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Abstract

We introduce the notions of order type (or: dual

arrangement) and visibility type (or: tangent

visibility graph) for con�gurations of disjoint

convex sets in the plane. We develop optimal al-

gorithms for computing and sweeping the order

type, and also give a worst case optimal algo-

rithm for computing the tangent visibility graph.

The methods are based on a relation, introduced

in this paper, between con�gurations of disjoint

convex sets and arrangements of pseudolines. Fi-

nally we give enumeration results for the number

of distinct order and visibility types.

1 Introduction

Con�gurations of points in the plane, or dually,

arrangements of lines, have been studied exten-

sively in discrete and computational geometry,

during the last decade especially by Goodman

and Pollack, see e.g. [3, 13] for background ma-

terial on this topic. A characteristic feature of

such a point set is its order type: with every or-

dered triple of distinct points one associates +1

(0, or -1) if the third point of the triple is to the

left of (on, or to the right of) the directed line

through the other points, directed from the �rst

point to the second point.
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Every con�guration of points corresponds, un-

der duality, with an arrangement of lines. More

generally, one may consider arrangements of

pseudolines, viz. con�gurations of curves that in-

tersect pairwise in exactly one point (and more-

over satisfy some technical conditions justifying

the name pseudoline). One of the main questions

concerns realizability (see [3]) by arrangements of

straight lines (also called stretchability): given a

con�guration of pseudolines, is it isomorphic to

an arrangement of straight lines? It is known

that 'most' arrangements of pseudolines are not

stretchable. The realizability question is NP{

hard, see [26]. Since pseudoline arrangements

are identical with (reorientation classes of) rank

3 simple oriented matroids, see [3], pages 248{

249, this implies that most rank 3 simple ori-

ented matroids are not realizable by con�gura-

tions of points (or, equivalently, by arrangements

of straight lines).

In this paper we study, more generally, con-

�gurations of disjoint convex sets (objects, for

short) in the plane. Such con�gurations arise

naturally in the context of visibility and shortest

path problems (which were actually our starting

point, see [20]). For such con�gurations we also

introduce the notion of order type, which gener-

alizes the order type of con�gurations of points

(in the sense that the order type depends only on

the order types of triples) as well as the concept

of visibility type, which generalizes the visibility

graph of a con�guration of line segments (where

the order of visible segments around each end-

point is taken into account).

Section 2 is concerned with a unifying presen-

tation of both concepts and their relation with
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arrangements of pseudolines. The order type is

de�ned as the combinatorial dual arrangement,

in the space of directed lines (= S

2

), of the curves

of tangent lines to the objects. Similarly the vis-

ibility type is de�ned as the combinatorial ar-

rangement, in a suitable space (a quotient of the

space of free line segments), of the curves of free

line segments tangent to the objects; this latter

arrangement, called the visibility complex, was

introduced in [20]. The complement (in their

convex hull) of the union of n disjoint convex

obstacles can be subdivided into �nitely many

so-called pseudotriangles, by inserting a maxi-

mal number of pairwise disjoint free bitangents

of pairs of objects (a free bitangent is a line seg-

ment that is tangent to two obstacles at its end-

points, but whose relative interior is disjoint from

any of the objects, see also �gure 4). Represent-

ing a pseudotriangle by its set of tangent lines,

we obtain a curve (the canonical image of the

pseudotriangle) in the dual plane. Two distinct

pseudotriangles are disjoint, and share exactly

one tangent line. In other words: their canoni-

cal images intersect in exactly one point. There-

fore the set of canonical images of all pseudo-

triangles is an arrangement of pseudolines, em-

bedded in the dual arrangement of the objects.

A careful study of this embedding yields gener-

alizations of existing algorithms to the context

of convex objects. More speci�cally, using the

well-known techniques for constructing (as well

as topologically sweeping) arrangements of lines

(see [7]) and an amortization scheme we describe,

in section 2, algorithms for the construction of

the order type of a collection of n disjoint convex

objects in optimal O(n

2

) time (and linear work-

ing space for the sweep). The same technique

can be applied to obtain worst case optimal (viz.

O(n

2

)) and almost optimal output sensitive (viz.

O(k logn), where k is the size of the output) al-

gorithms for computing visibility types, cf. [19].

For an optimal algorithm we refer to [20].

A collection of pseudotriangles whose dual im-

age is isomorphic to a given arrangement of pseu-

dolines will be called a realization of this arrange-

ment. If we allow the pseudotriangles to inter-

sect without violating the property that every

pair has exactly one common tangent line, the

dual image of such a con�guration is again an

arrangement of pseudolines. We show, in sec-

tion 3, that any arrangement of pseudolines can

be realized by a collection of pseudotriangles (in

fact by giving an algorithm). Our conjecture is

that it can even be realized by a collection of

disjoint pseudotriangles, but so far we have only

been able to prove this for a large class, of size

2

cn

2

for some constant c, of arrangements of n

pseudolines. This result may be regarded as a

new geometric interpretation for the class of all

rank 3 acyclic matroids.

In section 4 we derive upper and lower bounds

for the number of order types and visibility types

of con�gurations of n convex obstacles: both are

of the form 2

cn

2

(1+o(1))

, for some positive con-

stant c. If we only consider convex objects whose

boundaries are algebraic curves of degree at most

d, both upper and lower bounds are of the form

2

c(d)(n logn+o(1))

, where c(d) depends on the com-

plexity d of the objects.

