij)2X

e

ij

;

and the set D(S) is de�ned in (1). Note that �(S) = �(D(S)). There are 2

k(n�k)

, k = jSj,

such subsets X. So between 3

(

N

2

)

of (0;�1)-vectors of R

N

, L

n

contains

P

n

k=0

�

n

k

�

2

k(n�k)�1

(including 4

n�1

�2

n�1

+1 of form �(S)��(S

0

)). Thus, the ratio (equal to 1, 13/27, 80/729

for n = 2; 3; 4) goes to 0 when n!1; compare with jL

n

\ [0; 1]

N

j=j[0; 1]

N

j = 2

�

(

n�1

2

)

.

3 Cut-sub-lattices of L

n

We call a sublattice L � L

n

a cut-lattice if it is generated by a set K of cuts, i.e. if

L = L(K). Call a cut-lattice L(K) uniform if Sym

n

� Aut(L(K)). If K is uniform,

then K

n

\ L(K) is also uniform. Call a cut-sublattice L(K) maximal if L

n

is the only

cut-lattice having L(K) as a proper sublattice. Call a cut-lattice minimal if it has no

proper full-dimensional cut sub-lattices. Call a set of cuts K closed if K

n

\ L(K) = K.

We shall see that PCut(K) is an L-polytope in L(K) for closed K.

Set

K

j;k

n

= f�(S) : jSj = j; kg, for 1 � j < k �

n

2

� 1, and L

j;k

n

= L(K

j;k

n

),

K

mod3

n

= f�(S) : jSj �

n

2

and jSj 6� 1 (mod 3)g, and L

mod3

n

= L(K

mod3

n

),

K

6=i

n

= f�(S) : jSj 6= i; jSj �

n

2

g, and L

6=i

n

= L(K

6=i

n

),

K

k

n

= f�(S) : jSj = kg, and L

k

n

= L(K

k

n

).

K

ev(mod3)

n

= f�(S) 2 K

ev

n

:

jSj

2

� 0; 1 (mod 3) ; jSj �

n

2

g, and L

ev(mod3)

n

= L(K

ev(mod3)

n

).

Any proper generating subset of K (examples, beside K

1;2

n

, will be given in Theorem 8

and following remark) is not closed. Also it seems that L

i;j

n

= L

n

if and only if (ij) = (12).

Examples of closed K are K = K

n

,K

ev

n

,K

odd

n

, K

T

= f�(S) : jS \ T j is even for given

T 2 V g, and K = K

n

\ H, where H is a hyperplane in R

N

, containing 0 (for example,

K = K

1

, K

b

n

2

c

, see Proposition 6 below, or K is a face of the cut cone R

+

(K

n

)).

We need the following

Lemma 3 Assume �(S) =

P

k

h=1

z

h

�(S

h

), where z

h

2 Z, z

h

6= 0, and jSj; jS

h

j �

n

2

. Then

�

jSj+1

2

�

� 0 (mod g.c.d.

1�h�k

�

jS

h

j+1

2

�

).

Proof. Set d =

P

k

h=1

z

h

�(S

h

). De�ne �(d) 2 R

N

by:

�(d)

ii

=

P

h:S

h

3i

z

h

i = 1; :::; n

�(d)

ij

=

1

2

[�(d)

ii

+ �(d)

jj

� d

ij

] 1 � i < j � n:

4



Note that, for d = �(S), �(�(S))

ij

= 1 if i; j 2 S and = 0 otherwise. We have

�(d) =

k

X

h=1

z

h

�(�(S

h

)):

Taking inner product with j

N

of both sides, we get

X

1�i�j�n

�(d)

ij

=

k

X

h=1

z

h

 

jS

h

j+ 1

2

!

:

Hence, taking d = �(S), the result follows. 2

Lemma 3 is used in the proof of Proposition 6 below.

In what follows, we use the following characterization of the lattice L

k

n

, k 6=

n

2

, given

in Proposition 4.3 of [6] (see Proposition 4, below). This characterization was obtained

as an adaptation of a theorem of R.M.Wilson.

For d 2 R

N

, de�ne

d

k

i;n+1

:=

1

n � 2k

(

X

1�j�n;j 6=i

d

ij

�

1

n� k

X

1�r<s�n

d

rs

) for 1 � i � n: (7)

Proposition 4 [6] Given d 2 Z

N

, then d 2 L

k

n

, k 6=

n

2

, if and only if

(i)

P

1�i<j�n

d

ij

� 0 (mod k(n� k)),

(ii) d

k

i;n+1

2 Z for all 1 � i � n,

(iii) d

k

i;n+1

+ d

k

j;n+1

+ d

ij

� 0 (mod 2) for all 1 � i < j � n. 2

The characterization of L

k

n

, given in Proposition 4 implies, for example, that

n+1

4

L

1

n

�

L

n�1

2

n

,

n

2

�1

8

L

n

� L

n�1

2

n

for n � 1 (mod 4).

Proposition 5 Given d 2 Z

N

, then

a) d 2 L

n

2

n

, n is even, if and only if

(i)

P

1�i<j�n

d

ij

� 0 (mod

n

2

4

),

(ii)

P

1�i<j�n

d

ij

=

n

2

P

n

q=1

d

pq

for any p, 1 � p � n.

b) d 2 L

n�1

2

n

, n is odd, if and only if

P

1�i<j�n

d

ij

� 0 (mod

n

2

�1

4

).

Proof. The conditions (i) and (ii) of a) are clearly necessary for membership in L

n

2

n

.

Conversely, suppose that d satis�es both the conditions, and let d

0

denote its projection

on the set V � fng. From (ii), we obtain

X

1�r<s�n�1

d

0

rs

= (

n

2

� 1)

X

1�q�n�1

d

qn

: (8)

This implies that

P

1�r<s�n�1

d

0

rs

� 0 (mod

n(n�2)

4

), since

P

1�i�n�1

d

in

� 0 (mod

n

2

)

by (i) and (ii). Using Proposition 4, we deduce that d

0

2 L

n

2

n�1

. Hence

d

0

=

P

S�V �fng;jSj=

n

2

�

S

�(S) with �

S

2 Z for all S.

5



We show that d =

P

S

�

S

�(S). As

P

1�r<s�n�1

d

0

rs

=

n(n�2)

4

P

S

�

S

, (8) yields:

P

1�i�n�1

d

in

=

n

2

P

S

�

S

. Hence

P

1�r<s�n

d

rs

=

P

1�r<s�n�1

d

0

rs

+

P

1�i�n�1

d

in

=

n

2

4

P

S

�

S

and by (i)

P

1�j�n

d

ij

=

n

2

P

S

�

S

for each i 2 V .

We compute, for instance, d

1n

. The above relations for i = 1 yield: d

1n

=

n

2

P

S

�

S

�

P

2�j�n�1

d

1j

. Using the value of d

1j

= d

0

1j

given by the decomposition of d

0

, we obtain

that d

1n

=

P

S:12S

�

S

. This shows that d =

P

S

�

S

�(S), i.e. that d 2 L

n

2

n

.

