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R�esum�e

La cryptanalyse lin�eaire a �et�e introduite l'an dernier par Matsui au congr�es Eurocrypt '93.

Elle ouvre des perspectives pour de nouvelles m�ethodes d'attaques plus performantes que la

cryptanalyse di��erentielle.

Dans ce rapport, nous �etudions plusieurs classes de fonctions qui sont parmi les plus

di�ciles �a cryptanalyser par les m�ethodes di��erentielle d'une part, lin�eaire de l'autre, et

nous obtenons des relations entre ces classes.

Les fonctions di��erentiellement r�esistantes correspondent �a des propri�et�es de non-lin�earit�e

li�ees aux fonctions courbes. Nous montrons que les fonctions lin�eairement r�esistantes sont

aussi li�ees aux fonctions courbes, et qu'en un certain sens, une fonction lin�eairement r�esis-

tante est aussi di��erentiellement r�esistante.

Abstract

Linear cryptanalysis, introduced last year by Matsui, will most certainly open-up the way

to new attack methods which may be made more e�cient when compared or combined with

di�erential cryptanalysis.

This report exhibits new relations between linear and di�erential cryptanalysis and

presents new classes of functions which are optimally resistant to these attacks. In par-

ticular, we prove that linear-resistant functions, which generally present Bent properties, are

di�erential-resistant as well and thus, present Perfect Nonlinear properties.
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On leave from D�el�egation G�en�erale de l'Armement
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Introduction

Matsui has introduced last year a new cryptanalysis method for DES-like cryptosystems [Mat94].

The idea of the method is to approximate the non-linear S-boxes with linear forms. Beside, the

performances of linear cryptanalysis seems next to di�erential cryptanalysis ones, though a little

better. These similitudes seem to mean that the two methods are based on common fundamental

principles.

Each type of cryptanalysis measures the resistance of functions. In this report, we investigate

functions F : K

p

! K

q

, where K is the Galois �eld with two elements, and p and q are two

integers. Using well known results on Bent functions we will show that linear resistant functions

are also di�erential resistant.

I-1

�

Notations

� We call \characteristic function of F" and denote �

F

the boolean function

�

F

: K

p

�K

q

! K

�

F

(x; y) 7!

(

1 if y = F (x);

0 otherwise.

� Let f : K

p

! IR be a function, we denote by

^

f the Hadamard-Walsh transform (discrete

Fourier transform):

8w 2 K

p

^

f(w) =

X

x2K

p

f(x)(�1)

x:w

;

where x:w is the dot-product over K and where the sum is evaluated over the reals.

� Let f and g be two functions over K

p

, we denote f 
 g the convolutional product

8a 2 K

p

(f 
 g)(a) =

X

x2K

p

f(x)g(a� x);

where � is the sum over K

p

(bit-wise Xor).

� Let f : K

p

! K be a boolean function, we denote by �

f

(x) = (�1)

f(x)

the�1-representation

of f .
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I-2

�

Cryptanalysis objects

Let F : K

p

! K

q

be the function we want to cryptanalyse. If we use the di�erential cryptanalysis

method, we will need non empty sets

D

F

(a; b) = fz 2 K

p

/ F (z � a)� F (z) = bg;

where a 2 K

p

� f0g and b 2 K

q

. The e�ciency of di�erential cryptanalysis based upon a set

D

F

(a; b) is measured by its cardinality

�

F

(a; b) = #D

F

(a; b):

Similarly, if we use the linear cryptanalysis method, we will take advantage of sets

L

F

(a; b) = fz 2 K

p

/ a:z � b:F (z) = 0g;

where a 2 K

p

and b 2 K

q

�f0g, such that #L

F

(a; b) 6=

jK

p

j

2

. The e�ciency of linear cryptanalysis

that uses the set L

F

(a; b) is measured by the discrepency between the cardinality of L

F

(a; b)

and the average cardinality

�

F

(a; b) = #L

F

(a; b)�

jK

p

j

2

:

Hence the resistance of the function F can be measured by:

�

F

= sup

a6=0;b

�

F

(a; b) for the di�erential cryptanalysis.