Arrangements have been applied to a wide

range of by now classical problems in discrete

and computational geometry, especially to con-

�gurations of points, line segments and polygons,

see e.g. [14]. The visibility type (or more pre-

cisely its geometric version, the visibility com-

plex) can be applied to many problems arising

in the context of convex objects, like computing

the view (visibility polygon) from a point and

computing shortest paths, see [20] and the ref-

erences therein. We mention a related applica-

tion, viz. the characterization of minimal tan-

gent visibility graphs (cf. [24]). We �nally apply

the key concept of pseudo{triangulation to give

a new, simple solution of the Fejes-T�oth illumi-

nation problem (see [10]).

2 Order types, visibility types

and dual arrangements

Terminology and notation

We identify the point (a; b; c), with c 6= �1, on

the 2-sphere S

2

= f(x; y; z) 2 R

3

j x

2

+y

2

+z

2

=

1g with the directed line with equation ax+by+

c = 0 and direction u = (�b=(a

2

+b

2

)

1=2

; a=(a

2

+

b

2

)

1=2

) 2 S

1

(� R=2�Z), see �gure 1. The north
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pole (0; 0; 1) and south pole (0; 0;�1) of S

2

are

called the two lines at in�nity.

A bounded convex subset O of R

2

is called

a convex object if it is closed and has interior

points. Two disjoint convex objects O and O

0

have exactly 8 common (directed) tangent lines.

We denote by L(�O; �

0

O

0

), with �; �

0

2 f+;�g,

the tangent line that is directed from O to O

0

and contains the objects O and O

0

in their left

or right half{planes according to the sign � and �

0

in front of O and O

0

. We denote by B(�O; �

0

O

0

)

the bitangent line segment, supported by the

line L(�O; �

0

O

0

) (in other words: the endpoints

of the bitangent are the points of tangency on

L(�O; �

0

O

0

)).

Consider a collection O = O

1

; : : : ; O

n

of n � 2

pairwise disjoint convex objects. Each object is

strictly convex, and has a smooth boundary. We

assume that the objects are in general position,

in the sense that no three objects share a com-

mon tangent line. The closure F of the comple-

ment of the union of the objects is called free

space; a subset of F is called free. Two points p

and q are said to be (mutually) visible (along the

direction u) if the line segment [p; q] is free (and

is parallel to u). Two objects are weakly visible if

two of their points are visible. The endpoints of

the free bitangents subdivide the boundaries of

the convex sets into a sequence of arcs, which are,

with the (undirected) bitangents, the edges of

the so-called tangent visibility graph. The weak

visibility graph of the collection of objects is the

graph whose nodes are the objects and whose

arcs are pairs of weakly visible objects.

Order type of a con�guration

We denote by 


i

(


�i

) the set of tangent lines of

object O

i

, that contain O

i

in their left (right)

half plane; obviously 


�i

is homeomorphic to

S

1

. Note that the two intersection points of the

curves 


�i

, 


�

0

j

, i 6= j, are the lines L(�O

i

; �

0

O

j

)

and L(�

0

O

j

; �O

i

).

The curves 


�i

induce a 2-dimensional cell de-

composition of the space of lines (= S

2

), called

the dual arrangement of the collection of objects

and denoted by �. The vertices of � are the

4n(n � 1) lines L(�O

i

; �

0

O

j

) with �; �

0

2 f+;�g.

We de�ne the label of the vertex L(�O

i

; �

0

O

j

)

to be the symbol (�i; �

0

j), and the cycle C(i) is

the circular sequence of labels of the vertices ly-

ing on the curve 


i

; for example if n = 2 then

C(1) = (1; 2)(1;�2)(�2; 1)(2; 1) and C(2) =

(2; 1)(2;�1)(�1; 2)(1; 2). In �gure 2 we have de-

picted a con�guration of 3 objects. Here e.g.

C(1) = (1; 2)(1; 3) (1;�2)(�2; 1) (1;�3)(�3; 1)

(2; 1)(3; 1). Obviously C(�i) and C(+i) are re-

lated by the transformation (k; l) 7! (�l;�k).

All lines in a face of � pierce the same collec-

tion of objects in the same order; this ordered

sequence of (indices of) pierced objects is called

the label of the face. Let P (�) be the poset of

cells of �, partially ordered by de�ning �

i

� �

j

if

�

i

� �

j

. This poset inherits the orientation from

the underlying space of lines (hence it makes

sense to speak of the face above/below an edge or

to speak of the left/right endpoint of an edge).

An edge lying on the curve 


�i

is labeled by �i,

which is called its canonical label .

De�nition 1 The order type of a con�guration

is its oriented poset P (�), that is augmented with

the canonical labeling of edges.

Precisely because an order type is (by de�nition)

oriented it has only one orientation-preserving

embedding in the 2{sphere. It turns out that its

orientation depends only on the set of cycles.

Proposition 2 The order type of a collection of

n disjoint convex objects is uniquely determined

by its set of cycles, and conversely. Furthermore

the labels of the faces of the dual arrangement

are uniquely determined by the order type.