It is not di�cult to verify that b) is implied by Proposition 4, which can be applied,

since

n�1

2

<

n

2

. 2

Proposition 6 (i) L

mod3

n

� L

n

strictly.

(ii) L

j;j+1

n

= L

n

if and only if j = 1.

(iii) L

ev(mod3)

n

� L

ev

n

strictly.

In particular, L

4

n

� L

ev

n

= L

2;4

n

for n = 8; 10.

(iv) K

k

n

is closed if k(n� k) does not divide i(n� i) for all i 6= k, 1 � i � b

n

2

c.

In particular, K

k

n

is closed if b

n(2�

p

2)

4

c < k � b

n

2

c.

(v) K

1

n

is closed.

Proof. (i) We check that no cut �(i) belongs to L

mod3

n

. Else, �(i) =

P

S;jSj6�1(mod3)

z

S

�(S),

from which we deduce that g.c.d.

�

jSj+1

2

�

= 1 for jSj 6� 1 (mod 3). But

�

jSj+1

2

�

=

1

2

jSj(jSj+

1) � 0 (mod 3) if jSj � 0; 2 (mod 3).

(ii) If j � 2, no cut �(i) belongs to L

j;j+1

n

, since g.c.d.(

�

j+1

2

�

;

�

j+2

2

�

) 6= 1.

If j = 1, the equality (4) shows that L

n

= L

1;2

n

.

(iii) Since

�

jSj+1

2

�

is divided by 3 if and only if

jSj

2

� 0; 1 (mod 3), we conclude, that

�(S) with

jSj

2

� 2 (mod 3) does not belong to L

ev(mod3)

n

.

(iv) We use (i) of Proposition 4. Therefore, if cut �(S) 2 L

k

n

with jSj = i, then k(n�k)

divides i(n� i), since

P

1�i<j�n

�(S) = i(n� i).

(v) Any point d 2 L

1

n

satis�es the following condition

d

ij

� d

jk

+ d

kl

� d

li

= 0 for all distinct i; j; k; l 2 V; (9)

since this condition holds for all �(i) 2 K

1

n

, generating L

1

n

. Take any �(S) with jSj 6=

1; n � 1. Then we can �nd distinct i; j; k; l 2 V such that i; j 2 S and k; l 62 S. Since (9)

is violated by this �(S), we conclude that �(S) 62 L

1

n

. This implies that L

1

n

is closed. 2

We group in Theorems 7, 8 below some interesting facts on uniform cut-lattices.

Theorem 7 (i) (

�

n�3

k�2

�

�

�

n�3

k�3

�

)�(i) 2 L

k�1;k

n

if n � 0 (mod k) and so (n� 4)L

n

� L

2;3

n

if

n � 0 (mod 3).

(ii) (n� 2)L

n

� L

2;3

n

and, for even n,

n�2

2

L

n

� L

2;3

n

.

(iii) (�(i)� �(j)) 2 L

k�1;k

n

, (k � 2)L

k

n

� L

1;k�1

n

.

(iv) (�(S)� �(S

0

)) 2 L

k

n

with jSj = jS

0

j = l if and only if

n�2l

n�2k

is an odd integer.

Proof. (i) Recall that j

N

is all ones N -vector. The following identity is true

(

 

n� 3

k � 2

!

�

 

n� 3

k � 3

!

)�(i) + 2

 

n � 3

k � 3

!

j

N

=

X

S:S3i;jSj=k�1

�(S):

6



If n � 0 (mod k), then we can partition V into

n

k

disjoint k-sets A

j

, 1 � j �

n

k

. Then

�2j

N

=

P

n

k

j=1

[(k � 2)�(A

j

)�

P

t2A

j

�(A

j

� ftg)].

(ii) is implied by the equalities (10) and (11) in the proof of Theorem 8 below.

(iii) For any k-subset S of V , we have

(k � 2)�(S) =

X

t2S

(�(S � ftg)� �(t)):

Subtracting the equalities for S = T [ fjg and S = T [ fig, we obtain

�(i)� �(j) = (k� 2)(�(T [ fjg)� �(T [ fig)) +

X

t2T

(�(T [ fig� ftg)� �(T [ fjg� ftg)):

The equality implies (iii).

(iv) We use Proposition 4. Let d = �(S)��(T ). It is not di�cult to verify the following

identities.

X

1�j�n

d

ij

= �(jSj � jT j) for i 2 V � (S�T );

X

1�j�n

d

ij

= �(n� jSj � jT j) for i 2 S�T; and

X

1�i<j�n

d

ij

= (jSj � jT j)(n� jSj � jT j):

Suppose that jSj = jT j = l. Then

P

1�i<j�n

d

ij

= 0, and substituting the above expres-

sions into (7) we obtain

d

k

i;n+1

=

8

>

<

>

:

n�2l

n�2k

for i 2 S � T;

�

n�2l

n�2k

for i 2 T � S;

0 for i 2 V � (S�T ):

Besides, for any integer k, 1 � k <

n

2

, and integers i; j with 1 � i < j � n, we have

1

2

(d

k

i;n+1

+ d

k

j;n+1

� d

ij

) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

n�2l

n�2k

for i; j 2 S � T;

�

n�2l

n�2k

fori; j 2 T � S;

1

2

(

n�2l

n�2k

+ 1) for i 2 S \ T; j 2 S or vice versa;

�

1

2

(

n�2l

n�2k

+ 1) for i 2 S \ T; j 2 T or vice versa;

1

2

(

n�2l

n�2k

� 1) for i 2 S; j 2 V � (S [ T ) or vice versa;

�

1

2

(

n�2l

n�2k

� 1) for i 2 T; j 2 V � (S [ T ) or vice versa:

We see that the conditions (i){(iii) of Proposition 4 are satis�ed if and only if

n�2l

n�2k

is an

odd integer. 2

Any cut-lattice containing L

n�1

2

n

is uniform, because the condition (iv) of Theorem 7

holds for any l if n is odd and k =

n�1

2

. It implies that L

6=i

n

is maximal for odd n, i 6=

n�1

2

.

Denote

t

n

:= minft 2 Z

+

: tL

n

� L

6=1

n

g:

7



Theorem 8 For n � 5, we have:

(i) if n � 2 = p

s

, s is an integer, then t

n

2 f1; pg, and t

n

= 3; 2; 5 for n = 5; 6; 7,

respectively.

(ii) if n� 2 6= p

s

, then t

n

= 1, i.e. L

6=1

n

= L

n

.

Proof. We supposed that n � 5 since L

6=1

3

= ;, and L

6=1

4

= L

2

4

has dimension 3, i.e. it is

not full dimensional, since dimension of L

4

is 6.

Clearly, the lattice L

6=1

n

contains elements

z

i

=

X

S�V�f1g;jSj=i

�(S) for any i ; 2 � i � n� 2:

We want to recognize when �(1) is represented as sum of �(S) 2 L

6=1

n

. It is not di�cult

to verify that the following identity is true

z

i

=

 

n� 2

i� 1

!