�

F

= sup

b6=0;a

j�

F

(a; b)j for the linear cryptanalysis.

The lower these values are, the more resistant the function F will be against the corresponding

cryptanalysis method.

Note 1 If �

F

= �, then F is said di�erentially �-uniform [Nyb94].

De�nition 1 For a given set F of functions, we will say a function F 2 F is di�erential

resistant in F if �

F

is minimal. As the same, we will say F is linear resistant in F if �

F

is

minimal.

I-3

�

Bent functions

We just recall here the de�nitions of Bent functions.

De�nition 2 Let p be an even integer. A boolean function f over K

p

is called Bent if and only

if

8s 2 K

p

c

�

f

(s) = �2

p=2

:

In fact, 2

p=2

is an absolute lower bound for sup

s2K

p

j

c

�

f

(s)j. Hence, the Bent functions are

exactly those which reach this bound. This de�nition has been extended by Nyberg [Nyb91]:

De�nition 3 A function F : K

p

! K

q

is Bent if and only if, for all c 2 K

q

the boolean function

x 7! c:F (x) is Bent.

This is equivalent to

8c 6= 08s

^

�

F

(s; c) = �2

p=2

;

as

d

�

c:F

(s) =

^

�

F

(s; c). Thus, 2

p=2

is a lower bound for sup

s2K

p

;c6=0

j

^

�

F

(s; c)j. Hence, the vectorial

Bent functions are exactly those which reach this bound.
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Resistance to cryptanalysis

In the following, we still consider the set F of the functions F : K

p

! K

q

with p and q �xed

integers.

II-1

�

Di�erential resistant functions in F

Resistance to di�erential cryptanalysis have already been studied. We just recall here a few

results.

Lemma 1 For all (a; b) in K

p

�K

q

, we have �

F

(a; b) = (�

F


 �

F

)(a; b).

Proof: We have:

(�

F


 �

F

)(a; b) =

X

x2K

p

;y2K

q

�

F

(x; y)�

F

(a� x; b� y)

=

X

x2K

p

�

F

(a� x; b� f(x))

= #fx 2 K

p

/ b� f(x) = f(a� x)g

= �

F

(a; b):

Theorem 1 For any mapping F , we have �

F

� 2

p�q

.

Proof: It is easy to see that for all �xed a 2 K

p

, we have

P

b2K

q

�

F

(a; b) = 2

p

, which ensures

the result.

Note that this bound cannot be reached if p < q as this is not an integer. We still de�ne:

De�nition 4 A function F is called Perfect Nonlinear if and only if �

F

= 2

p�q

.

II-2

�

Linear resistant functions in F

Lemma 2 For all (a; b) in K

p

�K

q

, we have �

F

(a; b) =

1

2

^

�

F

(a; b).
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Proof: We have:

^

�

F

(a; b) =

X

x2K

p

;y2K

q

�(x; y)(�1)

a:x�b:y

=

X

x2K

p

(�1)

a:x�b:F (y)

= jL

F

(a; b)j � (2

p

� jL

F

(a; b)j)

= 2�

F

(a; b):

The theory of Bent functions shows that 2

p=2

is an absolute lower bound for sup j�

F

(a; b)j

(see section I-3

�

). The functions which reach this bound are precisely vectorial Bent functions.

Hence, when p and q are such that this bound can be reached, the linear resistant functions are

the vectorial Bent functions.

II-3

�

Links between the absolute bounds

Theorem 2 ([Nyb91, MS90]) A function is Perfect Nonlinear if and only if it is Bent.

Proof: Let F : K

p

! K

q

be a Perfect Nonlinear function. Then �

F

= 2

p�q

, and so for all

a 6= 0, �

F

(a; b) = (�

F


 �

F

)(a; b) = 2

p�q

. Besides, �

F

(0; 0) = 2

p

, and for all a 6= 0 �

F

(a; 0) = 0.

