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Abstract

The role of ��calculus as core functional language is due to its nature as \pure" theory of

functions. In the present approach we use the functional expressiveness of typed �-calculus and

extend it with our understanding of some relevant features of a broadly used programming style:

Object-Oriented Programming (OOP). The core notion we focus on, yields a form of \dependency

on input types" (or \on the types of the inputs") and formalizes \overloading" as implicitly used

in OOP.

The basis of this work has been laid in [CGL92], where the main syntactic properties of

this extension have been shown. In this paper, we investigate an elementary approach to its

mathematical meaning. The approach is elementary, as we tried to follow the most immediate

semantic intuition which underlies our system; yet it gives a rigorous mathematical model. Indeed,

our semantics provides an understanding of a slightly modi�ed version of the normalizing system

in [CGL92]: we had, so far, to restrict our attention only to \early binding".

In order to motivate our extended �-calculus, we �rst survey the key features in OOP which

inspired our work. Then we summarize the system presented in [CGL92] and introduce the variant

with \early binding" and \strati�ed" subtyping. Finally we present the model.

An extended abstract of this paper was presented at the International Conference on Typed Lambda Calculi and

Applications, Utrecht, The Netherlands; March 1993



1 Introduction

The role of �-calculus as core functional language is due to its nature as \pure" theory of functions:

just application, MN , and functional abstraction, �x:M , de�ne it. In spite of the \minimality"

of these notions, full computational expressiveness is reached, in the type-free case. In the typed

case, expressiveness is replaced by the safety of type-checking. Yet, the powerful feature of implicit

and explicit polymorphism may be added. With polymorphism, one may have type variables, which

apparently behave like term variables: they are meant to vary over the intended domain of types, they

can be the argument of an application and one may �-abstract w.r.t. them. These functions depending

on type variables, though, have a very limited behavior. A clear understanding of this is provided

by a simple remark in [Gir72], where second order �-calculus was �rst proposed: no term taking

types as inputs can \discriminate" between di�erent types. More precisely, if one extends system F

by a term M such that, given di�erent input types U and V , returns 0 on input type V and 1 on

U , then normalization is lost. Second order terms, then, are \essentially" constant, or \parametric".

Indeed, the notion of parametricity has been the object of a deep investigation, since [Rey84] (see

also [ACC93] and [LMS93] for recent investigations). In the present approach we use the functional

expressiveness of �-calculus and extend it by some relevant features of a broadly used programming

style: Object-Oriented Programming. Indeed, the core notion we want to focus on, yields a form of

\dependency on input types" (or \on the types of the inputs").

The basis of this work has been laid in [CGL92], were the main syntactical properties of the system

below have been shown. In this paper, we investigate an elementary approach to its mathematical

meaning. A more general (categorical) understanding of what we mean by \dependency on input

types" should be a matter of further investigation, possibly on the grounds of the concrete construction

below. Indeed, our model provides an understanding of a slightly modi�ed version of the system in

[CGL92], as we focus on \early binding" (see the discussion below).

In order to motivate our extended �-calculus, we �rst survey the key features in Object-Oriented

programming which inspired our work, then, in section 2, we summarize the system presented in

[CGL92] and develop some further syntactic properties, instrumental to our semantic approach. Sec-

tion 3, introduces the variant with \early binding". Section 4 presents the model.

1.1 Abstract view of object-oriented paradigms

Object-oriented programs are built around objects. An object is a programming unit that associates

data with the operations that can use or a�ect these data. These operations are called methods; the

data they a�ect are the instance variables of the object. In short an object is a programming unit

formed by a data structure and a group of procedures that a�ect it. The instance variables of an

object are private to the object itself; they can be accessed only through the methods of the object.

An object can only respond to messages which are sent or passed to it. A message is simply the name

of a method that was designed for that object.

Message passing is the key feature of object-oriented programming. As a matter of facts, every

object-oriented program consists in a set of objects which interact by exchanging messages. Since

objects are units that associate data and procedures, they are very similar to instances of abstract

data types and, thus, message passing may be viewed as the application of a function de�ned on the

abstract data type. However, message passing is a peculiar and speci�c feature as we show in the next

section.

1.1.1 Message passing

Every language has its own syntax for messages. We use the following one:

message

�

receiver
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The receiver is an object (or more generally an expression returning an object); when it receives

a message, the run-time system selects among the methods de�ned for that object the one whose

name corresponds to passed message; the existence of such a method should be statically checked (i.e.

veri�ed at compile time) by a type checking algorithm.

There are two ways to understand message passing.

The �rst way roughly consists in considering an object as a record whose �elds contain the methods

de�ned for the object, and whose labels are the messages of the corresponding methods

1

. This inter-

pretation is the basis of the modeling of the objects as proposed in [Car88] and known as the \objects

as records" analogy. This modeling has been adopted by a large number of authors (see [Bru91, BL90,

CL91, CW85, CCH

+

89, CHC90, CMMS91, Ghe91a, Mey88, Pie93, PT93, R�em89, Wan87, Wan91]).