�(1) + 2

 

n� 3

i� 1

!

(j

N

� �(1)):

Hence we have

 

n� 2

i� 1

!

�(1) = iz

i+1

� (n� 2 � i)z

i

: (10)

Moreover, for n � 2 (mod i), setting f

i

=

(

n�2

i�1

)

i

, the above equality implies

f

i

�(1) = z

i+1

� (

n� 2

i

� 1)z

i

(11)

with integer coe�cients. Hence f

i

�(1) 2 L

6=1

n

. We want to �nd g.c.d of numbers f

i

.

If n � 2 (mod i), and n 6� 2 (mod i

2

), then f

i

=

n�2

i

Q

i�2

j=1

n�2�j

i�j

is an integer and it is

not divided by i, because 1 � j < i implies (n� 2) � j 6� 0 (mod i).

By its de�nition, t

n

divides any integer m such that m�(1) 2 L

6=1

n

.

Let us prove (ii) at �rst. Suppose that n � 2 = p

s

1

1

� � � p

s

r

r

is the prime decomposition

of n � 2. Apply equality(11), in turn, for i = p

s

1

1

; � � � ; i = p

s

r

r

. Then 1 is only common

divisor of r numbers f

i

, proving (ii).

If n� 2 = p

s

, s � 2, then apply (10) for i = 2 and (11) for i = p

s�1

. Then 1 and p are

only possible common divisors of n� 2 = p

s

and f

i

. Finally, t

n

6= 1 for n = 5; 6; 7 because

L

6=1

n

= L

mod3

n

for these n, and we can apply Proposition 6(i). 2

Remark. The proof of Theorem 8(ii) above gives, actually, K

1

� L(K

a;a+1

n

[ K

b;b+1

n

)

if n� 2 has two divisors a; b > 1 such that a

2

; b

2

do not divide n� 2 and g.c.d.(a; b) = 1.

Such a; b exist if and only if n 6= 2 + p

s

. For example, L

n

= L(K

2;3

n

[ K

b;b+1

n

) if n is even

and n 6= 2 + 2

s

, for any odd divisor b of n� 2. In particular, L

4t

= L(K

2;3

4t

[ K

2t�1;2t

4t

) for

t � 2, and L

n

= L(K

2;3

n

[ K

3;4

n

) for n = 2 + 6m with m � 1; 5 (mod 6) (i.e. m 6� 0 (mod

2,3)).

By the same way as in Theorem 8(ii), one can check that K

2

n

� L(K

a;a+1

n

[ K

b;b+1

n

) if

n � 3 has two divisors a; b > 2 such that g.c.d.(a; b) = 1 and a

2

; b

2

do not divide n � 3.

Hence, for n�2; n�3 6= p

s

; 2p

s

(for n � 50 all such numbers are 23,38,42 and 47), the set

K

a;a+1

n

[K

b;b+1

n

contains cut bases of L

n

, which are disjoint with K

1;2

n

. For example, since

8



23� 2 = 3 � 7 and 23� 3 = 4 � 5, we have K

1

23

� L(K

3;4

23

[ K

7;8

23

) and K

2

23

� L(K

4;5

23

[K

5;6

23

).

Similarly, since 38 � 2 = 4 � 9 and 38 � 3 = 5 � 7, we obtain K

1

38

� L(K

4;5

38

[ K

9;10

38

), and

K

2

38

� L(K

5;6

38

[ K

7;8

38

). But L

6=2

6

= L

odd

6

, as well as L

6=1

6

, are proper sub-lattices of L

6

, for

example.

We can generalize the assertion of Theorem 8 as follows. Set S

m

:= fn�m+2; : : : ; ng.

For any m; (d

n

2

e � m � n) and i 6= m� 1; n �m+ 1, (1 � i � m� 1), de�ne

z

m;i

:=

X

S�S

m

;jSj=i

�(S):

The following identity is true

z

m;i

=

 

m� 2

i� 1

!

�(S

m

) + 2

 

m� 3

i� 1

!

j

(m)

N

;

where j

(m)

N

(k; l) = 1 if n�m+ 2 � k < l � n and j

(m)

N

(k; l) = 0, otherwise.

For 1 � i < k � m�1, let g(i; k;m) =g.c.d.(

�

k�1

k�i

�

;

�

m�i�2

k�i

�

). Using the above identity,

we obtain

�

k�1

k�i

�

g(i; k;m)

z

m;k

�

�

m�i�2

k�i

�

g(i; k;m)

z

m;i

= f

i;k

�(S

m

);

where f

i;k

=

(

m�2

i�1

)(

m�i�2

k�i�1

)

g(i;k;m)

. If m = n and k = i + 1, then f

i;i+1

= f

i

, g(i; k;m) = i,

S

m

= V � f1g, and the identity coincides with (11).

Let i+1 < k < 2(i+1) and m� 2 is divided by i, but not by i

2

. Then

�

m�2

i�1

��

m�i�2

k�i�1

�

is divided by i

2

, but not by i

3

. In fact,

�

m�2

i�1

��

m�i�2

k�i�1

�

i

2

= (

m� 2

i

)(

m� 2� i

i

)

i�2

Y

j=1

m� 2� j

i� j

k�i�2

Y

j=1

m� 2� i� j

k � i� j

:

Note that

m�2�j

i�j

is not divided by i, since 1 � j < i, and

m�2�i�j

k�i�j

is not divided by i,

since 1 � j < k � i� 2 < i.

If g.c.d.(f

i;k

; f

r;s

) = 1 for some 4-subset fi; k; r; sg of f1; : : : ;m � 2g � fn � m + 1g,

then

K

n�m+1

n

� L(K

i

n

[ K

k

n

[ K

r

n

[ K

s

n

):

Corollary 9 For all n � 5 (except, possibly, n = 2+p

s

with p > 2), we have 2Z

N

� L

6=1

n

.

Proof. In fact, for n 6= 2 + p

s

, L

6=1

n

= L

n

. For n = 2 + 2

s

, (i) of Theorem 8 implies

that 2�(1) (and so, by uniformity of L

6=1

n

, all 2�(j)) belongs to L

6=1

n

. By Theorem 7(i),

�(i)� �(j) 2 L

k�1;k

n

, for k =

n

2

, say. Hence the equality

2e

ij

= �(i) + �(j)� �(ij) = �(i)� �(j) + 2�(j)� �(ij)

shows that 2Z

N

� L

6=1

n

. 2

Some explicit decompositions for �(1) are as follows:

(10) with i = 2:

9



(n� 2)�(1) = 2z

3

� (n� 4)z

2

for n� 2 prime, including n = 5; 7; 9; 13; 15; � � �

(11) with i = 2:

n� 2

2

�(1) = z

3

�

n� 4

2

z

2

for n = 6; 12; � � �

�(1) = �z

4

+ 3z

3

� 4z

2

for n = 8; 3�(1) = z

4

� 4z

3

+ 7z

2

for n = 11;

2�(1) = z

5

� 7z

3

+ 16z

2

for n = 10; 2�(1) = �z

4

+ 7z

3

� 20z

2

for n = 14:

3.1 Cut-sub-lattices of L

n

for small n

For n � 4, the lattice L

n

has no proper full dimensional cut-sub-lattices, i.e. it is minimal.

