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Abstract

This is a survey on hypercube embeddable semimetrics and the link with designs.

We investigate, in particular, the variety of hypercube embeddings of the equidistant

metric. For some parameters, it is linked with the question of existence of projective

planes or Hadamard matrices. The problem of testing whether a semimetric is hyper-

cube embeddable is NP-hard in general. Several classes of semimetrics are described

for which this problem can be solved in polynomial time. We also consider questions

related to some necessary conditions for hypercube embeddability.

1 Introduction 1

2 Rigidity of the equidistant metric 3

3 Hypercube embeddings of the equidistant metric 9

3.1 Preliminaries on designs 9

3.1.1 (r; �; n)-designs and BIBD's 9

3.1.2 Intersecting systems 11

3.2 Embeddings of 2t11

n

and designs 13

3.3 The minimum h-size of 2t11

n

14

3.4 All hypercube embeddings of 2t11

n

for small n; t 17

4 Recognition of hypercube embeddable metrics 19

4.1 Preliminary results 19

4.2 Generalized bipartite metrics 23

4.3 Metrics with few values 27

4.3.1 Distances with values 2a; b (b odd) 28

4.3.2 Distances with values a; b; a+ b (a,b odd) 29

4.3.3 Distances with values b; 2a; b+ 2a (b odd, b < 2a) 30

4.3.4 Distances with values 2a; b; 2a+ b (b odd, 2a < b) 33

4.4 Metrics with restricted extremal graph 34

5 Cut lattices, quasi h-distances and Hilbert bases 37

5.1 Cut lattices 38

5.2 Quasi h-distances 40

5.3 Hilbert bases of cuts 45

1 Introduction

In this paper, we survey hypercube embeddability of some classes of metrics and, in

particular, the link with designs.
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Let t � 1 be an integer. A very simple metric is the equidistant metric on n points,

denoted by 2t11

n

, which takes the same value 2t on each pair of points. The metric 2t11

n

is obviously hypercube embeddable. Indeed, a hypercube embedding of 2t11

n

is obtained

by labeling the points by disjoint sets, each of cardinality t. It is shown in Section 2 that,

if n � t

2

+ t + 3, then this embedding is essentially the unique hypercube embedding of

2t11

n

. In Section 3, we investigate how various hypercube embeddings of 2t11

n

arise from

designs. We then consider in Section 4 some other classes of metrics for which we are able

to characterize hypercube embeddability. Typically, these metrics have a small range of

values so that one can still take advantage of the knowledge available for their equidistant

submetrics. For instance, one can characterize the hypercube embeddable metrics with

values in the set f1; 2; 3g, or in the set f3; 5; 8g. Moreover, this characterization yields

a polynomial time algorithm for checking hypercube embeddability of such metrics. We

recall that, for general semimetrics, it is NP-complete to check whether a given semimetric

is hypercube embeddable. Several additional results related to the notion of hypercube

embeddability are grouped in Section 5.

We now recall some de�nitions and terminology that we use in this paper. Given a

subset S of V

n

:= f1; : : : ; ng, the cut semimetric �(S) is the vector of R

(

n

2

)

de�ned by

�(S)(i; j) = 1 if jS \ fi; jgj= 1 and �(S)(i; j) = 0 otherwise, for 1 � i < j � n. Then, the

cone in R

(

n

2

)

generated by the cut semimetrics �(S), for S � V

n

, is called the cut cone

and is denoted by CUT

n

.

Let d be a distance on V

n

. Then, d is said to be hypercube embeddable if there

exist vectors u

i

2 f0; 1g

m

(m � 1), for i 2 V

n

, such that

(1.1) d(i; j) =k u

i

� u

j

k

1

(=

X

1�h�m

j(u

i

)

h

� (u

j

)

h

j)

for all i; j 2 V

n

: LetM denote the n�mmatrix whose rows are the vectors u

1

; : : : ; u

n

;M is

called the realization matrix of the embedding u

1

; : : : ; u

n

of d. Any matrix arising as the

realization matrix of some hypercube embedding of d is called an h-realization matrix

of d. Each vector u

i

can be seen as the incidence vector of a subset A

i

of f1; : : : ; mg.

Hence, (1.1) can be rewritten as

(1.2) d(i; j) = jA

i

4A

j

j

for all i; j 2 V

n

. We also say that the sets A

1

; : : : ; A

n

form an h-labeling of d.

Note that, if M is an h-realization matrix of d, we can assume that a row of M is

the zero vector. This amounts to assuming that one of the points is labeled by ; in the

corresponding h-labeling of d.

Let B denote the collection of subsets of V

n

whose incidence vectors are the columns

of M ; B is a multiset, i.e., it may contain several times the same member. Then, (1.1) is

equivalent to

(1.3) d =

X

B2B

�(B):

This shows that a semimetric is hypercube embeddable if and only if it can be decomposed

as a nonnegative integer combination of cut semimetrics. If (1.3) holds, we also say that

P

B2B

�(B) is a Z

+

-realization of d. It will be convenient to use both representations

(1.1) (or 1.2)), and (1.3) for a hypercube embeddable semimetric d; so we shall speak of
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a hypercube embedding (or of an h-labeling of d), and of a Z

+

-realization of d, which

basically amounts to looking either to the rows, or to the columns of the matrix M .

Let d be a hypercube embeddable distance on V

n

. Then, the quantities:

(1.4) s

h

(d) := min(

X

S

�

S

j d =

X

S

�

S

�(S) with �

S

2Z

+

for all S)

(1.5) s

`

1

(d) := min(

X

S

�

S

j d =

X

S

�

S

�(S) with �

S

� 0 for all S)

are called, respectively, the minimum h-size and the minimum `

1

-size of d.

Let M be a h-realization matrix of the hypercube embeddable distance d. Consider

the following operations on the matrix M :

(i) Permute the columns of M .

(ii) Add to (or delete from) M a column with entries all equal to 0, or all equal to 1.

(iii) Add modulo 2 a vector a 2 f0; 1g

m

to all rows of M .

If we apply any of the operations (i); (ii); (iii) to M , we obtain another matrix M

0

which

is still an h-realization matrix of d. However,M

0

yields (via (1.3)) the sameZ

+

-realization

as M (indeed, (i) means permuting the terms in the sum

P

B2B

�(B), (ii) means adding

the vector �(;) = �(V

n

) = 0, and (iii) means replacing the vector �(B) by the same vector

�(V

n

n B)). For this reason, two h-realization matrices are said to be equivalent if they

can be obtained from one another via the operations (i); (ii); or (iii). In the same way,

two hypercube embeddings are equivalent if their realization matrices are equivalent. The

distance d is said to be h-rigid if, up to equivalence, d has a unique hypercube embedding

or, equivalently, if d has a unique Z

+

-realization.

We refer, for instance, to [DL93b] for a survey on `

1

-metrics and hypercube embeddable

metrics and their link with cut polyhedra.

2 Rigidity of the equidistant metric

In this section, we study h-rigidity of the equidistant metric 2t11

n

. As was already men-

tioned, 2t11

n

is hypercube embeddable. Indeed, a hypercube embedding of 2t11

n

is obtained

by labeling the n points by pairwise disjoint sets, each of cardinality t. This embedding is

called the star embedding of 2t11

n

; it corresponds to the following Z

+

-realization:

(2.1) 2t11

n

=

X

1�i�n

t�(fig);

called the star realization of 2t11

n

. The word \star" is used since each cut semimetric

�(fig) takes nonzero values on the pairs (i; j) for j 2 f1; : : : ; ng n fig, which are the edges

of the following graph, commonly called a star in graph theory.

. . . . . .                         . . . . . .

 i

  1     2         i-1  i+1     n-1   n
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It will be useful to have the following matrix notation:

0

p;q

denotes the p� q matrix zero matrix, J

p;q

denotes the p� q matrix of all ones,

C

(i)

p;q

denotes the p� q matrix with 0's in column i and 1's elsewhere, and

R

(i)

p;q

denotes the p� q matrix with 1's in row i and 0's elsewhere.

We may omit the subscripts which indicate the size of the matrix.

For instance, the following matrix (with m

0

; m

1

� 0) is an h-realization matrix of 2t11

n

,

which gives an embedding equivalent to the star embedding.

R

(1)

n;t

R

(2)

n;t

: : : R

(n)

n;t

0

n;m

0

J

n;m

1

For n = 3, the equidistant metric 2t11

3

is h-rigid. This follows from the fact that

the cut cone CUT

3

is a simplex cone (indeed, CUT

3

is generated by the three linearly

independent vectors �(fig) for i = 1; 2; 3). For n = 4, 2t11

4

is not h-rigid. Indeed, besides

the star realization from (2.1), 2t11

4

admits the following Z

+

-realization:

(2.2) 2t11

4

= t(�(f1; 2g)+ �(f1; 3g)+ �(f1; 4g));

211

4

has no other Z

+

-realization. In fact, 2t11

n

is not `

1

-rigid for any n � 4 as, for

instance, 2t11

n

=

t

n�2

P

1�i<j�n

�(fi; jg) is a decomposition of 2t11

n

as a nonnegative sum

of cut semimetrics which is distinct from the decomposition from relation (2.1). But, as

we see below, if n is large with respect to t, then 2t11

n

is h-rigid. We now present the main

results of this section.

Theorem 2.3. [Dez73] If n � t

2

+ t+3, then 2t11

n

is h-rigid, i.e., the only Z

+

-realization

of 2t11

n

is the star realization from (2.1). If there exists a projective plane of order t, then

the metric 2t11

t

2

+t+2

is not h-rigid.

Theorem 2.4. [vL73] Let n = t

2

+ t + 2 with t � 3. If the metric 2t11

n

is not h-rigid,

then there exists a projective plane of order t.

Recall that a (�nite) projective plane of order t, commonly denoted by PG(2; t),

consists of a collection L of subsets, called lines, of a set X of cardinality jX j = t

2

+ t+1,

satisfying:

- each line L 2 L has cardinality t + 1,

- each point of X belongs to t+ 1 lines, and

- any two distinct points of X belong to exactly one common line.

We now give the proofs of Theorems 2.3 and 2.4.

Let M be a binary n � m matrix which is an h-realization matrix of 2t11

n

. Without

loss of generality, we can suppose that the �rst row of M is the zero vector. Then, each

other row of M has 2t units and any two rows (other than the �rst one) have t units in

common. We give some preliminary results on M .

Lemma 2.5. Let r denote the number of units in a column of M . Then, r(n� r) � nt,



Hypercube embeddings and designs 5

implying that min(r; n� r) �

1

2

(n�

p

n

2

� 4nt).

Proof. Let w be a column of M , let r denote the number of 1's in w, and let � denote

the number of columns of M identical to w. Let M

0

denote the n � (m � �) denote the

submatrix obtained from M by deleting these � columns, and let d

0

denote the distance

on n points de�ned by letting d

0

ij

denote the Hamming distance between the i-th and j-th

rows of M

0

. We can suppose that the �rst n� r entries of w are equal to 0 and its last r

entries are equal to 1. Then,

(

d

0

ij

= 2t if 1 � i < j � n � r; or n � r + 1 � i < j � n;

d

0

ij

= 2t� � if 1 � i � n � r < j � n:

Consider the inequality:

X

1�i<j�n�r

r

2

x

ij

+

X

n�r+1�i<j�n

(n� r)

2

x

ij

�

X

1�i�n�r<j�n

r(n� r)x

ij

� 0:

(It is an inequality of negative type; see [DL93b].) It is not di�cult to check that, as d

0

is

hypercube embeddable by construction, d

0

satis�es the above inequality. We deduce from

it that �r(n� r) � nt; which implies

r(n� r) � nt:

From the latter relation follows immediately that

min(r; n� r) �

1

2

(n�

p

n

2

� 4nt):

Lemma 2.6. Suppose that the number r of units in any column of M satis�es

(2.7) min(r; n� r) �

�

n + 2t� 1

t + 1

�

� 1:

Then, M is the realization matrix of a hypercube embedding of 2t11

n

equivalent to the star

embedding.

Proof. Set � =

j

n+2t�1

t+1

k

. By assumption, the number r of units in a column of M

satis�es: r � ��1, or r � n��+1. Let C

1

denote the set of columns ofM whose number

r of units satis�es r � �� 1, and let C

2

denote the set of remaining columns, with at least

n� �+ 1 units. We claim

(2.8) jC

2

j � t;

(2.9) each nonzero row of M has at least t units in the columns of C

2

:

If (2.8) and (2.9) hold, then jC

2

j = t and it is easy to see that M is the realization

matrix of a hypercube embedding equivalent to the star embedding of 2t11

n

. Suppose,

for contradiction, that jC

2

j � t + 1. Let Y denote the (n � 1) � (t + 1) submatrix of M

formed by its last n � 1 rows restricted to these t + 1 columns. Each column of Y has
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at most � � 2 zeros, which implies that the number of zeros in Y is less than or equal to

(t + 1)(� � 2) � n � 3, by de�nition of �. Hence, at least two rows of Y have all their

entries equal to 1, which contradicts the fact that two rows ofM have t units in common.

This shows (2.8). We now show (2.9). Let u denote a row of M , distinct from the �rst

one, and let q denote the number of units of u in the columns of C

2

. Hence, u has 2t� q

units in the columns of C

1

. Let Z denote the (n�2)�2t submatrix ofM consisting of the

rows of M , other than u and the �rst one, restricted to the columns that have a unit in

row u. Each row of Z has t units, which implies that Z has t(n � 2) units. On the other

hand, Z has at most �� 2 units in each of its columns belonging to C

1

, which implies that

the number of units in Z is less than or equal to (2t� q)(�� 2) + q(n� 2). Therefore,

t(n � 2) � (2t� q)(�� 2) + q(n� 2);

which implies

q � t � t

� � 2

n � �

> t � 1;

since t

��2

n��

< 1 by de�nition of �. This shows (2.9).

Proof of Theorem 2.3. Let n � t

2

+ t+ 3. Let M be an h-realization matrix of 2t11

n

,

whose �rst row is equal to zero. We have

1

2

(n�

p

n

2

� 4nt) < t+ 2;

since n � t

2

+ t + 3. Therefore,

min(r; n� r) � t+ 1 �

�

n + 2t� 1

t + 1

�

� 1;

the �rst inequality following from Lemma 2.5 and the second one from the assumption

n � t

2

+ t + 3. Lemma 2.6 implies that M is the realization matrix of a hypercube

embedding of 2t11

n

equivalent to the star embedding. This shows that 2t11

n

is h-rigid.

Let n = t

2

+ t + 2 and suppose that there exists a projective plane of order t. Let L

denote its set of lines and let Z be a set of size t� 1 disjoint from the lines of L. Then, for

L; L

0

2 L, jL[Zj = 2t and j(L[ Z) \ (L

0

[Z)j = t. Therefore, the sets L[ Z, for L 2 L,

together with ;, provide an h-labeling of 2t11

n

. This shows that 2t11

n

is not h-rigid.

Proof of Theorem 2.4. Set n = t

2

+ t+2. Suppose that 2t11

n

is not h-rigid. Let M be

an h-realization matrix of 2t11

n

which gives a hypercube embedding of 2t11

n

which is not

equivalent to the star embedding. We assume that the �rst row of M is the zero vector.

Let r denote the number of units in a column of M . By Lemma 2.5 and since t � 3,

min(r; n� r) �

1

2

(n�

p

n

2

� 4nt) < t + 2;

implying that

min(r; n� r) � t+ 1:
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As b

n+2t�1

t+1

c = t + 1, we deduce from Lemma 2.6 that the number r of units in at least

one of the columns of M satis�es

min(r; n� r) = t+ 1:

The columns ofM can be split into two classes C

I

and C

II

, where C

I

consists of the columns

with r � t + 1, and C

II

of the columns with r � n � t � 1 = t

2

+ 1. We distinguish two

cases, depending whether jC

II

j � t + 1 or jC

II

j � t.

Case A: jC

II

j � t+ 1.

At most one row ofM has all its entries equal to 1 in these t+1 columns of C

II

. Hence, the

number of 1's in these t+1 columns is less than or equal to t+1+ t(n�2) = (t+1)(t

2

+1).

On the other hand, this number is greater or equal to (t+ 1)(t

2

+ 1) by de�nition of C

II

.

Therefore, the number of 1's in these t + 1 columns of C

II

is equal to (t + 1)(t

2

+ 1).

Moreover, one row of M has all its entries equal to 1 in these t + 1 columns of C

II

, while

the other nonzero rows of M have t units in these t + 1 columns, and each of these t + 1

columns has exactly t

2

+ 1 units. Hence, after a suitable permutation, the matrix M has

the following form:

0 : : :0 0 : : : : : : : : : : : : : : :0 0 : : : : : :0

C

(1)

t;t+1

R

(1)

t;t

R

(2)

t;t

: : : R

(t)

t;t

C

(2)

t;t+1

.

.

. M

�

0

t

2

+t;t�1

C

(t+1)

t;t+1

1 : : :1 0 : : : : : : : : : : : : : : :0 1 : : : : : :1

The rows of M

�

satisfy:

- each row of M

�

has t units, one below each of the matrices R

(1)

t;t

; : : : ; R

(t)

t;t

,

- two rows of M

�

that follow C

(i)

t;t+1

and C

(j)

t;t+1

(i 6= j) have one unit in common and two

rows that follow the same C

(i)

t;t+1

have no unit in common.

Hence, M

�

is the incidence matrix of a transversal system T

t

(t; t) (see [MH67], sec-

tion 15.2). The existence of such a transversal system is equivalent to the existence of

an orthogonal array OA(t; t+ 1), which implies the existence of a PG(2; t) ([MH67], sec-

tion 13.2).

