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Abstract

In this paper, we survey the metric properties of isometric subgraphs of hyper-

cubes and, more generally, of `

1

-graphs. An `

1

-graph is a graph which is hypercube

embeddable, up to scale. In particular, we present several characterizations for hy-

percube embeddable graphs and a combinatorial algorithm (from [Shp93]) permitting

to recognize `

1

-graphs in polynomial time. The link with the metric representation of

graphs as Cartesian products (from [GW85]) is also described. In particular, we see

how a well known equivalence relation of Djokovic [Djo73], leading to the notion of

isometric dimension of a graph, plays a central and unifying role between the various

embeddability concepts.
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1 Introduction

In this paper, we survey various embeddability properties of graphs. A metric space can

be attached to any connected graph in the following way. Let G = (V;E) be a connected

graph. Its path metric d

G

is the metric de�ned on V by letting d

G

(a; b) denote the length

of a shortest path joining a to b in G, for all nodes a; b 2 V . Then, (V; d

G

) is a metric

space, called the graphic metric space associated with G. The distance matrix of G

is the matrix D

G

:= (d

G

(a; b))

a;b2V

.

There exists a hierarchy of metric properties that a given distance space may enjoy, in

particular, isometric embeddability into the hypercube, into the Banach `

1

-, `

2

-spaces, hy-

permetricity, or the negative type condition. We study here what are the classes of graphs

whose path metric enjoys some of these properties. Accordingly, a graph G is called an
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`

1

-graph, a hypercube embeddable graph, a hypermetric graph, a graph of neg-

ative type, if its path metric d

G

is isometrically `

1

-embeddable, hypercube embeddable,

hypermetric, of negative type, respectively.

Given two connected graphs G and H , we write

G ,! H

and say that G is an isometric subgraph (or, distance-preserving subgraph) of H if

there exists a mapping

� : V (G) �! V (H)

such that

d

H

(�(a); �(b)) = d

G

(a; b)

for all nodes a; b 2 V (G). We will consider here in particular the cases when the host

graph H is a hypercube (see Section 2), a Hamming graph or, more generally, a cartesian

product of irreducible graphs (see Section 3).

Several other weaker types of embeddings of graphs have been considered in the lit-

erature. For instance, one may consider the graphs G that can be embedded into H as

an induced subgraph; such embeddings are called topological embeddings and will not

be considered here. An even weaker notion of embedding consists of asking which graphs

G can be embedded into H as a (partial) subgraph, i.e., requiring only that the edges be

preserved; see Remark 2.19 where the case of the hypercube as host graph H is briey

discussed.

The theory of isometric embeddings of graphs is a rich theory, with many applications.

The main goal is to try to embed graphs isometrically into some other simpler graphs. The

research in this area was probably motivated by a problem in communication theory posed

by Pierce [Pie72]. In a telephone network one wishes to be able to establish a connection

between two terminals A and B without B knowing that a message is on its way. The

idea is to let the message be preceded by some \address" of B, permitting to decide at

each node of the network in which direction the message should proceed. Namely, the

message will proceed to the next node if its Hamming distance to the destination node B

is shorter. The most natural way of devising such a scheme is by labeling the nodes by

binary strings, which amounts to try to embed the graph in a hypercube. Unfortunately,

not all graphs can be embedded into hypercubes. We study in detail in Section 2 the

hypercube embeddable graphs. We present their basic structural characterization, due to

Djokovic (Theorem 2.2), and some other equivalent characterizations (Theorems 2.7,2.11,

and 2.14).

The notion of isometric embedding into hypercubes can be relaxed in several ways.

First, one may consider isometric embeddings into squashed hypercubes [GP71]. Namely,

one tries to label the nodes by sequences using the symbols \0; 1; �", with the distance

between x; y 2 f0; 1; �g being equal to 1 if fx; yg = f0; 1g and to 0 otherwise. It turns out

that every connected graph on n nodes can be isometrically embedded into the squashed

hypercube of dimension n � 1 [Win83]. (Note that the squashed hypercube is not a

semimetric space.)

One may also consider isometric embeddings into arbitrary cartesian products. In fact,

every connected graph admits a unique canonical isometric embedding into a cartesian
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product whose factors are irreducible [GW85]. This result together with some applications

is presented in Section 3.

Another way of relaxing isometric embeddings into hypercubes is to look for isometric

embeddings into hypercubes up to scale, i.e., to consider `

1

-graphs; such embeddings

were �rst considered in [BG73]. We present results on `

1

-graphs in Section 4; they come

essentially from [Shp93].

Finally, we group in Section 5 some additional results related to the metric structure

of graphs.

We now introduce some notions, leading to the de�nition of the isometric dimension

of a graph, which will play a central role in this paper.

Let G = (V;E) be a graph. Each edge (a; b) of G induces a partition of the node set

V of G into

V = G(a; b)[ G(b; a)[G

=

(a; b);

where

(1.1)

8

>

<

>

:

G(a; b) = fx 2 V : d

G

(x; a) < d

G

(x; b)g;

G(b; a) = fx 2 V : d

G

(x; b) < d

G

(x; a)g;

G

=

(a; b) = fx 2 V : d

G

(x; a) = d

G

(x; b)g:

Clearly, if G is a bipartite graph, then G

=

(a; b) = ; for each edge (a; b) of G.

The following relation �, de�ned on the edge set of a graph, was �rst introduced in

[Djo73]. It plays a crucial role in the theory of isometric embeddings of graphs. Given two

edges e = (a; b) and e

0

= (a

0

; b

0

) of G, set

(1.2) e�e

0

if d

G

(a

0

; a)� d

G

(a

0

; b) 6= d

G

(b

0

; a)� d

G

(b

0

; b):

In other words, e

0

is in relation by � with e if the edge e

0

\cuts" the partition V =

G(a; b) [ G(b; a) [ G

=

(a; b) induced by the edge e, i.e., the endpoints of e

0

belong to

distinct sets in this partition. The relation � is clearly reexive and symmetric, but not

transitive in general. For instance, � is not transitive if G is the complete bipartite graph

K

2;3

. Actually, the relation � is transitive precisely when the graph G can be isometrically

embedded into (K

3

)

m

for some m � 1 (see Corollary 3.3). The transitive closure of � is

denoted by �

�

. The number of equivalence classes of �

�

is called the isometric dimension

of G and denoted by dim

I

(G). As will be seen in Section 3, each connected graph G can

be embedded in a canonical way in a cartesian product of dim

I

(G) irreducible graphs.

We recall some preliminaries needed for the paper. Given two sequences x = (x

1

; : : : ; x

m

),

y = (y

1

; : : : ; y

m

) 2 R

m

, their Hamming distance d

H

(x; y) is de�ned by

d

H

(x; y) = jfi 2 f1; : : : ; mg : x

i

6= y

i

gj:

Given two graphs G and H , their cartesian product is the graph G�H with node set

V (G)� V (H) and whose edges are the pairs ((a; x); (b; y)) with a; b 2 V (G), x; y 2 V (H)

and, either (a; b) 2 E(G) and x = y, or a = b and (x; y) 2 E(H). A Hamming graph

is a cartesian product of complete graphs, i.e., of the form

m

Y

j=1

K

q

j

for some integers

q

1

; : : : ; q

m

; m � 1. Note that the graphic space of

m

Y

j=1

K

q

j

coincides with the distance space
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(

m

Y

j=1

f0; 1; : : : ; q

j

� 1g; d

H

). The m-hypercube graph is the graph H(m; 2) with node set

f0; 1g

m

and whose edges are the pairs (x; y) 2 f0; 1g

m

�f0; 1g

m

with d

H

(x; y) = 1. Hence,

H(m; 2) is isomorphic to the Hamming graph (K

2

)

m

and its graphic metric space coincides

with the space (f0; 1g

m

; d

H

). Equivalently, given a �nite set 
, the j
j-hypercube, also

denoted as H(
), can be de�ned as the graph whose node set is the set of all subsets of 


and whose edges are the pairs (A;B) of subsets of 
 such that jA4Bj = 1. The half-cube

graph

1

2

H(m; 2) is the graph whose node set is the set of all subsets of even cardinality

of f1; : : : ; mg and with edges the pairs (A;B) such that jA4Bj = 2. The cocktail-party

graph K

m�2

is the complete multipartite graph with m parts, each of size 2. Hence,

K

m�2

is the graph on 2m nodes v

1

; : : : ; v

2m

whose edges are all pairs of nodes except the

m pairs (v

i

; v

i+m

) for i = 1; : : : ; m.

A connected graph G is said to be hypercube embeddable if its nodes can be labeled

by binary vectors in such a way that the distance between two nodes coincides with the

Hamming distance between their labels. In other words, G is hypercube embeddable if G

is an isometric subgraph of (K

2

)

m

for some m � 1. Then, the smallest integer m such

that G can be isometrically embedded into H(m; 2) is denoted by m

h

(G).

The graphG is an `

1

-graph if its path metric d

G

is `

1

-embeddable, i.e., if the nodes ofG

can be labeled by vectors (not necessarily binary) in such a way that the distance between

two nodes coincides with the Hamming distance between their labels. Equivalently, G is an

`

1

-graph if �d

G

is hypercube embeddable for some integer �. The smallest integer � such

that �d

G

is hypercube embeddable is called the minimum scale of G. G is an `

1

-rigid

graph if its path metric d

G

is `

1

-rigid, i.e., admits an essentially unique `

1

-embedding. It

can be checked that the cartesian product G �H is an `

1

-rigid graph if and only if both

graphs G,H are `

1

-rigid.

Given a subset S of V

n

:= f1; : : : ; ng, the cut semimetric �(S) is the vector of R

(

n

2

)

de�ned by �(S)(i; j) = 1 if jS \ fi; jgj= 1 and �(S)(i; j) = 0 otherwise, for 1 � i < j � n.

Then, the cone in R

(

n

2

)

generated by the cut semimetrics �(S) for S � V

n

is called the cut

cone and is denoted by CUT

n

. More generally, if (S

1

; : : : ; S

t

) is a partition of V

n

, then the

multicut semimetric �(S

1

; : : : ; S

t

) is the vector ofR

(

n

2

)

de�ned by �(S

1

; : : : ; S

t

)(i; j) = 0

if i; j 2 S

h

for some 1 � h � t and �(S

1

; : : : ; S

t

)(i; j) = 1 otherwise.

It is well known (see, e.g., the survey [DL93a]) that a graph G = (V;E) is an `

1

-graph

if and only if its path metric d

G

can be decomposed as

(1.3) d

G

=

X

S�V

�

S

�(S)

with �

S

� 0 for all S. Note that G is `

1

-rigid if and only if d

G

lies on a simplex face of the

cut cone. (A simplex face of the cut cone is a face F such that the nonzero cut semimetrics

belonging to F are linearly independent.) Moreover,G is hypercube embedable if and only

if d

G

can be decomposed as (1.3) with �

S

2Z

+

for all S. More generally, G is an isometric

subgraph of a Hamming graph if and only if d

G

can be decomposed as a nonnegative integer

combination of multicut semimetrics. Note that, if (S

1

; : : : ; S

t

) is a partition of V

n

, then

the multicut semimetric �(S

1

; : : : ; S

t

) can be decomposed as

�(S

1

; : : : ; S

t

) =

1

2

X

1�i�t

�(S

i

):
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This implies that, for every isometric subgraph G of a Hamming graph, 2d

G

is a non-

negative integer combination of cut semimetrics, i.e., 2d

G

is hypercube embeddable. In

other words, every isometric subgraph of a Hamming graph is an `

1

-graph with scale 2 or,

equivalently, is an isometric subgraph of a half-cube graph. We summarize in the �gure

below the links existing between the various embeddings we just discussed.

G is hypercube embeddable

=) G is an isometric subgraph of a Hamming graph

=) G is an isometric subgraph of a half-cube graph

=) G is an `

1

-graph

Consider the inequality:

(1.4)

X

1�i<j�n

b

i

b

j

x

ij

� 0

where b

1

; : : : ; b

n

2Z. If

P

1�i�n

b

i

= 1, then the inequality (1.4) is called a hypermetric

inequality and, if

P

1�i�n

b

i

= 0, then it is called a negative type inequality. If

P

1�i�n

jb

i

j = 2k+1, then (1.4) is called a (2k+1)-gonal inequality. A graph G is said to

be hypermetric (resp. of negative type) if its path metric d

G

satis�es all hypermetric

inequalities (resp. all negative type inequalities). The hypermetric and negative type

inequalities are valid for the cut cone CUT

n

. Hence, each `

1

-graph is hypermetric and of

negative type.

We refer, for instance, to [DL93a] for a survey on `

1

-metrics and hypercube embeddable

metrics and the link with cut polyhedra.

2 Isometric embeddings of graphs into hypercubes

We study in this section the graphs that can be isometrically embedded into hypercubes.

We give several equivalent characterizations for these graphs in Theorems 2.2, 2.7, 2.11,

and 2.14. As an application, one can recognize in polynomial time whether a graph can

be isometrically embedded in a hypercube. Hypercube embeddable graphs admit, in fact,

an essentially unique embedding in a hypercube; two formulations for the dimension of

this hypercube are given in Propositions 2.3 and 2.16.

We start with a de�nition.

Definition 2.1. A subset U of the node set V of G is said to be convex if, for all

x; y 2 U , z 2 V , d

G

(x; z) + d

G

(z; y) = d

G

(x; y) implies that z 2 U .

We now state the main result of this section, which is a structural characterization of

the hypercube embeddable graphs, due to Djokovic [Djo73]. Recall the de�nition of the

set G(a; b) from relation (1.1).

Theorem 2.2. [Djo73] Let G be a connected graph. The following assertions are equiva-

lent.