For n = 5, L

2

5

is the unique full dimensional cut-sublattice of L

5

. From Theorem 8(i),

we have 3L

5

� L

2

5

.

Recall that the lattice L

6

has dimension 15. All full-dimensional proper uniform cut-

sub-lattices of L

6

are the lattices

L

ev

6

= L

2

6

; L

odd

6

= L

1;3

6

; and L

6=1

6

= L

(mod3)

6

= L

2;3

6

:

In fact, L

1;2

6

= L

6

, and dimL

1

6

= 6, dimL

3

6

= 10. We know that 2Z

N

� L

n

. For what

minimal t 2 Z

+

and cut-sub-lattices L 2 L

6

the inclusion 2tZ

15

� L is true?

The characterization of L

ev

n

, given in [5], implies that t = 4 for L

2

6

. Similarly, the

characterization of L

1;3

6

, given in [8], implies that t = 6 for L

1;3

6

.

The representation (strangely asymmetric) of 2e

ij

, given below, illustrates explicitly

the fact, proved in Theorem 8, that t = 1 for L = L

2;3

6

). Let V = fijkpqrg. Then

2e

ij

= 2�(ijk)+�(ikp)��(iqr)+�(jp)+�(iq)+�(ir)�(�(ij)+�(ik)+�(pq)+�(pr)+�(qr)):

Proposition 6 implies that L

6=1

n

is maximal proper cut-sublattice of L

n

for n = 5; 6; 7. For

example, adding a cut �(i) to L

2;3

6

, will give L

6

, because

�(j) = �(i) + (�(ikp)� �(jkp)) + (�(jp)� �(ip)) + (�(jk)� �(ik)):

Using that

P

2�i<j<k�6

�(ijk) = 3

P

1�i�6

�(i) is the unique linear dependency on the set

K

1;3

6

, one can see that L

1;3

6

has exactly 6 proper full-dimensional cut-sub-lattices (obtained

by removing a cut �(i), 1 � i � 6.)

Remark. It is clear that Z

+

(K

n

) is the set of all integer-valued semi-metrics on V ,

which are embeddable isometrically into a hypercube f0; 1g

m

. Clearly also, L

n

= fa� b :

a; b 2 Z

+

(K

n

)g.

Denote by M

n

the set fa � b : a; b are any integer-valued semi-metrics on n pointsg.

Using description of all extreme rays of the cone of all semi-metrics on 6 and 7 points,

one can check that M

n

= L

n

for n � 6 and M

n

= Z

N

for n � 7.

Remark. Consider the covariance map �

1

: R

N

! R

N

, de�ned by

�

1

(d)

ii

= d

1i

for 2 � i � n;

�

1

(d)

ij

=

1

2

(d

1i

+ d

1j

� d

ij

) for 2 � i < j � n:
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This linear map of R

N

into itself is important, because the boolean quadric cone

�

1

(R

+

(K

n

)) = R

+

(�

1

(K

n

)) and boolean quadric polytope conv�

1

(K

n

)) have many

applications (combinatorial optimization, quantum mechanics etc.). But the lattice

L(�

1

(K

n

)) is nothing but Z

N

, because e

ii

= �

1

(�(i)), e

ij

= �

1

(�(i) + �(j) � �(ij)) for

2 � i < j � n. Hence conv�

1

(K

n

) is not an L-polytope in L(�

1

(K

n

)).

The map �(d), given in the proof of Lemma 3, is just �

1

(

~

d), where

~

d = (

~

d

ij

: 1 � i <

j � n + 1),

~

d

1j

= d

1;j�1

for 2 � j � n+ 1,

~

d

ij

= d

i�1;j�1

for 2 � i < j � n+ 1.

Compare, �nally, evident �

1

(�(S))�

1

(�(T )) = �

1

(�(S�T )) with �(S)�(T ) =

1

2

(�

2

(S)+

�

2

(T )� �

2

(S�T )) given in Introduction.

4 L-polytopes of the lattice L

n

Since �(S) is a (0,1)-vector, it is a vertex of the N -dimensional cube Q

N

. Let S

N

be the

sphere circumscribing the cube Q

N

. The squared diameter of S

N

is equal to N . Hence

the squared radius of S

N

is equal to

N

4

.

Clearly PCut

n

� Q

N

. Take the center of S

N

as the new origin. Let j

N

be the all-one

vector of dimension N . Then each cut vector takes the form �(S) �

1

2

j

N

and has �

1

2

coordinates. Norm of all the vectors is equal to

N

4

.

An L-polytope of a lattice is the convex hull of all lattice points lying on an empty

sphere of the lattice, and the lattice points on the empty sphere have full rank. A sphere

is called empty if there is no lattice point strictly inside it. An L-polytope P is called

basic if the set of its vertices contains an a�ne basis of the lattice a�nely generated

by vertices of P . An L-polytope P is called symmetric or asymmetric according to

whether the set of vectors, representing the vertices of P when the center of P is origin,

is symmetric or asymmetric, respectively.

Proposition 10 The cut polytope PCut

n

is a basic asymmetric L-polytope of the lattice

L

n

.

Proof. By de�nition, PCut

n

generates the lattice L

n

. Hence it is su�cient to prove, that

the sphere S

N

, circumscribing PCut

n

is empty. All integral points inside S

N

are vertices

of Q

N

. The vertices lies on the sphere. Besides, by Proposition 1(ii), all (0,1)-vertices of

L

n

are cut vectors. The expression (5) shows that PCut

n

is basic. It is easy to see that

the polytope is asymmetric. 2

Let x be the center of an L-polytope P of L

n

, whose set of vertices V (P ) contains the

origin 0 = �(;). Then, for all lattice points d 2 L

n

we have

(d� x)

2

� r

2

;

with equality for d 2 V (P ). Here r is the radius of the sphere circumscribing P . Since

0 2 V (P ), we have r

2

= x

2

, and the above inequality takes the form

2dx � d

2

; for all d 2 L

n

: (12)

We say that x is of full rank if the system of inequalities (12) satis�ed by x as

equalities uniquely determines x. Clearly, x of full rank is the center of an L-polytope

P (x) of the lattice L

n

.
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Proposition 11 Let x 2 R

N

satis�es (12) for d = 2e

ij

for all (ij) 2 V

2

, and for d = �(S)

for all S � V . Then

(i) jx

ij

j � 1 for all (ij) 2 V

2

,

(ii) x

ij

= 1 if 2e

ij

satis�es (12) as equality,

(iii) if x � 0, then x satis�es (12) for all d 2 L

n

.

Proof. (i) is implied by the inequality (12) for d = �2e

ij

2 L

n

.

(ii) If d = 2e

ij

satis�es (12) as equality, then the equality takes the form x

ij

= 1.