Case B: jC

II

j � t

We claim that each nonzero row of M has at least t� 1 units in the columns of C

II

. This

statement is an analogue of relation (2.9) and can be proved in the same way. We now

claim that jC

II

j � t � 1. Suppose, for contradiction, that jC

II

j = t. Then, the matrix M

is of the form:

0 : : :0 0 : : : : : : : : :0 0 : : :0

C

(1)

m

1

;t

C

(2)

m

2

;t

.

.

. M

�

C

(t)

m

t

;t

J

p;t

R

(1)

p;t

: : : R

(p)

p;t

0 : : :0
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for some integers p � 0, 0 � m

1

; : : : ; m

t

� t. Moreover, m

i

6= 0 for some i (else, M would

provide an embedding equivalent to the star embedding). Each row ofM

�

following some

C

(i)

m

i

;t

has one unit above each of the matrices R

(1)

p;t

; : : : ; R

(p)

p;t

. Hence, p � t+1. This implies

that m

1

= : : : = m

t

= t and p = t + 1, since m

1

+ : : : + m

t

+ p = n � 1 = t

2

+ t + 1.

Let us count in two ways the number of units in M which are below the 1's in the

second row of M . As each row has t units in common with second row, this number is

equal to t(n � 2) = t(t

2

+ t). On the other hand, this number is less than or equal to

t

2

(t � 1) + t(t + 1) = t(t

2

+ 1). Hence, t(t

2

+ t) � t(t

2

+ 1), contradicting the fact that

t � 3. This shows that jC

II

j � t� 1. As each nonzero row of M has at least t� 1 units in

the columns of C

II

, we deduce that jC

II

j = t � 1. Hence, the matrix M has the following

form:

0 : : : : : :0 0 : : :0

J

t

2

+t�1;t�1

M

1

The matrix M

1

satis�es:

- each row of M

1

has t + 1 units,

- two rows of M

1

have one unit in common,

- each column of M

1

has at most t+ 1 units, hence exactly t + 1 units. Indeed, we know

that at least one column of M

1

has exactly t + 1 units. From this follows easily that M

1

has t

2

+ t + 1 (nonzero) columns and, therefore, each column of M

1

has t + 1 units.

Hence, M

1

is the incidence matrix of a PG(2; t). This concludes the proof.

The following result is a common extension of Theorems 2.3 and 2.4.

Theorem 2.10. [Hal77] Let n � t

2

� 4. The metric 2t11

n

is not h-rigid if and only if

n � t

2

+ t + 2 and there exists a projective plane of order t.

Another case of h-rigidity of the metric 2t11

n

is given in Corollary 3.19.

Consider, for instance, the case t = 6. By Theorems 2.3 and 2.4, the metric 1211

n

is

h-rigid if n � 44 (as PG(2; 6) does not exist). It is, in fact, h-rigid for all n � 33, as stated

in the next result, which was proved independently in [HJKvL77] and [MV75, VM77].

Proposition 2.11. The equidistant metric 1211

n

is h-rigid for all n � 33.

The h-rigidity result from Theorem 2.3 was extended to the class of metrics of the

form

P

1�i�n

t

i

�(fig) for t

1

; : : : ; t

n

2 Z

+

, the case t

1

= : : : = t

n

= t corresponding to the

case of the equidistant metric 2t11

n

.

Theorem 2.12. ([DEF78], Theorem 7 (i)) Let t

1

; : : : ; t

n

be nonnegative integers. If n is
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large with respect to max(t

1

; : : : ; t

n

), then the metric

P

1�i�n

t

i

�(fig) is h-rigid.

3 Hypercube embeddings of the equidistant metric

We show in this section how to construct various hypercube embeddings of the equidistant

metric 2t11

n

from designs. AZ

+

-realization of 2t11

n

consists of a family B of (not necessarily

distinct) subsets of V

n

such that

X

B2B

�(B) = 2t11

n

:

Given i

0

2 V

n

, we can suppose without loss of generality that i

0

62 B for all B 2 B (re-

placing if necessary B by V

n

nB). Then B is a collection of subsets of V

n�1

satisfying:

- each point of V

n�1

belongs to 2t members of B, and

- any two distinct points of V

n�1

belong to t common members of B.

Such a set family B is known as a (2t; t; n� 1)-design. Therefore, the hypercube embed-

dings of 2t11

n

are nothing but special classes of designs. We review in Section 3.1 some

known results on designs and we state precisely the link with hypercube embeddings of

the equidistant metric in Section 3.2. Results on the minimum h-size of the equidistant

metric are grouped in Section 3.3. We describe all the hypercube embeddings of 2t11

n

for

small n or t in Section 3.4.

Much of the exposition in this section follows from [DL93c].

3.1 Preliminaries on designs

3.1.1 (r; �; n)-designs and BIBD's

Let B be a collection of (not necessarily distinct) subsets of V

n

. The sets B 2 B are called

blocks. Let r; k; � be positive integers. Consider the following properties:

(i) Each point of V

n

belongs to r blocks.

(ii) Any two distinct points of V

n

belong to � common blocks.

(iii) Each block has cardinality k.

Clearly, if (ii); (iii) hold, then (i) holds with

(3.1) r = �

n� 1

k� 1

and the total number b of blocks in B (counting multiplicities) is given by

(3.2) b =

rn

k

= �

n(n� 1)

k(k � 1)

:

The multiset B is called a (r; �; n)-design if (i); (ii) hold with 0 < � < r. B is said to

be trivial if B consists of the folowing blocks: V

n

repeated � times and, for each i 2 V

n

,

the block fig repeated r � � times. In fact, if n is large with respect to r and �, then

every (r; �; n)-design is trivial (this follows, e.g., from the rigidity results of Section 2).

The multiset B is called a (n; k; �)-BIBD if (i); (ii); (iii) hold with � > 0, 1 < k <

n�1. (BIBD stands for balanced incomplete block design.) A (n; k; �)-BIBD is said to be
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symmetric if r = k holds or, equivalently, the number of blocks b is equal to the number

n of points.

Let B be a (n; k; �)-BIBD. Then, the collection

B

�

:= fV

n

nB j B 2 Bg

is a (n; k

0

:= n�k; �

0

:= b�2r+�)-BIBD, called the dual of B. (Note that 1 < k

0

< n�1

and (n� 1)(b� 2r+ �) = (b� r)(n� k � 1), which permits to check that �

0

> 0.) If B is

symmetric, then B

�

too is symmetric. For instance, the dual of PG(2; t) is a symmetric

(t

2

+ t+ 1; t

2

; t

2

� t)-BIBD.

The following result is due to Ryser (see [Rys63], Chapter 8).

Theorem 3.3. Let B be a (r; �; n)-design with b blocks. Then, b � n holds, with equality

if and only if B is a symmetric (n; r; �)-BIBD.

Proof. Let A denote the incidence matrix of B, i.e., A is the n � b matrix with entries

a

i;B

= 1 if i 2 B and a

i;B

= 0 if i 62 B, for i 2 V

n

; B 2 B. Suppose that b < n. Let M

denote the n � n matrix obtained by adding n � b zero columns to A. Then,

MM

T

= �J + (r� �)I;

where J is the all ones matrix and I the identity matrix. One can check that the eigenvalues

of MM

T

are r + (n � 1)� and r � � (with multiplicity n � 1), which shows that M is

nonsingular. This contradicts the fact that M has a zero column. Hence, we have shown

that b � n. Suppose now that b = n. We show that each block of B has cardinality r.

From the above argument, the matrix A is an n � n matrix satisfying

(3.4) AA

T

= �J + (r� �)I; and AJ = rJ:

Hence,

A

�1

J = r

�1

J and AA

T

J = (�n+ r � �)J;

implying

(3.5) A

T

J = (�n+ r� �)r

�1

J; i.e., JA = (�n+ r � �)r

�1

J:

Therefore,

JAJ = (�n+ r � �)r

�1

nJ:

But, JAJ = rnJ from (3.4), which implies

(3.6) r � � = r

2

� �n:

Substituting (3.6) in (3.5), we obtain JA = rJ: This shows that each block of B has size

r. Hence, B is a symmetric (n; r; �)-BIBD.

Clearly, from (3.2), a necessary condition for the existence of a (n; k; �)-BIBD is the

following divisibility condition:

(3.7) k � 1 j �(n� 1) and k(k � 1) j �n(n� 1):
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This condition is, in some cases, already su�cient for the existence of a (n; k; �)-BIBD.

Theorem 3.8. (i) [Wil75] Suppose that (3.7) holds and that n is large with respect to k

and �. Then, there exists a (n; k; �)-BIBD.

(ii) [Han75] For k � 5, a (n; k; �)-BIBD exists whenever (3.7) holds with the single excep-

tion: n = 15; k = 5; � = 2. For k = 6, � � 2, a (n; 6; �)-BIBD exists whenever (3.7) holds

with the single exception: n = 21; � = 2.

(iii) [Mil90] For k = 6; � = 1, a (n; 6; 1)-BIBD exists whenever (3.7) holds with the possible

exception of 95 undecided cases (including n = 46; 51; 61; 81; 141; : : : ; 5391; 5901).

Two important cases of parameters for a symmetric BIBD are:

- the (t

2

+t+1; t+1; 1)-BIBD, which is nothing but the projective plane of order t, denoted

by PG(2; t),

- the (4t� 1; 2t; t)-BIBD, also known as the Hadamard design of order 4t� 1.

Recall that Hadamard designs are in one-to-one correspondance with Hadamard matrices.

Namely, a Hadamard matrix is an n � n �1-matrix A such that AA

T

= nI . Its order n

is equal to 1, 2 or 4t for some t � 1. We can suppose that all entries in the �rst row and

in the �rst column of A are equal to 1. Replace each �1 entry of A by 0 and delete its

�rst row and column. We obtain a (4t � 1)� (4t � 1) binary matrix whose columns are

the incidence vectors of the blocks of a Hadamard design of order 4t� 1.

It is conjectured that Hadamard matrices of order 4t exist for all t � 1. This was proved

for t � 106. (For more information on Hadamard matrices, see, e.g., [GS79, Wal88].)

Remark 3.9. The parameters (k; �) with 3 � k � 15 for which there exists a symmetric

(n; k; �)-BIBD (then, n = 1 +

k(k�1)

�

, by (3.1)) have been completely classi�ed (with the

exception of k = 13; � = 1 corresponding to the question of existence of PG(2; 12)) (see

[BI80]). Besides the parameters corresponding to a projective plane, or to a Hadamard

design, or to a dual of them, a symmetric (n; k; �)-BIBD exists if and only if (n; k; �) is

one of the following list: (16; 6; 2); (37; 9; 2), (25; 9; 3), (16; 10; 6) (which is dual to the case

(16; 6; 2)), (56; 11; 2), (31; 10; 3), (45; 12; 3), (79; 13; 2), (40; 13; 4), (71; 15; 3) and (36; 15; 6).

A useful notion is that of extension of a design. Let B be a collection of subsets of

V

n

and let i

0

62 V

n

. Given an integer s, the s-extension of B is the collection B

0

whose

blocks are the blocks of B together with the block fi

0

g repeated s times.

3.1.2 Intersecting systems

Let A be a collection of subsets of a �nite set and let r; � be positive integers. Then, A

is called a (r; �)-intersecting system if jAj = r for all A 2 A and jA \ Bj = � for all

distinct A;B 2 A. The maximum cardinality of a (r; �)-intersecting system consisting of

subsets of V

b

is denoted by f(r; �; b).

A is called a �-system with kernel K and parameters (r; �) if jKj = �, jAj = r

for all A 2 A, and A \ B = K for all distinct A;B 2 A. Clearly, if A consists of subsets
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of V

b

, then jAj �

b��

r��

.

Remark 3.10. (r; �; n)-designs and (r; �)-intersecting systems are basically the same

objects. Namely, let M be a n� b binary matrix, let B denote the family of subsets of V

n

whose incidence vectors are the columns of M , and let A denote the family of subsets of

V

b

whose incidence vectors are the rows of M . Then, B is a (r; �; n)-design if and only if

A is a (r; �)-intersecting system of cardinality n. Moreover, B is trivial if and only if A

is a �-system. These two terminologies of (r; �; n)-designs and intersecting systems are

commonly used in the literature.

Intersecting systems arise as the h-labelings of the equidistant metric. Namely,

Proposition 3.11. There is a one-to-one correspondance between the h-labelings of the

equidistant metric 2t11

n

and the (2t; t)-intersecting systems of cardinality n� 1.

Proof. Indeed, in any h-labeling of 2t11

n

, we may asume that one of the points is labeled

by ; and then the sets labeling the remaining n � 1 points are the members of a (2t; t)-

intersecting system.

Hence, Theorem 2.3 can be reformulated as follows.

Theorem 3.12. [Dez73] Let t � 1 be an integer and let A be a (2t; t)-intersecting sytem.

If jAj � t

2

+ t + 2, then A is a �-system.

As an application of Theorem 3.12, Deza proved the following result, solving a conjecture of

Erd�os and Lov�asz.

Theorem 3.13. [Dez74] Let t � 1 be an integer and let A be a collection of subsets of a �nite

set such that jA\Bj = t for all A 6= B 2 A. Set k := max(jAj j A 2 A). If jAj � k

2

� k + 2, then

A is a �-system.

We conclude with an easy application, that will be needed later.

Lemma 3.14. Let k; t � 1 be integers such that t < k

2

+ k + 1 and let A be a (k + t; t)-

intersecting system. If jAj � k

2

+ k + 3, then A is a �-system.

Proof. Let A

1

2 A and set A

0

:= fA4A

1

j A 2 A n fA

1

gg. One checks easily that

A

0

is a (2k; k)-intersecting system with jA

0

j � k

2

+ k + 2. By Theorem 3.12, A

0

is a

�-sytem. Let K denote its kernel, jKj = k. Let A 2 A; A 6= A

1

. Set � := jA

1

\ Kj,

then jA

1

\ ((A4A

1

) n K)j = k � � since A

1

\ (A4A

1

) = A

1

n A has cardinality k. If

� � k � 1, then k + t = jA

1

j � � + jA

0

j(k � �) � � + (k

2

+ k + 2)(k � �), implying
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t � (k��)(k

2

+k+1), contradicting the assumption on t. Hence, � = k, i.e., A

1

nA = K

and, thus, A

1

\ A = A

1

nK. This shows that A is a �-system.

3.2 Embeddings of 2t11

n

and designs

Let t; n � 1 be integers. Every Z

+

-realization of 2t11

n

is of the form

(3.15) 2t11

n

=

X

B2B

�(B);

where B is a collection of (not necessarily distinct) subsets of V

n

. Let k � 1 be an integer.

The realization (3.15) is said to be k-uniform if jBj = k; n� k for all B 2 B. It is very

easy to construct Z

+

-realizations of the equidistant metric from designs.

For instance, let B be a (r; �; n)-design. Then,

P

B2B

�(B) = 2(r � �)11

n

. Moreover,

if r � 2�, then the (r� 2�)-extension of B yields a Z

+

-realization of 2(r� �)11

n

, namely,

P

B2B

�(B) + (r � 2�)�(fi

0

g) = 2(r � �)11

n+1

, where V

n+1

n V

n

= fi

0

g. In particular,

each (t + 1; 1; n)-design yields a Z

+

-realization of 2t11

n

and its (t � 1)-extension yields a

realization of 2t11

n+1

. Also, the 0-extension of a (2t; t; n� 1)-design gives aZ

+

-realization

of 2t11

n

.

If B is a (n; k; �)-BIBD, then (3.15) is a Z

+

-realization of 2�

n�k

k�1

11

n

. In particular,

if B is a Hadamard design of order 4t � 1, then (3.15) is a Z

+

-realization of 2t11

4t�1

and the 0-extension of B yields a Z

+

-realization of 2t11

4t

. If B is PG(2; t), then (3.15)

is a Z

+

-realization of 2t11

t

2

+t+1

and the (t � 1)-extension of B yields a Z

+

-realization of

2t11

t

2

+t+2

.

The next result makes precise the correspondance between Z

+

-realizations of the

equidistant metric and designs. The �rst assertion (i) is nothing but a reformulation

of Proposition 3.11 (using the link between intersecting systems and designs, explained in

Remark 3.10).

Proposition 3.16. (i) There is a one-to-one correspondance between theZ

+

-realizations

of 2t11

n

and the (2t; t; n� 1)-designs.

(ii) For k 6=

n

2

, there is a one-to-one correspondance between the k-uniformZ

+

-realizations

of 2t11

n

and the (n; k;

t(k�1)

n�k

)-BIBD's.

Proof. (i) follows by assuming that all B 2 B do not contain a given point i

0

of V

n

(replacing, if necessary, B by V

n

nB).

(ii) It is immediate to check that (3.15) holds if B is a (n; k;

t(k�1)

n�k

)-BIBD. Suppose now

that (3.15) holds, with jBj = k for all B 2 B, and k 6=

n

2

. By taking the scalar product

of both sides of (3.15) with the all ones vector, we obtain that the number b of blocks

satis�es

b =

tn(n � 1)

k(n� k)

:

We show that each point belongs to the same number of blocks. For this, let r denote

the number of blocks that contain the point 1 and denote by a

i

the number of blocks

containing both points 1 and i, for i = 2; : : : ; n. Then,

P

2�i�n

a

i

= r(k � 1). Counting

in two ways the total number of units in the incidence matrix of B (summing over the
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columns or over the rows), we obtain

bk = r +

X

2�i�n

(2t� r + 2a

i

);

implying r = t

n�1

n�k

. Hence, any two points of V

n

belong to r � t = t

k�1

n�k

common blocks.