(i) G can be isometrically embedded into a hypercube.

(ii) G is bipartite and G(a; b) is convex for each edge (a; b) of G.
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Proof. (i) =) (ii) If G is hypercube embeddable, then its path metric d

G

satis�es

d

G

(a; b) + d

G

(a; c) + d

G

(b; c)� 0 (mod 2)

for all nodes a; b; c of G, which means that G is bipartite. Let us now check the convexity

of G(a; b) for all adjacent nodes a; b. Let (a; b) be an edge of G and let x; y 2 G(a; b) and

z 2 V lying on a shortest path from x to y. Consider a hypercube embedding of G in which

node a is labeled by ;, node b is labeled by a singleton f1g, and nodes x; y; z are labeled

by the sets X; Y; Z. Then, 1 62 X; Y since x; y 2 G(a; b), and jX4Y j = jX4Zj+ jY4Zj

since d

G

(x; y) = d

G

(x; z) + d

G

(z; y). This implies that 1 62 Z, i.e., z 2 G(a; b). This shows

that the set G(a; b) is convex.

(ii) =) (i) We �rst show that, given two edges e = (a; b); e

0

= (a

0

; b

0

) of G, e�e

0

if and

only if the two bipartitions of V into G(a; b)[G(b; a) and G(a

0

; b

0

)[G(b

0

; a

0

) are identical.

Suppose, for instance, that a

0

2 G(a; b) and b

0

2 G(b; a). We show that G(a; b) = G(a

0

; b

0

).

For this, it su�ces to check that G(a; b)� G(a

0

; b

0

). Let x 2 G(a; b). If x 2 G(b

0

; a

0

), then

b

0

lies on a shortest path from x to a

0

. By convexity ofG(a; b), this implies that b

0

2 G(a; b),

yielding a contradiction. Therefore, the relation � is transitive. Let E := E=� denote the

set of equivalence classes of the relation �. For e 2 E, let e denote the equivalence class of e

in E. So, all edges (a; b) of a common equivalence class correspond to the same bipartition

G(a; b)[G(b; a) of V . Fix a node x

0

of G. For each node x 2 V , let A(x) denote the set of

all e 2 E for which x and x

0

belong to distinct sets of the bipartition V = G(a; b)[G(b; a),

if (a; b) is an edge of e. In particular, A(x

0

) = ;. We show that this labeling provides a

hypercube embedding of G, i.e., that

jA(x)4A(y)j= d

G

(x; y)

holds for all nodes x; y 2 V . Let x; y 2 V and m := d

G

(x; y). Let P := (x

0

=

x; x

1

; : : : ; x

m

= y) be a shortest path in G from x to y, with edges e

i

= (x

i�1

; x

i

) for

i = 1; : : : ; m. We claim that

A(x)4A(y) = fe

1

; : : : ; e

m

g:

Clearly, each e

i

belongs to A(x)4A(y). Indeed if, for instance, x

0

2 G(x

i�1

; x

i

), then

e

i

2 A(y) nA(x) since x 2 G(x

i�1

; x

i

) and y 2 G(x

i

; x

i�1

). Conversely, let e = (a; b) 2 E

such that e 2 A(x)4A(y). We can suppose, for instance, that e 2 A(y) n A(x) with

x

0

; x 2 G(a; b) and y 2 G(b; a). Let i be the largest index from f1; : : : ; pg for which

x

i�1

2 G(a; b). Then, e

i

�e, which shows that e = e

i

.

Therefore, we have shown that jA(x)4A(y)j= d

G

(x; y) holds for all nodes x; y 2 V: This

shows that G can be isometrically embedded into the hypercube of dimension dim

I

(G) :=

jEj.

The following result will also be a consequence of Theorem 3.9.

Proposition 2.3. [DL94a] If G is hypercube embeddable, then G is `

1

-rigid; in par-

ticular, G has a unique (up to equivalence) isometric embedding into a hypercube and
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m

h

(G) = dim

I

(G).

Proof. Suppose that G is hypercube embeddable. We show that G is `

1

-rigid. Then,

this implies that G has a unique hypercube embedding and, therefore, m

h

(G) = dim

I

(G).

We keep the notation from the proof of Theorem 2.2. For each e 2 E with e = (a; b), let

S

e

denote the one of the two sets G(a; b) and G(b; a) that does not contain the �xed node

x

0

. From the fact that d

G

(x; y) = jA(x)4A(y)j for all nodes x; y 2 V , we deduce that d

G

can be decomposed as

d

G

=

X

e2E

�(S

e

):

Let F

G

denote the smallest face of the cut cone CUT

n

(n is the number of nodes of G) that

contains d

G

. We claim that F

G

is a simplex face of CUT

n

of dimension dim

I

(G): Clearly,

the cut semimetrics �(S

e

) belong to F

G

and they are linearly independent. We show that

every cut semimetric �(S) lying on F

G

is of the form �(S

e

) for some e 2 E. If this is

the case, then we have indeed shown that F

G

is a simplex face of CUT

n

of dimension

jEj = dim

I

(G). Let S be a subset of V such that �(S) 2 F

G

. Then, �(S) satis�es the

same triangle equalities as d

G

. As the graph G is connected, we can �nd an edge e = (a; b)

such that a 2 S and b 2 V nS. Suppose, for instance, that x

0

2 G(b; a), i.e., S

e

= G(a; b).

As d

G

satis�es the triangle equality d

G

(x

0

; a) = d

G

(x

0

; b) + d

G

(a; b), we deduce that �(S)

satis�es the equality �(S)(x

0

; a) = �(S)(x

0

; b) + �(S)(a; b), which implies that x

0

2 V n S.

We claim that S = G(a; b) holds. If x 2 G(a; b), then d

G

(x; b) = d

G

(x; a) + d

G

(a; b) from

which we deduce that �(S)(x; b) = �(S)(x; a) + �(S)(a; b), implying that x 2 S. In the

same way, G(b; a) is contained in V n S, which implies that S = G(a; b).

Remark 2.4. An immediate consequence of Theorem 2.2 is that one can test in polyno-

mial time whether a graph G is hypercube embeddable. Note that the minimum dimension

m

h

(G) of a hypercube containing G as an isometric subgraph can also be computed in

polynomial time, since it coincides with the isometric dimension m

I

(G) of G (by Propo-

sition 2.3).

Example 2.5. Case of trees.

Let T be a tree on n nodes. Then, T embeds isometrically into the (n�1)-hypercube, i.e.,

dim

I

(T ) = n � 1: The hypercube embedding of T can be easily constructed, as follows

from the proof of Theorem 2.2. Namely, choose a node x

0

in T and label each node x of

T by the set A(x) consisting of the edges of T lying on the path from x

0

to x. We give in

Figure 2.6 an example of a tree together with its hypercube embedding.
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Figure 2.6

The distance matrix of a tree has some remarkable properties. In particular, its determinant de-

pends only on the number of nodes of the tree. Namely, let T be a tree on n nodes with distance

matrix D

T

. Then, det(D

T

) = (�1)

n�1

(n � 1)2

n�2

([GP71]). (To see it, label the nodes of T

as a

1

; : : : ; a

n

in such a way that a

n

is adjacent only to a

n�1

. In the matrix D

T

, substract the

(n � 1)-column to the n-th one and the (n � 1)-row to the n-th one. Iterating this process brings

D

T

into the form of an n� n symmetric matrix having all entries equal to 0 except the (1; i)- and

(i; 1) entries equal to 1 and the (i; i)-entries equal to -2, for i = 2; : : : ; n.) Graham and Lov�asz

[GL78] show, more generally, how the coe�cients of the characteristic polynomial of D

T

can be

expressed in terms of the number of occurrences of certain forests in T .

We now state two further characterizations of hypercube embeddable graphs that follow

from Djokovic's result.

Theorem 2.7. [Avi81] Let G be a connected graph. Then, G is hypercube embeddable if

and only if G is bipartite and d

G

satis�es the following 5-gonal inequality:

(2.8) d(i

1

; i

2

) + d(i

1

; i

3

) + d(i

2

; i

3

) + d(i

4

; i

5

)�

X

h=1;2;3

k=4;5

d(i

h

; i

k

) � 0

for all nodes i

1

; : : : ; i

5

2 V .

Proof. If G is hypercube embeddable, then its path metric d

G

is `

1

-embeddable and,

therefore, satis�es the 5-gonal inequality. Suppose now that G is bipartite and not

hypercube embeddable. Then, by Theorem 2.2, there exists an edge (a; b) of G for

which the set G(a; b) is not convex. Hence, there exist x; y 2 G(a; b) and z 2 G(b; a)

such that d

G

(x; z) + d

G

(z; y) = d

G

(x; y). Consider the inequality (2.8) for the nodes

i

1

= x; i

2

= y; i

3

= b; i

4

= a; and i

5

= z. One computes easily that the left hand side of

(2.8) takes the value 2, which shows that d

G

violates some 5-gonal inequality.
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x y a b s

x 0 1 n+ 1 n 1

y 1 0 n n+ 1 2

a n+ 1 n 0 1 n

b n n+ 1 1 0 n+ 1

s 1 2 n n+ 1 0

Figure 2.9: The distance space A(n) on the 5 points of fx; y; a; b; sg

x y a b r s

x 0 1 m+ 1 m p p+ 1

y 1 0 m m+ 1 p+ 1 p+ 2

a m+ 1 m 0 1 n+ 1 n

b m m+ 1 1 0 n n+ 1

r p p+ 1 n + 1 n 0 1

s p+ 1 p+ 2 n n + 1 1 0

Figure 2.10: The distance space B(m;n; p) on the 6 points of fx; y; a; b; r; sg

Theorem 2.11. [RW86] Let G be a connected bipartite graph. Then, G is hypercube

embeddable if and only if the space (V; d

G

) does not contain as an isometric subspace any

of the spaces A(n) or B(m;n; p), whose distance matrices are shown in Figures 2.9 and

2.10, respectively.

Proof. Suppose that G is not hypercube embeddable. Then, by Theorem 2.2, there

exists an edge (a; b) of G for which G(a; b) is not closed. Let P be an isometric path in

G connecting two nodes of G(a; b) such that P meets G(b; a) and P has minimal length

with respect to these properties. Say, P = (y; x; z

1

; : : : ; z

k

; r; s), where y; s 2 G(a; b) and

x; r 2 G(b; a). Set m = d

G

(x; b); n = d

G

(r; b) and p = d

G

(x; r) (hence, p = k + 3). One

can check that the distances between the points a; b; x; y; r; s are entirely determined by

the parameters m;n; p. Namely, if both points x and r coincide, then p = 0, m = n, and

the 5-point subspace (fx; y; a; b; sg; d

G

) of (V; d

G

) coincides with the space A(n), whose

distance matrix is shown in Figure 2.9. If the points x and r are distinct, then the 6-point

subspace (fx; y; a; b; r; sg; d

G

) coincides with the space B(m;n; p), whose distance matrix

is shown in Figure 2.10.

Conversely, if (V; d

G

) contains A(n) or B(m;n; p) as an isometric subspace, then G is not

hypercube embeddable, by Theorem 2.7. Indeed, both A(n) and B(m;n; p) violate the

5-gonal inequality; namely, they violate the inequality (2.8) for fi

1

; i

2

; i

3

g = fb; y; sg and

fi

4

; i

5

g = fx; ag.

Recall that, for a �nite distance space (X; d), the following chain of implications holds;

see, e.g., [DL93a].
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(X; d) is hypercube embeddable

=) (X; d) is `

1

-embeddable

=) (X; d) is hypermetric

=) (X; d) is of negative type

=) the distance matrix of (X; d) has exactly one positive eigenvalue.

Figure 2.12: The metric hierarchy

We recall also the following equivalences, due to Schoenberg [Sch38].

(X; d) is of negative type

() (X;

p

d) is `

2

-embeddable

() the matrix (d(x; x

0

) + d(y; x

0

)� d(x; y))

x;y2Xnfx

0

g

is positive semide�nite,

where x

0

is a given element of X .

Figure 2.13

In fact, for the graphic spaces of bipartite graphs, the metric hierarchy from Figure 2.12

collapses. Blake and Gilchrist [BG73] proved already that connected bipartite `

1

-graphs

are hypercube embeddable.

Theorem 2.14. [RW86] Let G be a connected bipartite graph. The following assertions

are equivalent.

(i) G is hypercube embeddable.

(ii) G is an `

1

-graph.

(iii) G is hypermetric.

(iv) G is of negative type.

(v) The distance matrix of G has exactly one positive eigenvalue.

Proof. It su�ces to show that, if G is not hypercube embeddable, then its distance matrix

D

G

has at least two positive eigenvalues. Suppose that G is not hypercube embedable.

By Theorem 2.11, (V; d

G

) contains as an isometric subspace a space C which is one of the

forbidden subspaces A(n) or B(m;n; p). In other words, the distance matrix D

C

of C is

a principal submatrix of D

G

. Clearly, D

C

has at least one positive eigenvalue since its

trace is equal to 0. We show below that D

C

is nonsingular and has at least two positive

eigenvalues. Then, as the number of positive eigenvalues of D

G

is greater than or equal

to the number of positive eigenvalues of D

C

, we deduce that D

G

has at least two positive

eigenvalues.

Consider �rst the case when C is of the form A(n). One can check that the determinant

of D

C

is equal to �8n(n + 1). Hence, D

C

is nonsingular and has at least two positive

eigenvalues (indeed, if D

C

would have only one positive eigenvalue, then its determinant

would be positive).