(iii) If d 2 L

n

, then, according to (3), d = 2a + �(S) for a 2 Z

N

and S � V .

Recall that (12) is equivalent to (d � x)

2

� x

2

. Set y = �(S) � x. Since x � 0 and

x

ij

� 1, jy

ij

j � 1 for all (ij). We have (d � x)

2

= (2a + y)

2

= 4a(a + y) + y

2

. But

a(a+ y) =

P

(ij):a

ij

6=0

ja

ij

jja

ij

+ y

ij

j � 0. Hence (d � x)

2

� y

2

= (�(S)� x)

2

� x

2

. 2

Corollary 12 Let x = �(E) +

"

2

�(T ), where " = 0 or 1, and E � V

2

be such a set that

2jE \D(S)j+ "jD(T ) \D(S)j � jSj(n� jSj) for all S � V: (13)

If x is of full rank, then x is the center of a symmetric L-polytope P (x) of the lattice L

n

with the set of vertices

V (P (x)) = f2�(A

+

) + d(S;A

�

) : A

+

� E �D(S); A

�

� D(S)� (E [D(T ))g;

where S satis�es (13) as equality. In particular, 2�(E) 2 V (P (x)) and �(T ) 2 V (P (x))

if " = 1.

Proof. We have to verify that x satis�es all inequalities (12). The inequality (13) implies

that x satis�es (12) with d = �(S) for all S � V . Since (13) is satis�ed for S = T ,

we have E \ D(T ) = ;. Hence x satis�es (12) for d = 2e

ij

for all pairs (ij). Now, by

Proposition 11(iii), x satis�es (12) for all d 2 L

n

.

Let d = 2a + �(S). In the proof of Proposition 11(iii) we see that

(d � x)

2

= (2a+ �(S)� x)

2

= 4a(a+ �(S)� x) + (�(S)� x)

2

� (�(S)� x)

2

� x

2

;

and a(a + �(S) � x) � 0. Hence d 2 V (P (x)) if and only if �(S) 2 V (P (x)) and

a(a+ �(S) � �(E)�

"

2

�(T )) = 0. The last equality can hold if and only if the supports

of the vectors a and a + �(S) � �(E) �

"

2

�(T ) do not intersect. Hence ja

ij

j � 1 (i.e.

a = �(A

+

) � �(A

�

)) and A

+

� E � D(S), A

�

� D(S) � (E [ D(T )). Note that

�(S) 2 V (P (x)) if and only if S satis�es (13) as equality. It is easy to verify that

�(T ) 2 V (P (x)). This implies that 2�(E) 2 V (P (x)).

Recall that an L-polytope P of a lattice L with the vertex set V (P ), containing origin

0, is symmetric if and only if the antipode of 0 in the sphere circumscribing P is a vertex

of P , too. Clearly, the point 2x is the antipode of 0 for P (x). Hence P (x) is symmetric

if and only if 2x 2 L

n

. In our case 2x = 2�(E) + "�(T ) 2 L

n

. 2

Now we describe L-polytopes of L

n

, which are contiguous to the cut L-polytope. The

type of the new polytopes depends on the facet by that it is contiguous to PCut

n

.

Denote by P

n

(F ) the L-polytope which is adjacent to PCut

n

by a facet F . Let

Q be the support of the facet F , i.e. the coe�cients of the inequality de�ning F are

12



nonzero only for (ij) such that i; j 2 Q. Let S(F ) be the set of all S � Q such that

�(S) belongs to the facet F . We suppose that ; 2 S(F ). Note that Q � S 2 S(F ) for

S 2 S(F ). Then the cut �(T ) belong to the facet F if and only if T 2 T (F ), where

T (F ) = fS [ T

0

: S 2 S(F ) and T

0

� V �Qg.

Let x be the center of P

n

(F ). Then the inequality (12) holds as equality for �(T ) for

all T 2 T (F ), i.e.

�(T )x =

1

2

�

2

(T ); T 2 T (F ): (14)

Since F is a facet, rank of the matrix (�

ij

(T ) : (ij) 2 V

2

; T 2 T (F )) of order jT (F )j �N

is equal to N � 1. Hence the equation (14) determines all coordinates x

ij

of the vector

x up to a parameter t. The value of t is uniquely determined by a vertex of P

n

(F ) not

belonging to PCut

n

.

Proposition 13 The system of equations (14) is equivalent to the following system

x

ij

=

1

2

for i; j 2 V �Q

P

i2S

x

ip

=

jSj

2

for p 2 V �Q, S 2 S(F )

P

(ij)2(S;Q�S)

x

ij

=

1

2

jSj(jQj � jSj) for S 2 S(F ):

Proof. Note that �(T ) 2 T (F ) for all T � V � Q, since ; 2 S(F ). Consider equation

(14) for T = fig; fjg and fijg, i; j 2 V �Q. Using the equality (2), we obtain

2x

ij

= (�(i) + �(j)� �(ij))x =

1

2

((n� 1) + (n� 1) � 2(n� 2)) = 1;

i.e. the �rst system of equations.

Now consider equation (14) for T = S and T = S[fpg, where S 2 S(F ) and p 2 V �Q.

Let jSj = s. Then �

2

(S) = s(n� s) and �

2

(S [ fpg) = (s+ 1)(n� s� 1). We have

�(S)x =

X

(ij)2D(S)

x

ij

=

1

2

s(n� s); (15)

�(S [ fpg) =

X

(ij)2D(S)

x

ij

�

X

i2S

x

ip

+

X

j2V�(S[fpg)

x

jp

=

1

2

(s+ 1)(n � s� 1):

Substituting the �rst equality in the second, and using the equality x

jp

=

1

2

for j 2

V � (Q [ fpg), we obtain the second system of equations.

We can rewrite the equation (15) as follows

X

(ij)2(S;Q�S)

x

ij

+

X

i2S;p2V�Q

x

ip

=

1

2

[s(q � s) + s(n� q)];

where q = jQj. Using the second system of equations, we obtain the third system. 2

Now, as an example, we consider a pure (2k+1)-gonal facet F = F

k

, k 2 Z

+

, 1 � k <

n

2

, de�ned by the equation

P

1�i<j�q

b

i

b

j

d

ij

= 0. Here Q = Q

+

[ Q

�

, jQj = q = 2k + 1,

jQ

+

j = k + 1, jQ

�

j = k, and b

i

= 1 for i 2 Q

+

, b

i

= �1 for i 2 Q

�

. Besides,

S(F

k

) = fS

+

[ S

�

; Q� (S

+

[ S

�

) : S

+

� Q

+

; S

�

� Q

�

; jS

+

j = jS

�

j = s; 0 � s � kg:

13



The second system of equations of Proposition 13 implies x

ip

=

1

2

for all i 2 Q, p 2 V �Q.