Therefore, B is a (n; k;

t(k�1)

n�k

)-BIBD.

Theorem 3.17. [Hal77] Suppose that n �

1

2

(t + 2)

2

with t � 3 or n >

1

2

(t + 2)

2

with

t = 2. Let B be a family of subsets of V

n

for which (3.15) holds. Then, either B is a

(t + 1; 1; n)-design, or B is the (t� 1)-extension of a (t + 1; 1; n� 1)-design.

Take, for instance, t = 3 and n = 12 (<

1

2

(t + 2)

2

). Then, 611

12

has a Z

+

-realization

which is not of the form indicated in Theorem 3.17; such a realization can be obtained

from the 1-extension of a (5,2,11)-design.

Theorem 3.18. [MV77] Let �; t be integers such that t > 2�

2

+3�+2 (i.e., � <

p

8t�7�3

4

).

Suppose that PG(2; t) does not exist. Then, for n � t

2

� �, each (t + 1; 1; n)-design is

trivial.

Corollary 3.19. Suppose that PG(2; t) does not exist. If n > t

2

+ 1 �

p

8t�7�3

4

, then

the metric 2t11

n

is h-rigid.

Proof. Let B be a family of subsets of V

n

for which (3.15) holds. By Theorem 3.17, B is

a (t+1; 1; n)-design or the (t� 1)-extension of a (t+1; 1; n� 1)-design. By Theorem 3.18,

such designs are trivial. Hence, B yields the star realization of 2t11

n

.

3.3 The minimum h-size of 2t11

n

Recall from (1.4) that the minimum h-size s

h

(2t11

n

) of 2t11

n

is de�ned as the smallest

cardinality of a multiset B � 2

V

n

satisfying (3.15). The following result is a reformulation

of Ryser's result on the number of blocks of a (2t; t; n� 1)-design.

Theorem 3.20. (i) s

h

(2t11

n

) � n� 1, with equality if and only if n = 4t and there exists

a Hadamard matrix of order 4t.

(ii) Suppose n 6= 4t. If n = 2t + � +

t(t�1)

�

for some integer � � 1 and if there exists a

symmetric (n; �+ t; �)-BIBD, then s

h

(2t11

n

) = n.

Proof. (i) By Proposition 3.16, the minimum h-size of 2t11

n

is equal to the minimum

number of blocks in a (2t; t; n�1)-design, which is greater or equal to n�1, by Theorem 3.3.
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If s

h

(2t11

n

) = n� 1, then there exists a (2t; t; n� 1)-design B with n� 1 blocks. Applying

again Theorem 3.3, we deduce that B is a symmetric (4t�1; 2t; t)-design, i.e., a Hadamard

design of order 4t� 1. (ii) is an easy check.

As an application of Theorem 3.20 and Remark 3.9, we deduce that s

h

(2t11

n

) = n

for the following parameters (t; n): (7,37), (6,25), (9,56), (7,31), (9,45), (11,79), (9,40),

(12,71). Note also that s

h

(2t11

n

) = n� 1 for (t; n) = (9; 36); (4; 16).

The implication from Theorem 3.20 (ii) is, in fact, an equivalence in the cases � = 1

(i.e., n = t

2

+ t + 1) and � = t (i.e., n = 4t� 1).

Proposition 3.21. (i) s

h

(2t11

t

2

+t+1

) = t

2

+ t+ 1 if and only if there exists a projective

plane of order t.

(ii) s

h

(2t11

4t�1

) = 4t � 1 or, equivalently, s

h

(2t11

4t

) = 4t � 1 if and only if there exists a

Hadamard design of order 4t� 1.

(iii) Suppose PG(2; t) exists. Then, s

h

(2t11

t

2

+t+2

) = t

2

+ 2t if t � 3 and s

h

(2t11

t

2

+t+2

) =

t

2

+ t+ 1 if t = 1; 2.

(iv) Suppose PG(2; t) does not exist. If n > t

2

+ 1�

p

8t�7�3

4

, then s

h

(2t11

n

) = nt.

Proof. (i) follows from Theorems 2.10 and 3.20.

(ii) Suppose B is a block family yielding a Z

+

-realization of 2t11

4t�1

with jBj = 4t � 1.

Then, jBj =

n(n�1)t

d

n

2

eb

n

2

c

(n = 4t� 1), which implies that all blocks of B have size 2t. Hence, B

is a Hadamard design of order 4t� 1. The remaining of (ii) follows from Theorem 3.20.

(iii) For the case t = 1; 2, use Theorem 3.20. Suppose t � 3 and set n = t

2

+ t + 2.

The (t � 1)-extension of PG(2; t) yields a Z

+

-realization of 2t11

n

of size t

2

+ t, implying

s

h

(2t11

n

) � t

2

+ 2t. Let B be a block family yielding a Z

+

-realization of 2t11

n

. We show

that jBj � t

2

+ 2t. For this, we use Theorem 3.17. Either, B is a (t+ 1; 1; n)-design; then,

its (t� 1)-extension yields a Z

+

-realization of 2t11

t

2

+t+3

distinct from the star realization,

in contradiction with Theorem 2.3. Or, B is the (t�1)-extension of a (t+1; 1; n�1)-design

and, then, jBj � n � 1 + t � 1 = t

2

+ 2t. This shows that s

h

(2t11

n

) = t

2

+ 2t:

(iv) is a reformulation of Corollary 3.19.

Set

a

t

n

:=

&

n(n� 1)t

b

n

2

cd

n

2

e

'

=

&

4t�

2t

d

n

2

e

'

:

By taking the scalar product of both sides of (3.15) with the all ones vector, we obtain

the following bounds:

a

t

n

� s

h

(2t11

n

) � nt:

The equality

s

h

(2t11

n

) = nt

holds if and only if the star realization (2.1) is the only Z

+

-realization of 2t11

n

, i.e., if 2t11

n

is h-rigid. This is the case, for instance, if n � t

2

+ t+ 3 (by Theorem 2.3). Several other

results about classes of parameters n; t for which 2t11

n

is h-rigid are given in Section 2. A
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natural question is what are the parameters n; t for which the equality

s

h

(2t11

n

) = a

t

n

holds. If 2t11

n

admits a Z

+

-realization

P

S

�

S

�(S) where �

S

> 0 only if �(S) is an equicut

(i.e., satis�es jSj = b

n

2

c; d

n

2

e), then the equality s

h

(2t11

n

) = a

t

n

holds. For instance,

s

h

(411

7

) = a

2

7

= 7 and s

h

(411

8

) = a

2

8

= 7 as each of 411

7

and 411

8

has a Z

+

-realization using

only equicuts (see Proposition 3.30).

Clearly (from Theorem 3.20), the equality s

h

(2t11

n

) = a

t

n

can occur only if n � 4t.

The case n = 4t is well understood: equality holds if and only if there exists a Hadamard

matrix of order 4t. The following conjectures are proposed in [DL93c].

Conjecture 3.22. Suppose n � 4t and that there exists a Hadamard matrix of order

4t. Then, s

h

(2t11

n

) = a

t

n

.

Conjecture 3.23. Suppose n � 4t and that there exist Hadamard matrices of suitable

orders. Then, s

h

(2t11

n

) = a

t

n

.

Conjecture 3.23 is weaker than Conjecture 3.22. We refer to [DL93c] for partial results

related to these conjectures. In particular, the following results are proved there.

Proposition 3.24. (i) Conjecture 3.22 holds for all n; t such that n � 4t, and

2t

3

< d

n

2

e

or min(n; t) � 20.

(ii) Conjecture 3.23 holds for all n; t such that n is even and satis�es 2

p

2t � n � 4t. (It

su�ces to assume the existence of Hadamard matrices of orders 2n, 4n, and n (if

n

2

is

even) and n+ 2 (if

n

2

is odd).)

Corollary 3.25. If n � 4t � 80 then s

h

(2t11

n

) = a

t

n

.

Example 3.26. As an example, let us consider the minimum h-size of the metric 2t11

n

for t = 6 and n � 31. We have

(i) s

h

(1211

n

) = 6n for all n � 33 (by Proposition 2.11),

(ii) s

h

(1211

32

) = 67 and s

h

(1211

31

) � 62.

Indeed, let B be a block design on V

32

for which (3.15) holds. By Theorem 3.17, B is

a (7,1,32)-design, or the 5-extension of a (7,1,31)-design. Each (7,1,32)-design is triv-

ial (as its 5-extension yields a Z

+

-realization of the h-rigid metric 1211

33

). It is shown

in [MMS

+

76b, MMS

+

76a] that the unique nontrivial (7,1,31)-design is the block family

obtained by taking the blocks of PG(2; 5) together with the 31 singletons; it yields a Z

+

-

realization of 1211

31

of size 31 + 31 = 62. Its 5-extension yields a Z

+

-realization of 1211

32

of size 62 + 5 = 67. This shows that s

h

(1211

32

) = 67.
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3.4 All hypercube embeddings of 2t11

n

for small n; t

We list all the Z

+

-realizations of the equidistant metric 2t11

n

in the following cases: t = 1,

t = 2, n = 4, and we give partial information in the case n = 5. The results are taken

from [DL93c].

Let t; n be positive integers. For each integer s such that t � b

t

n�3

c � s � t, we have

the following Z

+

-realization of 2t11

n

:

(3.27) 2t11

n

= (t� (n� 3)(t� s))�(fng) +

X

1�i�n�1

(t� s)�(fi; ng) + s�(fig):

Its size is equal to (n � 3)s + 3t and (3.27) coincides with the star realization (2.1) for

s = t.

Proposition 3.28. (Case n = 4) The metric 2t11

4

has t + 1 Z

+

-realizations, given by

(3.27) for 0 � s � t.

Proof. This follows from the fact that the restriction to V

3

of anyZ

+

-realization of 2t11

4

coincides with the star realization of 2t11

3

.

Proposition 3.29. (Case t = 1) For n 6= 4, (2.1) is the onlyZ

+

-realization of the metric

211

n

and, for n = 4, 211

4

has two Z

+

-realizations: the star realization (2.1) and (3.27) for

s = 0, namely, 211

4

=

P

1�i�4

�(fig) = �(f1; 4g) + �(f2; 4g) + �(f3; 4g).

Proposition 3.30. (Case t = 2)

(i) For n � 9, (2.1) is the only Z

+

-realization of 411

n

.

(ii) For n = 4, 411

4

has three Z

+

-realizations: (2.1) and (3.27) for s = 0; 1, namely,

411

4

= 2(

P

1�i�4

�(fig)) = 2(

P

1�i�3

�(fi; 4g)) =

P

1�i�4

�(fig) +

P

1�i�3

�(fi; 4g).

(iii) For n = 5, 411

5

has (up to permutation) three Z

+

-realizations: the star realiza-

tion (2.1), (3.27) for s = 1, i.e., 411

5

=

P

1�i�4

�(fi; 5g) + �(fig), and 411

5

= �(f5g) +

P

1�i<j�4

�(fi; jg).

(iv) For n = 6, 411

6

has (up to permutation) three Z

+

-realizations: the star realization

(2.1), 411

6

= �(f2g) + �(f3g) + �(f4; 6g)+ �(f5; 6g)+ �(f1; 4g)+ �(f1; 5g)+ �(f1; 2; 6g)+

�(f1; 3; 6g), and 411

6

= �(f1; 2g)+�(f3; 4g)+�(f5; 6g)+�(f1; 3; 6g)+�(f2; 4; 6g)+�(f1; 4; 5g)+

�(f2; 3; 5g)+ �(f1; 3; 6g).

(v) For n = 7, 411

7

has (up to permutation) threeZ

+

-realizations: the star realization (2.1),

411

7

= �(f7g) + �(f1; 2g)+ �(f3; 4g)+ �(f5; 6g)+ �(f1; 3; 6g)+ �(f2; 4; 6g)+ �(f1; 4; 5g)+

�(f2; 3; 5g), and 411

7

= �(f1; 2; 7g)+ �(f3; 4; 7g)+ �(f5; 6; 7g)+ �(f1; 3; 6g)+ �(f2; 4; 6g)+

�(f1; 4; 5g)+ �(f2; 3; 5g).

(vi) For n = 8, 411

8

has (up to permutation) three Z

+

-realizations: the star realiza-

tion (2.1), 411

8

= �(f8g)+�(f1; 2; 7g)+�(f3; 4; 7g)+�(f5; 6; 7g)+�(f1; 3; 6g)+�(f2; 4; 6g)+

�(f1; 4; 5g)+�(f2; 3; 5g), and 411

8

= �(f1; 2; 7; 8g)+�(f3; 4; 7; 8g)+�(f5; 6; 7; 8g)+�(f1; 3; 6; 8g)+

�(f2; 4; 6; 8g)+ �(f1; 4; 5; 8g)+ �(f2; 3; 5; 8g) (corresponding to a Hadamard design).
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It seems a quite di�cult task to list all the Z

+

-realizations of the metric 2t11

n

in the

case n = 5. Note that we already have the realizations (3.27) for t � b

t

2

c � s � t. For t

odd and t � 3, we also have

(3.31) 2t11

5

= �(f1; 5g) + �(f2g) + �(f3g) + �(f4; 5g) +

t+ 1

2

�(f1; 4g) +

t� 3

2

�(f2; 3g)+

t� 1

2

(�(f5g)+�(f1; 2g)+�(f1; 3g)+�(f2; 4g)+�(f3; 4g)):

The following is also a Z

+

-realizations of 2t11

5

:

(3.32) 2t11

5

= p�(f5g) + q�(f1g) + (s� q)�(f1; 5g)+ �

X

2�i�4

�(fi; 5g)

+ (s� �)

X

2�i�4

�(fig) + �

X

2�i�4

�(f1; ig) + (t� s� �)

X

2�i�4

�(f1; i; 5g);

where �; �; p; q; s are integers satisfying

8

>

>

>

>

>

<

>

>

>

>

>

:

0 � s � t;

0 � � � min(s;

t

2

);

max(0; s� 2�;

t�3�

2

) � p � min(t� 2�;

t�3�+s

2

);

� = t� 2�� p;

q = 3� + 2p� t:

Let �(s; t; �; p) denote the realization from (3.32).

For t = 3, the feasible parameters for (3.32) are (s; �; p) =(1,0,2), (1,1,0), (2,0,2),

(2,1,0), (2,1,1), (3,0,3), (3,1,1), (3,0,3), and (3,1,1). Note, however, that �(3; 3; 0; 3) coin-

cides with the star realization (2.1), �(3; 3; 1; 1) reads

(3.33) 611

5

= �(f5g) +

X

1�i�4

�(fi; 5g) + 2�(fig)

(this is (3.27) in the case t = 3; n = 5; s = 2), �(2; 3; 0; 2) is a permutation of (3.33), and

�(2; 3; 1; 1) coincides with �(1; 3; 0; 2) (up to permutation).

Proposition 3.34. (Case t = 3; n = 5) The metric 611

5

has �ve distinct (up to permu-

tation) Z

+

-realizations: the star realization (2.1), (3.33), (3.31) (with t = 3), and (3.32)

for the parameters (s; �; p) =(2; 1; 1); (2; 1; 0); (1; 1; 0) which read, respectively,

611

5

= �(f5g) + 2�(f1g) +

X

2�i�4

�(fi; 5g)+ �(fig) + �(f1; i; 5g);

611

5

= 2�(f1; 5g)+

X

2�i�4

�(fi; 5g) + �(fig) + �(f1; ig);

611

5

= �(f1; 5g) +

X

2�i�4

�(fi; 5g)+ �(f1; ig)+ �(f1; i; 5g):
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4 Recognition of hypercube embeddable metrics

In this section, we consider the following problem, called the hypercube embeddability

problem:

Given a distance d on V

n

, test whether d is hypercube embeddable.

When restricted to the class of path metrics of connected graphs, this is the problem

of testing whether a graph can be isometrically embedded into a hypercube. Such graphs

have a good characterization and can be recognized in polynomial time as the next result

shows.

Theorem 4.1. [Djo73, Avi81] Let G = (V;E) be a connected graph with shortest path

metric d

G

. The following assertions are equivalent.

(i) G can be isometrically embedded into a hypercube.

(ii) G is bipartite and the set fi 2 V j d

G

(i; a) < d

G

(i; b)g is convex for each edge (a; b) of

G.

(iii) G is bipartite and d

G

satis�es the following 5-gonal inequality:

(4.2) d(i

1

; i

2

) + d(i

1

; i

3

) + d(i

2

; i

3

) + d(i

4

; i

5

)�

X

h=1;2;3

k=4;5

d(i

h

; i

k

) � 0

for all nodes i

1

; : : : ; i

5

2 V .

The hypercube embeddability problem is NP-complete for general distances; it remains

NP-complete for the class of distances with values in the set f2; 3; 4; 6g (see Theorem 4.10).

However, the hypercube embeddability problem can be shown to be polynomial for

some classes of metrics, having a restricted range of values. For instance, it is polynomial

for the class of distances with range of values f1; 2; 3g, or f3; 5; 8g or, more generally,

fx; y; x+yg where x; y are two positive integers such that, either x; y are odd, or x is even

and y is odd. This class is discussed in Section 4.3. We also consider generalized bipartite

metrics, which are the metrics d on V

n

for which there exists a subset S � V

n

such that

d(i; j) = 2 for all i 6= j 2 S and for all i 6= j 2 V

n

n S. The hypercube embeddable

generalized bipartite metrics can also be recognized in polynomial time; see Section 4.2.