Suppose now that C is of the form B(m;n; p). One can check that the determinant of D

C

is equal to

4(4mnp+ 2mp+ 2np+ 2mn�m

2

� n

2

� p

2

);

which can be rewritten as

16mnp+ 4(n+ p�m)(p+m� n) + 4(p+m� n)(m+ n� p) + 4(m+ n� p)(n+ p�m):
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As m;n; p are the distances between pairs of nodes of G, we deduce from the triangle

inequality that each of the quantities into parentheses in the above expression is nonneg-

ative. Hence, the determinant of D

C

is positive. This implies that D

C

is nonsingular and

has at least two positive eigenvalues (else, its determinant would be negative).

Remark 2.15. All the implications of the metric hierarchy from Figure 2.12 are strict for

general (nonbipartite) graphs. The following uni�ed set of counterexamples was proposed

in [AM90].

� The path metrics of K

4

� P

3

, K

5

� P

3

, and K

6

� P

3

are `

1

-embeddable (since 2d

G

is

hypercube embeddable), but not hypercube embeddable (since they contain three points

at pairwise distances one).

� The path metrics of K

7

� P

3

, K

8

� P

3

are hypermetric, but not `

1

-embeddable.

(Hint: The inequality

5x

12

+ 5x

13

+ 3x

23

� 3

X

j=4;5;6;7

x

1j

� 2

X

j=4;5;6;7

(x

2j

+ x

3j

) +

X

4�i<j�7

x

ij

� 0

is valid for the cut cone CUT

7

(see [DL92]). But, the path metric of K

7

� P

3

violates this

inequality if P

3

is the path (2; 1; 3) in the complete graph K

7

on the nodes 1,2,3,4,5,6,7.

Hence, K

7

� P

3

is not an `

1

-graph.)

� The path metrics of K

9

� P

3

, K

10

� P

3

are of negative type, but not hypermetric.

(Hint: The path metric of K

9

� P

3

violates the hypermetric inequality (1.4) for b :=

(3; 2; 2;�1;�1;�1;�1;�1;�1) if P

3

is the path (2; 1; 3).)

� The distance matrix of K

11

�P

3

has exactly one positive eigenvalue, but K

11

�P

3

is not

of negative type; the distance matrix ofK

n

�P

3

has two positive eigenvalues for all n � 12.

(Hint: K

11

� P

3

is not of negative type since it violates the negative type inequality (1.4)

for b := (

24

7

;

16

7

;

16

7

;�1;�1;�1;�1;�1;�1;�1;�1) if P

3

is the path (2; 1; 3).) Another ex-

ample of a graph which is not of negative type but whose distance matrix has one positive

eigenvalue is given in Example 5.2.

Finally, let us mention another formulation for the isometric dimension of a hypercube

embeddable graph, in terms of the number of negative eigenvalues of its distance matrix.

Proposition 2.16. [GW85] Let G be a graph with distance matrix D

G

and let n

+

(D

G

);

n

�

(D

G

) denote the number of positive and negative eigenvalues of D

G

. If G is hypercube

embeddable, then dim

I

(G) = n

�

(D

G

) and n

+

(D

G

) = 1 hold.

Proof. Suppose that G embeds isometrically into the k-hypercube, i.e., dim

I

(G) =

k. Denote by �(a) = (a

1

; : : : ; a

k

) 2 f0; 1g

k

the image of each node a 2 V under this

embedding. For h = 1; : : : ; k, set

X

h

= fa 2 V : a

h

= 0g; Y

h

= fa 2 V : a

h

= 1g = V nX

h

:

Then,
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X

a;b2V

d

G

(a; b)x

a

x

b

=

X

a;b2V

(

X

1�h�k

ja

h

� b

h

j)x

a

x

b

=

X

1�h�k

(

X

a2X

h

x

a

)(

X

b2Y

h

x

a

)

=

k

4

(

X

a2V

x

a

)

2

�

1

4

X

1�h�k

(

X

a2X

h

x

a

�

X

b2Y

h

x

b

)

2

(where the last equality is obtained using the identity xy =

1

4

((x+y)

2

�(x�y)

2

))). Hence,

the quadratic form

X

a;b2V

d

G

(a; b)x

a

x

b

can be written as the sum of one \positive" square and k \negative" squares. By Sylvester's

law of inertia, this implies that n

+

(D

G

) � 1 and n

�

(D

G

) � k. On the other hand,

n

+

(D

G

) � 1 since D

G

has trace zero. Hence, n

+

(D

G

) = 1 and the rank of D

G

satis�es

rank(D

G

) = n

+

(D

G

)+n

�

(D

G

) � k+1. We show that rank(D

G

) = k+1: This will imply

that n

�

(D

G

) = k, thus stating the result.

We can suppose without loss of generality that a given node a

(0)

of G receives the label

�(a

(0)

) = (0; : : : ; 0) in the hypercube embedding. We claim that there exist k nodes

a

(1)

; : : : ; a

(k)

of G whose labels �(a

(1)

); : : : ; �(a

(k)

) are linearly independent. For this, it

su�ces to check that the system f�(a) : a 2 V g � f0; 1g

k

has full dimension k. Suppose

for contradiction that, say, the k-th coordinate can be expressed in terms of the others,

i.e., there exist scalars �

1

; : : : ; �

k�1

such that a

k

=

P

1�j�k�1

�

j

a

j

for all a 2 V . Then,

a

k

= b

k

holds for any two adjacent nodes a; b in G. This implies that a

k

= 0 holds for each

node a 2 V , by considering a shortest path from a

(0)

to a. So, one could have embedded

G into the (k � 1)-hypercube, contradicting the fact that dim

I

(G) = k. We now claim

that the submatrix

M := (d

G

(a

(i)

; a

(j)

))

i;j=0;:::;k

is nonsingular. This will imply that rank(D

G

) � k+1 and, therefore, rank(D

G

) = k+ 1.

For i = 0; 1; : : : ; k, set

u

(i)

= 2�(a

(i)

)� e;

where e = (1; : : : ; 1). As the vectors u

(i)

are �1-valued, we have

d

G

(a

(i)

; a

(j)

) =

X

1�h�k

ja

(i)

h

� a

(j)

h

j =

1

2

X

1�h�k

ju

(i)

h

� u

(j)

h

j

=

1

2

X

1�h�k

(1� u

(i)

h

u

(j)

h

) =

k

2

�

1

2

(u

(i)

)

T

u

(j)

:

Therefore,

M =

k

2

J �

1

2

Gram(u

(0)

; u

(1)

; : : : ; u

(k)

);

where J denotes the all ones matrix and Gram(u

(0)

; u

(1)

; : : : ; u

(k)

) denotes the Gram

matrix of the vectors u

(0)

; u

(1)

; : : : ; u

(k)

. One can easily check that

det(M) = (�2)

�(k+1)

�

det(Gram(u

(0)

; u

(1)

; : : : ; u

(k)

))

�k det(Gram(u

(1)

� u

(0)

; u

(2)

� u

(0)

; : : : ; u

(k)

� u

(0)

))

�

:

But, det(Gram(u

(0)

; u

(1)

; : : : ; u

(k)

)) = 0 since the vectors u

(0)

; u

(1)

; : : : ; u

(k)

are linearly

dependent, and det(Gram(u

(1)

� u

(0)

; u

(2)

� u

(0)

; : : : ; u

(k)

� u

(0)

)) 6= 0 since the vectors

u

(1)

� u

(0)

; u

(2)

� u

(0)

; : : : ; u

(k)

� u

(0)

are linearly independent. Therefore, det(M) 6= 0.
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The next result gives an example of application of hypercube embeddable graphs within

the context of oriented matroids (see [FH93] for de�nitions).

Theorem 2.17. [FH93] A graph G is isomorphic to the tope graph of an oriented matroid

of rank at most three if and only if G is planar, hypercube embeddable, and antipodal (i.e.,

for each node u of G, there is a unique node u

�

which is not closer to u than any neighboor

of u

�

).

We conclude this section with some remarks on two possible relaxations of the notion of

isometric embeddability into the hypercube. First, one may consider isometric embeddings

into the squashed hypercube; second, one may consider embeddings as a subgraph (not

necessarly isometric) into the hypercube.

Remark 2.18. Isometric embedding into squashed hypercubes.

As we just saw, not every graph can be isometrically embedded into a hypercube. For this reason,

Graham and Pollak [GP71] considered isometric embeddings into squashed hypercubes. Let d

�

denote the distance de�ned on the set B

�

= f0; 1; �g by setting

d

�

(x; y) =

�

1 if fx; yg = f0; 1g

0 otherwise

for x; y 2 B

�

. Hence, the symbol � is at distance 0 from the other symbols; it is also called the

\don't care" symbol. The distance d

�

can be extended to B

m

�

by setting

d

�

((x

1

; : : : ; x

m

); (y

1

; : : : ; y

m

)) =

X

1�i�m

d

�

(x

i

; y

i

):

The distance space (B

m

�

; d

�

) is called the squashed m-hypercube. It contains the usual m-

hypercube as a subspace. Each element (x

1

; : : : ; x

m

) 2 B

m

�

can be thought of as representing

a face of the m-dimensional hypercube, namely, the face consisting of all y 2 f0; 1g

m

such that

y

i

= x

i

for all i such that x

i

2 f0; 1g. A nice property of squashed hypercubes is that every

connected graph can be isometrically embedded in some squashed hypercube. Indeed, let G be a

connected graph with node set f1; : : : ; ng. Set

m :=

X

1�i<j�n

d

G

(i; j):

For 1 � i < j � n, let D

ij

be pairwise disjoint subsets of f1; : : : ;mg with jD

ij

j = d

G

(i; j). Label

each node i by the m-tuple (i

1

; : : : ; i

m

) 2 B

m

�

by setting

i

k

=

8

<

:

0 if k 2

S

n

h=i+1

D

ih

1 if k 2

S

i�1

h=1

D

ih

otherwise.

Then, d

�

((i

1

; : : : ; i

m

); (j

1

; : : : ; j

m

)) = jD

ij

j = d

G

(i; j). This shows that G can be isometrically

embedded into the squashed m-hypercube. Let r(G) denote the smallest dimension of a squashed

hypercube in which G can be embedded. Winkler [Win83] showed that r(G) � n � 1 for each

graph on n nodes. On the other hand, r(G) � max(n

+

(D

G

); n

�

(D

G

)), where n

+

(D

G

); n

�

(D

G

)

denote the number of positive and negative eigenvalues of the distance matrix D

G

of G [GP72].

For instance, r(K

n

) = n � 1 since n

�

(D

K

n

) = n � 1. The next picture shows the embedding of

K

3

into the squashed 2-hypercube.
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Remark 2.19. Nonisometric embedding of graphs into hypercubes.

Another relaxation of the notion of hypercube embeddable graphs is that of cubical graphs. A

graph G is said to be cubical if G is a subgraph of some hypercube H(m; 2), i.e., there exists an

injective mapping from the node set of G to the node set of H(m; 2) which maps edges of G to

edges of H(m; 2). Clearly, every cubical graph is bipartite and every hypercube embeddable graph

is cubical. We show below an example of a graph which is cubical but not hypercube embeddable.

  0000  0001

   1000      1001

0010     0011

0100     0101

The structure of the minimal noncubical graphs has been studied in [GG75], where some con-

structions of such graphs are presented. For instance, K

2;3

and odd cycles are minimal noncubical

graphs. Recall from Remark 2.4 that one can check in polynomial time whether a graph G is

hypercube embeddable and, moreover, the minimum dimension m

h

(G) of a hypercube containing

G as an isometric subgraph can be computed in polynomial time. On the other hand, it has been

proved that deciding whether a graph G is cubical is an NP-complete problem ([APP85, APP89],

[KVC86]). Moreover, for G cubical, computing the minimumdimension of a hypercube containing

G as a subgraph is also a di�cult problem. For instance, each tree is cubical (in fact, a tree on

n nodes can be isometrically embeded into an (n � 1)-hypercube). But, given a tree T and an

integer m, it is NP-complete to decide whether T is a subgraph of the m-hypercube [WC90]. The

problem of determining the minimum dimension of a hypercube containing a tree has been long

studied (see, e.g., [HL72, HL73]). Along the same lines, given a graph G and integers m; k, it is

NP-complete to decide whether G is a subgraph of (K

m

)

k

[WC].

3 Isometric embeddings of graphs into cartesian products

We have characterized in the previous Section 2 the graphs that can be isometrically

embedded into a hypercube. The hypercube is the simplest example of a cartesian product

of graphs; namely, the m-hypercube is nothing but (K

2

)

m

. We consider here isometric

embeddings of graphs into arbitrary cartesian products. It turns out that every graph

can be isometrically embedded in a canonical way into a cartesian product whose factors

are \irreducible", i.e., cannot be further embedded into cartesian products. We present
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two applications of this result, for �nding the prime factorization of a graph, and for

showing that the path metric of every bipartite graph can decomposed in a unique way as

a nonnegative combination of primitive semimetrics.

3.1 The canonical metric representation of a graph

Let G;H be two graphs. Their cartesian product is the graph G � H with node set

V (G)� V (H) and whose edges are the pairs ((a; x); (b; y)) with a; b 2 V (G); x; y 2 V (H)

and such that, either (a; b) 2 E(G) and x = y, or a = b and (x; y) 2 E(H). The cartesian

product H

1

� : : :�H

k

of k graphs H

1

; : : : ; H

k

is also denoted as

Q

1�h�k

H

h

. An isometric

embedding of a graph G into the cartesian product

Q

1�i�k

H

i

is said to be iredundant

if each factor H

h

is a connected graph on at least two nodes, and each vertex of every

factor H

h

appears as a coordinate in the image of at least one node of G. Clearly, any

isometric embedding into a cartesian product can be made irredundant by discarding the

factors consisting of an isolated node and the unused nodes in each factor. An irredundant

isometric embedding of G into a cartesian product is also called ametric representation

of G. Two isometric embeddings of G into cartesian products are said to be equivalent if

there is a bijection between the factors of one and the factors of the other, together with

isomorphisms between the corresponding factors for which the obvious diagram commutes.