Using the symmetry of third system under permutations in Q

+

and Q

�

, we can suppose

that

x

ij

= x for all i; j 2 Q

+

; x

ij

= y for all i; j 2 Q

�

; x

ij

= z for all i 2 Q

+

; j 2 Q

�

:

Then the third system takes the form

s(k � s+ 1)x+ s(k � s)y + s(2(k � s) + 1)z = s(2(k � s) + 1); 0 � s � k:

The solution of the system is x = y = t and z = 1� t, where t is a parameter.

Denote P

n

(k) := P

n

(F

k

). Suppose that 2e

ij

2 V (P

n

(k)) for some (ij) 2 V

2

. Then,

according to Proposition 11(ii), x

ij

= 1. Hence i; j 2 Q.

The case i 2 Q

+

; j 2 Q

�

is impossible. In fact, then z = 1, x = y = 0 and for i 2 Q

�

,

we have 2�(i)x = 2(k + 1) + (n� q) > �

2

(i) = 2k + (n� q). This contradicts to (12).

Let i; j 2 Q

+

. Then x = y = 1, z = 0. In this case, x =

P

(ij)2Q

+2
e

ij

+

P

(ij)2Q

�2
e

ij

+

1

2

P

(ij)2V

2

�Q

2
e

ij

. Note that V

2

�Q

2

= D(Q) [ (V �Q)

2

. Hence

2x = 2�(Q

+2

) + 2�(Q

�2

) + �(Q) + �((V �Q)

2

): (16)

Since 0 � x

ij

� 1 for all (ij), Proposition 11(iii) implies that P

n

(k) is an L-polytope,

i.e. the inequality (d � x)

2

� x

2

is valid for all d 2 L

n

.

Proposition 14 The L-polytope P

n

(k), n > 2, is symmetric if and only if n = 2k+1+ "

for " = 0 or 1. For n = 2k + 1 + ", the vertices of the polytope P

n

(k) are

2�(X) + d(T ;Y );

where T = S if " = 0 and T = S and S [ fng if " = 1, and

S = S

+

[ S

�

; S

+

� Q

+

; S

�

� Q

�

; jS

+

j = jS

�

j = s; 0 � s � k;

X � (Q

+2

� (Q

+

� S

+

; S

+

)) [ (Q

�2

� (Q

�

� S

�

; S

�

));

Y � (S

+

; Q

�

� S

�

) [ (S

�

; Q

+

� S

+

):

Proof. Note that (V � Q)

2

6= �(S) for all S if (V � Q)

2

6= ;, and (V � Q)

2

= ; if

jV �Qj � 1. Comparing (3) and (16), we see 2x 2 L

n

if and only if (V �Q)

2

= ;. This

implies that the L-polytope P

n

(k) is symmetric if and only if n = 2k + 1 + ".

Let V = Q[ "fng. In this case �(Q) � �(V �Q) = "�(n) and x = �(E) +

"

2

�(n) with

E = Q

+2

[Q

�2

. We can apply Corollary 12. We obtain that the vertices of P

n

(k) are as

in the assertion of this proposition. 2

Let PCut(K) be convex hulls of all cuts, contained in the lattice L(K).

Since, for K � K

n

, L(K) � L

n

, Proposition 10 implies

Corollary 15 The polytope PCut(K) is an asymmetric (basic?) L-polytope of the lattice

L(K). 2

14



The symmetry group of PCut

n

consists of re
ections r

�(T )

and of transformations gener-

ated by all permutations of the set V . The re
ection r

�(T )

re
ects PCut

n

simultaneously

in all the hyperplanes, which contain the center of PCut

n

and are orthogonal to the

vectors e

ij

for (ij) 2 D(T ).

Since r

�(T )

(�(S)) = �(T�S), for odd T , r

�(T )

transforms PCut(K

ev

n

) and PCut(K

odd

n

)

each into other. Hence PCut(K

ev

n

) and PCut(K

odd

n

) are congruent. Clearly, the symmetry

group of PCut(K

n

) (PCut(K

ev

n

)) is the symmetry group of L

n

(L

ev

n

, respectively).

Remark.

Note that, since PCut

n

is embedded into N-dimensional cube, we can de�ne Hamming

distance d

n

(�(S); �(T )) = k�(S)� �(T )k

l

1

between vertices of PCut

n

. We have d

n

(�(S)�

�(T )) = (�(S)� �(T ))

2

= �

2

(S�T ).

On the other hand, since �(S) = �(V �S), the vertices of PCut

n

relate to bipartitions

of the set V . There is the well known distance-regular graph, the folded cube 2

n

, de�ned

on all bipartitions. Two bipartitions are adjacent if its common re�nement contains a one-

element set, i.e. �(S) is adjacent to �(T ) if jS�T j = 1. The graphic distance d[2

n

](x; y)

and the distance d

n

(x; y) are related as follows (we set e(n) := 2

n

)

d

n

(x; y) = d[2

n

](x; y)(n� d[2

n

](x; y));

i.e. d

n

= d[2

n

](nd[K

e(n�1)

]� d[2

n

]) 2 Z

+

(K

e(n�2)

e(n�1)

):

where K

m

is the complete graph on m vertices.

Similarly, the graph on all even cuts is the halved folded cube

1

2

2

n

. The vertices �(S)

and �(T ) are adjacent in

1

2

2

n

if jS�T j = 2. We have

d

ev

n

= 2d[

1

2

2

n

](nd[K

e(n�2)

]� 2d[

1

2

2

n

] 2 Z

+

(K

e(n�3)

e(n�2)

):

Actually, we have 2

3

=

1

2

2

4

= K

4

,

1

2

2

6

= K

16

, 2

4

= K

4;4

, where K

n;m

is the complete

bipartite graph on n +m vertices. The complement of 2

5

, is the Clebsh graph, i.e. the

halved 5-cube

1

2

H(5). The halved folded cubes

1

2

2

n

for n = 8; 10 have diameter 2, and

therefore they are strongly regular. For small n we have

d

3

= 2d[K

4

]; d

4

= 2d[K

8

] + d[K

4;4

]; d

ev

4

= 4d[K

4

]; d

ev

6

= 6d[K

16

];

d

5

= d[2

5

](2d[K

16

] + d[

1

2

H(5)]) = 2d[K

16

] + 2d[2

5

]:

So d

3

and d

4

belong to the interior of the hypermetric cone Hyp

n

:= fx 2 R

N

:

P

1�i<j�n

b

i

b

j

x

ij

� 0 for all b 2 Z

n

;

P

1�i�n

b

i

= 1g with n = 4. Clearly, PCut

3

and

PCut

ev

4

are regular 3-simplices in L

3

, and L

ev

4

, respectively. One can check that the

minimal face of Hyp

8

, containing d

4

is the 5-face obtained as the intersection of 8 facets

P

1�i<j�n

b

a

i

b

a

j

x

ij

= 0 for each cut a. Namely, b

a

i

= 0 for the index i corresponding to a,

b

a

i

= �1 for 3 other cuts of the same parity and b

a

i

= 1 for 4 remaining cuts. Actually,

d

4

= �(1256)+�(1278)+�(1357)+�(1368)+�(1458)+�(1467), where the numbers 1,2,3,4

correspond to 4 even cuts, and this representation in a 5-simplex seems to be the unique

representation of d

4

in Cut

8

.