The basic idea that is used for characterizing the hypercube embeddable metrics within

the above classes is the existence of equidistant submetrics, which are h-rigid if they are

de�ned on su�ciently many points (by the results of Section 2). We present in Section 4.4

the following result of Karzanov [Kar85]: Let d be a metric whose extremal graph is K

4

,

C

5

, or a union of two stars; then, d is hypercube embeddable if and only if d satis�es the

parity condition (4.3). We group in Section 4.1 some preliminary results.

Let us point out that no characterization is known for the hypercube embeddable

metrics taking two or three values, all of them even. For instance, the complexity of the

hypercube embeddability problem for the class of distances with range of values f2; 4g, or

f2; 4; 6g, is not known. (Compare with the results of Proposition 4.9 and Theorem 4.10.)

4.1 Preliminary results

Let d be a distance on the set V

n

. A �rst easy observation is that we may assume that

no pair of distinct points is at distance 0. Indeed, if d(i; j) = 0 for some distinct i; j 2 V

n

,
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then d is hypercube embeddable if and only if its restriction to the set V

n

nfjg is hypercube

embeddable (as the points i and j should be labeled by the same set in any hypercube

embedding of d).

If d is hypercube embeddable, then

(4.3) d(i; j)+ d(i; k) + d(j; k) 2 2Z for all i; j; k 2 V

n

:

(Indeed, if A

1

; : : : ; A

n

are sets forming an h-labeling of d, then d(i; j)+ d(i; k)+ d(j; k) =

2(jA

i

j + jA

j

j + jA

k

j � jA

i

\ A

j

j � jA

i

\ A

k

j � jA

j

\ A

k

j) 2 2Z.) The condition (4.3) is

called the parity condition; it was �rst introduced in [Dez61]. This condition expresses

the fact that each hypercube embeddable distance d on V

n

can be decomposed as an

integer combination of cut semimetrics, i.e., belongs to the cut lattice L

n

(in fact, (4.3)

characterizes membership in L

n

, see Proposition 5.2). As an application, we deduce that

each hypercube embeddable distance has some bipartite structure, namely, the set of pairs

at an odd distance forms a complete bipartite graph.

Lemma 4.4. Let d be a distance on V

n

. If d satis�es the parity condition (4.3), then V

n

can be partitioned into V

n

= S [T in such a way that d(i; j) is even if i; j 2 S or i; j 2 T ,

and d(i; j) is odd if i 2 S; j 2 T .

This simple fact will be central in our treatment. For instance, the generalized bipartite

metrics, considered in Section 4.2, have only one even distance equal to 2, i.e., they satisfy

d(i; j) = 2 for i 6= j 2 S, i 6= j 2 T , for some bipartition (S; T ) of V

n

.

Obviously, every hypercube embeddable distance d on V

n

is `

1

-embeddable, i.e., belongs

to the cut cone CUT

n

. In other words, d can be decomposed as a nonnegative combination

of cut semimetrics.

So, we have the implication:

d is hypercube embeddable =) d 2 CUT

n

and d satis�es (4:3):

In general, this implication is strict. But, for some classes of distances, this implication is,

in fact, an equivalence; this is the case, for instance, for the distances with range of values

f1; 2g, or f1; 2�; 2�+ 1g (� � 2) (see Propositions 4.11 and 4.12), or for the distances

considered in Proposition 4.52 or in Theorem 4.55. This is also the case for the distances

on n � 5 points:

Theorem 4.5. [Dez61, Dez82] Let d be a distance on n � 5 points. Then, d is hypercube

embeddable if and only if d 2 CUT

n

and d satis�es the parity condition (4.3).

We will consider in Section 5 the quasi h-points, which are the distances that belong

to CUT

n

and satisfy (4.3) but are not hypercube embeddable.

Each valid inequality for the cut cone yields therefore a necessary condition for hy-

percube embeddability. It turns out that the hypermetric inequalities will play a crucial
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role for the characterization of certain classes of hypercube embeddable distances; see

Propositions 4.11, 4.36, 4.37, 4.52. Let d be a distance on V

n

and k � 1 be an inte-

ger. Recall that d is said to be (2k + 1)-gonal if, for all (not necessarily distinct) points

i

1

; : : : ; i

k

; i

k+1

; j

1

; : : : ; j

k

2 V

n

, the following inequality holds:

(4.6)

X

1�r<s�k+1

d(i

r

; i

s

) +

X

1�r<s�k

d(j

r

; j

s

)�

X

1�r�k+1

1�s�k

d(i

r

; j

s

) � 0:

Equivalently, d is (2k + 1)-gonal if, for all b 2 Z

n

with

P

1�i�n

b

i

= 1 and

P

1�i�n

jb

i

j =

2k + 1,

(4.7)

X

1�i<j�n

b

i

b

j

d(i; j)� 0:

Moreover, d is hypermetric if d is (2k + 1)-gonal for all k � 1. The inequality (4.6) is

called the (2k + 1)-gonal inequality.

We now recall the link existing between hypercube embeddable distances and inter-

section patterns. A vector p 2 R

V

n

[E

n

is called an intersection pattern if there exist n

sets A

1

; : : : ; A

n

such that

(4.8) p

ij

= jA

i

\A

j

j for all 1 � i � j � n:

Hypercube embeddable distances are in one-to-one correspondance with intersection pat-

terns, via the correspondance p = �(d) de�ned below.

Namely, let d be a distance on V

n+1

and let p = (p

ij

)

1�i�j�n

be de�ned by

(

p

ii

= d(i; n+ 1) for 1 � i � n;

p

ij

=

1

2

(d(i; n+ 1) + d(j; n+ 1)� d(i; j)) for 1 � i < j � n:

The mapping � : d 7! p is known as the covariance mapping. Then, d is hypercube

embeddable if and only if its image p = �(d) under the covariance mapping is an intersec-

tion pattern (indeed, the sets A

1

; : : : ; A

n

; A

n+1

= ; form an h-labeling of d if and only if

A

1

; : : : ; A

n

satisfy (4.8)). This correspondance permits to show:

Proposition 4.9. [Chv80] The hypercube embeddability problem is polynomial for the

class of distances with range of values f2; 4g and having a point at distance 2 from all

other points.

Proof. Let d be a distance on V

n+1

such that d(i; n + 1) = 2 for all i 2 V

n

and

d(i; j) 2 f2; 4g for all i 6= j 2 V

n

. Its image p = �(d) satis�es p

ii

= 2 for all i 2 V

n

and

p

ij

2 f0; 1g for all i 6= j 2 V

n

. Let H denote the graph on V

n

with edges the pairs (i; j)

such that p

ij

= 1. Then, d is hypercube embeddable if and only if p is an intersection

pattern which, in turn, is equivalent to H being a line graph. The result now follows from

the fact that line graphs can be recognized in polynomial time [Bei70].

Theorem 4.10. [Chv80] The hypercube embeddability problem is NP-complete for the

class of distances having a point at distance 3 from all other points and with distances

between those points belonging to f2; 4; 6g.
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Proof. We sketch the proof. Let d be a distance as in the theorem. Hence, its image

p = �(d) satis�es p

ii

= 3 for all i 2 V

n

and p

ij

2 f0; 1; 2g for all i 6= j 2 V

n

. Let H denote

the multigraph with node set V

n

and having p

ij

parallel edges between nodes i and j. It is

easy to see that d is hypercube embeddable, i.e., p is an intersection pattern, if and only

if the edge set of H can be partitioned into cliques in such a way that each node belongs

to three of these cliques. Chv�atal [Chv80] shows that this problem can be reduced to the

problem of testing whether a 4-regular graph is 3-colourable, which is NP-complete.

There are some classes of distances for which hypercube embeddability is very easy to

characterize. Two examples are given below.

Proposition 4.11. [AD80] Let d be a distance on V

n

with values in f1; 2g. The following

assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d is 5-gonal and satis�es the parity condition (4.3).

(iii) d is the path metric of the complete bipartite graphs K

1;n�1

or K

2;2

(with n = 4), or

d = 2d(K

n

).

Proof. We check (ii) =) (iii) =) (i). By Lemma 4.4, the set of pairs (i; j) at distance

1 forms a complete bipartite graph K

S;T

for some bipartition (S; T ) of V

n

with, e.g.,

jT j � jSj. If jT j � 2 and jSj � 3, then d violates the 5-gonal inequality (indeed, let

i

1

; i

2

; i

3

2 S, j

1

; j

2

2 T , and k = 2, then the left hand side of (4.6) is equal to 8�6 = 2 > 0).

If jT j = 2 and jSj = 2, then d is hypercube embeddable; indeed, if S = fi

1

; i

2

g and

T = fj

1

; j

2

g then d = �(fi

1

; j

1

g) + �(fi

1

; j

2

g). If jT j = 1 then d is also hypercube

embeddable as d =

P

i2S

�(fig).

Proposition 4.12. [DL94] Let d be a metric on V

n

with range of values f1; 2�; 2�+ 1g,

for some integer � � 2. Then, d is hypercube embeddable if and only if d satis�es the

parity condition (4.3).

Proof. Suppose that d satis�es (4.3). Hence, the set of pairs at odd distance forms

a complete bipartite graph K

S;T

for some bipartition (S; T ) of V

n

. As � � 2, the pairs

at distance 1 form a matching, say, d(i

1

; j

1

) = : : : = d(i

k

; j

k

) = 1 for i

1

; : : : ; i

k

2 S and

j

1

; : : : ; j

k

2 T . Then, d = �(S) +

P

1�h�k

��(fi

h

; j

h

g) +

P

i2Snfi

1

;:::;i

k

g

j2Tnfj

1

;:::;j

k

g

��(fig); showing

that d is hypercube embeddable.

The case � = 1, i.e., the case of distances with values 1,2,3, is more complicated and

will be treated in Section 4.3.

We close this section with a result on the number of distinct hypercube embeddings

of a given distance. Given a hypercube embedable distance d on V

n

and an integer s � 0,

let N

n

(d; s) denote the number of distinct Z

+

-realizations d =

P

S

�

S

�(S) (with �

S

2Z

+

)

of d with size

P

S

�

S

= s. Set

M

n

(x) :=

X

N(d; s)
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where the sum is taken over all s 2Z

+

and all distances d on V

n

with

P

1�i<j�n

d(i; j) = x.

It is shown in [DCS90] that the function x 2 Z

+

7! M

n

(x) is quasipolynomial. In other

words, there exist an integer t � 1 and polynomials f

0

; f

1

; : : : ; f

t�1

such that

M

n

(x) = f

i

(x) if x � i (mod t); for 0 � i � t � 1:

In particular, M

n

(x) is bounded by a polynomial in x. Therefore, the number of distinct

Z

+

-realizations of d is bounded by a polynomial in x =

P

1�i<j�n

d(i; j).

4.2 Generalized bipartite metrics

Let d be a metric on V

n

such that d(i; j) = 2 for all i 6= j 2 S and i 6= j 2 T , for some

bipartition (S; T ) of V

n

. Such a metric is called a generalized bipartite metric. The

jSj�jT jmatrix D with entries d(i; j) for i 2 S; j 2 T is called the (S; T )-distance matrix

of d. For instance, the path metric of a complete bipartite graph is a generalized bipartite

metric. In this section, we prove the following result.

Theorem 4.13. [DL94] The hypercube embeddability problem is polynomial for the class

of generalized bipartite metrics.

We start with an easy observation.

Lemma 4.14. Let d be a generalized bipartite metric with bipartition (S; T ). If d is

hypercube embeddable, then there exists an integer � such that d(i; j) 2 f�; �+ 2; �+ 4g

for all i 2 S; j 2 T .

Proof. Let �; � denote the smallest and largest value taken by d(i; j) for i 2 S; j 2 T ;

say � = d(i; j), � = d(i

0

; j

0

) for i; i

0

2 S, j; j

0

2 T . Using the triangle inequality, we obtain

� = d(i

0

; j

0

) � d(i

0

;+d(i; j) + d(j; j

0

) � 4 + �. Moreover, �; � have the same parity by

(4.3).

We will see below what are the possible con�gurations for the pairs at distance �; �+

2; �+ 4.

Set s := jSj and t := jT j. Let d

S

(resp. d

T

) denote the restriction of d to the set

S (resp. T ). Then, d

S

= 211

s

and d

T

= 211

t

are equidistant metrics. Recall (from

Proposition 3.29) that the equidistant metric 211

n

is h-rigid if n 6= 4 and that 211

4

has

exactly two Z

+

-realizations, namely, its star realization: 211

4

=

P

1�i�4

�(fig), and an

additional realization:

211

4

= �(f1; 2g) + �(f1; 3g) + �(f1; 4g);

called the special realization.

The proof of Theorem 4.13 is based on the following simple observation. Let d =

P

A�V

n

�

A

�(A) be a Z

+

-realization of d. Then, its projection on S:

P

A�V

n

�

A

�(A\S), is

a Z

+

-realization of d

S

. Hence, if s 6= 4, then it must coincide with the star realization of

211

s

and, if s = 4, it must coincide with the star realization or with the special realization

of 211

4

. The same holds for d

T

.
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The following de�nitions will be useful in the sequel. A Z

+

-realization of d is called

a star-star realization if both its projections on S and on T are the star realizations of

211

s

and 211

t

, respectively. A realization of d is called a star-special realization if its

projection on S is the star realization of 211

s

, but t = 4 and its projection on T is the

special realization of 211

4

. Finally, a realization of d is called a special-special realization

if s = t = 4 and both its projections on S and T are the special realization of 211

4

.

We now analyze the structure of the hypercube embeddable generalized bipartite met-

rics admitting a star-star realization.

Proposition 4.15. Let d be a generalized bipartite metric with bipartition (S; T ). Then,

d admits a star-star realization if and only if there exist a partition fA;B;C;Dg of S

and a partition fA

0

; B

0

; C

0

; D

0

g of T (with possibly empty members) with jAj = jA

0

j and

jBj = jB

0

j and there exist one-to-one mappings � : A �! A

0

and � : B �! B

0

and an

integer f � jBj+ jDj+ jD

0

j such that

(4.16) d(i; j) =

8

>

>

>

<

>

>

>

:

f for (i; j) 2 ((A [ C)� (B

0

[D

0

)) [ ((B [D)� (A

0

[ C

0

))

[f(k; �(k)) j k 2 Ag [ f(k; �(k)) j k 2 Bg;

f + 2 for (i; j) 2 ((A [ C)� (A

0

[ C

0

)) n f(k; �(k)) j k 2 Ag;

f � 2 for (i; j) 2 ((B [D)� (B

0

�D

0

)) n f(k; �(k)) j k 2 Bg:

Figure 4.17 shows the (S; T )-distance matrix of the metric d de�ned by (4.16). We

use the following notation in Figures 4.17 and 4.18: I

a

denotes the a� a identity matrix,

J

a

the a � a all ones matrix, and a block marked, say, with f , has all its entries equal

to f . As a rule, we denote the cardinality of a set by the same lower case letter; e.g.,

a = jAj; a

0

= jA

0

j, etc.

A

0

C

0

B

0

D

0

A (f + 2)J

a

f + 2 f f

�2I

a

C f + 2 f + 2 f f

B f f (f � 2)J

b

f � 2

+2I

b

D f f f � 2 f � 2

Figure 4.17

a b c d c

0

d

0

m

A I

a

0 0 0 0 0 0

B 0 I

b

0 0 0 0 0

C 0 0 I

c

0 0 0 0

D 0 0 0 I

d

0 0 0

A

0

I

a

1 0 1 0 1 1

B

0

0 J

b

� I

b

0 1 0 1 1

C

0

0 1 0 1 I

c

0

1 1

D

0

0 1 0 1 0 J

d

0

� I

d

0

1

Figure 4.18
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Proof of Proposition 4.15. Let d be a generalized bipartite metric admitting a star-

star realization: d =

P

U2U

�(U), where U is a collection (allowing repetition) of nonempty

subsets of V . Hence, jU\Sj 2 f0; s; 1; s�1g and jU \T j 2 f0; t; 1; t�1g for all U 2 U . We

can suppose without loss of generality that jU \ Sj 2 f0; 1g for all U 2 U . Let M denote

the matrix whose columns are the incidence vectors of the members of U . Combining the

above mentioned two possibilities for U \S with the four possibilities for U \T , we obtain

that M has the form shown in Figure 4.18. Hence the sets A;B;C;D and A

0

; B

0

; C

0

; D

0

form the desired partitions of S and T . We can now compute d(i; j) for (i; j) 2 S�T and

verify that they satisfy relation (4.16), after setting f := jBj+ jDj+ jD

0

j+m.

Conversely, suppose that d is de�ned by (4.16). SetA = fx

1

; : : : ; x

n

g and B = fy

1

; : : : ; y

n

g.

One can easily check that d satis�es:

d =

P

1�i�jAj

�(fx

i

; �(x

i

)g) +

P

1�i�jBj

�(T n f�(y

i

)g [ fy

i

g) +

P

x2C[C

0

�(fxg)

+

P

x2D

�(T [ fxg) +

P

x2D

0

�(T n fxg) + (f � jBj � jDj � jD

0

j)�(T ):

This realization is clearly a star-star realization.

It is quite clear that the description from Proposition 4.15 permits to test in polynomial

time whether a generalized bipartite metric has a star-star realization and to �nd one if

one exists (see [DL94] for details). Actually, this can be done in O(n

2

) if the metric is on

n points.