A graph G is said to be irreducible if all its metric representations are equivalent to the

trivial embedding of G into itself.

We can now state the main result of this section. It is due to Graham and Winkler

[GW85]; see, also, [Win87b, Gra88].

Theorem 3.1. Every connected graph G has a unique metric representation

G ,!

Y

1�h�k

G

h

in which each factor G

h

is irreducible; it is called the canonical metric representation

of G. Moreover, k = dim

I

(G) and, if

G ,!

Y

1�i�m

H

i

is another metric representation of G, then there exist a partition (S

1

; : : : ; S

m

) of f1; : : : ; kg

and metric representations

H

i

,!

Y

h2S

i

G

h

;

for i 2 f1; : : : ; mg, for which the obvious diagram commutes.

An essential tool for the proof of Theorem 3.1 is the following Lemma 3.2.

Lemma 3.2. Let E

1

; : : : ; E

k

denote the equivalence classes of the transitive closure �

�

of

the relation �, de�ned in relation (1.2). Given two nodes a; b of G, let P be a shortest path

from a to b, and let Q be another path joining a to b in G. Then, for all h = 1; : : : ; k,

jE(P ) \E

h

j � jE(Q)\E

h

j:
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Proof. Set P = (x

0

= a; x

1

; : : : ; x

p

= b). For any index h 2 f1; : : : ; kg and any node x

of G, set

f

h

(x) :=

X

i2f1;:::;pgj(x

i�1

;x

i

)2E

h

(d

G

(x; x

i

)� d

G

(x; x

i�1

)):

Hence, f

h

(a) = jE(P ) \ E

h

j and f

h

(b) = �jE(P ) \ E

h

j. Let (x; y) be an edge of G. We

claim

f

h

(x) = f

h

(y) if (x; y) 62 E

h

:

Indeed, f

h

(x)�f

h

(y) =

P

i:(x

i�1

;x

i

)2E

h

(d

G

(x; x

i

)�d

G

(y; x

i

))�(d

G

(x; x

i�1

)�d

G

(y; x

i�1

)) =

0, since the edge (x; y) is not in relation by � with any of the edges of E

h

. On the other

hand,

jf

h

(x)� f

h

(y)j � 2 if (x; y) 2 E

h

:

Indeed, by the above argument, we have

jf

h

(x)� f

h

(y)j = j

X

1�j�k

(f

j

(x)� f

j

(y))j

= j(d

G

(x; b)� d

G

(x; a))� (d

G

(y; b)� d

G

(y; a))j

� jd

G

(x; b)� d

G

(x; a)j+ jd

G

(y; b)� d

G

(y; a)j

� 2:

As f

h

(a) = jE(P ) \ E

h

j and f

h

(b) = �jE(P ) \ E

h

j, when moving along the nodes of the

path Q, the function f

h

(:) changes in absolute value by 2jE(P )\E

h

j. But, on an edge of

E nE

h

, the function f

h

(:) remains unchanged and, on an edge of E

h

, f

h

(:) increases by at

most 2. This implies that the path Q must contain at least jE(P )\E

h

j edges from E

h

.

Proof of Theorem 3.1. As in Lemma 3.2, let E

1

; : : : ; E

k

denote the equivalence

classes of the transitive closure �

�

of the relation �. For each h = 1; : : : ; k, let G

h

denote

the graph obtained from G by contracting the edges of E n E

h

. In other words, for

constructing G

h

, one identi�es any two nodes of G that are joined by a path containing no

edge from E

h

. This de�nes a surjective mapping �

h

from V (G) to V (G

h

) and a mapping

� : V (G) �!

Q

1�h�k

V (G

h

) by setting �(v) = (�

1

(v); : : : ; �

k

(v)) for each node v of G.

We show that the mapping � provides the required metric representation of G. For this,

we have to check that � is an irredundant isometric embedding and that each factor G

h

is irreducible. Take two nodes a; b of G and a shortest path P from a to b in G. We show

d

G

(a; b) =

X

1�h�k

d

G

h

(�

h

(a); �

h

(b)):

Indeed, for each h, d

G

h

(�

h

(a); �

h

(b)) is the minimum value of jE(Q) \ E

h

j over all paths

Q joining a and b; hence, by Lemma 3.2, d

G

h

(�

h

(a); �

h

(b)) = jE(P ) \E

h

j. Therefore,

X

1�h�k

d

G

h

(�

h

(a); �

h

(b)) =

X

1�h�k

jE(P )\ E

h

j = jE(P )j = d

G

(a; b):

This shows that � is an isometric embedding ofG into

Q

1�h�k

G

h

. Moreover, by Lemma 3.2

again, the endpoints of an edge of E

h

are not identi�ed when constructing G

h

. Hence,

each factor G

h

has at least two nodes. Therefore, the embedding � is irredundant since

the mappings �

h

are surjective.
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Consider now another metric representation

G ,!

Y

1�j�m

H

j

of G and denote by (x

1

; : : : ; x

m

) the image of a node x of G. If e = (x; y) is an edge of

G corresponding to an edge in the j-th factor H

j

, i.e., (x

j

; y

j

) 2 E(H

j

) and x

i

= y

i

for

all i 2 f1; : : : ; mg n fjg, then each edge f in relation by � with e is also an edge in H

j

.

Therefore, each factor H

j

\contains" exactly the edges of

S

i2J

E

i

for some nonempty set

J of indices. In particular, m � k holds. This implies that each factor G

h

is irreducible

(else, one would have a metric representation of G with more than k factors). Therefore,

G ,! G

1

� : : :�G

k

is the canonical metric representation of G. This concludes the proof.

Corollary 3.3. Let G be a connected graph.

(i) G is irreducible if and only if dim

I

(G) = 1.

(ii) If G has n nodes, then dim

I

(G) � n � 1, with equality if and only if G is a tree.

(iii) G embeds isometricaly into (K

3

)

m

for some m � 1 if and only if the relation � is

transitive.

(iv) G embeds isometrically into (K

2

)

m

for some m � 1 if and only if G is bipartite and

� is transitive.

Proof. (i) follows immediately from Theorem 3.1.

(ii) Set k := dim

I

(G) and let T be a spanning tree in G. We claim that T contains at least

one edge from each equivalence class E

h

. Indeed, if e is an edge from E nE(T ) belonging

to the class E

h

then, by Lemma 3.2, T must contain at least one edge from E

h

. Therefore,

n � 1 = jE(T )j � k holds. If there are two edges e; f 2 E in relation by �, let T be a

spanning tree containing both e and f ; then, k � n � 2 holds. This shows that equality

k = n� 1 holds only if G is a tree.

(iii) Note that G embeds isometrically into (K

3

)

m

if and only if each factor G

h

in the

canonical representation of G is K

2

or K

3

(see Remark 3.7). On the other hand, G

h

is K

2

or K

3

if and only if E

h

consists of all the edges that are cut by the partition of V into

G(a; b)[G(b; a)[ G

=

(a; b), where (a; b) 2 E

h

, in which case � is transitive.

(iv) follows from (iii) since G

=

(a; b) = ; for each edge (a; b) when G is bipartite.

One can easily check that, for G bipartite, the relation � is transitive if and only if

G(a; b) is convex for all adjacent nodes a; b of G. Hence, Corollary 3.3 (iv) implies the

characterization of hypercube embeddable graphs stated in Theorem 2.2. In particular,

if G is hypercube embeddable with isometric dimension dim

I

(G) = k, then G ,! (K

2

)

k

is the canonical metric representation of G. Lomonossov and Seb�o give the following

additional information.

Proposition 3.4. [LS93] If G is a bipartite graph, then the factors G

1

; : : : ; G

k

of its

canonical metric representation are all bipartite graphs.
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Proof. Suppose, for contradiction, that a factorG

h

of the canonical metric representation

of G is not bipartite. Then, there exists a cycle C of G such that jE(C) \ E

h

j is odd.

Choose such a cycle C of minimal length. As G is bipartite, C has even length, say

C = (a

1

; a

1

; : : : ; a

2m

). Consider the pairs (a

i

; a

m+i

) (where the indices are taken modulo

m) of diametrally opposed nodes of C. If d

G

(a

i

; a

m+i

) = d

G

(a

i+1

; a

m+i+1

) = m, then

d

G

(a

m+i

; a

i+1

) � d

G

(a

m+i

; a

i

) = �1 and d

G

(a

m+i+1

; a

i+1

) � d

G

(a

m+i+1

; a

i

) = 1, which

implies that the edges (a

i

; a

i+1

) and (a

m+i

; a

m+i+1

) are in relation by �. Hence, there

exists a pair (a

i

; a

m+i

) for which d

G

(a

i

; a

m+i

) < m (otherwise, any two oposite edges of

C are in relation by �, implying that jE(C)\E

h

j is even). Let P be a shortest path from

a

i

to a

m+i

in G. Suppose that only the endnodes of P are on C. The endnodes of P

partition C into two paths which, together with P , form two cycles C

1

and C

2

. As C

1

and C

2

have smaller length than C, we deduce that both jE(C

1

) \ E

h

j and jE(C

2

) \ E

h

j

are even. This implies that jE(C)\ E

h

j is even, yielding a contradiction. The reasoning

is the same if P meets C in other nodes than its endnodes.

Examples of irreducible graphs include: the complete graph K

n

(n � 2), odd cycles

C

2n+1

(n � 1), the half-cube

1

2

H(n; 2) (n � 2), the cocktail-party graph K

n�2

(n � 3),

the Petersen graph, the Gosset graph G

56

, the Schl�ai graph G

27

, etc... Actually, it is

observed in [GW85] that the probability that a random graph (with edge probability 1/2)

on n nodes is irreducible goes to 1 as n �! 1.

The canonical metric representation G ,! G

1

� : : :�G

k

of a graph G can be found in

polynomial time. Indeed, it can be obtained in the following way:

- Compute the relation �.

- Determine the equivalence classes E

1

; : : : ; E

k

of the transitive closure �

�

of �.

- For each h = 1; : : : ; k, construct the graph G

h

from G by contracting the edges of E nE

h

.

Hence, if G has n nodes and m edges, then its canonical metric representation can be

obtained in O(m

2

) steps. Feder [Fed92] shows how to construct it in O(mn) steps using

O(m) space.

The following rules can be applied for determining the equivalence classes of �

�

:

- Any two edges on an odd isometric cycle are in relation by �.

- Let C = (a

1

; : : : ; a

2m

) be an even cycle. Call the two edges e

i

:= (a

i

; a

i+1

) and e

m+i

:=

(a

m+i

; a

m+i+1

) (where the indices are taken modulo m) opposite on C if d

G

(a

i

; a

m+i

) =

d

G

(a

i+1

; a

m+i+1

) = m. Clearly, if e

i

and e

m+i

are opposite on C, then e

i

and e

m+i

are in

relation by �.

It is observed in [LS93] that, if G is a bipartite graph, then two edges are in relation by �

if and only if they are opposite on some even cycle of G. A similar characterization of the

relation � is given for arbitrary graphs in [LS93].

We now illustrate the method on an example.

Example 3.5. Let G be the graph from Figure 3.6. The relation �

�

has three equivalence

classes:

E

1

= f12; 13; 23; 45; 46; 56g; E

2

= f17; 39; 48; 5 10g;

E

3

= f14; 35; 78; 9 10g
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(where we denote an edge (i; j) by the string ij). The edges of E

1

,E

2

,E

3

are represented

by plain, dotted, and dark edges, respectively. Hence, G ,! G

1

� G

2

� G

3

is the canon-

ical metric representation of G, where G

1

; G

2

; G

3

are the graphs indicated in Figure 3.6.

(The set asociated to each node in the factor G

h

is the set of nodes of G that have been

identi�ed during the construction of G

h

.)

17

8 4

6

5 10

 93

2

2

 {7,8}           {1,2,3,4,5,6}       {9,10}

  {1,2,3,7,9}

1  2 3

6

        G
G G G

  {4,5,6,8,10}

  {1,4,7,8} {3,5,9,10}

Figure 3.6

Remark 3.7. Isometric embedding into Hamming graphs.

We recall that a graph can be isometrically embedded into a Hamming graph (i.e., a carte-

sian product of complete graphs) if its nodes can be labeled by sequences of nonnegative

integers in such a way that the distance between two nodes coincides with the Hamming

distance between the corresponding sequences. It follows from Theorem 3.1 that a graph

G embeds isometrically into a Hamming graph if and only if each factor G

h

in the canon-

ical metric representation of G is a complete graph. (Indeed, let � : G ,!

Y

1�i�m

K

q

i

be an

isometric embedding of G into a Hamming graph. We may assume that � is irredundant

since deleting a node from a complete graph yields another complete graph. Therefore,

as complete graphs are irreducible, � is the canonical metric representation of G.) In

particular, the embedding into a Hamming graph is unique [Win84]. One can recognize

isometric subgraphs of Hamming graphs in polynomial time. An algorithm running in

O(mn) time and using O(m) space is given in [IK93]. Wilkeit [Wil90] proposes an algo-

rithm with running time O(n

3

), which yields moreover a structural characterization for

isometric subgraphs of Hamming graphs.