Our de�nition of order type generalizes the

notion of order type for con�gurations of point

sets (see [12, 13, 15]); indeed for point sets the

curves 


+i

and 


�i

collapse and the dual arrange-

ment � reduces, via the classical duality which

maps the point (a; b) onto the line y = ax � b,

to the arrangement of dual lines , provided we

restrict directions to [0; �) in stead of S

1

It is

well-known that this arrangement is uniquely de-

termined by the set of signs of determinants of

triples of points, and conversely. This last (obvi-

ous) result has the following (less obvious) coun-

terpart in the context of convex objects.
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Theorem 3 The order type of a collection of n

disjoint convex objects is uniquely determined by

the

�

n

3

�

order types of triples of objects.

Proof (sketch). First we prove that the order

type depends only of the

�

n

4

�

order types of 4{

tuples of convex objects. Then we prove by a

case analysis that the order type of 4 objects de-

pends only on the order types of triples of ob-

jects. See the full version for a complete proof.

Remark In the full version we show that there

are 118 order types of triples of objects. If we for-

get about the labeling and the orientation, there

are 16 di�erent order types.

Visibility type of a con�guration

The de�nition of visibility type is very similar

to that of the order type. Since the underly-

ing space (viz. the set V of maximal free line

segments, see below) has a slightly more compli-

cated topology than the space of lines, our rather

concise description may cause intuitive di�cul-

ties to the uninitiated reader; we refer to [20] for

a more detailed presentation. However most of

the rest of the paper can be understood if the

reader is willing to accept the alternative repre-

sentation by the collection of visible cycles, see

proposition 5.

The space of maximal free directed line seg-

ments , denoted by V , is a topological space that

is de�ned as follows. Let X denote the cartesian

product F � S

1

. We then form a quotient space

of X by identifying the points (p; u) and (p

0

; u)

if the points p and p

0

are visible along the direc-

tion u. The set of pairs that are equivalent with

(p; u) 2 X , will be called a maximal free line

segment (through p with direction u). Note that

a maximal free line segment corresponds with a

well de�ned geometric line segment in the plane,

that does not intersect the interior of any object,

but whose endpoints lie on the boundary of some

object. Occasionally we shall abuse language by

calling the equivalence class itself a maximal free

line segment. Similarly we shall speak of the di-

rected line supporting a maximal free line seg-

ment, etc.

There is a canonical map � : V ! S

2

, mapping

the equivalence class of (p; u) onto the directed

line p +Ru (recall that S

2

is the set of directed

lines). Note that � is a kind of branched cover-

ing map: the pre{image �

�1

(l) of a line l 2 S

2

consists of the maximal free line segments in l.

Now consider the curves 


�i

� S

2

. The pre{

image �

�1

(l) of a directed line l 2 


�i

consists of

the maximal free line segments contained in l, ex-

actly one of which, denoted by '

�i

(l), is tangent

to O

i

. '

�i

(l) ranges over a curve '

�i

� V as l

ranges over 


�i

. This curve is homeomorphic to

S

1

. The curves '

�i

induce a 2-dimensional cell

decomposition of the space V , called the visibility

complex of the collection of objects (introduced

in [20]), which is denoted by �

V

. A maximal free

line segment lies on a face (edge, vertex) if it is

tangent to 0 (1, at least 2) objects. An edge lying

on the curve '

�i

is labeled with �i. Obviously

� maps the 1{skeleton of �

V

onto the 1-skeleton

of �: if a maximal free segment is tangent to at

least one object, then so is its supporting line.

Every edge of the visibility complex is incident

with three faces. To see this, consider an edge e,

of �

V

, say with label �i. Let l 2 e, a maximal

free line segment tangent toO

i

. If we perturb the

line supporting l slightly so that it intersects the

interior of O

i

, the perturbed line contains two

maximal free line segments, l

1

and l

2

say, that

are incident with O

i

at one of their endpoints,

and are not tangent to any object. Therefore l

1

and l

2

belong to distinct faces of �

V

, that are in-

cident upon e. If we perturb the line supporting

l slightly so that it is disjoint from O

i

, the per-

turbed line contains one maximal free line seg-

ment l

3

near l, that is not tangent to any object,

and hence belongs to a third face of �

V

that is

incident upon e. In the same way one may prove

that every vertex is incident with 4 edges and 6

faces, see �gure 3, and also [20] for further de-

tails.

Observe that the vertices of �

V

are in 1-1 cor-

respondence with the set of directed arcs of the

tangent visibility graph that correspond to free

bitangents. Similarly the edges of the visibility

complex are in 1-1 correspondence with the di-

rected arcs of the tangent visibility graph, that

are contained in the boundaries of the objects.

Each face of the visibility complex induces a di-

rected edge of the weak visiblity graph, corre-
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sponding to the pair of objects incident with any

maximal free line segment belonging to this face

(of course several faces can de�ne the same edge

of the weak visibility graph).

We de�ne the label of a vertex B(�O

i

; �

0

O

j

) to

be the pair (�i; �

0

j), and the visible cycle C

V

(�i)

to be the circular sequence of labels of vertices

lying on the curve '

�i

; obviously C

V

(i) is a sub-

word of the cycle C(i) and C

V

(�i) and C

V

(+i)

are related by the mapping (k; l) 7! (�k;�l).