One can check whether a generalized bipartite metric has a star-special realization in

the following way. Suppose jT j = 4. Let z

0

2 T and let d

0

denote the restriction of d to

the set V n fz

0

g. If d has a star-special realization then d

0

has a star-star realization. We

see easily that there are O(1) possible star-star realizations for d

0

and all of them can be

found in polynomial time. One then checks whether one of them can be extended to a

star-special realization of d. (If a star-star realization of d

0

is as in Figure 4.18, there is

a unique way to complete it to a star-special realization of d, namely, by adjoining the

following row as a last row to Figure 4.18.)

a b c d c

0

d

0

m

z

0

1 0 0 1 1 0 1

Finally, a generalized bipartite metric d has a special-special realization if and only if,

for somem 2Z

+

, the (S; T )-distance matrix of the semimetric d�m�(T ) is one of the nine

matrices from Figure 4.19 (up to permutation on S and T ). (This fact can be checked,

using a characterization of the generalized bipartite metrics admitting a special-special

realization analogous to that of Proposition 4.15, see [DL94].)

3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3

0 2 2 2

2 0 2 2

2 2 0 2

2 2 2 0

1 1 1 3

1 3 3 3

1 3 3 3

3 3 3 5

4 4 4 2

4 2 2 2

4 2 2 2

2 2 2 0

3 1 1 1

1 3 1 1

3 3 3 1

3 3 1 3

0 2 2 2

2 0 2 2

2 2 2 4

2 2 4 2
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2 2 2 4

2 2 2 4

2 2 2 4

4 4 4 6

4 4 4 2

4 4 4 2

4 4 4 2

2 2 2 0

3 3 3 1

3 3 3 1

3 3 3 1

5 5 5 3

Figure 4.19

Example 4.20. Given an integer k � 5, let d denote the metric de�ned on 2k points by:

d(i; i+ k) = 4 for any 1 � i � k and d(i; j) = 2 for all other pairs (i; j); 1 � i 6= j � 2k.

Hence, d

2k

is a generalized bipartite metric with bipartition (f1; 2 : : : ; kg; fk + 1; k +

2; : : : ; 2kg). It is an easy exercise to verify, for instance using the above procedure, that

d

2k

is not hypercube embeddable and also that d

2k

belongs to the cut cone C

2k

and to the

cut lattice L

2k

.

The same technique could be used for testing hypercube embeddability for other metrics than

generalized bipartite metrics. Let d be a semimetric on V

n

. Suppose that there exists a bipartition

(S; T ) of V such that the projections d

S

and d

T

of d on S and T are of the form:

(4.21) d

S

=

X

x2S

�

x

�(fxg); d

T

=

X

x2T

�

x

�(fxg)

for some positive integers �

x

; �

x

. From Theorem 2.12, we know that d

S

and d

T

are h-rigid if jSj

is big enough with respect to max

x2S

�

x

and if jT j is big enough with respect to max

x2T

�

x

. So,

theoretically, one could use the same technique as the one used in Proposition 4.15 for studying

hypercube embeddability of these metrics. However, a precise analysis of the structure of the

distance matrix of such metrics seems technically much more involved than in the case where all

�

x

, �

x

are equal to 1, considered above.

The next simplest case to consider after the case of generalized bipartite metrics would be the

class of metrics d for which d(x; y) = 4 for x 6= y 2 S and d(x; y) = 2 for x 6= y 2 T (i.e., all

�

x

's are equal to 2 and all �

x

's to 1). One can characterize h-embeddability of these metrics by a

similar reasoning as was applied to generalized bipartite metrics and, as a consequence, recognize

them in polynomial time. Indeed, the metric 411

n

is rigid for n = 3 and n � 9 and 411

n

has exactly

three Z

+

-realizations: its star realization and two special ones, for each n 2 f4; 5; 6; 7; 8g [DL93c].

We give below a complete characterization of the hypercube embeddable metrics satisfying

(4.21) in the case jT j � 2. We state the results without proofs; the proofs can be found in [DL94].

We �rst consider the case jT j = 1. We introduce some notation.

Let d be de�ned on the set f1; : : : ; n; n+ 1g and let �; �

x

2 Zfor x 2 S := f1; : : : ; ng. For

x 2 S, set

(4.22) �

x

:=

1

2

(

X

y2S

d(y; n+ 1)� �

y

)�

n� 2

2

(d(x; n+ 1)� �

x

);

(4.23) �

x

:=

�

x

� �

n� 2

;

(4.24) � := min(�

x

j x 2 S);

� := min(

1

2

(d(x; n+ 1)� d(y; n+ 1) + d(x; y)) j x 6= y 2 S):

Proposition 4.25. Let d be a semimetric on the set f1; : : : ; n; n+ 1g which satis�es the parity
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condition (4.3). Suppose that the projection d

S

of d on the subset S := f1; : : : ; ng satis�es: d

S

=

P

1�x�n

�

x

�(fxg) for some positive integers �

1

; : : : ; �

n

and that d

S

is h-rigid. Then, d is hypercube

embeddable if and only if �

x

� 0 for all x 2 S. Moreover, the Z

+

-realizations of d are all the

realizations of the form:

(4.26) d = ��(fn + 1g) +

X

x2S

�

x

�(fx; n+ 1g) + (�

x

� �

x

)�(fxg)

where �

x

(x 2 S) are given by (4.23) and � is a nonnegative integer satisfying

(4.27) � � (n� 2)� � � � � and

� � �

n� 2

2Z

(with �; �

x

; � being given by (4.22),(4.24)). In particular, d is h-rigid whenever d satis�es some

triangle inequality at equality.

Corollary 4.28. Let d be de�ned on the set f1; : : : ; n; n+1g. Suppose that its projection d

S

on

the subset S := f1; : : : ; ng satis�es d

S

=

P

1�x�n

�

x

�(fxg) for some positive integers �

1

; : : : ; �

n

and that d

S

is h-rigid. Set � := d(1; n+1) and suppose that d(x; n+1) = ��d(1; x) for 2 � x � n.

(i) d is a semimetric if and only if � � �

1

+max(�

x

+ �

y

: 2 � x < y � n).

(ii) d satis�es the parity condition (4.3) if and only if � is an integer.

(iii) d is hypercube embeddable if and only if � is an integer and � �

P

x2S

�

x

; moreover, d is

h-rigid.

Suppose now that jT j = 2. Let d be de�ned on the set f1; : : : ; n; n+ 1; n + 2g. let d

S

,d

0

,d

00

denote the projections of d on the subsets S := f1; : : : ; ng, S[fn+1g, S[fn+2g, respectively. We

suppose that d

S

=

P

x2S

�

x

�(fxg) for some positive integers �

x

and that d

S

is rigid. Hence, we can

apply Proposition 4.25 for testing whether d

0

and d

00

are hypercube embeddable. Let �

0

x

; �

0

x

; �

0

; �

0

be de�ned by relations (4.22), (4.23) and (4.24) (where �

0

is to be determined) when considering

the semimetric d

0

instead of d. Similarly, let �

00

x

; �

00

x

; �

00

; �

00

be de�ned by (4.22), (4.23) and (4.24)

(where �

00

is to be determined) when considering the semimetric d

00

instead of d and the point

n+ 2 instead of n+ 1.

Proposition 4.29. Let d be a semimetric on V := f1; : : : ; n; n + 1; n + 2g that satis�es the

parity condition (4.3). Suppose that its projection d

S

on the subset S := f1; : : : ; ng is of the form:

d

S

=

P

x2S

�

x

�(fxg) for some positive integers �

x

and that d

S

is h-rigid. Then d is hypercube

embeddable if and only if (i),(ii) hold.

(i) The projection d

0

(resp. d

00

) of d on S[fn+1g (resp. on S [fn+2g) is hypercube embeddable.

(ii)

�

d(n+ 1; n+ 2) � �

0

+ �

00

+

P

x2S

min(�

0

x

+ �

00

x

; 2�

x

� �

0

x

� �

00

x

);

d(n+ 1; n+ 2) � max(�

0

; �

00

)�min(�

0

; �

00

) +

P

x2S

max(�

0

x

; �

00

x

) �min(�

0

x

; �

00

x

);

where �

0

, �

00

are nonnegative integers satisfying �

0

� (n � 2)�

0

� �

0

� �

0

;

�

0

��

0

n�2

2 Z and

�

00

� (n� 2)�

00

� �

00

� �

00

;

�

00

��

00

n�2

2Z.

4.3 Metrics with few values

In this section, we consider the distances taking two values with distinct parities, and the

distances taking three values, not all even and one of them being the sum of the other
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two. Namely, given a; b 2Z

+

, we consider the following classes of distances d:

(a) d takes the values 2a; b with b odd,

(b) d takes the values a; b; a+ b with a; b odd,

(c) d takes the values 2a; b; 2a+ b with b odd and b < 2a, and

(d) d takes the values 2a; b; 2a+ b with b odd and 2a < b.

We have the following result.

Theorem 4.30. [Lau93b] For �xed a; b, the hypercube embeddability problem within each

of the classes (a); (b); (c); (d) can be solved in polynomial time.

We sketch the proof of Theorem 4.30 in the rest of the section. Each of the classes

(a); (b); (c); (d) has to be treated separately. Actually, the instance a = b = 1 of the class

(c) was considered in [Avi90], where it is shown that hypercube embeddable distances with

range of values f1; 2; 3g can be recognized in polynomial time. The proof for the class (c)

is essentially the same as in the subcase a = b = 1.

The basic steps of the proof are as follows. Let d be a distance on V

n

from one of

the classes (a); (b); (c); (d). One �rst checks whether d satis�es the parity condition (4.3).

If not, then d is not hypercube embeddable. Otherwise, let (S; T ) be the partition of V

n

provided by Lemma 4.4, with jSj � jT j. Set n(a; b) := a

2

+a+3 if d belongs to the classes

(a),(c), or (d), and n(a; b) := (

a+b

2

)

2

+

a+b

2

+ 3 if d belongs to the class (b).

If n < 2n(a; b)� 1, one can test directly whether d is hypercube embeddable, for instance,

by brute force enumeration (the number of operations in this step depends only on a; b

but may be exponential in a; b).

If n � 2n(a; b) � 1, then jSj � n(a; b). Hence, the restriction of d to the set S is an

h-rigid equidistant metric and, therefore, the points of S should be labeled by the star

embedding (or an equivalent of it) in any h-labeling of d. For the classes (a); (b); (c); (d),

this information enables us to completely characterize the hypercube embeddable distances

on n � 2n(a; b)� 1 points by a set of conditions that can be checked in polynomial time;

see Propositions 4.35, 4.41, 4.43, 4.52, and 4.53.

We have some partial results for the characterization of the hypercube embeddable

distances on n points, for n arbitrary. See Propositions 4.36, 4.37, and 4.42.

4.3.1 Distances with values 2a; b (b odd)

Let d be a distance on V

n

with range of values f2a; bg, where a; b are positive integers with b odd.

Suppose that d is a semimetric and satis�es the parity condition (4.3). Then, b � a and let (S; T )

be the partition of V

n

provided by Lemma 4.4. Then an h-labeling of d consists of two set families

A and B such that

(4.31)

8

>

>

<

>

>

:

A is a (b; b� a)-intersecting system;

B is a (2a; a)-intersecting system;

jA \Bj = a for all A 2 A; B 2 B;

jAj = jSj; jBj = jT j � 1:

(Indeed, label a point j

0

2 T by ;, the remaining points of T by the members of B, and the points

of S by the members of A.) For instance, it is easy to see that such familiesA;B can be constructed

if jT j = 1, or if b � 2a, or if b < 2a and 2 � jT j � jSj �

a

2a�b

+ 1. Note also that, for b < 2a,

min(jT j; jSj � 1) � b

b

2a�b

c holds if d is hypercube embeddable (else, d violates a (2k + 1)-gonal

inequality, for k := min(jT j; jSj � 1)).
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. . . . 

Figure 4.32 Figure 4.33 Figure 4.34

 2a

 b

distance

Proposition 4.35. Let a � b be positive integers with b odd. Let d be a distance on n points

with range of values f2a; bg. If n � 2a

2

+ 2a+ 5, then d is hypercube embeddable if and only if d

satis�es (4.3) and b � 2a, or d is the distance from Figure 4.32.

Proof. Remains to show the \if" part. Suppose that d is hypercube embeddable and b < 2a.

Let A and B satisfying (4.31). By assumption, we have jSj � a

2

+ a+ 3. Hence, A is a (b; b� a)-

intersecting system with jAj � a

2

+ a + 3. By Lemma 3.14, A is a �-system; let A

0

be its

kernel, jA

0

j = b � a. If jT j � 2, then jBj � 1. Let B 2 B and set � := jB \ A

0

j. Then,

jB \ (A nA

0

)j = a� � for all A 2 A. Therefore, 2a = jBj � �+ jAj(a� �) = ajAj � �(jAj � 1) �

ajAj� (b�a)(jAj�1) = (2a� b)jAj+ b�a; which implies jAj �

3a�b

2a�b

=

a

2a�b

+1. This contradicts

the fact that jAj = jSj � a

2

+ a+ 3. Therefore, jT j = 1, i.e., d is the distance from Figure 4.32.

Proposition 4.36. Let a � b be positive integers with b odd and let d be a distance on n points

with range of values f2a; bg. If b � 2a, then d is hypercube embeddable if and only if d satis�es

(4.3). If b <

4

3

a, then the following assertions (i); (ii); (iii) are equivalent.

(i) d is hypercube embeddable.

(ii) d satis�es the parity condition (4.3) and the 5-gonal inequality (i.e., d does not contain as

substructure the distance from Figure 4.34).

(iii) d is one of the distances from Figures 4.32 and 4.33.

Note that Proposition 4.11 is the case a = b = 1 of Proposition 4.36. So, we have a complete

characterization of the hypercube embeddable distances with values in f2a; bg (b odd) except when

a; b satisfy:

4

3

a � b < 2a.

4.3.2 Distances with values a; b; a+ b (a,b odd)

Let d be a distance on V

n

with range of values fa; b; a+ bg, where a; b are positive odd integers

with a < b. Suppose that d is a semimetric and satis�es the parity condition (4.3). Let (S; T ) be

the bipartition of V

n

provided by Lemma 4.4 with jSj � jT j. Then, the pairs ij with d(i; j) = a

form a matching.

Proposition 4.37. If there are at least two pairs at distance a, then the following assertions are

equivalent.

(i) d is hypercube embeddable.

(ii) d satis�es (4.3) and the 5-gonal inequality.

(iii) d is the distance from Figure 4.38.
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Figure 4.38 Figure 4.39

.......

Figure 4.40

distance

a+b

 a

 b

We now suppose that there is exactly one pair (i

0

; j

0

) at distance a, where i

0

2 S, j

0

2 T . In

an h-labeling of d, we can suppose that j

0

is labeled by ; and, then, i

0

should be labeled by a set

A

0

of cardinality a. Therefore, an h-labeling of d exists if and only if there exist two set families

A and B such that

8

>

>

<

>

>

:

A;B are (b;

b�a

2

)� intersecting systems;

jA \Bj =

a+b

2

for all A 2 A; B 2 B;

A \A

0

= B \A

0

= ; for all A 2 A; B 2 B;

jAj = jSj � 1; jBj = jT j � 1:

Proposition 4.41. Let a < b be odd integers and let d be a distance on n � 2(

a+b

2

)

2

+ a+ b+ 7

points with range of values fa; b; a + bg which is not the distance from Figure 4.38. Then, d is

hypercube embeddable if and only if d is the distance from Figure 4.40.

Proof. The distance from Figure 4.40 is clearly hypercube embeddable (take for A a �-system).

Conversely, suppose that d is hypercube embeddable. Then, A is a (b;

b�a

2

)-intersecting system

with jAj � (

a+b

2

)

2

+

a+b

2

+ 3. By Lemma 3.14, A is a �-system; let A

1

be its kernel, jA

1

j =

b�a

2

.

Suppose that jT j � 2 and letB 2 B. Then, jB\(AnA

1

)j � a for allA 2 A, implying b = jBj � ajAj,

in contradiction with the above assumption on jAj. Therefore, jT j = 1, i.e., d is the distance from

Figure 4.40.

Proposition 4.42. Let a; b be odd integers such that a < b < 2a. Let d be a distance with range

of values fa; b; a+ bg. Then, d is hypercube embeddable if and only if d is one of the distances from

Figures 4.38, 4.39, and 4.40.

Proof. Suppose that d is hypercube embeddable and that d is not the distance from Figure 4.38.

Set k := min(jT j; jSj � 1). If k � 2, then k � b

b

a

c (else, d violates a (2k + 1)-gonal inequality).

Hence, k = 1, which implies that d is the distance from Figures 4.40 or 4.39.

4.3.3 Distances with values b; 2a; b+ 2a (b odd, b < 2a)

Proposition 4.43. Let a; b be positive integers with b odd and b < 2a. Let d be a distance on

n � 2a

2

+ 2a+ 5 points with range of values f2a; b; 2a+ bg. The assertions (i),(ii) are equivalent.

(i) d is hypercube embeddable.

(ii) d is a semimetric, d satis�es (4.3) and d does not contain as substructure any of the distances

from Figures 4.44-4.51.

In particular, if b < a, then d is hypercube embeddable if and only if d is a semimetric and satis�es

(4.3).
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. . . .
   

-2a

        4a

   1     1            1     1-2a

Figure 4.44

  2

 -1   -1    -1     1     1

Figure 4.45

    3   -1

 -2    -2     1     1     1

Figure 4.46

    1            1         -1

-1    1

Figure 4.47

  1    1

    -1          -1            1

Figure 4.48

  1    -2

           1     1    1     -1

Figure 4.49

  -3    1     1

         2     2    -1    -1

Figure 4.50

2

. . . . .

     a   + a + 3

Figure 4.51

In Figures 4.44-4.51, a plain edge represents distance 2a+ b, a dotted edge distance b and no edge

means distance 2a.