As an example, consider the graph H from Figure 3.8 (taken from [Wil90]). The

relation �

�

has three equivalences classes:

E

1

= f12; 34; 35; 45g;

E

2

= f28; 37; 56g; and E

3

= f14; 23; 78g:

Hence, H ,! K

3

�K

2

�K

2

is the canonical metric representation of H . We also indicate

for the graph H in Figure 3.8 the sequences from f0; 1; 2g� f0; 1g

2

providing the correct
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labeling of the nodes of H . Equivalently, the path metric of H can be decomposed as an

integer sum of multicut semimetrics, namely,

d

H

= �(f1; 4g; f2; 3; 7; 8g; f5; 6g)+ �(f1; 2; 3; 4; 5g; f6; 7; 8g)+ �(f1; 2; 8g; f3; 4; 5; 6; 7g):

1
2

3

4

5
6

8

7

{1,4}                           {2,3,7,8}

{5,6}

{1,2,3,4,5}    {6,7,8}

  {3,4,5,6,7}

    {1,2,8}

     H                                                            factors  of  H 

000

001 101

100

    111

110

201 211

Figure 3.8

3.2 The prime factorization of a graph

Let G be a connected graph. A factorization of G is a metric representation which is an

isomorphism. G is said to be prime if G cannot be decomposed as the cartesian product

of two other graphs (each having at least two nodes). Sabidussi [Sab60] proved that every

connected graph admits a unique prime factorization. Unicity is lost for disconnected

graphs (see [Zar65]). The Graph Factoring problem can be stated as follows.

Instance. A connected graph G.

Question. Is G prime and, if not, �nd the prime factorization of G.

This problem can be solved in time polynomial in the number of nodes [FHS85, Win87a].

We restrict ourselves to connected graphs since the Graph Factoring problem for discon-

nected graphs is at least as hard as the Graph Isomorphism problem. (Indeed, one can

determine whether two graphs G and H are isomorphic by checking whether the graph

consisting of two isolated nodes is a factor of the disjoint union of G and H .) The algo-

rithm proposed in [FHS85] is rather di�cult and based on Sabidussi's original proof; it

runs in O(n

4:5

). Winkler [Win87a] proposes an algorithm which is based on the canonical

metric representation of graphs presented in Section 3.1; it runs in O(n

4

). We describe

briey the main ideas of the algorithm.

Let G be the connected graph whose prime factorization is to be found. Let

� : V (G) �!

Y

1�h�k

V (G

h

)

denote the canonical metric representation of G and set

�(a) = (�

1

(a); : : : ; �

k

(a))
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for each node a 2 V . Set S := f1; : : : ; kg. For a subset T of S, let �

T

denote the mapping

from V to

Q

h2T

V (G

h

) de�ned by

�

T

(a) = (�

h

(a) : h 2 T )

for a 2 V . A partition (S

1

; : : : ; S

m

) of S is said to be \good" if

�(V ) =

Y

1�i�m

�

S

i

(V ):

If this is the case, then

G =

Y

1�i�m

�

S

i

(G)

gives a factoring of G. In particular, the prime factorization of G corresponds to a good

partition of S. A subset T of S is said to be complete if

�

T

(V ) =

Y

h2T

V (G

h

):

A subset T � S can be checked for completeness in polynomial time. If S is itself is

complete, then G = G

1

� : : :� G

k

is the prime factorization of G. Otherwise, S is not

complete. One can �nd a minimum incomplete subset T of S in polynomial time. (Indeed,

check whether all (k� 1)-subsets of S are complete. If yes, then S is minimal incomplete.

Else, let T be an incomplete (k � 1)-subset of S. Check all (k � 2)-subsets of T , and so

on.) The crucial fact is that, if T is minimal incomplete and if (S

1

; : : : ; S

m

) is a good

partition of S, then T � S

i

for some i 2 f1; : : : ; mg. (If not, then T \ S

1

; : : : ; T \ S

m

are

complete, from which one deduces that T itself is complete.) Now, �

T

(G) cannot be split

in a factorization of G. Hence, we may consider the metric representation

G ,! �

T

(G)�

Y

h2SnT

G

h

instead of the initial representation G ,!

Q

1�h�k

G

h

. The new representation has at most

k � 1 factors (since jT j � 2, as singletons are complete). We repeat the process with this

new representation until we �nd a representation whose index set is complete. This �nal

representation is the prime factorization of G.

Feder [Fed92] shows how this algorithm can be performed in O(mn) steps using O(m)

space; another algorithm running in O(m logn) time and using O(m) space is proposed

in [AHI90].

3.3 Metric decomposition of bipartite graphs

We recall that the semimetric cone MET

n

is de�ned by

MET

n

:= fx 2 R

(

n

2

)

: x

ij

� x

ik

� x

jk

� 0 for all i; j; k 2 f1; : : : ; ngg:

In other words, MET

n

consists of all semimetrics on n points. A semimetric d 2 MET

n

is said to be primitive if d lies on an extreme ray of MET

n

, i.e., d = d

1

+ d

2

with
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d

1

; d

2

2 MET

n

implies that d

1

= �

1

d, d

2

= �

2

d for some �

1

; �

2

� 0. For d 2 MET

n

, one

can de�ne its 0-lifting d

0

2 MET

n+1

by setting

8

>

<

>

:

d

0

1;n+1

= 0

d

0

i;n+1

= d

1;i

for i = 2; : : : ; n

d

0

ij

= d

ij

for 1 � i < j � n:

Given d 2 MET

n

, let F (d) denote the smallest face of MET

n

that contains d. Hence,

F (d) consists of all vectors y 2 MET

n

that satisfy the same triangle equalities as d, i.e.,

such that y

ij

� y

ik

� y

jk

= 0 whenever d

ij

� d

ik

� d

jk

= 0. One checks easily that F (d)

is a simplex, i.e., the primitive semimetrics lying on F (d) are linearly independent, if and

only if d admits a unique decomposition as a sum of primitive semimetrics.

Let G be a connected graph on n nodes. Its path metric d

G

belongs to the semimetric

cone MET

n

. Hence, a natural question to ask is what are the possible decompositions of

d

G

as a sum of primitive semimetrics. It is shown below that, if G is a bipartite graph,

then d

G

admits a unique such decomposition, i.e., d

G

lies on a simplex face of MET

n

. In

fact, the primitive semimetrics entering the decomposition of d

G

are the 0-liftings of the

path metrics of the factors of the canonical metric representation of G.

Theorem 3.9. [LS93] Let G be a connected bipartite graph on n nodes with isometric di-

mension dim

I

(G) = k. Let F (d

G

) denote the smallest face of the semimetric cone MET

n

that contains d

G

. Then, F (d

G

) is a simplex face of MET

n

of dimension k.

Proof. Let E

1

; : : : ; E

k

denote the equivalence classes of the relation �

�

and let

G ,!

Y

1�h�k

G

h

denote the associated canonical metric representation of G. For a node a 2 V , denote by

(a

1

; : : : ; a

k

) its image under the canonical embedding. For h = 1; : : : ; k, let d

h

denote the

semimetric on V de�ned by

d

h

(a; b) = d

G

h

(a

h

; b

h

)

for a; b 2 V . Then, d can be decomposed as

d =

X

1�h�k

d

h

:

The semimetrics d

1

; : : : ; d

k

are clearly linearly independent and they belong to the face

F

G

. We show that F (d

G

) is generated by fd

1

; : : : ; d

k

g: For this, we show that each x 2 F

G

is of the form x =

P

1�h�k

�

h

d

h

for some scalars �

h

� 0. Let x 2 F

G

. By de�nition, this

means that every triangle inequality which is satis�ed at equality by d

G

is also satis�ed

at equality by x. We claim that, if e = (a; b) and e

0

= (a

0

; b

0

) are edges of G, then

e�e

0

=) x(a; b) = x(a

0

; b

0

):

Indeed, as G is bipartite, we can suppose that a

0

2 G(a; b) and b

0

2 G(b; a). One can easily

check that d

G

satis�es the following four triangle equalities:

d

G

(a

0

; b) = d

G

(a

0

; a) + d

G

(a; b); d

G

(a; b

0

) = d

G

(a; b) + d

G

(b; b

0

);
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d

G

(a

0

; b) = d

G

(a

0

; b

0

) + d

G

(b; b

0

); and d

G

(a; b

0

) = d

G

(a; a

0

) + d

G

(a

0

; b

0

):

Hence, x satis�es these four triangle equalities too. From the �rst two equalities, we obtain

x(a

0

; b)� x(a; b

0

) = x(a

0

; a)� x(b; b

0

);

and the last two imply

x(a

0

; b)� x(a; b

0

) = x(b; b

0

)� x(a; a

0

):

Therefore, x(a; a

0

) = x(b; b

0

) and x(a; b

0

) = x(a

0

; b) which imply that x(a; b) = x(a

0

; b

0

).

Hence, there exist scalars �

1

; : : : ; �

k

� 0 such that x(a; b) = �

h

for each edge (a; b) in the

class E

h

. We show

x =

X

1�h�k

�

h

d

h

:

Let a; b 2 V and let P := (a

0

= a; a

1

; : : : ; a

p

= b) be a shortest path from a to b in G.

Set N

h

= jE(P ) \E

h

j for h = 1; : : : ; k. Using the triangle equalities along P , one obtains

that x(a; b) =

P

1�i�p

x(a

i�1

; a

i

) =

P

1�h�k

�

h

N

h

. As P contains N

h

edges from E

h

, by

contracting the other edges of P , we obtain in the graph G

h

a path from a

h

to b

h

of length

N

h

. This shows that d

G

h

(a

h

; b

h

) � N

h

. Let Q

0

be a shortest path from a

h

to b

h

in G

h

.

So, Q

0

arises from a path Q joining a to b in G. By Lemma 3.2, Q contains at least N

h

edges from E

h

. Therefore, jQ

0

j � N

h

, implying that d

G

h

(a

h

; b

h

) = N

h

. Hence, we have

P

1�h�k

�

h

d

h

(a; b) =

P

1�h�k

�

h

N

h

= x(a; b).

So, we have shown that F (d

G

) is generated by fd

1

; : : : ; d

k

g. Therefore, F (d

G

) is a simplex

face of dimension k of MET

n

.

Corollary 3.10. Let G be a connected bipartite graph. Then, its path metric d

G

lies

on an extreme ray of the semimetric cone MET

n

if and only if dim

I

(G) = 1, i.e., G is

irreducible.

Corollary 3.10 is not valid for nonbipartite graphs. For instance, K

3

is irreducible, but its

path metric lies in the interior of the semimetric cone MET

3

.

4 `

1

-graphs

We study in this section `

1

-graphs, i.e., the graphs whose path metric can be isometrically

embedded into an `

1

-space. As was recalled in Section 1, a graph G is an `

1

-graph if it is

hypercube embeddable, up to scale. A �-embedding of G into the hypercube H(
) is

any mapping

x 2 V 7! X � 


such that

�d

G

(x; y) = jX4Y j

for all nodes x; y of G. If G has a �-embedding into a hypercube, we also say that G is

hypercube embeddable with scale �. A 1-embedding in a hypercube is nothing but an

isometric embedding in a hypercube.
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Three classes of graphs play a crucial role in the theory of `

1

-graphs: complete graphs,

cocktail-party graphs, and half-cube graphs. All of them are `

1

-graphs, so is any cartesian

product of them. Actually, we show below that any `

1

-graph arises as an isometric sub-

graph of such a cartesian product. Complete graphs K

m

(m � 3) and half-cube graphs

1

2

H(m; 2) (m � 3) have minimum scale 2. Note that

1

2

H(2; 2) = K

2

,

1

2

H(3; 2) = K

4�2

,

and K

m

is an isometric subgraph of bothK

m�2

and

1

2

H(m; 2). The following holds clearly.

Lemma 4.1. A graph G is hypercube embeddable with scale 2, i.e., 2d

G

is hypercube

embeddable, if and only if G is an isometric subgraph of a half-cube graph.

On the other hand, determining the minimum scale of cocktail-party graphs is a hard

problem. See [DL93b] and the survey [DL94b]. We state a preliminary result that we

need here.

Lemma 4.2. K

2

k

�2

has a 2

k�1

-embedding in a hypercube. Therefore, if 2

k�1

< m � 2

k

,

then K

m�2

has a 2

k�1

-embedding in a hypercube.

Proof. Consider the vector space GF (2)

k

. Every hyperplane in GF (2)

k

consists of

2

k�1

points and the symmetric di�erence of two hyperplanes also contains 2

k�1

points.

We obtain a 2

k�1

-embedding of K

2

k

�2

in the hypercube de�ned on the set of points of

GF (2)

k

by labeling the nodes by the 2

k

�1 hyperplanes, together with their complements,

the full set and ;.

We already know from Theorem 2.14 that every connected bipartite `

1

-graph is hyper-

cube embeddable. For nonbipartite graphs we have the following observation ([BG73]).

Lemma 4.3. Let G be an `

1

-graph and suppose that G has a �-embedding in a hypercube.

If G is not a bipartite graph, then � is an even integer. Therefore, the minimum scale of

an `

1

-graph is equal to 1 or is even.

Proof. Suppose that G is not bipartite. Let C be an odd cycle in G of minimal length.

Then, C is an isometric subgraph of G. Say, C = (a

1

; : : : ; a

2k+1

). We can suppose that,

in the �-embedding of G in a hypercube, the nodes a

1

; a

k+1

; a

k+2

are labeled by ;,A,B,

respectively. Then, as d

G

(a

1

; a

k+1

) = d

G

(a

1

; a

k+2

) = k and d

G

(a

k+1

; a

k+2

) = 1, we have

� = jA4Bj and jAj = jBj = �k. Hence, � = 2�k � 2jA \ Bj. Therefore, � is an even

integer.

The following Theorem 4.4 and Corollaries 4.5-4.10, due to Shpectorov [Shp93], are

the main results of this section.