Hence, we get

(

^

�

F

)

2

(a; b) =

d

(�

F


 �

F

)(a; b);

=

X

x;y

(�

F


 �

F

)(x; y)(�1)

a:x�b:y

;

= 2

p

+ 2

p�q

X

x 6=0;y

(�1)

a:x�b:y

;

=

8

>

<

>

:

2

p

if b 6= 0,

0 if b = 0 and a 6= 0,

2

2p

if a = b = 0.

So F is Bent as

^

�

F

(a; b) = �2

p=2

for all (a; b); b 6= 0. The converse can be proved similarly using

the classical Walsh transform formulas:

(�

F


 �

F

)(a; b) =

1

2

p+q

d

d

(�

F


 �

F

)(a; b) =

1

2

p+q

d

(

^

�

F

)

2

:

Theorem 3 ([Nyb91]) Bent functions exist only for p � 2q and p even.

Proof: If F is Bent, then for all b 6= 0,

^

�

F

(a; b) = �2

p

2

. Hence, p is even. We denote S the sum

S = 2

�

p

2

X

b6=0

^

�

F

(0; b):

If r

0

is the cardinality of the set fb 6= 0/

^

�

F

(a; b) = +2

p=2

g, then

S = r

0

� (2

q

� 1� r

0

);

= 2r

0

� 2

q

+ 1:
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Hence, S is an odd integer. Besides, we have

X

b6=0

^

�

F

(0; b) =

X

b

^

�

F

(0; b)�

^

�

F

(0; 0);

=

X

b

X

x

(�1)

b:F (x)

� 2

p

=

X

x

X

b

(�1)

b:F (x)

� 2

p

= 2

q

a

0

� 2

p

where a

0

is the cardinality of the set fx/ F (x) = 0g. Hence, as S = 2

�

p

2

(2

q

a

0

� 2

p

), we have

a

0

= 2

p

2

�q

(S + 2

p

2

):

As a

0

is an integer and S is an odd integer, 2

p

2

�q

must be an integer. Hence p � 2q.

So, di�erential-resistance is equivalent to linear-resistance when p is even and greater than

2q. With these dimensions, such functions are well studied. We can build an instance with

construction similar to those of boolean Bent functions.

Example 1 Similarly to the construction of Maiorana-McFarland's class of boolean Bent func-

tions, for all permutation � : K

p

! K

p

, and all function f : K

p

! K

p

, the mapping

F : K

p

�K

p

! K

p

de�ned as

F (x; y) = x � �(y) + f(y)

where � is the multiplication over GF (2

p

), is Bent.

For p < 2q, we have to look for other bounds.
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Almost Perfect Functions

III-1

�

Almost Perfect Nonlinear functions

De�nition 5 ([NK93]) We have �

F

� 2. The functions such that �

F

= 2 are called Almost

Perfect Nonlinear (APN).

As �

F

� 2

p�q

, the APN functions can exist only when q � p (the case (p; q) = (2; 1) is

trivial). In this case, the di�erential resistant functions are the APN functions.

III-2

�

Almost Bent functions

Similarly, we can get a lower bound for �

F

.

Lemma 3 For all mapping F , we have

X

b6=0;a

^

�

4

F

(a; b) � 2

2p

(3� 2

p+q

� 2

q+1

� 2

2p

);

with equality if and only if F is Almost Perfect Nonlinear.

Proof: For all function f over K

n

, let us recall these classical properties of Walsh transform:

(

^

f)

2

=

d

f 
 f;

d

(

^

f) = 2

n

f;

and

X

a

f(a) =

^

f(0):

From the de�nition of �

F

we have

�

F

(a; 0) =

(

2

p�1

if a = 0;

0 otherwise;

and from the de�nition of �

F

, we have also �

F

(0; 0) = 2

p

. Hence, we have for any mapping F :

X

b6=0;a

^

�

4

F

(a; b) =

X

b6=0;a

(

d

�

F


 �

F

)

2

(a; b);
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=

X

a;b

(

d

�

F


 �

F

)

2

(a; b)�

X

a

(

d

�

F


 �

F

)

2

(a; 0);

=

d

[(

^

�

F

)