In �gure 2 we have e.g. C

V

(1) = (1; 2)(1;�2)

(�2; 1)(1;�3) (�3; 1)(3; 1) (we have to remove

(1; 3) and (2; 1) from C(1)).

Let P (�

V

) be the poset of cells of �

V

, ordered

by inclusion, and edowed with the orientation

inherited from the underlying space of maximal

free line segments.

De�nition 4 The visibility type of a con�gura-

tion is its oriented poset P (�

V

), augmented with

the canonical labeling of edges.

Proposition 5 The visibility type of a con�g-

uration of n disjoint convex objects is uniquely

determined by its set of visible cycles, and con-

versely.

Since C

V

(i) is a subword of C(i) the visibility

type can be considered as a \partial" order type.

In particular it depends only on the order type

of the collection of objects.

Pseudotriangles, pseudo{triangulations,

and their relation with arrangements of

pseudolines

A pseudotriangle is a simply connected bounded

subset T ofR

2

such that (i) the boundary @T is a

sequence of three convex curves that are tangent

at their endpoints, and (ii) T is contained in the

triangle formed by the three endpoints of these

convex curves. Clearly there exists a unique tan-

gent line to the boundary of T with a given di-

rection; we denote by T

�

the set of (directed)

tangent lines to the boundary of T . A crucial

observation is the following.

Lemma 6 Let T

1

; : : : ; T

n

be a family of pairwise

disjoint pseudotriangles. Then the T

�

i

are pseu-

docircles (i.e., simple closed curves in S

2

) and

the family (T

�

i

)

1:::n

is an arrangement of pseudo-

circles (i.e. T

�

i

and T

�

j

intersect transversally in

exactly two points, and the two points in T

�

i

\T

�

j

are separated by T

�

k

, for some k 6= i; j).

Proof. Indeed T

�

i

is centrally symmetric (two

tangent lines with opposite directions have the

same supporting undirected line), and two tan-

gent lines to the boundary of a pseudotriangle

cross inside the pseudotriangle.

A pseudo{triangulation of the set of objects

is a subdivision of the plane induced by a maxi-

mal (with respect to inclusion) family of pairwise

non{crossing free bitangents, see �gure 4. It is

clear that a pseudo{triangulation always exists

and that it contains the bitangents of the convex

hull of the objects. Pseudo{triangulations are in-

teresting because they decompose free space into

pseudotriangles.

Lemma 7 Let B be a family of pairwise non-

crossing free bitangents of a collection of n ob-

jects, and let S be the subdivision of the plane

induced by B and the set of objects. The follow-

ing assertions are equivalent

1. B is maximal (with respect to inclusion);

2. each free bounded face of S is a pseudotrian-

gle;

3. the number of free bounded faces of S is 2n�2;

4. the number of bitangents in B is 3n� 3.

Finally we mention the following result from [20].

Theorem 8 [20].

There is a pseudo{triangulation of a collection

of n disjoint convex objects that can be computed

in O(n logn) time.

Remark. Note that the boundary of a pseu-

dotriangle can be \illuminated" by at most 2

points (two of the intersection points of the tan-

gent lines at the vertices); therefore we can de-

duce that 4n�7 is the maximal number of points

(in free space) required to illuminate the bound-

ary of n � 4 disjoint convex objects. This

result is due to Fejes-T�oth [10]. The use of

a pseudo{triangulation provides an alternative

proof and, furthermore, gives an O(n logn) time

algorithm to �nd a placement of the illuminating

points (cf. [10, 27]).

Page 5



Construction of dual arrangements

We now give an optimal algorithm to compute

the dual arrangement of a collection of disjoint

convex objects, assuming that the common tan-

gents of a pair of objects are computable in O(1)

time.

Theorem 9 The dual arrangement of n disjoint

convex objects can be constructed in O(n

2

) time

and space.

Proof. We �rst compute in O(n logn) time

a pseudo{triangulation of the objects. Let

T

1

; : : : ; T

2n�2

be the 2n � 2 pseudotriangles of

this pseudo{triangulation. Clearly the arrange-

ment of the curves T

�

i

coincides with the ar-

rangement of the curves 


�i

(up to some triv-

ial details concerning the convex hull). To com-

pute the arrangement of the curves T

�

i

we use

the optimal incremental technique which have

been developed for constructing arrangement of

(pseudo)lines [2, 6, 9] (we omit trivial details con-

cerning the 3n � 3 touching points between the

curves T

�

i

and T

�

j

for adjacent pseudotriangles

T

i

and T

j

in the pseudo{triangulation); however

we have to be careful because the intersection of

two pseudocircles T

�

i

and T

�

j

is not computable

in O(1) time unless the complexities of the pseu-

dotriangles T

i

and T

j

are O(1). Let n

i

be the

complexity (number of objects which contribute

to the boundary of the pseudotriangle) of the

pseudotriangle T

i

; we note that

P

i

n

i

= O(n).

It follows that the complexity of the zone of a

curve T

�

i

is still linear and that the curve T

�

i

can

be inserted in time O(n+ n

i

). Consequently the

incremental algorithm is still quadratic.

At this point it is an open probem whether the

zone of a curve 


i

is linear in size. A positive an-

swer to this question will give a fully incremen-

tal quadratic algorithm. However, the relation

with arrangements of pseudolines allows us to

adapt the topological sweep technique of [7, 8].