Theorem 4.4. Let G be an `

1

-graph. Then, there is a graph

b

G and an isometric embed-

ding

b

� from G into

b

G such that

(i)

b

G =

b

G

1

� : : :�

b

G

k

, where each

b

G

h

is isomorphic to a complete graph, a cocktail-party

graph K

m�2

(m � 3), or a half-cube graph, and
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(ii) if  is a �-embedding of G into the hypercube, then there is a �-embedding

b

 of

b

G

into the same hypercube such that  =

b

 

b

�.

Corollary 4.5. A connected graph G is an `

1

-graph if and only if all the factors of its

canonical metric representation are `

1

-graphs.

Corollary 4.6. A connected graph G is an `

1

-graph if and only if G is an isometric

subgraph of a cartesian product of cocktail-party graphs and half-cube graphs.

Corollary 4.7. Let G be an `

1

-graph. Then, G is `

1

-rigid if and only if

b

G is `

1

-rigid.

Corollary 4.8. Every `

1

-rigid graph is an isometric subgraph of a half-cube graph and,

therefore, its minimum scale � is equal to 1 or 2.

Corollary 4.9. Let G be an `

1

-graph on n � 4 nodes. Then its minimum scale �

satis�es � � n � 2.

Corollary 4.10. One can check in polynomial time whether a given graph is an `

1

-

graph.

We present in Section 4.1 a concrete construction of the graph

b

G from Theorem 4.4,

using a speci�c �-embedding of G. We group in Section 4.2 the proofs of Theorem 4.4 and

Corollaries 4.5-4.10.

Corollary 4.6 was also obtained in [DG93] as an application of the corespondance

existing between Delaunay polytopes in lattices and hypermetrics. However, the proof

method from [DG93] does not permit to obtain further results as the characterization of `

1

-

rigidity and the fact that `

1

-graphs can be recognized in polynomial time. In contrast, the

proof method presented here uses only elementary notions. It is, in a way, a continuation

of the theory of canonical metric representations of graphs. Indeed, the essential step of

the proof will be to show that each factor of the canonical metric representation of an

`

1

-graph can be further embedded into a complete graph, a cocktail-party graph, or a

half-cube graph.

We saw in Proposition 2.3 that every hypercube embeddable graph is `

1

-rigid. Hence,

we have the following chain of implications:

G is an isometric subgraph of a hypercube

=) G is `

1

-rigid

=) G is an isometric subgraph of a half-cube graph

Several classes of graphs were shown to be `

1

-rigid in [DL94a], including the half-cube

graph

1

2

H(n; 2) for n 6= 3; 4, the Johnson graph J(n; d) for d 6= 1, the Petersen graph, the
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Shrikhande graph, the dodecahedron, the icosahedron, any weighted cycle. The method

of proof is analogue to that of Proposition 2.3, namely, one shows that the path metric of

the graph in question lies on a simplex face of the corresponding cut cone. We refer to

[DL94a] for details.

An interesting fact is that, if an `

1

-graph G is not `

1

-rigid, then this is essentially due

to the fact that complete graphs on at least four nodes are not `

1

-rigid. Indeed, it follows

from Theorem 4.4 that any `

1

-embedding of G arises from an `

1

-embedding of its extension

b

G. As

b

G is a cartesian product of complete graphs, cocktail-party graphs and half-cube

graphs, the variety of `

1

-embeddings of

b

G follows from the variety of `

1

-embeddings of its

factors. But the half-cube graph is `

1

-rigid unless it coincides with K

4

or K

4�2

. Moreover,

any `

1

-embedding of K

n�2

arises from some `

1

-embedding of K

n

, since the path metric

of K

n�2

can be constructed from the path metric of K

n

via the antipodal operation (see

[DL94a] for details). Therefore, the variety of `

1

-embeddings of

b

G, hence of G, arises from

the variety of `

1

-embeddings of the complete graph. The variety of embeddings of the

complete graph is studied in [DL93b].

Unlike the case of isometric subgraphs of hypercubes, no structural characterization

is known for the `

1

-graphs, or for the isometric subgraphs of half-cube graphs. However,

a structural characterization is known for the graphs with a universal node that are `

1

-

graphs [AD80, AD82]. In particular, it is shown there that, if G is a graph on n � 28

(resp. n � 37) nodes, then its suspension rG (obtained by adding a new node adjacent

to all nodes of G) is an `

1

-graph if and only if rG is hypermetric (resp. rG satis�es the

5-gonal inequalities and is of negative type).

We conclude with a result on the maximum size of the possible `

1

-embeddings of an

`

1

-graph. Let G = (V;E) be a connected `

1

-graph. In other words, its path metric can be

decomposed as a nonnegative combination of cut semimetrics: d

G

=

P

S2S

�

S

�(S), where

S is a collection of nonempty proper subsets of V and �

S

> 0 for S 2 S. The quantity

P

S2S

�

S

is called the size of the `

1

-embedding. We let S

`

1

(d

G

) denote the maximum

size of an `

1

-embedding of d

G

. We saw in Proposition 2.3 that every tree has a unique

`

1

-embedding whose size is equal to n� 1 (for a tree on n nodes). The next result shows

that the maximum `

1

-size of an `

1

-graph on n nodes is at most n� 1.

Lemma 4.11. [Dez] LetG = (V;E) be a connected `

1

-graph and suppose d

G

=

P

S2S

�

S

�(S)

with �

S

> 0 for all S 2 S, where S is a collection of nonempty proper subsets of V . For

each S 2 S, �

S

� 1 holds, and the subgraph G[S] of G induced by S is an isometric

subgraph of G.

Proof. let S 2 S. Let ij be an edge of G with i 2 S; j 2 V nS. Hence, d

G

(i; j) = 1 � �

S

.

Let i; j 2 S and let P be a shortest path in G from i to j. Then, any node k of P belongs

to S, as the triangle equality d

G

(i; j) = d

G

(i; k) + d

G

(j; k) holds. Hence, P is a shortest

path from i to j in G[S]. This shows that G[S] is an isometric subgraph of G.

Proposition 4.12. [Dez] Let G be a connected `

1

-graph on n nodes. Then, its maximum

`

1

-size satis�es: S

`

1

(d

G

) � n� 1, with equality if and only if G is a tree.
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Proof. The proof is by induction on n. Consider a decomposition of d

G

as

P

S2S

�

S

�(S)

with �

S

> 0 for S 2 S. Let T 2 S. By Lemma 4.11, G[T ] is an isometric sub-

graph of G. Hence, d

G[T ]

=

P

S2S;S\T 6=;;T

�

S

�(S \ T ). By the induction assump-

tion,

P

S2S;S\T 6=;;T

�

S

� jT j � 1. Similarly, considering the graph G[V n T ], we have

P

S2S;S\(V nT ) 6=;;V nT

�

S

� jV n T j � 1. Hence,

P

S2S

�

S

� �

T

+

P

S2S;S\T 6=;;T

�

S

+

P

S2S;S\(V nT ) 6=;;V nT

�

S

� 1+(jT j� 1)+ (jV nT j� 1) = n� 1. Moreover, if equality holds,

then G[T ]; G[V n T ] are trees and �

T

= 1. This implies easily that G is a tree.

4.1 Construction of

b

G via the atom graph

In this section, we show how to construct the graph

b

G from Theorem 4.4, using a speci�c

scale embedding of G. It will turn out that, in fact,

b

G does not depend on the choice

of the scale embedding and that

b

G is an isometric extension of the canonical metric

representataion of G. The main tool for the construction of

b

G is the atom graph of G, as

we explain below.

Let G = (V;E) be an `

1

-graph. Let

 : x 2 V 7! X � 


be a �-embedding ofG into the hypercube H(
). We can suppose without loss of generality

that 
 = [

x2V

X and that a given node x

0

2 V is assigned to ;. Set

(4.13) E

0

= fe = (x; y) 2 E : d

G

(x

0

; x) 6= d

G

(x

0

; y)g:

For an edge e = (x; y) 2 E

0

, we can suppose that x

0

2 G(x; y). One can easily check the

following statements.

(4.14) jX j = �d

G

(x

0

; x) for all x 2 V:

(4.15) jX \ Y j =

�

2

(d

G

(x

0

; x) + d

G

(x

0

; y)� d

G

(x; y)) for all x; y 2 V:

For an edge e = (x; y),

(4.16)

(

jX n Y j = jY nX j =

�

2

if e 62 E

0

;

X � Y if e 2 E

0

:

Call atom every set of the form X4Y corresponding to an edge e = (x; y) of G, and

proper atom every set of the form Y nX corresponding to an edge e = (x; y) 2 E

0

(with

x

0

2 G(x; y)). Atoms have cardinality � and,

(4.17) if A;B are distinct proper atoms, then jA \Bj = 0;

�

2

:

We de�ne the atom graph �(G) as the graph with node set the set of proper atoms of

G and with two proper atoms A;B being adjacent if jA \ Bj =

�

2

. Let �

1

; : : : ;�

k

denote

the connected components of �(G). For h = 1; : : : ; k, let 


h

denote the union of the

proper atoms that are nodes of �

h

. Hence, each proper atom is either contained in 


h

, or

disjoint from 


h

. Actually, the same property holds for all atoms, as we show in the next

Claim 4.18.
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Claim 4.18. Let A be an atom of G. Then, for each h = 1; : : : ; k; either A � 


h

, or

A \ 


h

= ;.

Proof. Let (x; y) be an edge of G corresponding to the atom A, i.e., A = X4Y . We

suppose that the edge (x; y) does not belong to E

0

. Hence, the node x

0

is at the same

distance s from x and y. Let (x

0

; x

1

; : : : ; x

s

= x) and (y

0

= x

0

; y

1

; : : : ; y

s

= y) be shortest

paths from x

0

to x and y in G. Hence,

X =

[

1�i�s

B

i

; Y =

[

1�i�s

C

i

;

where B

i

is the proper atom X

i

nX

i�1

, C

i

is the proper atom Y

i

n Y

i�1

, for i = 1; : : : ; s.

We claim that

X n Y � B

i

0

for some i

0

2 f1; : : : ; sg. Indeed, take � 2 X n Y and suppose, for instance, that � 2 B

1

.

Then, B

1

\ Y 6= B

1

. On the other hand, B

1

\ Y 6= ;, else B

1

� X n Y implying that

jX nY j � �, contradicting (4.16). As the cardinality of B

1

\Y is a multiple of

�

2

by (4.17),

we obtain that jB

1

\ Y j =

�

2

; jB

1

n Y j =

�

2

. Therefore, X n Y = B

1

n Y � B

1

. Similarly,

Y nX � C

j

0

for some j

0

2 f1; : : : ; sg. Furthermore, as the C

j

's are pairwise disjoint, each B

i

either

coincides with some C

j

, or meets exactly two of them, unless B

i

= B

i

0

in which case B

i

meets exactly one C

j

. The symmetric statement holds for each C

i

. This means that the

subgraph of the atom graph �(G) induced by the set fB

1

; : : : ; B

s

; C

1

; : : : ; C

s

g consists of

isolated nodes, cycles, and exactly one path whose endpoints are B

i

0

and C

j

0

. Let �

h

0

be

the connected component of �(G) that contains this path. Then, B

i

0

; C

j

0

� 


h

0

, which

implies that A = X4Y � 


h

0

. Moreover, for h 6= h

0

, B

i

0

; C

j

0

are disjoint from 


h

,

implying that A is disjoint from 


h

.

Let G

h

denote the graph with node set fX := X \


h

j x 2 V g and with (X; Y ) being

an edge if jX4Y j = �. Set G =

Y

1�h�k

G

h

.

Claim 4.19. (i) Each G

h

is �-embedded into the hypercube H(


h

) and its atom graph

�(G

h

) coincides with �

h

.

(ii) G is �-embedded into the hypercube H(
).

(iii) The mapping x 2 V 7! (X \


1

; : : : ; X \


k

) is an isometric embedding of G into G.

Proof. Let x; y be two nodes of G, giving the two nodes X = X \ 


h

, Y = Y \ 


h

of

G

h

. We show

jX4Y j = �d

G

h

(X; Y ):

Set s = d

G

(x; y) and t = d

G

h

(X; Y ). Let (y

0

= x; y

1

; : : : ; y

s

= y) be a shortest path from

x to y in G. Then,

X4Y =

X

1�i�s

Y

i

n Y

i�1
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is a disjoint union of atoms. Let t

h

denote the number of atoms Y

i

nY

i�1

that are contained

in 


h

. By Claim 4.18, we obtain

jX4Y j = j(X4Y ) \ 


h

j = t

h

�:

Moreover, we have found a path of length t

h

joining X to Y in G

h

, which implies that

t

h

� t: Let (Z

0

= X;Z

1

; : : : ; Z

t

= Y ) be a shortest path joining X to Y in G

h

. So,

jX4Y j = j(X4Z

1

)4(Z

1

4Z

2

)4 : : :4(Z

t�1

4Y )j �

X

1�i�t

jZ

i�1

4Z

i

j = t�:

This implies that t

h

� t and, therefore, t

h

= t. Hence, the graph G

h

is �-embedded

into the hypercube H(


h

). One checks easily that its atom graph is �

h

. Hence, (i) holds.

Moreover, (X\


1

; : : : ; X\


k

) 7! [

h

(X\


h

) = X provides a �-embedding ofG

1

�: : :�G

k

into the hypercube H(
), showing (ii). It also follows that

d

G

(x; y) =

X

1�h�k

d

G

h

(X \ 


h

; Y \ 


h

)

for all nodes x; y 2 V . This shows (iii).

We now show that each factor G

h

can be further embedded into some graph

b

G

h

which

is isomorphic to a complete graph, a cocktail-party graph, or a half-cube graph. We �rst

deal with the case when the atom graph �(G) is connected, i.e., k = 1. Then, the graph

G is nothing but the graph G embedded into the hypercube H(
).