15



5 Odd systems, related to the lattice L

n

Denote d(S;X), de�ned in (6), by d(k;X) if S = fkg.

Let

V

n

= fd(k;X) : X � D(k); k 2 V g:

Proposition 16 The set V

n

generates the lattice L

n

.

Proof is implied by the equality

�(S) =

X

k2S

d(k;X

k

);

where X

k

= f(kj) : j 2 S; j < kg. 2

Proposition 17 V

n

is a uniform odd system of norm n� 1 if n is even.

Proof. We have d(i;X)d(j;Y ) = �1 if i 6= j, d(i;X)d(i;Y ) = n� 1 � 2jX�Y j � n � 1

(mod 2). 2

For n even, we can recognize in the odd system V subsystems spanning equiangular

lines. The simplest such a system is K

1

n

= f�(i) : i 2 V g. A maximal set of vectors with

mutual inner products �1 is constructed as follows.

If k 2 V , then jD(k)j = n � 1 is odd. Consider on the set D(k) such a maximal

by inclusion family X

k

of subsets X � D(k) of cardinality jXj =

n

2

� 1, that the inner

product i(X;X

0

) := d(k;X)d(k;X

0

) = �1 for any two subsets X;X

0

of the family. The

conditions i(X;X

0

) = �1 implies that either jX \X

0

j =

n

4

� 1 or jX \X

0

j =

n�2

4

. Since

n is even, we have exactly one of these cases, i.e.

jX \X

0

j =

(

n

4

� 1 and i(X;X

0

) = �1 if n � 0 (mod 4),

n�2

4

and i(X;X

0

) = 1 if n � 2 (mod 4).

Then the set

M

n

= fd(k;X) : X = ; or X 2 X

k

; k 2 V g

spans a set of equiangular lines at angle arccos

1

n�1

. Since d(k; ;) = �(k), K

1

n

�M

n

.

So, we have L

n

= L(V

n

). For even n, denote the sublattice L

0

(V

n

) by L

0

n

. According

to (3),

L

0

n

= fd 2 L

n

: d = 2a+ �(S) where �(S) 2 K

ev

n

g:

Besides, the lattice L

n

has the double even sub-lattices L

ev

n

, 2Z

N

.

There is another double even lattice related to odd cuts:

L

0

(K

odd

n

) = fd : d =

X

�(S)2K

odd

n

z

S

�(S);

X

�(S)2K

odd

n

z

S

= 0; z

S

2 Zg:

Proposition 18 L

ev

n

is isomorphic but not equal to L

0

(K

odd

n

).

Proof. Let d 2 L

0

(K

odd

n

) has a representation d =

P

S

z

S

�(S). Since

P

S

z

S

= 0, d =

P

S

z

S

(�(S) � �(T )) for some odd T . The expression means that the lattice L

0

(K

odd

n

) is

a�nely generated by vertices of the polytope PCut

odd

n

. But this polytope is congruent

to the polytope PCut

ev

n

, which a�nely generate the lattice L

ev

n

. Hence the lattice L

ev

n

=

L(K

ev

n

) is isomorphic (in fact, congruent) to the lattice L(K

odd

n

). Clearly, these lattices

are distinct. 2
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6 Cut polytopes PCut

n

for small n

Consider PCut

n

and corresponding lattices for small n in details.

(1) n=2, N = 1. PCut

2

is a unit segment, PCut

ev

n

and PCut

odd

2

are zero-dimensional

points, ends of the segment. L

2

= L

odd

n

= Z, L

ev

2

= ;.

(2) n=3, N = 3. PCut

3

is the regular tetrahedron �

3

with norms of edges (squared

lengths) 2. The lattice L

3

is the 3-dimensional face-centered lattice A

3

= D

3

. The second

type of the L-polytopes of L

3

is known, and it is described also in Proposition 14. They

are the cross-polytopes P

3

(1) = �

3

(octahedrons) for " = 0 centered at the points e

ij

and

having edges of norm 2.

(3) n=4, N = 6. PCut

4

is the 6-dimensional repartitioning L-polytope with 8 vertices.

It is combinatorially equivalent to the cyclic 6-polytope with 8 vertices. PCut

4

relates to

a pure 7-gonal facet F

3

of the hypermetric cone Hyp

7

of hypermetrics on 7 points.

By Proposition 16, L

4

is generated by the odd system V

4

. The odd system V

4

coincides

with M

4

, which is the maximal closed uniform odd system of norm 3 and dimension 6

with n(M

4

) = 16. This odd system is related to the root system E

7

. It is described in [4].

Table 1 of [4] shows that L

4

=

p

2D

+2

6

, where D

+2

6

is described in [3]. The root lattice D

6

has (up to signs) 30 roots e

i

� e

j

, e

i

+ e

j

, 1 � i < j � 6. If we add 32 vectors of the shape

(�1=2)

6

with even number of minus signs, we obtainD

+

6

. Now take new orthonormal basis

ff

i

: 1 � i � 6g of the space R

6

. Let g =

p

2, then f

1

= (e

1

� e

2

)=g; f

2

= (e

1

+ e

2

)=g; f

3

=

(e

3

� e

4

)=g; f

4

= (e

3

+ e

4

)=g; f

5

= (e

5

� e

6

)=g; f

6

= (e

5

+ e

6

)=g: In this basis the lattice

gD

+

6

takes the form L

4

. We obtain 30 (up to signs) vectors of norm 4, and 32 vectors of

norm 3.

We apply Corollary 12 to V = f1234g, E = f(12); (34)g and " = 0. The only S

satisfying (13) as equality are, up to complement, S = ;; f13g; f14g. It is easy to verify

that x = �(E) = e

12

+ e

34

is of full rank, and the set of vertices of P (x) is the set

D

4

= f2�(X) : X � Eg [ fd(S;X) : X � D(S) � E; and S = (13) or (14)g:

Denote the polytope by P

4

.

If we take the origin in the center of P

4

, then the vertices of P

4

are represented by

vectors

�(e

12

� e

34

); � (e

13

� e

24

); � (e

14

� e

23

):

Now it is easy to see that P

4

is the symmetric 6-dimensional cross-polytope �

6

with edges

of norm 4.

Since all facets of PCut

4

are 0-extensions of triangle facets, the L-polytopes contiguous

to facets of PCut

4

all have the same type P

4

(1) described in Proposition 14. In the case

" = 1, jQ

+

j = 2, jQ

�

j = 1. Let Q

+

= f12g, Q

�

= f3g. Then x = e

12

+

1

2

�(4). The

vertices of P

4

(1) are

�(S) and 2e

12

+ �(f4g)� �(S) for S 2 S(F

1

) = f;; f1g; f2g; f4g; f13g; f23gg:

Since the vectors �(S) for S 2 S(F

1

), S 6= ;, and 2e

12

form the basis of L

4

, P

4

(1) is basic.