In the companion paper [22] we show how, for

a con�guration of n objects, this sweep can be

performed consistently in O(n

2

) time and linear

storage. Several applications of this sweep tech-

nique are described in [7]; they can be translated

into similar results in the context of disjoint con-

vex objects. In particular we get a worst case

optimal algorithm to compute the tangent visi-

bility graph of n disjoint convex objects which

uses only linear working storage. Thus we ob-

tain:

Corollary 10 The tangent visibility graph of a

collection of n disjoint convex objects is com-

putable in O(n

2

) time and linear storage.

Similarly we can extend the O(k log n) time (and

linear storage) algorithm of [19], that computes

the visibility graph (of size k) of a collection

of n disjoint segments; this seems especially in-

teresting (for implementation issues) in view of

the comparison of this algorithm with a straight

sweep technique (see [22, 23]). An optimal time

algorithm to compute the visibility complex of n

disjoint convex objects is described in [20].

3 Equivalence of arrangements

of pseudolines and con�gura-

tions of pseudotriangles

Every arrangement of pseudolines is realizable by

a con�guration of pseudotriangles.

Theorem 11 1. Every arrangement of straight

lines is isomorphic to the dual image of a con�g-

uration of disjoint pseudotriangles.

2. Every arrangement of pseudolines is isomor-

phic to the dual image of a collection of pseudo-

triangles.

Remark 12 It follows from our results in sec-

tion 4, see corollary 18, that the class of arrange-

ments (of n pseudolines) that is realizable by dis-

joint pseudotriangles is rather large, viz. of size

at least 2

cn

2

for some constant c > 0. We conjec-

ture that in fact any arrangement of pseudolines

belongs to this class, in which case part 1 of the-

orem 11 becomes obsolete.

Proof. 1. If the arrangement of lines is simple,

it corresponds, under duality, to a simple con-

�guration of points. Put small pseudotriangles

at each of the points. The dual image of this

con�guration of pseudotriangles is isomorphic to
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the arrangement of pseudolines. The same pro-

cedure, carried out a little more carefully, also

works if the arrangement of lines is not simple.

2. For convenience we use coordinates x

1

; x

2

in the primal plane, and �

1

; �

2

in the dual plane.

The map D from the set of non{vertical lines in

the primal plane to the set of points in the dual

plane maps the line with equation x

2

= �

1

x

1

+

�

2

to the point (�

1

; �

2

). By de�nition, the dual

image of a pseudotriangle is the image under D

of its set of tangent lines.

Given an arrangement A of pseudolines, the

idea is to construct in the strip �1 � �

1

� 1

in the dual plane an arrangement C of convex

curves , that is equivalent to A. We extend each

curve in directions �

1

= �1 by semi{in�nite

segments contained in the line through the end-

points of the curve. It is not hard to see that

the pre{image of such an extended curve under

D is a pseudotriangle. This way we obtain a col-

lection of pseudotriangles, whose dual image is

isomorphic to A.

Let us now describe the construction of the ar-

rangement C. The idea is related to the construc-

tion of wiring diagrams , see e.g. [13]. For conve-

nience we assume that the arrangement A is sim-

ple. Consider an embedding of A in the (dual)

plane, such that no two vertices have the same

�

1

coordinate, and such that all pseudolines are

monotone with respect to the �

1

{direction. Let

the pseudolines of A be l

1

; � � � ; l

n

, in the order in

which they intersect the line �

1

= �1. The ver-

tices of A are v

1

; � � � ; v

n(n�1)=2

, ordered accord-

ing to increasing �

1

{coordinate. The curves of C

will be denoted by c

1

; � � � ; c

n

, such that c

i

corre-

sponds to l

i

. Subdivide the strip �1 � �

1

� 1

into n(n�1)+1 vertical strips S

1

; � � � ; S

n(n�1)+1

.

Strip S

2i

will contain exactly one vertex of C, cor-

responding to vertex v

i

of A. The intersection of

the curves of C with strip S

2i�1

, 1 � i � n(n�1),

will consist of a sequence of n parallel line seg-

ments on curves c

i

1

; � � � ; c

i

n

, where i

1

; � � � ; i

n

is

the permutation of the indices 1; � � � ; n corre-

sponding to the order in which l

1

; � � � ; l

n

intersect

any vertical line directly to the left of v

i

.

For the intersection of c

1

; � � � ; c

n

with strip S

1

we take any set of parallel non{vertical line seg-

ments. Suppose we have constructed the inter-

section with strips S

1

; � � � ; S

2i�1

, and suppose

vertex v

i

of A corresponds to the intersection

of l

k

and l

h

, where l

h

lies below l

k

. Note that

c

h

\ S

2i�1

and c

k

\ S

2i�1

are adjacent line seg-

ments, such that the former lies below the latter.

For j 6= h extend the line segment c

j

\S

2i�1

until

it intersects the right boundary of S

2i

. The line

segment c

h

\ S

2i

connects the intersection of c

h

and the right boundary of S

2i�1

with a point on

the right boundary of S

2i

lying just above c

k

\S

2i

.

