
On the Need for Multipermutations:

Cryptanalysis of MD4 and SAFER

Serge VAUDENAY

Laboratoire d'Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

LIENS - 94 - 23

November 1994



On the need for multipermutations:

Cryptanalysis of MD4 and SAFER

Serge Vaudenay

LIENS

�

45, rue d'Ulm

75230 Paris Cedex 05

FRANCE

November 16, 1994

Abstract

Cryptographic primitives are usually based on a network with some

gates. In [SV94], it is claimed that all gates should be multipermutations.

In this paper, we investigate a few combinatorial properties of multiper-

mutations. We argue that gates which fail to be multipermutations can

open the way to unsuspected attacks. We illustrate this statement with

two examples.

Firstly, we show how to construct collisions to MD4 restricted to its �rst

two rounds. This allows to forge digests close to each other using the full

compression function of MD4. Secondly, we show that some generalizations

of SAFER are subject to attack faster than exhaustive search in 6:1% cases.

This attack can be implemented if we decrease the number of rounds from

6 to 4.

In [SV94], multipermutations are introduced as formalization of perfect di�u-

sion. The aim of this paper is to show that the concept of multipermutation is

a basic tool in the design of dedicated cryptographic functions, as functions that

do not realize perfect di�usion may be subject to some clever cryptanalysis in

which the 
ow of information is controlled throughout the computation network.

We give two cases of such an analysis.

Firstly, we show how to build collisions for MD4 restricted to its �rst two

rounds

1

. MD4 is a three rounds hash function proposed in [Riv90]. An attack on
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MD4 restricted to its last two rounds is detailed in [BB91]. An other unpublished

attack on the �rst two rounds has been found by Merkle (see the introduction of

[BB91]). This attack does not produce a real collision, but di�erent digests very

close to each other (according to the Hamming distance). Here, we present a new

attack which is based on the fact that an inert function is not a multipermutation.

This attack requires less than one tenth of a second on a SUN workstation.

Moreover, the same attack applied to the full MD4 compression function produces

two di�erent digests close to each other.

Secondly, we show how to develop a known plaintext attack to a variant of

SAFER K-64, in which we replace the permutation exp

45

by a (weaker) one.

SAFER is a six rounds encryption function introduced in [Mas93]. It uses a

byte-permutation (namely, exp

45

in the group of nonzero integers modulo 257)

for confusion. If we replace exp

45

by a random permutation P (and log

45

by P

�1

),

we show that in 6:1% of the cases, there exists a known plaintext attack faster

than exhaustive search. Furthermore, this attack can be implemented for the

function restricted to 4 rounds. This attack is based on the linear cryptanalysis

introduced in [Mat93] and recently gave way to the �rst experimental attack of

the full DES function in [Mat94].

1 Multipermutations

In [SV94], multipermutations with 2 inputs and 2 outputs are introduced. Here,

we propose to generalize to any number of inputs and outputs.

De�nition A (r; n)-multipermutation over an alphabet Z is a function f from

Z

r

to Z

n

such that two di�erent (r+n)-tuples of the form (x; f(x)) cannot collide

in any r positions.

Thus, a (1; n)-multipermutation is nothing but a vector of n permutations over

Z. A (2; 1)-multipermutation is equivalent to a latin square

2

. A (2; n)-multi-

permutation is equivalent to a set of n two-wise orthogonal latin squares

3

. Latin

squares are widely studied in [DK74].

An equivalent de�nition says that the set of all (r + n)-tuples of the form

(x; f(x)) is an error correcting code with minimal distance n + 1, which is the

maximal possible. In the case of a linear function f , this is the de�nition of

MDS codes: codes which reach Singleton's bound. For more details about MDS

codes, see [MS77]. More generally, a (r; n)-multipermutation is equivalent to a

((#Z)

r

; r + n;#Z; r)-orthogonal array

4

.

2

a latin square over a �nite set of k elements is a k � k matrix with entries from this set

such that all elements are represented in each column and each row.

3

two latin squares A and B are orthogonal if the mapping (i; j) 7! (A

i;j

; B

i;j

) gets all

possible couples.