Claim 4.20. If �(G) is connected, then there exists a unique minimal graph

b

G con-

taining G as an isometric subgraph and such that

b

G is isomorphic to a complete graph, a

cocktail-party graph K

m�2

(m � 3), or a half-cube graph. Moreover,

b

G is �-embedded into

the hypercube H(
).

Proof. We distinguish three cases.

Case 1: �(G) is a complete graph. Then, G itself is a complete graph and

b

G = G.

Indeed, each node x is adjacent to x

0

(else, X would be a disjoint union of the proper

atoms corresponding to the edges of a shortest path from x

0

to x). For two nodes x; y 2 V ,

X and Y are adjacent proper atoms, implying that jX4Y j = � and, therefore, x and y

are adjacent in G. (In fact, �(K

n

) = K

n�1

.)

Case 2: �(G) is not a complete graph, but is an induced subgraph of a cocktail-party

graph. Let A;B be two proper atoms at distance 2 in �(G). Each other proper atom C

is adjacent to both A and B, which implies that C � A[B. Hence, for each node x 2 V ,

X is contained in the 2�-element set A[B. We claim that G is an induced subgraph of a

cocktail-party graph. Indeed, any two nonadjacent nodes in G are necessarly at distance

2 since jX4Y j � 2� for all x; y 2 V . Moreover, each node x is adjacent to all other nodes

except maybe one, which is then labeled by the complement of X . Then, we take for

b

G

the cocktail-party graph K

m�3

, obtained by adding an \opposite" node labeled by the

complement of X for each node x which is adjacent to all other nodes in G. Hence,

b

G is

�-embedded into the same hypercube H(
). Moreover, m � 3. Otherwise, G would be a
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subgraph of K

2�2

, which implies that G is P

3

or C

4

in which cases �(G) consists of two

isolated nodes.

Case 3: �(G) is not an induced subgraph of a cocktail-party graph. We show that G can

isometrically embedded into a half-cube graph. First, we claim the existence of distinct

proper atoms A;B;C;D satisfying

8

>

>

>

<

>

>

>

:

A \ C = ;

A \D = ;

C is adjacent to D in �(G)

B is adjacent to A and C in �(G):

Indeed, let A;C be two proper atoms at distance 2 in �(G) and let B be a proper atom

adjacent to A and B. Suppose for contradiction that, for each proper atom D, D is

adjacent to A if and only if D is adjacent to C. If D is adjacent to A and C, then

D � A [ C. If D

0

is adjacent to A and C and D is adjacent to D

0

, then D meets A or C

and, thus, D is adjacent to both A and C, implying D � A [ C. By connectivity of the

atom graph �(G), we deduce that each proper atom D is contained in A [ C. Therefore,

if D;D

0

are disjoint proper atoms, then D

0

is the complement of D. This shows that each

proper atom is adjacent to all other proper atoms except at most one, contradicting the

assumption that �(G) is not a subgraph of a coktail-party graph.

Let us call a half each set of the form A \ B or A n B, where A;B are adjacent proper

atoms. Each half has cardinality

�

2

and each proper atom is the disjoint union of two

halves. We claim that

(4.21) distinct halves are disjoint.

If (4.21) holds then, for each node x 2 V , X can be uniquely expressed as a disjoint

union of halves. Indeed, if (x

0

; x

1

; : : : ; x

s

= x) is a shortest path from x

0

to x in G, then

X = [

1�i�s

X

i

nX

i�1

where each proper atom X

i

nX

i�1

is the union of two halves; this

set of halves does not depend on the choice of the shortest path. This gives an isometric

embedding of G into the half-cube graph

b

G de�ned on the set of halves. By construction,

b

G is �-embedded into the hypercube H(
).

As �(G) is connected, we can order the proper atoms A

1

; A

2

; : : : ; A

p

in such a way that

each A

j

(j � 2) is adjacent to at least one A

s

, s < j. We suppose that A

1

= A;A

2

=

B;A

3

= C;A

4

= D. We show by induction on j � 4 that the distinct halves that are

created by the �rst j proper atoms A

1

; : : : ; A

j

are pairwise disjoint.

Consider �rst the case j = 4. By construction, the halves H

1

= A n B, H

2

= A \ B,

H

3

= B \ C, H

4

= C n B are disjoint. Consider the half C \ D. Since B \ D =

B \C \D = (C \D)\H

3

has cardinality 0 or

�

2

, we obtain that C \D is equal to H

3

or

H

4

. The half H

5

= D n C is disjoint from H

1

; H

2

; H

3

; H

4

.

We suppose now that all halves in the set H of the halves created by the �rst j�1 (j � 5)

proper atoms are pairwise disjoint. Call two halves H;H

0

2 H neighbouring if H [H

0

is a proper atom A

s

for some s < j. This de�nes a graph structure on H, for which H

is connected. Suppose that A

j

is adjacent to A

s

, for s < j, and let A

s

= X

1

[ X

2

with

X

1

; X

2

2 H. Suppose that A

j

\A

s

is not equal to X

1

, nor to X

2

. Set � = jA

j

\X

1

j and

� = jA

j

\X

2

, where �; � > 0 and � + � =

�

2

. If Y

1

; Y

2

are two neighbouring halves and

jA

j

\ Y

1

j = � or �, then jA

j

\ Y

2

j = � or �, respectively. By connectivity of H, we deduce
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that A

j

\ Y

1

j = �, jA

j

\ Y

2

j = �, or vice versa, for every pair (Y

1

; Y

2

) of neighbouring

halves. Now, jA

j

\ (H

1

[H

2

[H

3

[H

4

[H

5

)j = 2(�+ �) + � or 2(�+ �) + �, which is

greater than �, yielding a contradiction. Therefore, A

j

\A

s

is equal to X

1

or X

2

. Hence,

A

j

nA

s

is either a half from H or a new half disjoint from all halves in H. This concludes

the induction, and the proof of Claim 4.20.

Claim 4.22. If �(G) has k connected components �

1

; : : : ;�

k

, then there exists a unique

minimal graph

b

G containing G as an isometric subgraph and such that

b

G =

Y

1�h�k

b

G

h

;

where each factor

b

G

h

is isomorphic to a complete graph, a cocktail-party graph K

m�2

(m � 3), or a half-cube graph. Moreover,

b

G is �-embedded into the hypercube H(
).

Proof. As the atom graph �(G

h

) = �

h

is connected, we can apply Claim 4.20. Hence,

for each h = 1; : : : ; k, there exists a unique minimal graph

b

G

h

which contains G

h

as an

isometric subgraph and is isometric to a complete graph, a cocktail-party graph K

m�2

(m � 3), or a half-cube graph. Therefore,

G ,!

b

G =

Y

1�h�k

b

G

h

;

providing a minimal graph

b

G satisfying Claim 4.22. Moreover,

b

G is �-embedded into H(
)

as each factor

b

G

h

is �-embedded into H(


h

) and the sets 


h

are disjoint subsets of 
.

Remark 4.23. Each of the graphs G

h

is irreducible since it is an isometric subgraph of

a complete graph, a cocktail-party graph on at least 6 nodes, or a half-cube graph, which

are all irreducible graphs. As the embedding G ,! G is clearly irredundant, we deduce

from Theorem 3.1 that the metric representation

G ,! G =

Y

1�h�k

G

h

is, in fact, the canonical metric representation of G (which explains why we denoted the

number of connected components of the atom graph by k, the letter used in the previous

Section 3 for denoting the isometric dimension of G). In particular, the graph G whose

construction depends, a priori, on the choice of the scale embedding of G into a hypercube,

does not, in fact, depend on the speci�c embedding. Hence, the graph

b

G too does not

depend on the speci�c embedding.

One can also verify directly that the graph G does not depend on the speci�c scale

embedding of G. Indeed, the atom graph can be de�ned in an abstract way, not using the

speci�c embedding.
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Given two edges e = (x; y); e

0

= (x

0

; y

0

) of G, set

(4.24) he; e

0

i :=

1

2

(d

G

(y

0

; x)� d

G

(y

0

; y)� d

G

(x

0

; x) + d

G

(x

0

; y)):

The quantity he; e

0

i takes the values 0;�1;�

1

2

, depending to which sets of the partition

V = G(x; y) [ G(y; x) [ G

=

(x; y) (de�ned in (1.1)) the nodes x

0

; y

0

belong. Observe that

he; e

0

i 6= 0 if and only if e; e

0

are in relation by � (de�ned in (1.2)). In the case when both

e; e

0

belong to the set E

0

(recall (4.13)), with x

0

2 G(x; y)\G(x

0

; y

0

), then

he; e

0

i =

1

�

j(Y nX) \ (Y

0

nX

0

)j 2 f0;

1

2

; 1g;

if x 7! X is a �-embedding of G into a hypercube. In particular, he; e

0

i = 1 if and only if

the edges e; e

0

correspond to the same proper atom Y nX = Y

0

nX

0

. For e; e

0

2 E

0

, set

e � e

0

if he; e

0

i = 1:

The relation � is an equivalence relation on E

0

. Clearly, the set of equivalence classes of

E

0

under � is in bijection with the set of proper atoms. One can de�ne a graph E on the

set of equivalence classes by letting two classes e, e

0

be adjacent if he; e

0

i =

1

2

(the value

of he; e

0

i does not depend on the choice of e in the class e and e

0

in the class e

0

). The

graph E clearly coincides with the atom graph �(G). Let E

1

; : : : ; E

k

denote the connected

components of E . Hence, each edge e 2 E

0

is assigned to a node in one of the E

h

's. We

now see how to assign the other edges of G to some component E

h

. Let e = (x; y) be

an edge that does not belong to E

0

, i.e., d

G

(x

0

; x) = d

G

(x

0

; y). Let (x

0

; x

1

; : : : ; x

s

= x)

and (y

0

= x

0

; y

1

; : : : ; y

s

= y) be shortest paths joining x

0

to x and y in G and set

e

i

= (x

i�1

; x

i

); f

i

= (y

i�1

; y

i

) for i = 1; : : : ; s. Consider the subgraph of E induced by the

set fe

i

; f

i

: i = 1; : : : ; sg. An analogue of Claim 4.18 shows that this graph consists of

isolated nodes, cycles, and exactly one path. Moreover, the component E

h

containing this

path depends only on the edge (x; y) (not on the choice of the shortest paths from x

0

to

x and y). This permits us to partition the edge set E of G into E

1

[ : : : [ E

k

, where E

h

consists of the edges that are assigned to E

h

by the above procedure. Then, let G

h

denote

the graph obtained by contracting the edges from E n E

h

. The graph G

h

coincides with

the graph G

h

(up to renumbering of the factors).

So we have shown how to construct the graph G in an abstract way, not depending on the

speci�c scale embedding of G. We refer to [Shp93] for more details.

4.2 Proofs

Proof of Theorem 4.4. The existence of a graph

b

G satisfying Theorem 4.4 (i) follows

from Claim 4.22. We prove the second part of Theorem 4.4. Let  : x 7! X be a �-

embedding of G into a hypercube H(
). Suppose �rst that  assigns the given node x

0

to

;. Using  , by the construction of Section 4.1, we obtain a graph

d

G

 

which is �-embedded

into H(
) and is isomorphic to

b

G (by Remark 4.23). This gives the �-embedding

b

 such

that  =

b

 

b

�. Suppose now that  assigns the set X

0

to the node x

0

. Consider the

�-embedding x 7! X4X

0

, denoted by  4X

0

, of G into H(
). As  4X

0

maps x

0

to ;,

we obtain

d

 4X

0

4X

0

for the embedding

b

 .
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Proof of Corollaries 4.5 and 4.6. If G is an `

1

-graph, then the graph G is an

`

1

-graph (by Claim 4.19) and G coincides with the canonical metric representation of G

(by Remark 4.23). This shows Corollary 4.5. Corollary 4.6 is an immediate consequence

of Corollary 4.5.

Proof of Corollaries 4.7 and 4.8. The implication:

b

G is `

1

-rigid =) G is `

1

-rigid

follows from Theorem 4.4 (ii). Conversely, suppose that G is `

1

-rigid. We show that

b

G is

`

1

-rigid. Consider a scale embedding

b

 

i

of

b

G in the hypercube 


i

, for i = 1; 2. We can

suppose that 


1

and 


2

have the same cardinality (if not, add some redundant elements).

We can also suppose that

b

 

1

and

b

 

2

have the same scale �. (If, for i = 1; 2,

b

 

i

has scale �

i

,

then replace

b

 

i

by

b

 

0

i

, where

b

 

0

1

is the �

1

�

2

-embedding constructed from

b

 

1

by replacing

the elements of 


1

by disjoint sets each of cardinality �

2

and

b

 

0

2

is the �

1

�

2

-embedding

constructed from

b

 

2

in the same way.) Then,  

i

:=

b

 

i

b

� : x 7! X

i

is a �-embedding of G

into the hypercube H(


i

), for i = 1; 2. As G is `

1

-rigid, any two isometric `

1

-embeddings

of G are equivalent (recall the de�nition from Section 1). It is not di�cult to see that

this implies the existence of a bijection � : 


1

�! 


2

and of a set A � 


2

such that

X

2

= '(X

1

) for each node x of G where, for a subset Z � 


1

, we set

'(Z) = �(Z)4A:

Using  

i

, by the construction of Section 4.1, we obtain the graph

b

G

 

i

, which is �-

embedded into the hypercube H(


i

) via

b

 

i

. By the minimality of the graphs

b

G

 

1

,

b

G

 

2

(see

Claim 4.22), we deduce that ' establishes the equivalence of the embeddings

b

 

1

and

b

 

2

.