This way we introduce exactly one vertex in strip

S

2i

, viz. c

k

\ c

h

. Now extend c

h

until it hits the

right boundary of S

2i+1

, and, for j 6= h, extend c

j

across S

2i

by a line segment parallel to the latter

line segment. The curves c

1

; � � � ; c

n

are convex,

which concludes the proof of 2. 2

4 Enumeration of Con�gura-

tions of Convex Sets

We derive upper and lower bounds for the num-

ber of order types and visibility types of con�g-

urations of n disjoint convex objects, both with

and without restrictions on their complexity. If

the convex objects are of bounded complexity

it is likely that the the number of distinct con-

�gurations of n objects is smaller than 2

�(n

2

)

.

In the special case where all objects are points

the upper bound is 2

�(n logn)

, see [12] and [15],

Chapter 9.

We shall say that an object is of degree d if

its boundary is a connected component of an al-

gebraic curve of degree at most d, i.e. a curve

de�ned by an equation of the form P (x; y) = 0,

where P is a polynomial in x and y of degree at

most d. For a similar context, and some remarks

on the computational model, see [1]. For simplic-

ity we merely consider simple order types, cor-

responding to con�gurations in which no three

objects share a common tangent.

Theorem 13 The number of simple order types

of n convex objects is

1. 2

O(n

2

)

;

2. 2

O(d

2

n log(dn))

, if the objects are of degree d.

Proof. 1. In view of the optimal O(n

2

) algo-

rithm that constructs an arrangement of n pseu-
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dolines an information{theoretic upper bound

for the number of order types of con�gurations of

n disjoint convex obstacles is 2

O(n

2

)

. This holds

under the assumption that the common tangents

of two objects can be computed in O(1) time,

which is obviously not true if we don't bound

the complexity of the objects. However, in the

algebraic decision tree model, bitangent compu-

tations take place in computation nodes. If we

contract the computation tree, so that it con-

tains merely branch nodes, the number of leaves

doesn't change, but its depth reduces to O(n

2

).

2. Let P

i

(x; y) = 0 de�ne the boundary of the i-

th object, 1 � i � n, where P

i

is a polynomial of

degree at most d in x; y. We shall express the ge-

ometric condition that three objects don't share

a common tangent as a single polynomial equa-

tion in the coe�cients of P

i

; P

j

; P

k

. Multiplying

the polynomials we get for each triple of indices

together we obtain a single polynomial, R say,

in the coe�cients of P

1

; � � � ; P

n

. It is not hard

to see that a simple order type is the union of a

number of connected components of the comple-

ment of the zero locus of R. As in [12], an upper

bound for the number of connected components

of R

�1

(0) is derived using a theorem of Milnor.

There is a small subtlety in this argument: in fact

we are counting the number of con�gurations of

curves de�ned by P

i

(x; y) = 0, 1 � i � n, of

which no triple shares a common tangent. Since

O

i

is merely a connected component of the curve

P

i

(x; y) = 0, we are in fact over{counting the

number of con�gurations (which doesn't hurt,

since we are dealing with upper bounds).

The line y = �x + � is tangent to the

curve P

i

(x; y) = 0 if the polynomial equation

p

i

(x

1

; �; �) := P

i

(x

1

; �x

1

+ �) in x

1

has two coin-

ciding real roots. In other words: (�; �) must be

such that the system of equations p

i

(x

i

; �; �) = 0,

p

0

i

(x

i

; �; �) = 0 has a (real) solution (x

i

; �; �).

Similarly the line y = �x+� is a common tangent

of the curves P

�

(x; y) = 0, � = i; j; k, if the sys-

tem of 6 polynomial equations p

�

(x

�

; �; �) = 0,

p

0

�

(x

�

; �; �) = 0, � = i; j; k (in 5 variables,

viz. x

i

; x

j

; x

k

; �; �), has a solution. By intro-

ducing a variable of homogeneity, this system is

transformed into a system of 6 homogeneneous

polynomial equations, of degree d; d � 1; d; d �

1; d; d� 1, respectively, in 6 variables. This sys-

tem has a non{trivial solution i�. the multivari-

ate resultant R

ijk

of the 6 polynomials vanishes,

see [5] and [16], chapter 1. R

ijk

is a polyno-

mial of degree C(d) := (d

3

(d � 1)

3

)

5

= O(d

30

)

in the coe�cients of P

�

, � = i; j; k. Now we

multiply all R

ijk

together, where (i; j; k) ranges

over all �(n

3

) triples of indices in [1; n]. This

yields a polynomial R of degree �(C(d)n

3

) in the

�(d

2

n) variables a

l

��

, l = 1; � � � ; n, 0 � �; � and

�+� � d. According to a theorem of Milnor, see

[18], the complement of the zero locus of R has

at most (2 + �(C(d)n

3

))(1 + �(C(d)n

3

))

�(d

2

n)

= 2

�(d

2

n log(dn))

connected components. This

clearly is an upper bound for the number of sim-

ple order types of con�gurations of objects of de-

gree d. 2

The order type uniquely determines the visi-

bility type. Therefore:

Corollary 14 The number of visibility types of

simple con�gurations of n convex objects is

1. 2

O(n

2

)

;

2. 2

O(d

2

n log(dn))

, if the objects are of degree d.