4

a (M; r + n; q; r)-orthogonal array is a M � (r + n) matrix with entries from a set of q

elements such that any set of r columns contains all q

r

possible rows exactly

M

q

r

times.
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A multipermutation performs a perfect di�usion in the sense that changing t

of the inputs changes at least n � t + 1 of the outputs. If a function is not a

multipermutation, one can �nd several values such that both few inputs and few

outputs are changed. Those values can be used in cryptanalysis as is shown in two

examples below. This motivates the use of multipermutations in cryptographic

functions.

The design of multipermutations over a large alphabet is a very di�cult prob-

lem, as the design of two-wise orthogonal latin squares in a well-known di�cult

one. The only powerful method seems to use an MDS code combined with several

permutations at each coordinate.

In the particular case of 2 inputs, it is attractive to choose latin squares based

on a group law: if we have a group structure over Z, we can seek permutations

�, �, 
, �, � and � such that

(x; y) 7! (�[�(x):
(y)]; �[�(x):�(y)])

is a permutation, as it will be su�cient to get a multipermutation. Unfortu-

nately, it is possible to prove that such permutations exist only when the 2-Sylow

subgroup of Z is not cyclic

5

, using a theorem from [HP55]. More precisely, they

do not exist when the 2-Sylow subgroup is cyclic. They are known to exist in all

solvable groups in which the 2-Sylow subgroup is not cyclic, but the existence in

the general case is still a conjecture. Hence, Z should not have a cyclic group

structure. For instance, we can use the GF (2)

n

group structure for n > 1. Such

multipermutations are proposed in [SV94].

In MD4, the group structure of GF (2)

32

is used, but some functions are not

multipermutations. On the other hand, in SAFER, the group structure of ZZ

256

,

which is cyclic, is used, so without multipermutations.

2 Cryptanalysis of MD4

2.1 Description of MD4

MD4 is a hash function dedicated to 32 bits microprocessors. It hashes any

bit string into a 128 bits digest. The input is padded following the Merkle-

Damg�ard scheme [Dam89, Mer89] and cut into 512 bits long blocks. Then, each

block is processed iteratively using the Davies-Meyer scheme [DP85, MMO85] and

an encryption function C: if B

1

; : : : ; B

n

is the sequence of blocks (the padded

message), the hash value is

h

B

n

(: : : h

B

1

(v

i

) : : :)

5

we agree the trivial group is not cyclic. Actually, x 7! x

2

is an orthomorphism in all groups

with odd order, in which the 2-Sylow subgroup is trivial.
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where v

i

is an Initial Value, and h

x

(v) is C

x

(v) + v (x is the key and v is the

message to encrypt).

Here we intend to build a single block collision to h(v

i

), that is to say two

blocks x and x

0

such that C

x

(v

i

) = C

x

0

(v

i

). It is obvious that this can be used to

build collisions to the hash function. So, we only have to recall the de�nition of

the function C

x

(v).

The value v is represented as 4 integers a, b, c and d (coded with 32 bits), and

the key x is represented as 16 integers x

1

; : : : ; x

16

. The initial de�nition of C uses

three rounds i = 1; 2; 3. The �gure 1 shows the computational graph of a single

round i. It uses a permutation �

i

and some boxes B

j

i

. B

j

i

is fed with a main

input, a block integer x

�

i

(j)

and three side inputs. If p is the main input and q,

r and s are the side inputs (from top to bottom), the output is

R

�

i;j

(p+ f

i

(q; r; s) + x

�

i

(j)

+ k

i

)

where R is the right circular rotation, �

i;j

and k

i

are constants and f

i

is a par-

ticular function. In the following, we just have to know that f

2

is the bit-wise

majority function, �

1

is the identical permutation, and

�

2

=

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

!

2.2 Attack on the �rst two rounds

If we ignore the third round of C, it is very easy to build collisions. We notice that

no B

j

2

are multipermutations: if p = 0, x = �k

2

and two of the three integers q,

r and s are set to zero, then B

j

2

(x; p; q; r; s) remains zero (the same remark holds

with �1 instead of 0). So, we can imagine an attack where two blocks di�er only

in x

16

, the other integers are almost all set to �k

2

and such that almost all the

outputs of the �rst round are zero. This performs a kind of corridor where the

modi�ed values are controlled until the �nal collision.