2

](0; 0)�

X

a

(

^

�

F

)

2

(a; 0);

= 2

p+q

[�

F


 �

F

](0; 0)� 2

4

X

a

(�

F

)

4

(a; 0):

From the de�nition of convolutional product we have

[�

F


 �

F

](0; 0) =

X

a;b

�

F

(a; b)�

F

(a; b);

=

X

a6=0;b

�

2

F

(a; b) + �

2

F

(0; 0):

Collecting these results, we have

X

b6=0;a

^

�

4

F

(a; b) = 2

p+q

X

a6=0;b

�

2

F

(a; b) + 2

3p+q

� 2

4p

:

For all even number n � 0, we have n

2

� 2n, and n

2

= 2n if and only if n = 2 or n = 0.

Hence, for all a 6= 0 and all b, we have �

2

F

(a; b)� 2�

F

(a; b), and we have the equality if and only

if F is Almost Perfect Nonlinear. Beside, we have

X

a6=0;b

�

F

(a; b) =

X

a6=0

X

b

�

F

(a; b);

=

X

a6=0

2

p

;

= 2

p

� (2

p

� 1):

Hence, we have

X

b6=0;a

^

�

4

F

(a; b) � 2

p+q

� 2� 2

p

� (2

p

� 1) + 2

3p+q

� 2

4p

;

� 2

2p

(3� 2

p+q

� 2

q+1

� 2

2p

):

with equality if and only if F is Almost Perfect Nonlinear.

We can now prove the following bound on �

F

:

Theorem 4 For all mapping F , we have

�

F

�

1

2

�

3� 2

p

� 2� 2

(2

p

� 1)(2

p�1

� 1)

2

q

� 1

�

1=2

:

When the bound is reached, we will say the function Almost Bent. Moreover, an Almost Bent

function F is Almost Perfect Nonlinear as well.

Proof: First, we notice that

�

2

F

= sup

a;b6=0

�

2

F

(a; b);

= sup

a;b6=0

1

4

(

^

�

F

)

2

(a; b);
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and that for all mapping N(a; b) over ZZ,

M = sup

a;b6=0

N

2

(a; b) �

P

a;b6=0

N

4

(a; b)

P

a;b6=0

N

2

(a; b)

:

with equality if and only if

8a; b 6= 0

8

>

<

>

:

N(a; b) = 0;

or N(a; b) = �

p

M;

or N(a; b) = +

p

M:

We will now evaluate the sum

P

b6=0;a

^

�

2

F

(a; b). For all mapping F , we have

X

b6=0;a

^

�

2

F

(a; b) =

X

b6=0;a

(

d

�

F


 �

F

)(a; b);

=

X

b6=0;a

^

�

F

(a; b);

=

X

a;b

^

�

F

(a; b)�

X

a

^

�

F

(a; 0);

=

d

[

^

�

F

](0; 0)� 4

X

a

�

2

F

(a; 0);

= 2

p+q

�

F

(0; 0)� 4�

2

F

(0; 0);

= 2

2p

(2

q

� 1):

Hence, using lemma 3 we have

4�

2

F

= sup

a;b6=0

(

^

�

F

)

2

(a; b) �

2

2p

(3� 2

p+q

� 2

q+1

� 2

2p

)

2

2p

(2

q

� 1)

; (III.1)

�

3� 2

p+q

� 2

q+1

� 2

2p

2

q

� 1

; (III.2)

� 3� 2

p

� 2� 2

(2

p

� 1)(2

p�1

� 1)

2

q

� 1

; (III.3)

with equality if and only if F is Almost Perfect Nonlinear, and

8a; b 6= 0

8

>

<

>

:

�

F

(a; b) = 0;

or �

F

(a; b) = ��

F

;

or �

F

(a; b) = +�

F

:

Note 2 For Almost Bent Functions, the function �

F

(a; b) for b 6= 0 takes at most three di�erent

values that is to say 0, ��

F

or �

F

. This looks like Bent functions for which �

F

(a; b) for b 6= 0

takes at most two di�erent values ��

F

or �

F

.