Hence,

b

G is `

1

-rigid. This shows Corollary 4.7. Corollary 4.8 now follows easily. Indeed, if

G is `

1

-rigid, then

b

G is `

1

-rigid, which implies that each factor

b

G

h

is `

1

-rigid (as a product

of graphs is `

1

-rigid if and only if each factor is `

1

-rigid). Therefore, each

b

G

h

is one of

the following graphs: K

2

, K

3

, K

3�2

, or

1

2

H(m; 2) for m � 5, which are all hypercube

embeddable with scale 2. Therefore, G is hypercube embeddable with scale 2, i.e., G is

an isometric subgraph of a half-cube graph.

Proof of Corollary 4.9. Suppose G has n nodes. If some factor

b

G

h

is a cocktail-party

graph K

m�2

, then m < n. Hence, by Lemma 4.2,

b

G

h

is hypercube embeddable with scale

2

k�1

, if 2

k�1

< n � 1 � 2

k

. All other factors are also hypercube embeddable with scale

2

k�1

since k � 2 as n � 4. Hence, G is hypercube embeddable with scale 2

k�1

, which

implies that its minimum scale � satis�es: � � 2

k�1

< n � 1.

Proof of Corollary 4.10. Indeed, the graph

b

G can be constructed in polynomial time

and one can check whether G ,!

b

G also in polynomial time.

5 Additional results

Among the properties contained in the metric hierarchy from Figure 2.12, we have the

hypermetric and the negative type condition. Hypermetric graphs are treated in detail in



34 M. laurent

[DG93] and in the survey [DGL93]. We saw in Figure 2.13 two characterizations for the

distance spaces of negative type. Winkler [Win85] proposes another characterization for

the graphs of negative type. Let G be a graph. Consider an orientation G

0

of G which has,

for each edge (a; b) of G, exactly one of the arcs (a; b) or (b; a). Given two arcs e = (a; b)

and e

0

= (a

0

; b

0

) of G

0

, we set, as in relation (4.24),

he; e

0

i :=

1

2

(d

G

(a; b

0

)� d

G

(a; a

0

)� d

G

(b; b

0

) + d

G

(b; a

0

)):

Observe that, if d

G

is of negative type and u

a

2 R

m

; a 2 V , are vectors satisfying

d

G

(a; b) = (k u

a

� u

b

k

2

)

2

for all a; b 2 V , then he; e

0

i coincides with the scalar product

(u

b

� u

a

)

T

(u

b

0

� u

a

0

).

Theorem 5.1. [Win85] Let G be a connected graph on n+ 1 nodes and let G

0

be an arbi-

trary orientation of G. Let T be a spanning tree in G, with corresponding arcs e

1

; : : : ; e

n

in G

0

. The following assertions are equivalent.

(i) d

G

is of negative type.

(ii) The n� n matrix (he

i

; e

j

i)

i;j=1;:::;n

is positive semide�nite.

Proof. Let V = fa

0

; a

1

; : : : ; a

n

g denote the set of nodes of G. By de�nition, d

G

is of

negative type if and only if

X

0�r<s�n

d

G

(a

r

; a

s

)x

r

x

s

� 0 for all x 2 U := fx 2 R

n+1

:

X

0�r�n

x

r

= 0g:

For each node a

r

2 V , set

A(a

r

) := fi 2 f1; : : : ; ng : the arc e

i

ends in a

r

g;

B(a

r

) := fi 2 f1; : : : ; ng : the arc e

i

begins in a

r

g:

For y 2 R

n

, de�ne x 2 R

n+1

by setting

x

r

=

X

i2A(v

r

)

y

i

�

X

i2B(v

r

)

y

i

for r = 0; 1; : : : ; n. One can check that

X

0�r�n

x

r

= 0, i.e., x 2 U , and x = (0; : : : ; 0) implies

that y = (0; : : : ; 0). Hence, we have found a 1-1 linear correspondance between the spaces

R

n

and U . We check that, under this correspondance,

X

1�i;j�n

he

i

; e

j

iy

i

y

j

= �

X

0�r<s�n

d

G

(a

r

; a

s

)x

r

x

s

:

Indeed, d

G

(a

r

; a

s

) appears in

X

1�i;j�n

he

i

; e

j

iy

i

y

j

with the coe�cient

X

(i;j)2A(v

r

)�B(v

s

)

y

i

y

j

+

X

(i;j)2B(v

r

)�A(v

s

)

y

i

y

j

�

X

(i;j)2A(v

r

)�A(v

s

)

y

i

y

j

�

X

(i;j)2B(v

r

)�B(v

s

)

y

i

y

j

;

which is equal to �x

r

x

s

. This shows the equivalence of (i) and (ii).
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Example 5.2. Consider the graph G

n

with node set fa

0

; : : : ; a

n

g and with edges the

pairs (a

0

; a

1

); (a

0

; a

i

) and (a

1

; a

i

) for i = 2; 3; : : : ; n. Then, the path metric of G

n

is of

negative type if and only if n � 5. (To see it, consider the oriented spanning tree T with

arcs e

1

= (a

0

; a

1

); : : : ; e

n

= (a

0

; a

n

). The matrix (he

i

; e

j

i)

i;j=1;:::;n

has all its entries equal

to 0 except the diagonal entries equal to 1 and the (1; i)- and (i; 1)-entries equal to

1

2

for i = 2; : : : ; n. Its determinant is equal to

5�n

4

.) Note that, for n � 6, G

n

provides a

counterexample to the converse of the last implication from Figure 2.12, since the distance

matrix of G

n

has exactly one positive eigenvalue, but G

n

is not of negative type. (Indeed,

the eigenvalues of the distance matrix of G

n

are 2n� 1;�1;�2 with respective multiplic-

ities 1; 1; n� 1.)

Many other aspects of the metric structure of graphs have been considered in the

literature, leading to rich theories. For instance, distance-regular graphs, or strongly-

regular graphs, are de�ned by some invariance property of their path metric. The study of

such graphs leads to a large and rich area of research, connected to algebraic graph theory.

The papers [BK91, Koo90, Koo92, KS94, Wei92] deal with the study of graphs with high

regularity that have some speci�ed metric properties as hypermetricity, or some special

cases of it (e.g., satisfying the pentagonal inequality, or the hexagonal iunequality), etc...

For instance, the distance-regular graphs that are hypercube embeddable are completely

classi�ed: they are the hypercubes, the even cycles, and the double-odd graphs [Wei92,

Koo90]. The distance-regular graphs of negative type (or, equivalently, whose distance

matrix has exactly one positive eigenvalue) are classi�ed in [KS94].

We mention below some other topics related to the metric structure of graphs, as

interval-regular graphs, geodetic graphs, or the question of embedding a given distance

space into a (weighted) graph.

Remark 5.3. Interval-regular graphs and geodetic graphs.

Let G = (V;E) be a connected graph. For two nodes x; y 2 V , let (x; y) denote the number of

shortest paths joining x to y in G, set

I(x; y) = fz 2 V j d

G

(x; y) = d

G

(x; z) + d

G

(z; y)g

and, for i = 0; 1; : : : ; d

G

(x; y), set

N

i

(x; y) = fz 2 I(x; y) j d

G

(x; z) = ig:

Set also

N

�1

(x; y) = fz 2 V j d

G

(x; z) = 1 and d

G

(z; y) = d

G

(x; z) + 1g:

Then, G is distance-regular if the numbers jN

1

(x; y)j and jN

�1

(x; y)j depend only on d

G

(x; y)

(see [BCN89]). The graph G is said to be interval-regular if jN

1

(x; y)j = d

G

(x; y) for all nodes

x; y 2 V (see [Mul80, Mul82]). G is said to be uniformely geodetic [CP83] (or F -geodetic,

[CS86]) if (x; y) depends only on d

G

(x; y). Every distance-regular graph is uniformely geodetic

[CP83], and every Hamming graph is interval-regular (since the subgraph induced by the interval

I(x; y) is isomorphic to the d

G

(x; y)-hypercube). See, e.g., [Sca90, Koo93] for more informations

on uniformely geodetic graphs; [Koo93] characterizes the uniformely geodetic bipartite graphs.

Several characterizations of the hypercube are known. Foldes [Fol77] shows that the hypercube
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is the only connected bipartite graph for which (x; y) = d

G

(x; y)! holds for any pair of nodes.

Ceccherini and Sappa [CS86] show that a connected bipartite graph G is isomorphic to a hypercube

if and only if the cartesian product G�K

2

is uniformely geodetic.

Interval-regular graphs are linked to hypercubes in the following way [Mul82]: A connected graph

G is interval-regular if and only if, for any two nodes x; y, the subgraph of G consisting of the edges

connecting two consecutive levels N

i

(x; y) and N

i+1

(x; y) (i = 0; 1; : : : ; d

G

(x; y)� 1) is isomorphic

to the d

G

(x; y)-hypercube. Equivalently, G is interval-regular if and only if (x; y) = d

G

(x; y)! for

all nodes x; y 2 V .

Hamming graphs can be characterized in terms of interval-regular graphs in the following way

[BM91]: A connected graph G is a Hamming graph if and only if G is an interval-graph, G does

not contain K

1;1;2

as an induced subgraph, and the only isometric odd cycles in G are triangles.

More generally, [BM91] characterizes the connected graphs that can be decomposed as a cartesian

product where each factor is the suspension of a geodetic graph of diameter at most 2. (A geodetic

graph is a graph in which there is exactly one shortest path joining any pair of nodes, and the

suspension of a graph H is obtained by adding to H a new node adjacent to all nodes of H.)

Remark 5.4. Embedding metrics into graphs.

We now consider the question of embedding metrics into graphs or, more generally, into weighted

graphs. This topic has many applications, in various areas, as psychology [Cun78], or biology

[PFH82].

Let G = (V;E) be a graph and let w

e

2R

+

, e 2 E, be nonnegative weights assigned to its edges.

The path metric d

G;w

of the weighted graph (G;w) is de�ned by letting d

G;w

(x; y) denote the

smallest value of

P

e2E(P )

w

e

, taken over all paths P joining x and y in G.

Given a �nite metric space (X; d), one says that the weighted graph (G;w) realizes (X; d) if there

exists a mapping i 2 X 7! x

i

2 V such that

d(i; j) = d

G;w

(x

i

; x

j

)

for all i; j 2 X. The graph G may have more nodes than those corresponding to points of X. Every

metric space can clearly be realized by some graph, namely, by the complete graph on jXj nodes

with weights d(i; j) on its edges. Consider, for instance, the metric d on X = f1; 2; 3g de�ned by

d(1; 2) = 4; d(1; 3) = 8; d(2; 3) = 6. Then, d can be realized by the following two weighted graphs:

K

3

and a tree with one auxiliary node.

  1  2

 3

5

  3            1

   3

 8                6

 

  4
 1  2

The objective is, therefore, to �nd a graph (G;w) realizing (X; d) whose total weight

P

e2E

w

e

is as small as possible. The existence of an optimal realization, i.e., with minimum total weight

among all possible realizations, was shown in [ISPZ84]. But �nding an optimal realization is an

NP-hard problem even if the metric is assumed to be integer valued [Al88, Win88].

On the other hand, the metric spaces that can be realized by weighted trees are well characterized.
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Namely, (X; d) is realizable by a weighted tree (then, (X; d) is called a tree metric) if and only

if d satis�es the following condition, known as the four-point condition:

d(i; j) + d(r; s) � max(d(i; r) + d(j; s); d(i; s) + d(j; r));

i.e., the two largest of the three sums d(i; j) + d(r; s); d(i; r) + d(j; s); d(i; s) + d(j; r) are equal,

for all i; j; r; s 2 X [Bun74]. Note that the four point condition implies the metric condition (by

taking r = s). Moreover, if (X; d) is realizable by a tree, then there is only one such realization; it

is optimal among all graph realizations, and it can be found in polynomial time [HY64].

The four point condition is closely related to another metric condition, namely, ultrametricity.

Recall that a distance space (X; d) is said to be ultrametric if it satis�es

d(i; j) � max(d(i; k); d(j; k))

for all i; j; k 2 X. In other words, any three points form an isoceles triangle with the third side

shorter or equal to the other two. See [ABBW87] for applications and references on ultrametrics.

Clearly, every ultrametric space satis�es the four point condition. Actually, each tree metric can

be characterized in terms of an associated ultrametric in the following way [Ban90]. Let (X; d) be

a distance space, let r 2 X, and let c be a constant such that c � max(d(i; j) : i; j 2 X). De�ne

the distance d

(c)

on X by setting

d

(c)

(i; j) = c+

1

2

(d(i; r) + d(j; r)� d(i; j))

for i 6= j 2 X. Then, d is a tree metric if and only if d

(c)

is ultrametric. Ultrametrics have

also a tree-like representation, which is used in classi�cation theory, in particular, in taxonomy

(see [Gor87] and references there for details). Let T = (V;E) be a tree and w

e

2 R

+

, e 2 E,

be nonnegative weights on its edges. Let r 2 V be a speci�ed node (a root) of T and let X =

fx

1

; : : : ; x

k

g denote the set of leaves (nodes of degree 1) of T other than r. We assume that

d

T;w

(r; x) = h for all x 2 X, for some constant h, called the height of T . Then, T is also called a

dendogram, or indexed hierarchy. The height h(v) of a node v of T is de�ned as the length of

a shortest path joining v to some leaf of X. Then, one can de�ne a metric space (X; d

X

) on X by

letting d

X

(x; y) denote the height of the �rst predecessor of x and y. The metric space (X; d

X

) is

ultrametric and every ultrametric arises in this way [ABBW87].

Acknowledgements. I thank M. Deza for bringing to my attention some references,

in particular, for pointing out the results from [FH93] and [Dez] quoted, respectively, in

Theorem 2.17 and Proposition 4.12.
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