Proof. For the implication (i) =) (ii), we check that none of the distances from Figures 4.44-4.51

is hypercube embeddable. Indeed, the distances from Figures 4.44-4.50 violate some hypermetric

inequality. The numbers assigned to the nodes in Figures 4.44-4.50 indicate a choice of integers

b

i

's for which the hypermetric inequality (4.7) is violated. For instance, for the distance from

Figure 4.44,

P

i;j2V

n

b

i

b

j

d(i; j) = 4a(2a(2a� b)� b) � 4a > 0 since 2a� b � 1. The distance from

Figure 4.51 is not hypercube embeddable by Proposition 4.35 (and its proof).

We show the implication (ii) =) (i). As d satis�es the parity condition, V

n

is partitioned into

S [ T with jSj � jT j, d(i; j) = 2a for (i; j) 2 S

2

[ T

2

, d(i; j) 2 fb; b+ 2ag for (i; j) 2 S � T . Set

s := jSj. For j 2 T , set

N

b

(j) := fi 2 S j d(i; j) = bg:

For v 2 f0; 1; 2; : : :; s � 1; sg, set

T

v

:= fj 2 T j jN

b

(j)j = vg:

We group below several observations on the sets T

v

.
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(i) T

s�1

= ; (since d does not contain the con�guration from Figure 4.44).

(ii) jT

s

j � 1 (since d does not contain the con�guration from Figure 4.51).

(iii) All T

v

are empty except maybe T

0

; T

1

; T

2

; T

s

(indeed, jN

b

(j)j � 2 or jN

b

(j)j � s � 1 for all

j 2 T , since d does not contain the substructure from Figure 4.45).

(iv) At most one of T

0

and T

2

is not empty (since d does not contain the substructure from

Figure 4.46).

(v) If jT

1

j � 2, then

(v1) either all N

b

(j) (j 2 T

1

) are equal,

(v2) or all N

b

(j) (j 2 T

1

) are distinct

(since d does not contain the substructure from Figure 4.47).

(vi) If j 6= j

0

2 T

2

, then jN

b

(j) \N

b

(j

0

)j = 1 (use Figures 4.47 and 4.48).

(vii) If j 2 T

1

and j

0

2 T

2

, then N

b

(j) \N

b

(j

0

) 6= ; (by Figure 4.47).

(viii) If b < a, then T

2

= T

s

= ; (by the triangle inequality).

We show how to construct an h-labeling of d. Let A

i

(i 2 S) be disjoint sets of cardinality a.

Set A := [

i2S

A

i

. Label the elements of S by the A

i

's.

Suppose �rst that b < a. Then, by (viii), d(i

1

; j

1

) = : : : = d(i

r

; j

r

) = b for some i

1

; : : : ; i

r

2 S,

j

1

; : : : ; j

r

2 T , 1 � r � jT j. Let X, B

j

(j 2 T n fj

1

; : : : ; j

r

g) be pairwise disjoints sets that are

disjoint fromA and satisfy jXj = b, jB

j

j = a. Label j

1

; : : : ; j

r

by A

i

1

[X; : : : ; A

i

r

[X, respectively,

and j 2 T n fj

1

; : : : ; j

r

g by X [B

j

. This gives an h-labeling of d.

We now suppose that b � a. Let X be a set disjoint from A with jXj = b� a.

- If T

s

6= ; then T

s

= fxg (by (i)); label x by X.

- Label each element j 2 T

2

by

S

i2N

b

(j)

A

i

[X (this gives already an h-labeling of the projection

of d on S [ T

s

[ T

2

(by (vi))).

- Suppose that all N

b

(j) (j 2 T

1

) are equal to, say, fi

0

g, as in (v1). Let Y

j

(j 2 T

1

) be pairwise

disjoint sets that are disjoint from A and X and have cardinality a. Label j 2 T

1

by A

i

0

[X [Y

j

.

If all N

b

(j) (j 2 T

1

) are distinct as in (v2), then label j 2 T

1

by

S

i2N

b

(j)

A

i

[X [ Y , where Y is

a set disjoint from A and X with jY j = a.

(In both cases, we have obtained an h-labeling of the projection of d on S[T

s

[T

2

[T

1

(by (vii)).)

- Suppose that T

0

6= ;. Then, T

2

= ; by (iv). Let Z

k

(k 2 T

0

) be pairwise disjoint sets that are

disjoint from all the sets constructed so far and have cardinality a.

If we are in case (v1), then jT

1

j � 1 or (jT

1

j � 2 and jT

0

j = 1). (Indeed, if jT

1

j; jT

2

j � 2, then d

contains the substructure from Figure 4.50 and, if jT

1

j � 3, jT

0

j = 1, then we have the substructure

from Figure 4.49.) If jT

1

j = 1, T

1

= fjg, label k 2 T

0

by X [ Y

j

[ Z

k

. If jT

1

j = 2, T

1

= fj; j

0

g,

then label the unique element k 2 T

0

by X [ Y

j

[ Y

j

0

.

Else, we are in case (v2). Then, label k 2 T

0

by X [ Y [ Z

k

.

In both cases, we have constructed an h-labeling of d.

Observe that the exclusion of the distance from Figure 4.51 is used only for showing that

jT

s

j � 1, i.e., that at most one point is at distance b from all points of S. Consider the distance

d

s

on s + 2 points which has the same con�guration as in Figure 4.51 but with s nodes on the

top level instead of a

2

+ a + 3. Let s(a; b) denote the largest integer s such that d

s

is hypercube

embeddable. Then, Proposition 4.43 remains valid if we exclude the distance d

s(a;b)+1

instead of

excluding the distance d

a

2

+a+3

from Figure 4.51. Note that 2 �

a

2a�b

+ 1 � s(a; b) � a

2

+ a + 2,

with s(a; b) = 2 if b <

4

3

a (use Proposition 4.36). This implies the following result, which is a

direct extension of the result given in [Avi90] for the subcase a = b = 1.

Proposition 4.52. Let a; b be positive integers with b odd and b <

4

3

a. Let d be a distance on

n � 2a

2

+2a+5 points with range of values f2a; b; 2a+bg. The following assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d is `

1

-embeddable and satis�es (4.3).
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(iii) d is hypermetric and satis�es (4.3).

(iv) d satis�es (4.3) and the (2k + 1)-gonal inequalities for 2k + 1 = 5; 7; 11; 8a� 1.

(v) d is a semimetric, d satis�es (4.3), and d does not contain as substructure any of the distances

from Figures 4.34 and 4.44-4.50.

4.3.4 Distances with values 2a; b; 2a+ b (b odd, 2a < b)

Let a; b be positive integers such that b is odd and 2a < b. Let d be a distance on n points with

range of values f2a; b; 2a+ bg. We suppose that d satis�es the parity condition (4.3). Then, V

n

is partitioned into V

n

= S [ T with d(i; j) = 2a for (i; j) 2 S

2

[ T

2

, d(i; j) 2 fb; b + 2ag for

(i; j) 2 S � T , and jT j � jSj. Set

I := fj 2 T j d(i; j) = b+ 2a for all i 2 Sg; U := fj 2 T j d(i; j) = b for all i 2 Sg;

and M := T n I [ U . For j 2 T , set

N

b

(j) := fi 2 S j d(i; j) = bg:

Two distinct elements j; j

0

2M are said to be twins (resp. pseudotwins, symmetric) if N

b

(j) =

N

b

(j

0

) (resp. jN

b

(j)4N

b

(j

0

)j = 1, jN

b

(j) nN

b

(j

0

)j = jN

b

(j

0

) n N

b

(j)j = 1). A subset M

0

� M is

called a twin class (resp. a symmetric class) if any two distinct elements of M

0

are twins (resp.

symmetric).

Proposition 4.53. With the notation above, suppose d is a distance on n � 2a

2

+2a+5 points.

Then, d is hypercube embeddable if and only if (i) or (ii) holds.

(i) M = ; and jU j �

b

a

if jIj � 2, jU j � f(2a; a; a+ b) if jIj = 1.

(ii) M = T , any two elements of T are twins, pseudotwins, or symmetric, and

- either jN

b

(j)j = v for all j 2 T for some 1 � v �

b

a

+ 1 and T is a twin class or a symmetric

class,

- or jN

b

(j)j 2 fv; v + 1g for all j 2 T for some 1 � v �

b

a

. Set T

0

= fj 2 T : jN

b

(j)j = vg

and T

00

= T n T

0

. Then, either jT

0

j = 1, T

00

is a symmetric class, or T

00

is a twin class with

jT

00

j �

b

a

� v + 1); or T

0

is a twin class with jT

0

j � 2 and T

00

is a symmetric class; or T

0

is a

symmetric class with jT

0

j = 2 and T

00

is a twin class with jT

00

j �

b

a

� v + 1.

We refer to [Lau93b] for the proof. Recall that f(2a; a; a+b) denotes the maximum cardinality

of a (2a; a)-intersecting system consisting of subsets of V

a+b

. Hence, the condition jU j � f(2a; a; a+

b) occurring in Proposition 4.53 (i) is equivalent to the existence of a (2a; a)-intersecting system of

cardinality jU j on V

a+b

. This is equivalent to the existence of a (2a; a; jU j)-design with a+ b blocks

(recall Remark 3.10). Hence, by Theorem 3.3, such a design exists only if jU j � a + b. Therefore,

its existence can be checked, e.g., by brute force enumeration.

Consider, for instance, the distance d from Figure 4.54. If jSj � a

2

+a+3, then d is hypercube

embeddable if and only if jU j � f(2a; a; a+ b), i.e., there exists a (2a; a)-intersecting system on

V

a+b

of cardinality jU j.
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 distance

 b+2a

   b

            S

   U

. . . . 

. . . . .
  2a

Figure 4.54

4.4 Metrics with restricted extremal graph

let d be a metric on V

n

. Given distinct i; j 2 V

n

, the pair ij is said to be extremal for

d if there does not exist k 2 V

n

n fi; jg such that d(i; k) = d(i; j) + d(j; k) or d(j; k) =

d(i; j)+d(i; k). Then, the extremal graph of d is de�ned as the subgraph of K

n

induced

by the set of extremal edges of d.

The notion of extremal graph turns out to be useful when studying the metrics that

can be decomposed as a nonnegative (integer) sum of cut semimetrics.

Theorem 4.55. Let d be a metric on V

n

whose extremal graph is either K

4

, or C

5

, or a

union of two stars. Then,

(i) [Pap76] d is `

1

-embeddable, i.e., d 2 CUT

n

.

(ii) [Kar85] d is hypercube embeddable if and only if d satis�es the parity condition (4.3).

(A graph is a union of two stars if its edges can be covered by two nodes.)

Note that it su�ces to show Theorem 4.55 (ii), as it implies (i). The proof we present

was given by Schrijver [Sch91]. It is much shorter than Karzanov's original proof, but it

is nonconstructive. Karzanov's proof yields an algorithm permitting to construct a Z

+

-

realization of d in O(n

3

) time (if one exists). Schrijver shows the following result, from

which Theorem 4.55 will then follow easily.

Theorem 4.56. Let G = (V;E) be a connected bipartite graph and, for W � V , let

H = (W;F ) be a graph which is either K

4

, C

5

, or a union of two stars. Then, there

exist pairwise edge disjoint cuts �

G

(S

1

); : : : ; �

G

(S

t

) in G such that, for each (r; s) 2 F , the

number of cuts �

G

(S

h

) (1 � h � t) separating r and s is equal to the distance d

G

(r; s) from

r to s in G. (Here, the symbol �

G

(S) denotes the cut in G which consists of the edges of

G having one endnode in S and the other endnode in V n S.)

Proof. Let G be a counterexample with smallest value of jEj. Then,

(4.57)

for each ; 6= S � V; there exist (r; s) 2 F and a path P

connecting r and s in G such that jP n �

G

(S)j � d

G

(r; s)� 2

(where P denotes the edge set of the path). Suppose S is a subset of V for which (4.57)

does not hold. Then, for each (r; s) 2 F , jP \ �

G

(S)j = 1 (resp. 0) for each shortest

rs-path P if �

G

(S) separates (resp. does not separate) r and s. Let G

0

denote the
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connected bipartite graph obtained from G by contracting the edges of �

G

(S). Hence,

for (r; s) 2 F , d

G

0

(r; s) = d

G

(r; s) � 1 if �

G

(S) separates r; s and d

G

0

(r; s) = d

G

(r; s)

otherwise. As G

0

has fewer edges than G, by Theorem 4.56, we can �nd paiwise edge

disjoint cuts �

G

0

(S

0

1

); : : : ; �

G

0

(S

0

t

) in G

0

such that d

G

0

(r; s) is equal to the number of cuts

�

G

0

(S

0

h

) separating r and s. These t cuts yield t cuts �

G

(S

h

) in G which, together with the

cut �

G

(S), are pairwise disjoint and satisfy: for (r; s) 2 F , the number of cuts �

G

(S

h

); �

G

(S)

separating r and s is equal to d

G

(r; s). This contradicts our assumption that G is a

counterexample to Theorem 4.56.

Claim 4.58. For all i 6= j 2 V , there exists (r; s) 2 F such that fi; jg \ fr; sg = ; and

d

G

(i; j) + d

G

(r; s) � max(d

G

(i; r) + d

G

(j; s); d

G

(i; s) + d

G

(j; r)):

Proof of Claim 4.58. Let i 6= j 2 V . Set X := fk 2 V j d

G

(i; j) = d

G

(i; k)+ d

G

(j; k)g.

Suppose �rst that X = V . By (4.57) applied to fig, we �nd (r; s) 2 F and a rs-path P

such that jP n �

G

(fig)j � d

G

(r; s)� 2. Hence, P is a shortest rs-path and i is an internal

node of P and, thus, i 62 fr; sg. Using the fact that X = V , one obtains that j 62 fr; sg and

d

G

(i; j)+d

G

(r; s) = d

G

(i; r)+d

G

(j; r)+d

G

(r; s) � d

G

(r; i)+d

G

(s; j); the other inequality

of Claim 4.58 follows in the same way.

Suppose now that X 6= V . Let G

0

denote the graph obtained from G by contracting

the edges of �

G

(X). By (4.57) applied to X , there exists (r; s) 2 F such that

d

G

0

(r; s) � d

G

(r; s)� 2:

Moreover,

(4.59)

(

d

G

0

(i; s) � d

G

(i; s)� 1; d

G

0

(r; j)� d

G

(r; j)� 1;

d

G

0
(j; s) � d

G

(j; s)� 1; d

G

0
(r; i)� d

G

(r; i)� 1:

We show that d

G

0
(i; s) � d

G

(i; s) � 1; the other inequalities of (4.59) can be proved in

the same way. Let P be a path connecting i and s in G such that jP n �

G

(X)j = d

G

0

(i; s)

and with smallest value of jP \ �

G

(X)j. Suppose that jP \ �

G

(X)j � 2. Let P

0

denote

the smallest subpath of P starting at i and such that jP

0

\ �

G

(X)j = 2. Let k denote the

other endnode of P

0

, so k 2 X , and set P

00

:= P n P

0

. As P

0

is not contained in X , we

have d

G

(i; k) � jP

0

j � 1 and, as G is bipartite, d

G

(i; k) � jP

0

j � 2. Let Q

0

be a shortest

path from i to k in G. Then, jP

0

j � 2 = d

G

0

(i; k) � jQ

0

n �

G

(X)j � jP

0

j � 2� jQ

0

\ �

G

(X)j,

which implies Q

0

\ �

G

(X) = ; and jQ

0

j = d

G

(i; k) = jP

0

j � 2. Consider the path Q

from i to s obtained by juxtaposing Q

0

and P

00

. Then, jQ n �

G

(X)j = jP n �

G

(X)j and

jQ\ �

G

(X)j = jP \ �

G

(X)j� 2, contradicting our choice of P . Therefore, jP \ �

G

(X)j � 1.

This shows that d

G

0

(i; s) = jP n �

G

(X)j � jP j � 1 � d

G

(i; s)� 1.

From d

G

0
(r; s) � d

G

(r; s)� 2 and (4.59), we deduce that fi; jg\ fr; sg = ;. Moreover,

there exists a rs-path P in G such that jP n �

G

(X)j = d

G

0

(r; s) and P contains a node

k 2 X . Hence,

d

G

(r; s) + d

G

(i; j) � d

G

0

(r; s) + 2 + d

G

(i; j)

= d

G

0

(r; k) + d

G

0

(s; k) + 2 + d

G

(i; k) + d

G

(j; k)

� d

G

0
(r; i) + d

G

0
(s; j) + 2 � d

G

(r; i) + d

G

(s; j)

(using (4.59) for the last inequality). The other inequality from Claim 4.58 follows in the

same way.
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From Claim 4.58, we deduce, in particular, that H is not a union of two stars. Hence,

H is either K

4

or C

5

.

Suppose �rst that H = K

4

. From Claim 4.58, we obtain

(4.60) d

G

(i; j) + d

G

(h; k) = d

G

(i; h) + d

G

(j; k) for all distinct i; j; h; k 2 W:

For i 2 W , set f(i) :=

1

2

(d

G

(i; h)+d

G

(i; k)�d

G

(h; k)) where h 6= k 2 W nfig; the de�nition

does not depend on the choice of h; k by (4.60). Then, d

G

(i; j) = f(i)+f(j) for i 6= j 2 W .

Suppose f(i) 6= 0. By (4.57) applied to fig, there exists (r; s) 2 F and a rs-path P such

that jP n �

G

(fig)j � d

G

(r; s)� 2. Hence, P is a shortest rs-path passing through i. Thus,

jP j = d

G

(r; s) = f(r) + f(s), and jP j = d

G

(i; r)+ d

G

(i; s) = f(r) + f(s) + 2f(i), implying

f(i) = 0. We obtain a contradiction.