Starting from an example in [11], Proposi-

tion 6.2, we derive a lower bound for the number

of order types. More precisely we shall prove

Theorem 15 The number of order types of con-

�gurations of n disjoint convex objects in the

plane is at least

1. 2

n

2

=8

;

2. 2


(dn logn)

, if the objects are of degree d =

O(n

�

), for some �xed � with 0 � � < 1.

In the proof we need the following lemma, whose

(not very di�cult) proof we omit from this ver-

sion.

Lemma 16 The number of labeled graphs with

n vertices and maximal degree at most d is

2


(dn logn)

, provided d = O(n

�

), for some �xed

� with 0 � � < 1.

Remark For an asymptotically sharp result, un-

der stricter conditions on d, we refer to [17].

Proof. We shall prove both parts simultane-

ously. Let k = dn=2e. Consider a regular k{gon
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with vertices p

1

; � � � ; p

k

. Put a small circle C

i

of

radius % centered at p

i

. Here % is small enough

to guarantee that no line in the plane intersects

more than 2 of the circles. Draw all common

tangent lines of any pair of circles parallel to the

sides and the diagonals of the k{gon (so for any

pair of distinct circles we draw exactly 2 out of

their 4 common tangent lines), see Figure 5. This

set of lines is partitioned into k classes of paral-

lel lines, denoted by L

k+1

; � � � ; L

2k

. All lines in

class L

h

are given the same, arbitrarily chosen,

direction. Let T be the set of triples (i; j; h) such

that L(C

i

; C

j

) 2 L

jhj

. So for (i; j; h) 2 T we have

1 � i; j � k <j h j� 2k, i 6= j, and (i; j; h) 2 T

i�. (i; j;�h) 2 T . Obviously jT j = �(k

2

). Let

V = f1; � � � ; kg, and let G be the set of labeled

undirected graphs, in the the �rst case, and the

set of labeled undirected graphs of maximal de-

gree not exceeding d� 2 in the second case. The

restriction on the degree will become clear from

the construction below. For a pair (E; �), such

that (V;E) 2 G and � : E ! f�1;+1g, de�ne

�

(E;�)

: T ! f�1;+1g by

�

(E;�)

(i; j; h) =

8

>

<

>

:

�(fi; jg); if fi; jg 2 E;

�1; if fi; jg 62 E and h > 0;

+1; if fi; jg 62 E and h < 0:

Note that �

(E;�)

6= �

(E

0

;�

0

)

for (E; �) 6= (E

0

; �

0

).

Hence there are at least

P

E:(V;E)2G

2

jEj

� jGj

such mappings T ! f�1;+1g. Since the num-

ber of graphs in G is 2

(

k

2

)

, in the �rst case, and

2


(dk logk)

in the second case, the proof is com-

plete, provided we show that every �

(E;�)

is re-

alizable. By this we mean that there is a col-

lection of 2k disjoint convex objects O

1

; � � � ; O

2k

such that �

(E;�)(i;j;�h)

satis�es, for all triples

(i; j;�h) 2 T with h > 0:

condition (?): �

(E;�)

(i; j;�h) = 1(�1) if the

support line of �O

h

, parallel to L(O

i

; O

j

), lies to

the left (right) of �O

h

.

(Recall that a support line of O

h

(�O

h

) contains

O

h

in its left (right) half plane.

So let us describe the construction of the con-

vex objects O

1

; � � � ; O

2k

for some �xed � : E !

f�1;+1g. These objects are obtained by

1. slightly perturbing the objects bounded by the

circles C

i

; this yields objects O

i

, 1 � i � k;

2. adding a convex object O

h

, k < h � 2k, that

intersects all lines in L

h

ahead of the regular k{

gon.

On each circle C

i

, 1 � i � k, we introduce a col-

lection T

i

of 2k disjoint small chords, centered at

the points whose tangent lines are parallel to the

sides and diagonals of the k{gon, see Figure 6.

Consider a triple (i; j; h) 2 T with h > 0. Note

that L(C

i

; C

j

) 2 L

h

. If fi; jg 2 E we perturb the

line L(C

i

; C

j

) into a line L

(E;�)

(i; j), such that

(i) the tilt of L

(E;�)

(i; j) with respect to

L(C

i

; C

j

) is �' if �(i; j) = �1;

(ii) L

(E;�)

(i; j) intersects C

i

(C

j

) in the same

chord of T

i

(T

j

) as L(C

i

; C

j

).

It is not hard to see that there is a small ' >

0 satisfying these conditions, see also �gure 6.

The sign of the tilt is determined by our inten-

tion to insert a convex object O

h

that intersects

L(C

i

; C

j

) ahead of C

i

and C

j

, and that lies to the

right (left) of L

(E;�)

(i; j) i�. �

(E;�)

(i; j; h) = �1

(+1). If fi; jg 62 E we take L

(E;�)

(i; j) =

L(C

i

; C

j

). Note that this way we perturb ex-

actly d

i

of the lines tangent at C

i

, where d

i

is

the degree of i 2 V in the graph (V;E).

We �rst put, for 1 � i � k, a convex ob-

ject O

i

at vertex p

i

of the regular k{gon, that

is tangent to all lines of the form L

(E;�)

(i; j) or

L

(E;�)

(j; i). To this end consider the convex ob-

ject O

0

i

bounded by the circle C

i

, and the d

i

lines

L

(E;�)

(i; j) or L

(E;�)

(j; i), that intersect the in-

terior of this circle. Note that we still have to

perturb object O

0

i

so that its boundary becomes

algebraic (and of degree at most d in case 2).