More precisely, let x

1

; : : : ; x

11

equal �k

2

, x

12

be an arbitrary integer (your

phone number for instance) and x

13

, x

14

and x

15

be such that the outputs a, c

and d of the �rst round are zero. The computation of x

13

, x

14

and x

15

is very easy

from the computational graph. Thanks to the previous remark, we can show that

the outputs a, c and d of the second round do not depend on x

16

as the modi�ed

information in x

16

is constrained in the register b. Thus, modifying x

16

does not

modify a, c and d.

Letting the b output be a function of x

16

, we just have to �nd a collision to a

32 bits to 32 bits function. This can be done very e�ciently using the birthday

paradox or the � method. An implementation on a Sparc Station uses one tenth

of second.
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Figure 1: One round of C
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Figure 2: The ith round of SAFER

If we use the same attack on the full-MD4 function, since �

�1

3

(16) = 16, the

only modi�ed x occurs in the very last computation in the third round. So, if this

round is fed with a collision, it produces a collision on the a, c and d output. The

digests di�er only in the second integer b. Hence, the average Hamming distance

between both digests is 16.

3 Cryptanalysis of SAFER

3.1 Description of SAFER

SAFER is an encryption function dedicated to 8 bits microprocessors. It encrypts

a 64 bits message using a 64 bits key. The key is represented as 8 integers

k

1

; : : : ; k

8

. A key scheduling algorithm produces several subkeys k

i

1

; : : : ; k

i

8

. In

the following, we just have to know that k

i

j

is a simple function of k

j

(and k

1

j

= k

j

).

The encryption algorithm takes 6 rounds and a half. The ith round is sum-

marized in �gure 2. It uses the subkeys k

2i�1

j

and k

2i

j

. After the 6th round, the

half round simply consists in xoring/adding the subkeys k

13

j

as we would do in a

7th round.

� represents the xor operation on 8 bits integers. + is the addition modulo

256. P is a permutation over the set of all integers de�ned in the SAFER design.

Q is the inverse permutation of P . L is a linear permutation over the algebraic

6



structure of the ring ZZ

256

, as

L(x; y) = (2:x+ y; x+ y) (mod 256):

In the original design, P is the exponentiation in base 45 modulo 257: all

integers from 1 to 256 can be coded with 8 bits (256 is coded as zero) and

represent the group of all invertible integers modulo 257. 45 is a generator of this

group.

In practical implementations, we have to store the table of the permutation

P . So, there is no reason to study SAFER with this particular permutation.

Here, we will show that this choice is a very good one, as for 6:1% of all possible

permutations, there exists a known plaintext attack faster than exhaustive search.

3.2 Linear cryptanalysis of SAFER

The permutation L is not a multipermutation, as we have

L

1

(x+ 128; y) = L

1

(x; y)

for all x and y (where L

1

denotes the �rst output of L). So, we have pairs

of 4-tuples (x; y; L(x; y)) at Hamming distance 2. Actually, there are no (2; 2)-

multipermutations which are linear over ZZ

256

as its 2-Sylow subgroup is cyclic

(it is itself here). We can use this property of L

1

by a dual point of view noticing

that some information about L

1

(x; y) only depends on y. Namely, we have

L

1

(x; y) � 1 = y � 1

where � is the inner product over (ZZ

2

)

8

, so, y � 1 is the least signi�cant bit of y.

Similarly, we have

(L

1

(x; y) � 1) � (L

2

(x; y) � 1) = x � 1

Let us denote F the function de�ned by the three bottom layers on �gure

2 (layers which uses L in a round). If x

1

; : : : ; x

8

are the inputs of a round, the

outputs are F (y

1

; : : : ; y

8

) where y

1

= P (x

1

� k

1

1

) + k

2

1

, ... We notice that if

F (y

1

; : : : ; y

8

) = (z

1

; : : : ; z

8

), we have a 2-2 linear characteristic

(z

3

� 1) � (z

4

� 1) = (y

3

� 1) � (y

4

� 1)

(this means there is a linear dependance using 2 inputs and 2 outputs of F ).