Suppose now that H = C

5

. Say, W := fr

1

; r

2

; r

3

; r

4

; r

5

g and F := f(r

i

; r

i+1

) j 1 � i �

5g, where the indices are taken modulo 5. Applying Claim 4.58 to r

i

; r

i+2

, we obtain that

d

G

(r

i

; r

i+2

) + d

G

(r

i+3

; r

i+4

) � d

G

(r

i

; r

i+3

) + d

G

(r

i+2

; r

i+4

);

d

G

(r

i

; r

i+2

) + d

G

(r

i+3

; r

i+4

) � d

G

(r

i

; r

i+4

) + d

G

(r

i+2

; r

i+3

)

for 1 � i � 5 (as (r

i+3

; r

i+4

) is the only edge of C

5

disjoint from r

i

and r

i+2

). Adding up

these ten inequalities, we obtain the same sum on both sides of the inequality sign. Hence,

each of the above inequalities is, in fact, an equality. Hence, (4.60) holds again, yielding

a contradiction as above.

Proof of Theorem 4.55. Let d be a integral metric on V

n

satisfying the parity condi-

tion (4.3) and whose extremal graph H := (W;F ) is either K

4

, or C

5

, or a union of two

stars. We show that d can decomposed as a nonnegative integer sum of cut semimetrics.

Consider the complete graph K

n

on V

n

. We construct a connected bipartite graph G by

subdividing the edges of K

n

in the following way: For all distinct i; j 2 V

n

, replace the

edge ij by a path P

ij

consisting of d(i; j) edges. The fact that G is bipartite follows from

the parity condition. By Theorem 4.56, there exist edge disjoint cuts �

G

(S

h

) (1 � h � t) in

G such that, for each (r; s) 2 F , d

G

(r; s) is equal to the number of cuts �

G

(S

h

) separating

r and s. Setting T

h

:= S

h

\ V

n

, we obtain that, for each (r; s) 2 F ,

(4.61) d(r; s) = d

G

(r; s) =

X

1�h�k

�(T

h

)(r; s):

Moreover, for all i 6= j 2 V

n

, we have

(4.62) d(i; j)�

X

1�h�t

�(T

h

)(i; j):

Indeeed, the number of cuts �

G

(S

h

) separating r and s is less than or equal to the number

of cuts �

G

(S

h

) intersecting the path P

ij

which, in turn, is less than or equal to the length

d(i; j) of P

ij

since the cuts �

G

(S

h

) are pairwise edge disjoint. In fact, equality holds in

(4.62). To see it, let i 6= j 2 V

n

and let P := (i

0

; : : : ; i

k

) be a path in K

n

which contains the

edge (i; j) and is a geodesic for d (i.e., P is a shortest - with respect to the length function d -

path between its extremities i

0

and i

k

, that is, d(i

0

; i

k

) =

P

0�m�k�1

d(i

m

; i

m+1

)). Choose

such a path P having maximum number of edges. Then, the pair (i

0

; i

k

) is extremal for d.

For, if not, there exists x 2 V

n

n fi

0

; i

k

g such that, e.g., d(i

0

; x) = d(i

0

; i

k

) + d(x; i

k

) and,
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then, (i

0

; : : : ; i

k

; x) is a geodesic containing (i; j) and longer than P . Then, using (4.62),

we have

d(i

0

; i

k

) =

k�1

X

m=0

d(i

m

; i

m+1

) �

k�1

X

m=0

t

X

h=1

�(T

h

)(i

m

; i

m+1

):

But,

k�1

X

m=0

t

X

h=1

�(T

h

)(i

m

; i

m+1

) =

t

X

h=1

k�1

X

m=0

�(T

h

)(i

m

; i

m+1

) �

t

X

h=1

�(T

h

)(i

0

; i

k

) = d(i

0

; i

k

);

where the last equality follows from (4.61) as the edge (i

0

; i

k

) belongs to F . Therefore,

equality holds in (4.62) for each of the edges (i

m

; i

m+1

) of P and, in particular, for the

edge (i; j). This shows that equality holds in (4.62) for all i 6= j 2 V

n

. Therefore,

d =

P

1�h�t

�(T

h

), showing that d is hypercube embeddable.

Remark 4.63. One can check that a graph H with no isolated node is K

4

, C

5

, or a union

of two stars if and only if H does not contain as a subgraph the two graphs from Fig-

ure 4.64. The exclusion of these two graphs is necessary for the validity of Theorem 4.55.

Indeeed, let d

1

be the path metric of the complete bipartite graph K

2;3

; then, d is not hy-

percube embeddable (as d does not satisfy the 5-gonal inequality) and its extremal graph

is the graph (a) from Figure 4.64. Let d

2

be the path metric of the graph K

3;3

n e; then

its extremal graph is the graph (b) from Figure 4.64 and d

2

is not hypercube embeddable

(as it contains d

1

as a subdistance). (In fact, both d

1

and d

2

lie on extreme rays of the

metric cone.)

           (a)                               (b)

Figure 4.64

5 Cut lattices, quasi h-distances and Hilbert bases

We consider in this section several questions related to the notion of hypercube embed-

ding. A possible way of relaxing this notion is to look for integer combinations rather

than nonnegative integer combinations of cut semimetrics. In other words, one considers

the lattice L

n

generated by all cut semimetrics on V

n

. We recall in Section 5.1 the char-

acterization of L

n

, which is an easy result, namely, L

n

consists of the integer distances

satisfying the parity condition. We also present the characterization of two sublattices of

L

n

, namely, of the sublattice generated by all even cut semimetrics and of the sublattice

generated by all k-uniform cut semimetrics.
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Clearly, for a distance d on V

n

,

(5.1) d is hypercube embeddable =) d 2 CUT

n

\ L

n

:

We consider in Section 5.2 quasi h-distances, which are the distances d that belong to

CUT

n

\ L

n

but are not hypercube embeddable. As was mentioned in Theorem 4.5, the

implication (5.1) is an equivalence for any distance d on n � 5 points. This fact can be

reformulated as saying that, for n � 5, the family of cut semimetrics on V

n

is a Hilbert

base. We consider in Section 5.3 the more general question of characterizing the graphs

whose family of cuts is a Hilbert base.

5.1 Cut lattices

Set

L

n

:= f

X

S�V

n

�

S

�(S) j �

S

2Zfor all S � V

n

g;

L

n

is called the cut lattice. The next result gives a characterization of L

n

.

Proposition 5.2. [Ass82] Let d 2Z

E

n

. Then, d 2 L

n

if and only if d satis�es the parity

condition (4.3).

Proof. The parity condition is clearly a necessary condition for membership in L

n

.

Conversely, suppose d is integral and satis�es the parity condition. Then, V

n

can be

partitioned into V

n

= S [ T in such a way that d(i; j) is odd if i 2 S; j 2 T and d(i; j)

is even otherwise. Set d

0

:= d + �(S). Then, all components of d

0

are even. As d

0

=

P

1�i<j�n

d

0

(i;j)

2

(�(fig)+�(fjg)��(fi; jg)), we deduce that d

0

2 L

n

and, thus, d = d

0

��(S)

belongs to L

n

too.

Complete characterizations are also known for several sublattices of L

n

. Given an

integer k, the k-uniform cut lattice L

k

n

is de�ned as the sublattice of L

n

generated by

the cut semimetrics �(S) for S � V

n

with jSj 2 fk; n� kg. The following characterization

of the k-uniform cut lattice is given in [DL92], based on a result of Wilson [Wil73].

Proposition 5.3. Let k be an integer such that 2 � k � n and k 6=

n

2

and let d 2 Z

E

n

.

Then, d belongs to the k-uniform cut lattice L

k

n

if and only if d satis�es (i),(ii),(iii):

(i)

P

1�i<j�n

d(i; j)� 0 (mod k(n� k)),

(ii) D

i

:=

1

n�2k

�

P

1�j�n;j 6=i

d(i; j)�

1

n�k

P

1�r<s�n

d(r; s)

�

2Zfor all i 2 V

n

,

(iii) D

i

+D

j

+ d(i; j)� 0 (mod 2) for all i; j 2 V

n

.

In the case k = b

n

2

c, we have the following result.

Proposition 5.4. Let d 2Z

E

n

.

(i) If n = 2k + 1, then d 2 L

k

n

if and only if

P

1�i<j�n

d(i; j)� 0 (mod k(n� k)).

(ii) If n = 2k, then d 2 L

k

n

if and only if (iia),(iib) hold:

(iia)

P

1�r<s�n

d(r; s) = k(

P

1�j�n;j 6=i

d(i; j)) for each 1 � i � n,
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(iib)

P

1�r<s�n

d(r; s) � 0 (mod k

2

).

Proof. For (i), observe that the conditions (ii); (iii) from Proposition 5.3 are implied by

the condition (i). The conditions (iia); (iib) are clearly necessary for membership in L

k

n

.

Conversely, suppose that d satis�es (iia); (iib) and let d

0

denote its projection on the set

f1; : : : ; n� 1g. From (iia), we obtain

(5.5)

X

1�r<s�n�1

d

0

(r; s) = (k� 1)

X

1�i�n�1

d(i; n):

This implies that

P

1�r<s�n�1

d

0

(r; s) � 0 (mod k(k�1)) since

P

1�i�n�1

d(i; n) � 0 (mod k)

by (iia; )(iib). Using (i), we deduce that d

0

2 L

k

n�1

. Hence, d

0

=

P

S�f1;:::;n�1g;jSj=k

�

S

�(S)

with �

S

2 Zfor all S. We show that d =

P

S

�

S

�(S). As

P

1�r<s�n�1

d

0

(r; s) = k(k �

1)(

P

S

�

S

), (5.5) yields:

P

1�i�n�1

d(i; n) = k(

P

S

�

S

). Then, by (iia),

P

1�r<s�n

d(r; s) =

k

2

(

P

S

�

S

) and

P

1�j�n;j 6=i

d(i; j) = k(

P

S

�

S

) for each i = 1; : : : ; n. We compute, for

instance, d(1; n). The above relations yield: d(1; n) = k(

P

S

�

S

) �

P

2�j�n�1

d(1; j).

Using the value of d(1; j) = d

0

(1; j) given by the decomposition of d

0

, we obtain that

d(1; n) =

P

Sj12S

�

S

. This shows that d =

P

S

�

S

�(S), i.e., that d 2 L

k

n

.

Suppose n is even. Then, the even cut lattice L

ev

n

is de�ned as the sublattice of L

n

generated by the cut semimetrics �(S) for S � V

n

with jSj even. Similarly, the odd cut

lattice L

od

n

is the lattice generated by the cut semimetrics �(S) for S � V

n

with jSj odd.

We give a characterization of the even cut lattice.

Proposition 5.6. [DLP92] Let n � 6 be an even integer and let d 2 Z

E

n

. Then, d

belongs to the even cut lattice L

ev

n

if and only if d satis�es the parity condition (4.3) and

(i),(ii):

(i)

P

1�i<j�n

d(i; j)� 0 (mod 4),

(ii)

P

i<j;i;j2V

n

nfkg

d(i; j)�

P

i2V

n

nfkg

d(i; k) � 0 (mod 8) for all k 2 V

n

if n � 0(mod 4),

and d(h; k) +

P

i<j;i;j2V

n

nfh;kg

d(i; j)�

P

i2V

n

nfh;kg

(d(i; h) + d(i; k)) � 0 (mod 8) for all

h 6= k 2 V

n

if n � 2(mod 4).

A characterization of the odd cut lattice is known only in the case n = 6; then, L

od

6

is

the lattice in R

15

generated by the 16 cut semimetrics �(fig) (1 � i � 6) and �(f1; i; jg)

(2 � i < j � 6). We need the following notation. Given distinct a; b; c 2 V

6

, let v

a;bc

2 R

E

6

be the vector de�ned by

8

>

<

>

:

v

a;bc

ab

= v

a;bc

ac

= 1; v

a;bc

bc

= 2;

v

a;bc

ij

= 2 for i 6= j 2 V

6

n fa; b; cg;

v

a;bc

ai

= �2; v

a;bc

bi

= v

a;bc

ci

= �1 for i 2 V

6

n fa; b; cg:

Consider the conditions:

(5.7) (v

a;bc

)

T

x � 0 for all distinct a; b; c 2 V

6

;

(5.8) (v

a;bc

)

T

x � 0 (mod 4) for all distinct a; b; c 2 V

6

;



40 M. Deza and M. laurent

(5.9) (v

1;bc

)

T

x� (v

1;b

0

c

0

)

T

x � 0 (mod 12) for 2 � b < c � 6; 2 � b

0

< c

0

� 6:

The next result gives the characterization of the odd cut lattice and also of the cone and

integer cone generated by the odd cut semimetrics on V

6

. As a consequence, it shows that

the family of odd cut semimetrics on V

6

is a Hilbert base.

Proposition 5.10. [DL93a] (i) Let d 2 R

E

6

+

. Then,

d 2 f

X

1�i�6

�

i

�(fig) +

X

2�i<j�6

�

ij

�(f1; i; jg) j �

i

; �

ij

� 0 for all i; j 2 V

6

g if and only if d

satis�es (5.7).

(ii) Let d 2Z

E

6

. Then, d 2 L

od

6

if and only if d satis�es (5.8),(5.9).

(iii) Let d 2Z

E

6

+

. Then, d 2 f

X

1�i�6

�

i

�(fig)+

X

2�i<j�6

�

ij

�(f1; i; jg) j �

i

; �

ij

2Z

+

for all i; j 2

V

6

g if and only if d satis�es (5.7),(5.8),(5.9).

5.2 Quasi h-distances

Let d be a distance on V

n

. Then, d is called a quasi h-distance if d 2 CUT

n

\L

n

and d

is not hypercube embeddable. In other words, d can be decomposed both as a nonnegative

combination of cut semimetrics and as an integer combination of cut semimetrics, but not

as a nonnegative integer combination of cut semimetrics. The smallest integer � such that

�d is hypercube embeddable is called the minimum scale of d and is denoted by �(d).

As stated in Theorem 4.5, there are no quasi h-distances on n � 5 points. There are

several ways of constructing quasi h-distances on n � 6 points.

Quasi h-distances can be constructed, for instance, using the antipodal extension oper-

ation. Let d be a distance on V

n

and let � 2 R

+

. Then, its antipodal extension ant

�

(d)

is the distance on V

n+1

de�ned by ant

�

(d)(1; n+1) = �, ant

�

(d)(i; n+1) = ��d(1; i) for

1 � i � n, and ant

�

(d)(i; j) = d(i; j) for 1 � i < j � n. One can check (see [DL92]) that,

if d is hypercube embeddable and � 2 Z

+

such that s

`

1

(d) � � < s

h

(d), then ant

�

(d) is

a quasi h-distance (see (1.4) and (1.5) for the de�nition of s

h

(d); s

`

1

(d)). As an example,

for n � 6, the distance

d

�

n

:= 2d(K

n

ne) = ant

4

(211

n�1

)

(taking value 2 on all pairs except value 4 on the pair of nodes of the edge e) is a quasi

h-distance.

The gate extension operation permits also to construct quasi h-distances. If d is a

distance on V

n

and � 2 R

+

, its gate extension gat

�

(d) is the distance on V

n+1

de�ned by

gat

�

(d)(1; n+1) = �, gat

�

(d)(i; n+1) = �+d(1; i) for 1 � i � n, and gat

�

(d)(i; j) = d(i; j)

for 1 � i < j � n. Then, for � 2Z

+

, gat

�

(d) is a quasi h-distance if and only if d is a quasi

h-distance. This implies, in particular, that there is an in�nity of quasi h-distances on n

points for all n � 7. Indeed, all gate extensions of d

�

6

= 2d(K

6

ne) are quasi h-distances.

Other examples of quasi h-distances on 6 points can be constructed, for instance, as

follows.

Lemma 5.11. [Lab]Let e be an edge of K

6

and let v be a node of K

6

which is not adjacent
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to e. Then, the distance 2d(K

6

ne)+m�(fvg) is a quasi h-distance for each integerm � 0.

Proof. Suppose K

6

is the complete graph on V

6

= f1; : : : ; 6g, e is the edge (1; 6) and v

is the node 2. Set d := 2d(K

6

ne) + m�(fvg). Let d =

P

S

�

S

�(S) be a Z

+

-realization of

d, with �

S

2 Z

+

. As d satis�es the triangle equality: d

16

= d

1i

+ d

i6

for i = 3; 4; 5, we

deduce that �

S

= 0 if S is one of the sets: 3, 4, 5, 16, 23, 24, 25, 34, 35, 45, 126, 136, 146,

and 156. Hence, d =

P

S2S

�

S

�(S), where S may contain the sets: 1, 2, 6, 12, 13, 14, 15,

26, 36, 46, 56, 123, 124, 125, 134, 135, 145. By computing d

12

, d

26

, and d

16

, we obtain,

respectively,

m+ 2 = �

1

+ �

2

+ �

13

+ �

14

+ �

15

+ �

26

+ �

134

+ �

135

+ �

145

;

m+ 2 = �

2

+ �

6

+ �

12

+ �

36

+ �

46

+ �

56

+ �

123

+ �

124

+ �

125

;

4 =

X

S2S

�

S

� �

2

:

Adding the �rst two relations and substracting the third one, we obtain that �

2

= m.

Therefore, if d is hypercube embeddable, then so is d�m�(f2g). This contradicts the fact

that 2d(K

6

ne) is a quasi h-distance.