However, all of the k lines of the form L

(E;�)

(i; j)

or L

(E;�)

(j; i) are tangent to it.

We now introduce a convex object O

h

(of de-

gree O(1)) that

(i) intersects all lines L(C

i

; C

j

) 2 L

h

ahead of C

i

and C

j

;

(ii) lies to the right (left) of L

(E;�)

(i; j) i�.

�

(E;�)

(i; j; h) = �1 (+1).

Condition (i) implies that �

(E;�)

(i; j;�h) satis-

�es condition (?), if L

(E;�)

(i; j) 6= L(C

i

; C

j

),

viz. if fi; jg 62 E. Condition (ii) implies

that �

(E;�)

(i; j;�h) satis�es condition (?), if

L

(E;�)

(i; j) = L(C

i

; C

j

), viz. if fi; jg 2 E.

Therefore the order type of the collection

fO

0

1

; � � � ; O

0

k

; O

k+1

; � � � ; O

2k

g is a realization of

�

(E;�)

. It remains to smoothen O

0

i

, for 1 � i � k.
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Note that O

0

i

is a connected component of the set

with equation P

i

(x; y) := c

i

(x; y)

Q

d

i

j=1

l

i

j

(x; y) =

0; where c

i

is a quadratic form whose zero locus is

the circle C

i

, and l

i

j

are linear forms de�ning the

d

i

lines L

(E;�)

(i; j) or L

(E;�)

(j; i). Assuming that

P

i

is positive at p

i

, we see that the convex object

O

0

i

can be approximated by the interior of a con-

nected component of the curve P

i

(x; y) = ", for

some su�ciently small positive ". It is not hard

to prove that any line intersects this component

in at most two points. Therefore it is a convex

curve, of degree d

i

+ 2 � d, in the second case.

We take O

i

to be its interior. 2

In the full version of the paper we show that all

con�gurations in the proof of theorem 15 have

distinct visibility types. This shows:

Corollary 17 The number of visibility types of

con�gurations of n disjoint convex objects in the

plane is at least

1. 2

n

2

=8

;

2. 2


(dn logn)

if the objects are of degree d =

O(n

�

), for some �xed � with 0 � � < 1.

Consider a pseudo{triangulation of any of the

con�gurations constructed in the proof of theo-

rem 15. Its dual image is an arrangement of pseu-

dolines, that is obviously realizable by disjoint

pseudotriangles. Since there are only 2

O(n logn)

di�erent pseudo{triangulations for each con�gu-

ration, we have, cf. remark 12:

Corollary 18 The number of arrangements of

n pseudolines that is realizable by disjoint pseu-

dotriangles is 2

�(n

2

)

.

Minimal visibility types Using simple proper-

ties of pseudo{triangulations we are able to car-

acterize the minimal visibility types on n dis-

joints convex objects. In the companion paper

[21] we prove the following results.

Theorem 19 The number of free bitangents

shared by n disjoint convex objects in general po-

sition is at least 6n�6�h where h is the number

of bitangents on the convex hull of the objects.

In particular the minimal number of free bitan-

gents shared by n disjoint convex objects (in gen-

eral poistion) is at least 4n� 4 since h is at most

2n� 2. For the same lower bound in the case of

line segments: see [24], and also [4, 25].

Theorem 20 There is a 1-1 correspondence be-

tween

1. the set of minimal visibility types of n disjoint

convex objects;

2. the set of maximal convex hulls of n disjoints

convex objects;

3. the set of plane trees on n vertices.

Furthermore the set of minimal weak (labeled)

visibility graphs on n disjoint objects is in 1-1

correspondance with the set of (labeled) trees on

n nodes; their number is therefore n

n�2

.

5 Conclusion

We have shown that con�gurations of plane dis-

joint convex sets are strongly related (via the

notion of pseudo{triangulation) to arrangements

of pseudolines. This enables us to extend the

classical algorithms, that compute order types

of points and visibility graphs of line segments,

to deal with collections of convex sets with the

same (time and space) complexities. Our ap-

proach gives also new insights in the problem of

the caracterization of visibility graphs.

Several natural questions arise from our study.

Is every pseudoline arrangement realizable by a

con�guration of disjoint convex plane sets? We

have shown that this is the case for a very large

class of pseudoline arrangements. What is the

complexity of the problem of deciding if a pseu-

doline arrangement is realizable by convex plane

sets? An other challenge is to extend the ideas of

this paper to the study of con�gurations of dis-

joint convex sets in more than 2 dimensions. It is

to be expected that results in this direction also

yield new points of view in the theory of oriented

matroids.
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, the space of directed lines in the

plane.
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Figure 2: A con�guration of 3 objects.

Figure 3: Neighborhood of a vertex of �

V

.
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Figure 4: A pseudo{triangulation.

Figure 5: The regular k{gon, with small circles

at its vertices.
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Figure 6: Perturbing L(C

i

; C

j

) 2 L

h

, for fi; jg 2

E. Here �

(E;�)

(i; j;�h) = �

(E;�)

(i; j; h) =

�(fi; jg) = +1.
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