There are 5 other 2-2 linear characteristics:

(z

2

� 1) � (z

6

� 1) = (y

2

� 1) � (y

6

� 1)

(z

5

� 1) � (z

7

� 1) = (y

5

� 1) � (y

7

� 1)

(z

3

� 1) � (z

7

� 1) = (y

5

� 1) � (y

6

� 1)

(z

5

� 1) � (z

6

� 1) = (y

2

� 1) � (y

4

� 1)

(z

2

� 1)� (z

4

� 1) = (y

3

� 1)� (y

7

� 1):
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If L were a multipermutation, the smallest characteristics would be a-b ones such

that a+b = 6. This means more information would be required in a cryptanalysis.

Let q denote Prob

x

[x�1 = P (x)�1]�

1

2

, the bias which measures the dependence

between the least ligni�cant bits of P (x) and x. We get the same bias with Q in

place of P . If (x

1

; : : : ; x

8

) is a plaintext, if y

1

= P (x

1

� k

1

), y

2

= Q(x

2

+ k

2

), ...,

y

8

= P (x

8

� k

8

), and if (z

1

; : : : ; z

8

) is the ciphertext, let us write

b(x; z) = (y

3

� 1) � (y

4

� 1)� (z

3

� 1) � (z

4

� 1):

Lemma 1 in appendix A states that b(x; z) = �(k) with probability

1

2

(1 + (2q)

10

)

where �(k) denotes the exclusive or of all k

i

3

and k

i

4

for i = 2; : : : ; 13. For a given

(x; z), to compute b(x; z), we only have to know k

3

and k

4

. Lemma 1 states that

it occurs with probability roughly equal to

1

2

(the di�erence with

1

2

is negligible

against (2q)

10

) when wrong k

3

and k

4

are used in the computation of b(x; z).

Thus, trying all the possible (k

3

; k

4

), it is possible to distinguish the good one

from the other candidates by statistical measure.

Let us recall the following theorem (see [Fel57] for instance):

Theorem (Central limit theorem) If B is the statistical average of N inde-

pendent random variables with the same probability distribution of average � and

standard deviation �, we have

Prob

"

(B � �)

p

N

�

2 [a; b]

#

!

1

p

2�

Z

b

a

e

�

t

2

2

dt:

Let B(k

3

; k

4

) be the average of b(x; z) over all the N available couples (x; z).

Lemma 1 proves that the standard deviation of b(x; z) is close to

1

2

. Let

� =

p

N (2q)

10

2

:

The central limit theorem states that if (k

3

; k

4

) is wrong,

Prob

"

�

�

�

�

B(k

3

; k

4

)�

1

2

�

�

�

�

<

�

2

p

N

#

!

1

p

2�

Z

�

��

e

�

t

2

2

dt;

and if (k

3

; k

4

) is good,

Prob

"

�

�

�

�

B(k

3

; k

4

)�

1

2

�

�

�

�

<

�

2

p

N

#

!

1

p

2�

Z

3�

�

e

�

t

2

2

dt:

To get a probability greater than 95%, we have to reach � = 2 : the good (k

3

; k

4

)

is accepted with probability 95% and the bad ones are rejected with probability

8



98%. So, the number of plaintexts/ciphertexts required to distinguish the good

(k

3

; k

4

) is

N �

16

(2q)

20

:

If jqj is greater than 2

�4

, this is faster than exhaustive search.

For only 4 rounds in SAFER, we have N �

16

(2q)

12

. So, for all permutations

P which are biased (q 6= 0), this attack is faster than exhaustive search. For

jqj � 2

�4

, the attack can be implemented.

The analysis of the distribution of q shows that we have jqj � 2

�4

for 6:1% of

the possible permutations P (see appendix B). We have q = 0 for only 9:9% of

the permutations. Unfortunately (or fortunately), for the P chosen by Massey,

we have q = 0, so, the weakness of the di�usion phase is balanced by the strength

of the confusion phase. Actually, q = 0 is a property of all exponentiations which

are permutations (see appendix B).

Further analysis can improve this attack. It is possible to use tighter computa-

tions. We can look for a better tradeo� between the workload and the probability

of success. It is also possible to use several characteristics to decrease N (for more

details, see [KR94]). Actually, it is possible to decrease N by a factor of 64.