Hence, there is also an in�nity of quasi h-distances on 6 points. However, we have the

following conjecture:

Conjecture 5.12. Every quasi h-distance on V

6

is a nonnegative integer sum of cuts

and of the distances 2d(K

6

ne), for e edge of K

6

.

In fact, if this conjecture holds, then the only quasi h-distances on V

6

are those con-

structed in Lemma 5.11.

Proposition 5.13. [Lab] If Conjecture 5.12 holds, then the only quasi h-distances on V

6

are of those of the form: 2d(K

6

ne) +m�(fvg), where e is an edge of K

6

, v is a node of

K

6

not adjacent to e, and m 2Z

+

.

The proof uses the identities (a)-(i) below, which show that all pertubations of 2d(K

6

ne)

(obtained by adding a cut semimetric), other than the one considered in Lemma 5.11, are

hypercube embeddable. For 1 � i < j � n, let e

ij

denote the edge ij of K

6

. Then,

(a) 2d(K

6

ne

12

) + �(f1g) = �(f2g) + �(f1; 3g) + �(f1; 4g) + �(f1; 5g) + �(f1; 6g);

(b) 2d(K

6

ne

12

) + �(f1; 2g) = 2�(f1g) + 2�(f2g) + �(f3g) + �(f4g) + �(f5g) + �(f6g);

(c) 2d(K

6

ne

12

) + �(f1; 3g) = �(f2g) + �(f1; 3g)+ �(f3; 4; 5g)+ �(f3; 4; 6g)+ �(f4; 5; 6g);

(d) 2d(K

6

ne

12

) + �(f3; 4g) = �(f1g) + �(f3g) + �(f4g) + �(f2; 5g)+ �(f2; 6g)+ �(f2; 3; 4g);

(e)

2d(K

6

ne

12

) + �(f1; 2; 3g) = �(f1g) + �(f2g) + �(f4g) + �(f5g) + �(f6g) + �(f1; 3g)

+�(f2; 3g);

(f) 2d(K

6

ne

12

) + �(f1; 3; 4g) = �(f1; 3g)+ �(f1; 4g)+ �(f2; 5g)+ �(f2; 6g)+ �(f1; 5; 6g);

(g)

2d(K

6

ne

12

) + 2d(K

6

ne

23

) = �(f1g) + �(f2; 3g)+ �(f2; 4g)+ �(f2; 5g)+ �(f3; 6g)

+�(f1; 2; 6g)+ �(f1; 3; 4g)+ �(f1; 3; 5g);
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(h)

2d(K

6

ne

12

) + 2d(K

6

ne

34

) = �(f1g) + �(f2; 3g)+ �(f2; 4g)+ �(f3; 5g)+ �(f4; 6g)

+�(f1; 3; 4g)+ �(f1; 3; 6g)+ �(f1; 4; 5g);

(i)

2d(K

6

ne

12

) + �(f3g) + �(f4g) = �(f1; 3g) + �(f2; 4g) + �(f3; 4g) + �(f1; 4; 5g)

+�(f1; 4; 6g):

Proof of Proposition 5.13. Let d be a quasi h-distance on V

6

. Then, d can be written

as

d =

X

S

�

S

�(S) +

X

1�i<j�6

�

ij

2d(K

6

ne

ij

)

with �

S

; �

ij

2 Z

+

, as Conjecture 5.12 holds by assumption. We can suppose that �

ij

2

f0; 1g for all i; j, because 4d(K

6

ne

ij

) is hypercube embeddable. Using (g) and (h), we can

rewrite d as

d =

X

S

�

0

S

�(S) + 2d(K

6

ne);

where �

0

S

2 Z

+

and, for instance, e is the edge (1; 2). From relations (a)-(f), we deduce

that �

S

= 0 if S = f1g; or f2g, or if jSj = 2, or 3. Therefore, using relation (i), we obtain

that d = 2d(K

6

ne

12

) +m�(fig), where i 2 f3; 4; 5; 6g and m 2Z

+

.

As we just saw, there is an in�nity of quasi h-distances on V

n

, for any n � 6. However,

the next result shows the existence of an integer �

n

which is a common scale for all quasi

h-distances on V

n

.

Proposition 5.14. [DG94] There exists an integer �

n

such that �

n

d is hypercube embed-

dable for each quasi h-distance d on V

n

.

Proof. The set Y

n

:= L

n

\f

P

S

�

S

�(S) j 0 � �

S

� 1 for all Sg is �nite. Let �

n

denote the

lowest common multiple of the minimum scales �(d) for d 2 Y

n

. Hence, �

n

d is hypercube

embeddable for each d 2 Y

n

. Let d be a quasi h-distance on V

n

, d =

P

S

�

S

�(S) with

�

S

� 0. Set d

1

:=

P

S

b�

S

c�(S) and d

2

:= d � d

1

=

P

S

(�

S

� b�

S

c)�(S). Then, d

1

is

hypercube embeddable, and d

2

2 L

n

since d; d

1

2 L

n

. Therefore, d

2

2 Y

n

and, hence, �

n

d

2

is hypercube embeddable. This implies that �

n

d = �

n

d

1

+ �

n

d

2

is hypercube embeddable.

For the class of graphic distances, the following results are shown in [Shp93]: The

minimum scale of the path metric of a connected graph on n nodes is equal to 1, or is an

even integer less than or equal to n � 2. Moreover, for an `

1

-rigid graph, the minimum

scale is equal to 1 or 2.

Much of the treatment of Section 3 can be reformulated in terms of minimum scales.

Indeed, consider the metric d

n

:= ant

2

(11

n

) (this is the path metric of the graph K

n+1

ne)).

Then, 2td

n

= 2t ant

2

(11

n

) = ant

4t

(2t11

n

) is hypercube embeddable if and only if 4t �

s

h

(2t11

n

). Therefore, the minimum scale �(d

n

) can be expressed as

�(d

n

) = 2min(t 2Z

+

j 4t � s

h

(2t11

n

)):

In particular, Theorem 3.20 (i) implies:

(a) �(d

4t

) � 2t with equality if and only if there exists a Hadamard matrix of order 4t.
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Compare (a) with the next statement (b), which follows from Theorems 2.3 and 2.4.

(b) �

1

(11

t

2

+t+2

) � 2t with equality if and only if there exists a projective plane of order t,

where, for a hypercube embeddable distance d, �

1

(d) denotes the smallest integer � (if

any) such that �d is not h-rigid, i.e., has at least two distinct Z

+

-realizations.

Some quasi h-distances can also be constructed using the spherical extension operation.

If d is a distance on V

n

and t 2 R

+

, its spherical t-extension is the distance sph

t

(d) on

V

n+1

de�ned by sph

t

(d)(i; n+ 1) = t for all 1 � i � n, and sph

t

(d)(i; j) = d(i; j) for all

1 � i < j � n. If d 2 CUT

n

and 2t � s

`

1

(d), then sph

t

(d) 2 CUT

n+1

. As a �rst example,

consider the distance

�

t

n

:= ant

2t

(sph

t

(211

n�2

));

where n; t are positive integers, i.e., �

t

n

is the distance on V

n

de�ned by

8

>

<

>

:

�

t

n

(n� 1; n) = 2t;

�

t

n

(i; n� 1) = �

t

n

(i; n) = t for 1 � i � n� 2;

�

t

n

(i; j) = 2 for 1 � i < j � n� 2:

Clearly, �

t

n

admits the following decompositions:

�

t

n

=

X

1�i�n�2

�(fi; ng) + (t� 1)�(fn� 1g) + (t� n + 3)�(fng);

�

t

n

=

1

2

0

@

X

1�i�n�2

(�(fi; n� 1g) + �(fi; ng)

1

A

+ (2t� n+ 2) (�(fn� 1g) + �(fng)) :

This shows that �

t

n

is hypercube embeddable if t � n � 3 and that 2�

t

n

is hypercube

embeddable if t �

n�2

2

.

Lemma 5.15. [DG94] Let t � 1 be an integer.

(i) If n 6= 6, then �

t

n

is hypercube embeddable if and only if t � n� 3.

(ii) For n � 6, if d

n�2

2

e � t � n� 4, then �

t

n

is a quasi h-distance.

Proof. (i) Suppose that �

t

n

is hypercube embeddable. Then, in any hypercube embedding

of �

t

n

, we can suppose that each point i 2 f1; : : : ; n� 2g is labeled by the singleton fig (as

the metric 211

n�2

is h-rigid if n 6= 6). This implies that one of the points n � 1; n should

be labeled by a set A containing f1; : : : ; n� 2g and, thus, jAj � 1 = t � n� 3.

(ii) If t � d

n�2

2

e, then �

t

n

is `

1

-embeddable. Hence, if n 6= 6 and d

n�2

2

e � t � n � 4, then

�

t

n

is a quasi h-distance. If n = 6 and t = 2, then �

n

coincides with the distance d

�

6

, which

is known to be a quasi h-distance.

Given n � 6, let �

n

denote the distance on V

n

de�ned by

�

n

:= �(f1g) + �(f2g) +

X

3�i<j�n�1

�(f1; 2; i; jg); i.e.,

8

>

>

>

>

>

<

>

>

>

>

>

:

�

n

(1; 2) = 2;

�

n

(1; n) = �

n

(2; n) = 1 +

�

n�3

2

�

;

�

n

(1; i) = �

n

(2; i) = 1 +

�

n�4

2

�

for 3 � i � n� 1;

�

n

(i; n) = n� 4 for 3 � i � n� 1;

�

n

(i; j) = 2(n� 5) for 3 � i < j � n:
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For instance, for n = 6, �

6

coincides with the path metric of the graph K

6

nP , where

P := (1; 6; 2) is a path on three nodes.

Lemma 5.16. [DG94] Let t; n be integers such that n � 6, n � 2 (mod 4), and 2t �

2 +

�

n�3

2

�

. Then, sph

t

(�

n

) is a quasi h-distance.

Proof. It is easy to see that the condition n � 2 (mod 4) ensures that all components

of �

n

are even integers, which implies that sph

t

(�

n

) 2 L

n+1

. Let F denote the face of the

cone CUT

n

de�ned by the hypermetric inequality Q(b)

T

x :=

P

1�i<j�n

b

i

b

j

x

ij

� 0, where

b := (1; 1;�1; : : : ;�1; n� 4) 2 R

n

(with n� 3 components �1). Set

S := f1; 2; 1i; 2i; 12i(3� i � n� 1); 12ij(3� i < j � n� 1)g;

(where we denote the sets f1g; f1; igby the strings 1, 1i, etc.). The nonzero cut semimetrics

satisfying the equation Q(b)

T

x = 0 are �(S) for S 2 S, which are linearly independent.

Hence, the face F is a simplex face of CUT

n

. As the distance �

n

lies on F , we deduce that

�

n

is `

1

-rigid and s

`

1

(�

n

) = 2 +

�

n�3

2

�

. Let G denote the face of the cone CUT

n+1

de�ned

by the hypermetric inequality Q(b; 0)

T

x � 0; the nonzero cut semimetrics lying on G are

�(S); �(S [fn+1g) for S 2 S and �(fn+1g). As 2t � s

`

1

(�

n

), sph

t

(�

n

) is `

1

-embeddable

and, in fact, sph

t

(�

n

) lies on the face G. Suppose that sph

t

(d) is hypercube embeddable.

Then, there exist nonnegative integers 
; �

S

; �

S

(S 2 S) such that

sph

t

(�

n

) = 
�(fn+ 1g) +

X

S2S

�

S

�(S) + �

S

�(S [ fn + 1g):

Then,

P

S2S

(�

S

+ �

S

)�(S) = d, which implies that �

S

= �

S

= 0 if S is not one of the sets

f1g; f2g; f1; 2; i; jg, and

(

�

i

+ �

i

= 1 for i = 1; 2;

�

ij

+ �

ij

= 1 for 3 � i < j � n� 1:

(setting �

ij

= �

12ij

; �

ij

= �

12ij

). Looking at the component of sph

t

(�

n

) indexed by the

pairs (1; n+1) and (2; n+1), we obtain: �

1

+�

2

+

P

i;j

�

ij

+
 = t, �

2

+�

1

+

P

i;j

�

ij

+
 = t,

which implies

�

1

= �

2

; �

1

= �

2

; 
 = t�

X

i;j

�

ij

� 1:

Looking at the component indexed by (i; n+1) (3 � i � n� 1), we obtain:

P

j

�

ij

+ �

1

+

�

2

+

P

i;j

�

ij

�

P

j

�

ij

+ 
 = t. Therefore, 2

P

j

�

ij

+ 2�

1

� 2

P

i;j

�

ij

+

�

n�3

2

�

� n+ 3 = 0.

Summing over i = 3; : : : ; n� 1 yields

4(n� 5)

X

i;j

�

ij

= (n� 3)(4�

1

+ (n� 3)(n� 6)):

Looking �nally at the component indexed by the pair (n; n+1) yields: �

1

+�

2

+

P

i;j

�

ij

+


 = t and, thus,

2

X

i;j

�

ij

� 2�

1

�

 

n� 3

2

!

+ 1 = 0:

Using the fact that 2

P

i;j

�

ij

=

n�3

2(n�5)

(4�

1

+ (n � 3)(n � 6)), we deduce that 2�

1

= 1,

contradicting the fact that �

1

is integer. This shows that sph

t

(�

n

) is not hypercube
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embeddable and, therefore, is a quasi h-distance.

5.3 Hilbert bases of cuts

Let X be a �nite set of vectors in R

k

. Set

R

+

(X) := f

X

x2X

�

x

x j �

x

� 0 for all x 2 Xg;

Z(X) := f

X

x2X

�

x

x j �

x

2Zfor all x 2 Xg;

Z

+

(X) := f

X

x2X

�

x

x j �

x

2Z

+

for all x 2 Xg:

So, R

+

(X) is the cone generated by X ,Z(X) is the lattice generated by X and Z

+

(X) is

the integer cone generated by X . Clearly, the following inclusion holds:

Z

+

(X) � R

+

(X) \Z(X):

The set X is said to be a Hilbert base if equality holds, i.e.,

Z

+

(X) = R

+

(X) \Z(X):

Clearly, if X is linearly independent, then X is a Hilbert base. We consider here the

question of determining the graphs whose family of cuts is a Hilbert base.

Given a graph G, and S � V , the cut �

G

(S) consists of the edges e 2 E with one end

node in S and the other in V n S. Let K

G

� f0; 1g

E

denote the family of the incidence

vectors of the cuts of G. Then, R

+

(K

G

) is the cut cone CUT(G) of G. Let H denote the

collection of graphs G whose family of cuts K

G

is a Hilbert base. So the question is to

determine which graphs belong to H.

By Theorem 4.5, the graphs K

3

; K

4

; K

5

belong to H. On the other hand, the graph

K

6

does not belong to H (as the distance 2d(K

6

ne) belongs to R

+

(K

K

6

)\Z(K

K

6

) but not

to Z

+

(K

K

6

)). We summarize some of the known results.

Proposition 5.17. (i) [FG] Every graph not contractible to K

5

belongs to H.

(ii) [Lau93a] Every graph on at most six nodes and distinct from K

6

belongs to H.

(iii) [Lau93a] If G belongs to H, then G is not contractible to K

6

.

The proof of the above result uses, in particular, the fact that the class H is closed

under certain operations. Namely,

� H is closed under the k-sum (k = 0; 1; 2; 3).

� If G 2 H and e is an edge of G, then the graph G=e (obtained by contracting the edge

e) belongs to H.

� If G 2 H, e is an edge of G for which each inequality v

T

x � 0 de�ning a facet of the cut

cone CUT(G) satis�es:

v

e

2 f0; 1;�1g;

X

f2�

G

(S)

v

f

2 2Z for all cuts �

G

(S);
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then the graph Gne (obtained by deleting the edge e) belongs to H.

For instance, Proposition 5.17 (iii) can be checked as follows. Suppose G is a graph

that contains K

6

as a subgraph. Let x 2 R

E

be de�ned by x

e

= 2 for all edges of G except

x

e

= 4 for one edge belonging to the subgraph K

6

. Then, x 2 R

+

(K

G

) \Z(K

G

) (as x can

be extended to a point of CUT

n

\ L

n

) and x 62 Z

+

(K

G

) (because the projection of x on

K

6

does not belong to Z

+

(K

K

6

)).

The characterization of the class H seems a hard problem. This is due, partly, to the

fact that the linear description of the cut cone is not known for general graphs. Many

questions are yet unsolved.

For instance, is the class H closed under the �Y -operation ? A �rst example to check

is whether the following graph belongs to H (this is the graph obtained by applying once

the �Y -operation to K

6

, i.e., replacing a triangle by a claw K

1;3

).

Is the class H closed under the deletion of edges ? (As mentioned above, this could be

proved only if a technical assumption is made on the facets of the cut cone.)

Another question is to determine a Hilbert base for the cut cone on 6 points; this is

the smallest case when the cuts do not form a Hilbert base. The following conjecture is

made; it is easily seen to be equivalent to Conjecture 5.12.

Conjecture 5.18. The 31 nonzero cut semimetrics on V

6

together with the 15 metrics

2d(K

6

ne) (for e 2 E(K

6

)) form a Hilbert base.

We also recall Proposition 5.10 which implies that the 16 odd cuts ofK

6

form a Hilbert

base.

On the other hand, the dual problem, which consists of characterizing the graphs whose

family of cycles is a Hilbert base, is completely solved. Namely, the family of cycles of

G is a Hilbert base if and only if G is not contractible to the Petersen graph [AGZ90].

Clearly, one may ask, more generally, what are the binary matroids whose family of cycles

is a Hilbert base.
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