The second way to intepret message passing is the one used in the language CLOS (see [Kee89]),

introduced in the context of typed functional languages in [Ghe91b], where message passing is func-

tional application in which the message is (the identi�er of) the function and the receiver is its

argument. We have based our modeling of object-oriented programming on this intuition, and for this

reason our work is alternative and somewhat detached from the type-driven research done so far in

object-oriented programming. However, in order to formalize this approach, ordinary functions (e.g.

lambda-abstraction and application) do not su�ce. Indeed the fact that a method belongs to a speci�c

object implies that the meaning of message passing is di�erent from the one of the custom function

application. The main characteristics that distinguish methods from functions are the following:

� Overloading: Two objects can respond di�erently to the same message. For instance, the code

executed when sending a message inverse to an object representing a matrix will be di�erent

from the one executed when the same message is sent to an object representing a real number.

Though the same message behaves uniformly on objects of the same kind (e.g. on all objects of

class matrix). This feature is known as overloading since we overload the same operator (in this

case inverse) by di�erent operations; the actual operation depends on the type of the operands.

Thus messages are identi�ers of overloaded functions, in message passing the receiver is the �rst

argument of an overloaded function, and the selection of the code to be executed depends on the

type of that argument. Each method constitutes a branch of the overloaded function referred

by the message which the method is associated with.

� Late Binding: The second crucial di�erence between function applications and message passing

is that a function is bound to its meaning at compile time while the meaning of a method can be

decided only at run-time when the receiving object is known. This feature, called late-binding,

is one of the most powerful characteristics of object-oriented programming (see the excursus

below). In our approach, it will show up in the the combination between overloading and

subtyping. Indeed we de�ne on types a partial order which concerns the utilization of values:

a value of a certain type can be used wherever a value of a supertype is required. In this case

the exact type of the receiver cannot be decided at compile time since it may change (notably

decrease) during computation. For example, suppose that a graphic editor is coded using an

object-oriented style, de�ning Line and Square types as subtypes of Picture with a method

draw de�ned on all of them, and suppose that x is a formal parameter of a function, with type

Picture. If the compile time type of the argument is used for branch selection (early binding)

an overloaded function application like the following one

�x

Picture

:(: : : (draw

�

x) : : :)

is always executed using the draw code for pictures. Using late binding, each time the whole

function is applied, the code for draw is chosen only when the x parameter has been bound and

1

This is just a way to understand message passing, and not a way to implement it; as a matter of fact, in real

implementations, methods are not searched in the object but in its class
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evaluated, on the basis of the run-time type of x, i.e. according to whether x is bound to a line

or to a square.

Therefore in our model overloading with late binding is the basic mechanism.

Excursus (late vs. dynamic binding) Overloaded operators can be associated with a speci�c operation

using either \early binding" or \late binding". This distinction applies to languages where the type

which is associated at compile time with an expression can be di�erent (less informative) from the

type of the corresponding value, at run time. The example above with Line and Picture should be

clarifying enough. Note though that what here we call late binding, in object-oriented languages is

usually referred as dynamic binding (see for example [Mey88, NeX91]). Late and dynamic binding

(or \dynamic scoping") are yet two distinct notions. Early vs. late binding has to do with overloading

resolution, while static vs. dynamic binding means that a name is connected to its meaning using a

static or a dynamic scope. However this mismatch is only apparent, and it is due to the change of

perspective between our approach and the one of the languages cited above: in [Mey88] and [NeX91],

for example, the suggested understanding is that a message identi�es a method, and the method (i.e.

the meaning of the message) is dynamically connected to the message; in our approach a message

identi�es an overloaded function (thus a set of methods) and it will always identify this function (thus

it is statically bounded) but the selection of the branch is performed by late binding.

The situation is actually more complex. As a matter of fact, messages obey to an intermediate

scoping rule: they have a \dynamically extensible" meaning. If the type Picture is de�ned with the

method draw, then the meaning of the draw method is �xed for any object of type picture, like what it

happens with static binding. However, if later a new type Circle is added to the graphic editor, the set

of possible meanings for the draw message is dynamically extended by the method for Circle and the

function in the previous example will use the correct method for Circle, even if circles did not exist

when the function was de�ned. This combination of late binding and dynamic extensibility is one of

the keys of the high reusability of object-oriented languages. Essentially, these languages allow one to

extend an application by simply adding a subclass of an existing class, while in traditional languages

one usually also needs modifying the old code, which is a costlier operation.