Conclusion

In MD4, we have shown that the fact that f

2

is not a multipermutation allows

to mount an attack. Similarly, in SAFER, the di�usion function is not a mul-

tipermutation. This allows to imagine another attack. This shows that we do

need multipermutations in the design of cryptographic primitives. Research in

this area should be motivated by this general statement.
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Appendix A

Lemma 1 If �(k) denotes the least ligni�cant bit of the sum of all k

i

3

and k

i

4

for

i = 2; : : : ; 13, let us denote y

3

= Q(x

3

+ k

3

), y

4

= P (x

4

� k

4

) and

b(x; z) = (y

3

� 1)� (y

4

� 1)� (z

3

� 1) � (z

4

� 1)

where z is the encrypted message of x using an unknown key. b(x; z) = �(k)

holds with probability

1

2

(1 � (2q)

10+e

)

where e is the number of wrong integers in (k

3

; k

4

) (e = 0 if both are good and

e = 2 in most of cases). The standard deviation of b(x; z) is

1

2

q

1 � (2q)

20+2e

:

Proof: Thanks to the property of the linear characteristic, if we denote by t

i

j

the

xor of the least signi�cant bit of the input and the output of the P/Q box in position

j in round #i, it is easy to se that

b(x; z) = (y

3

� 1) + (y

4

� 1) + (y

0

3

� 1) + (y

0

4

� 1) +

6

X

i=2

4

X

i=3

t

i

j

+ �(k

0

) (mod 2)

where �(k

0

) denotes the real �(k) and y

0

3

(resp. y

0

4

) denotes the real y

3

(resp. y

4

).

Under the assumption that all inputs to P/Q boxes are uniformly distributed and

independent, it is easy to prove by induction that

Prob

"

6

X

i=2

4

X

i=3

t

i

j

= 0

#

=

1

2

(1 + (2q)

10

)

This �nishes the case where k

3

and k

4

are good.

If k

3

or k

4

are wrong, let us denote e = 2 if both are bad, and e = 1 if only one is

bad. Assume k

3

is bad without loss of generality. We have

Prob [(y

3

� 1)� (y

0

3

� 1) = 0] =

1

2

(1 + 2q):

11



The � comes from whether �(k) = �(k

0

) or not. This �nishes the computation of the

probability.

The standard deviation comes from the following formula which holds for all 0/1

random variables :

�(b) =

q

E(b)(1�E(b)):

ut

Appendix B

Lemma 2 If q = Prob[x � 1 = P (x) � 1] �

1

2

where P is a permutation over

f0; : : : ; n�1g (we assume that n is a multiple of 4), nq is always an even integer

and for all integer k

Prob

"

q =

2k

n

#

=

�

(

n

2

)!

�

4

n!

��

n

4

� k

�

!

�

2

��

n

4

+ k

�

!

�

2

for a permutation P uniformly distributed.

Proof: If k+

n

4

denotes the number of even integers x such that P (x) is even, we

have q =

2k

n

. So, we just have to enumerate the number of permutations for a given

k +

n

4

.

We have to choose 4 sets with k +

n

4

elements in sets with

n

2

elements: the set of

even integers which are mapped on even integers, the set of their images, the set of odd

integers which are mapped on odd integers and the set of their images. We also have

to choose 2 permutations over a set of k +

n

4

integers (how to connect even to even

integers and odd to odd integers) and 2 permutations over a set of �k +

n

4

integers

(how to connect even to odd integers and odd to even integers). So, the number of

permutations is

 

n

2

n

4

+ k

!

4

�

��

n

4

+ k

�

!

�

2

�

��

n

4

� k

�

!

�

2

:

ut

This allows to compute

Prob

h

jqj � 2

�4

i

' 6:1%

for n = 256 and

Prob [q = 0] ' 9:9%:

Lemma 3 For any generator g of ZZ

�

257

, the permutation x 7! g

x

is unbiased (i.e.

q = 0).

Proof: We have (g

128

)

2

� g

256

� 1 (mod 257) so g

128

is 1 or �1. As the expo-

nentiation in base g is a permutation and g

0

= 1, we have g

128

� �1 (mod 257).

We have g

x+128

� �g

x

� 257� g

x

(mod 257), so, we can partition all the integers

into pairs fx; x+128g of integers with the same least signi�cant bit. The image of this

pair by the exponentiation has two di�erent least signi�cant bits, so the bias q is 0. ut
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