If we take origin in the center of P

4

(1), then the vertices of P

4

(1) are represented by

vectors

�

1

2

(2e

12

� (e

14

+ e

24

+ e

34

));�

1

2

(2e

13

� (�e

14

+ e

24

+ e

34

));�

1

2

(2e

23

� (e

14

� e

24

+ e

34

)):
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It is easy to see that the vectors multiplied by 2 have norm 7 and mutual inner products

�1. Hence they span 6 equiangular lines at angle arccos

1

7

.

Let e

0

be a unit vector orthogonal to the space spanned by L

4

. If we add two pairs of

vectors

�

1

2

(2e

0

� (e

14

+ e

24

� e

34

));

we obtain 8 pairs of vectors spanning in 7-dimensional space 8 equiangular lines at angle

arccos

1

7

. The convex hull of all these vectors is, up to the multiple

p

2, the unique (basic)

L-polytope of the lattice E

�

7

(see, for example, [2]). Hence

1

p

2

L

4

= D

+2

6

is a section of the

lattice E

�

7

.

There is the forth L-polytope of the lattice L

4

, a 6-dimensional simplex �. The norms

of its edges are equal to 3 and 4. The 6 edges of norm 3 are adjacent to the same vertex.

The adjacencies between these 4 types of L-polytopes of the lattice L

4

are as follows.

PCut

4

is adjacent only to L-polytopes of the type P

4

(1). A cross-polytope P

4

= �

6

is adjacent to L-polytopes of the types P

4

(1) and �. The simplex � is adjacent to L-

polytopes of the types �

6

and P

4

(1). The polytope P

4

(1) is adjacent to L-polytopes of all

the 4 types.

The norms of vectors x of centers of polytopes PCut

4

, �, P

4

(1) and �

6

are, respectively,

3

2

<

27

16

<

7

4

< 2. So, the deep hole is the cross-polytope �

6

.

We call L-polytopes P and P

0

lattice equivalent if either P

0

= �P or P

0

= P + a

for some lattice vector a. Note that if P is symmetric and 0 2 V (P ), then �P = P � 2x,

where x is the center of P . In this case, 2x 2 V (P ).

For an L-polytope P , we denote

the center of P by x(P ),

the number of vertices of P by v(P ),

the ratio of the volume of P to the volume of a basic simplex by V

r

(P ),

the number of lattice nonequivalent L-polytopes of type P in the star at 0 by N(P ).

Let s(P ) = 1 if P is symmetric, and s(P ) = 2 if P is asymmetric. Then the number

of L-polytopes congruent to P in a star is equal to s(P )v(P )N(P ). Besides we have

P

P

s(P )N(P )V

r

(P ) = N !, where N = dimL

n

The star at 0 2 L

4

and corresponding Voronoi's polytope of L

4

are described by the

following table. All indexes in the table are distinct.

P V

r

(P) s(P) v(P) N(P) x(P)

PCut

4

4 2 8 10

1

2

P

(ij)2V

2
�e

ij

, �e

ij

+

1

2

(�e

ik

� e

jk

)

P

4

(1) 32 1 12 16 �e

ij

+

1

2

(�e

ik

� e

jk

� e

kl

)

�

6

64 1 12 1 �e

ij

� e

kl

� 2 2 7 16 �

3

4

e

ij

� e

kl

+

1

4

(�e

ik

� e

jk

),

3

4

(�e

ij

� e

jk

� e

ki

)

The centers o� all L-polytopes of type P can be obtained from x(P ) by taking i; j; k; l 2

f1; 2; 3; 4g and taking signs + or - in � independently. For example, x(P ) = �e

ij

�e

kl

has

4 distinct patterns of signs and 3 distinct partitions of V = f1; 2; 3; 4g into equal parts.

Hence there are 3.4=12 cross-polytopes �

6

in the star.

Note that there are

P

P

s(P )v(P )N(P ) = 588 L-polytopes in a star, and therefore the

Voronoi's polytope has 588 vertices.
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The Voronoi's polytope P

V

has 60+32=92 facets. The 60 facets of P

V

(0) with center

in 0 2 L

4

are orthogonal to the 60 vectors of norm 4 and 32 facets are orthogonal to 32

vectors of norm 3. Each facet contains the middle point of the corresponding vector. A

facet orthogonal to a vector of norm 4 contains 42 vertices. A facet orthogonal to a vector

of norm 3 contains 56 vertices.

PCut

ev

4

and PCut

odd

4

are 3-dimensional simplexes with edge length 2 (norm 4), span-

ning orthogonal 3-spaces. These simplexes intersect in the center of both, which is the

center of the sphere S

6

circumscribing PCut

4

. The squared distance between vertices of

di�erent simplexes is 3. L

ev

4

=

p

2A

3

, where A

3

is the 3-dimensional root lattice. The

4-dimensional lattice L

odd

4

can be obtained from the root lattice

p

2A

5

as its section by a

hyperplane orthogonal to an arbitrary root and going through the midpoint of the root.

(4) n=5, N = 10. PCut

5

is a 10-dimensional L-polytope.

Note that there are only 2 values of norms of edges of PCut

5

, namely 4 and 6. Hence

if we take origin in the center of PCut

5

, then the vectors

p

2(�(S)�

1

2

j

10

), representing

vertices of

p

2PCut

5

, have norm 5 and inner products �1, i.e. they span equiangular

lines at angle arccos

1

5

.

The graph on the vertices of PCut

5

with edges of norm 6 is the Clebsh graph, i.e. the

Halved cube

1

2

H(5).

(5) n=6, N = 15. PCut

ev

6

and PCut

odd

6

are 15-dimensional simplexes with squared

length 8. They intersect in the center of PCut

6

. The lattice L

ev

6

is 2A

15

, the root lattice

A

15

multiplied by 2.

The set M

6

contains 30 vectors spanning 30 equiangular lines at angle arccos

1

5

in

15-dimensional space. A maximal set of such lines contains 36 lines.

(6) n=8, N = 28. The 28-dimensional L-polytopes PCut

ev

8

and PCut

odd

8

have only 2

squared Euclidean distances between vertices: 12 and 16. Hence if we take origin in the

common center

1

2

j

28

of these polytopes, then the vectors �(S) �

1

2

j

28

, (say, jSj is even),

have norm 7 and inner products �1, i.e. they span 2

8�2

= 64 equiangular lines at angle

arccos

1

7

. Since 64 is the maximal number of lines at angle arccos

1

7

in 28-dimensional

space, we conclude that this graph on vertices of PCut

ev

8

(or PCut

odd

8

) with edges of

norm 16 is a strongly regular graph of the Pseudo Latin square type with parameters

(64,35,18,20). The complement of the graph is the halved folded 8-cube. The graph (and

its complement) has 2-transitive automorphism group.

The similar set of 64 equiangular lines with the graph with the same parameters of

strongly regular graph as above spans the odd system M

8

. In this case, each family X

k

,

k 2 f1; 2; :::; 8g, is the unique Steiner triple system on 7 points, containing 7 triples. We

don't know whether the graphs are isomorphic.
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