Lemma 4 If F : K

p

! K

q

is Almost Bent and not Bent, then p � q.
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Proof: We already have the absolute bound of the Bent functions

�

F

�

1

2

2

p

2

:

Hence, if F is Almost Bent and not Bent, then using expression III.2 we have

1

2

s

3� 2

p+q

� 2

q+1

� 2

2p

2

q

� 1

>

1

2

p

2

p

;

3� 2

p+q

� 2

q+1

� 2

2p

2

q

� 1

> 2

p

;

3� 2

p+q

� 2

q+1

� 2

2p

> 2

p+q

� 2

p

;

2

p+q+1

� 2

q+1

� 2

2p

+ 2

p

> 0;

2

q+1

(2

p

� 1)� 2

p

(2

p

� 1) > 0;

q + 1 > p:

Lemma 5 ([Cas94]) For all q > p, the amount

(2

p

� 1)(2

p�1

� 1)

2

q

� 1

(III.4)

is not an integer.

Proof: We have

(2

p

� 1)(2

p�1

� 1) = (2

q

� 1)2

2p�1�q

� (3� 2

p�1

� 2

2p�1�q

� 1);

= A � (2

q

� 1)�B:

As q > p, we have �2

2p�1�q

> �2

p�1

, hence 3� 2

p�1

� 2

2p�1�q

> 2

p

> 1 and the remainder B

is strictly positive. Besides, we have

B < 2

q

� 1 () 3� 2

p�1

� 2

2p�1�q

� 1 < 2

q

� 1;

() 2

p�1

(3� 2

p�q

) < 2

q

:

As q � p + 1, 2 < 3 � 2

p�q

< 3, hence 2

p�1

(3 � 2

p�q

) < 3 � 2

p�1

, and besides 2

q

> 2

p+lg 2(

3

2

)

.

Consequently, we have

(2

p

� 1)(2

p�1

� 1) = A� (2

q

� 1)�B;

with 0 < B < 2

q

� 1, and the amount III.4 cannot be an integer if q > p.

Theorem 5 If F : K

p

! K

q

is Almost Bent and not Bent, then p = q, p is odd. The above

bound then turns in

�

F

=

1

2

2

p+1

2

: (III.5)

Proof: The bound III.3 cannot be reached if the fraction III.4 is not an integer. Hence, using

lemmas 4 and 5 we get p = q. The bound III.3 then gives III.5, and so p must be odd.

Example 2 Let F (x) = x

2

k

+1

be a power polynomial in GF (2

n

). If n is odd, 1 < k < n and

gcd(n; k) = 1, then F is an Almost Bent permutation [Nyb94, proposition 3].

Example 3 (C. Carlet) Let F (x) = x

�1

be the inversion mapping in GF (2

n

) completed in 0 by

F (0) = 0. If n is odd, then F is an Almost Perfect Nonlinear Permutation [Nyb94, proposition

6]. Yet, it is not an Almost Bent function (consequence of [LW90, theorem 3.4]).
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Conclusion

To sum up the results, we have :

� When p � 2q and p even, di�erential-resistant is equivalent to linear-resistant and to

vectorial Bentness. We have in this case �

F

=

1

2

2

p=2

and �

F

= 2

p�q

.

� For p = q and p odd, di�erential-resistance is equivalent to Almost Perfect Nonlinearity

(where �

F

= 2), linear-resistant is equivalent to Almost Bentness (where �

F

=

1

2

2

(p+1)=2

)

and linear-resistance implies di�erential-resistance.

� For q � p, 2 is a lower bound for �

F

, and we have :

�

F

�

1

2

�

3� 2

p

� 2� 2

(2

p

� 1)(2

p�1

� 1)

2

q

� 1

�

1=2

Results in the other cases are still open. Particularly, if p = q and p even, there is no simple

characterization of linear-resistant functions. Similarly, for q < p < 2q, ther exists functions

such that �

F

=

1

2

2

p+1

2

, but we ignore whether ther exists functions such that

1

2

2

p

2

< �

F

<

1

2

2

p+1

2

in this case.
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