The use of overloading with late-binding automatically introduces a further distinction between mes-

sage passing and ordinary functions. As a matter of fact, overloading with late-binding requires

a restriction in the evaluation technique of arguments: while ordinary function application can be

dealt with by either call-by-value or call-by-name, overloaded application with late binding can be

evaluated only when the run-time type of the argument is known, i.e. when the argument is fully

evaluated (closed and in normal form). In view of our analogy \messages as overloaded functions"

this corresponds to say that message passing (i.e. overloaded application) acts by call-by-value or,

more generally, only closed and normal terms respond to messages.

Thus to start a formal study on the base of this intuition, we have de�ned in [CGL92] an extension

of the typed lambda calculus that could model these features. We will not give here a detailed

description of the calculus, since the reader can �nd it in the papers cited above. We just recall the

underlying intuition and the formal de�nitions of this calculus.

2 The �&-calculus

2.1 Overloaded types and terms

An overloaded function is constituted by a set of ordinary functions (i.e. lambda-abstractions), each

one forming a di�erent branch. To glue together these functions in an overloaded one we have chosen
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the symbol &; thus we have added to the simply typed lambda calculus the term

(M&N )

which intuitively denotes an overloaded function of two branches, M and N , that will be selected

according to the type of the argument. We must distinguish ordinary application from the application

of an overloaded function since, as we tried to explain in the previous section, they constitute di�erent

mechanism. Thus we use \

�

" to denote the overloaded application and � for the usual one. Overloaded

functions are built as it is customary with lists, by starting with an empty overloaded function that

we denote by ", and by concatenating new branches by means of &. Thus in the term above M is an

overloaded function while N is a regular function, which we call a \branch" of the resulting overloaded

function. Therefore an overloaded function with n branches M

1

;M

2

; : : :M

n

can be written as

((: : : (("&M

1

)&M

2

) : : : )&M

n

)

The type of an overloaded function is the ordered set of the types of its branches.

2

Thus ifM

i

:U

i

! V

i

then the overloaded function above has type

fU

1

! V

1

; U

2

! V

2

; : : : ; U

n

! V

n

g

and if we pass to this function an argument N of type U

j

then the selected branch will be M

j

. That

is:

("&M

1

& : : :&M

n

)

�

N >

�

M

j

�N (1)

We have also a subtyping relation on types. Its intuitive meaning is that U � V i� any expression

of U can be safely used in the place of an expression of V . An overloaded function can be used in

the place of another when for each branch of the latter there is one branch in the former that can

substitute it; thus, an overloaded type U is smaller than another overloaded type V i� for any arrow

type in V there is at least one smaller arrow type in U .

Due to subtyping, the type of N in the expression above may not match any of the U

i

but it may

be a subtype of some of them. In this case we choose the branch whose U

i

\best approximates" the

type, say, U of N ; i.e. we select the branch z s.t. U

z

= minfU

i

jU � U

i

g.

It is important to notice that, because of subtyping, in this system types evolve during computation.

This re
ects the fact that, in languages with subtypes, the run-time types of the values of an expression

are not necessarily equal to its compile time type, but are always subtypes of that compile time type.

In the same way, in this system, the types of all the reducts of an expression are always smaller than

or equal to the type of the expression itself.

In our system, not every set of arrow types can be considered an overloaded type. A set of arrow

types is an overloaded type i� it satis�es these two conditions:

U

i

� U

j

) V

i

� V

j

(2)

U

i

+ U

j

) there exists a unique z2I such that U

z

= inffU

i

; U

j

g (3)

where U

i

+ U

j

means that U

i

and U

j

are downward compatible, i.e. they have a common lower bound.

Condition (2) is a consistency condition, which assures that during computation the type of a

term may only decrease. In a sense, this takes care of the common need for some sort of covariance

of the arrow in the practice of programming. More speci�cally if we have a two-branched overloaded

function M of type fU

1

! V

1

; U

2

! V

2

g with U

2

< U

1

and we pass it a term N which at compile-time

has type U

1

then the compile-time type of M

�

N will be V

1

; but if the normal form of N has type U

2

then the run-time type of M

�

N will be V

2

and therefore V

2

< V

1

must hold. The second condition

concerns the selection of the correct branch: we said before that if we apply an overloaded function

2

This is just a �rst approximation; see later for the exact meaning of overloaded types.
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of type fU

i

! V

i

g

i2I

to a term of type U then the selected branch has type U

j

! V

j

such that

U

j

= min

i2I

fU

i

jU � U

i

g; condition (3) assures the existence and uniqueness of this branch.

3

While

condition (2) is essential to avoid run-time type errors, condition (3) is just the simplest way to deal

with the multiple inheritance problem, that is the problem of selecting one branch when many possible

choices have been de�ned; adopting a di�erent solution for this problem would not change the essence

of the approach (see [Ghe91b], where di�erent choices are discussed).

Finally we have to include call-by-value and late-binding. This can simply be done by requiring

that a reduction as (1) can be performed only if N is a closed normal form, and that the chosen

branch depends on the type of the reduced term. This is late-binding since the branch choice cannot

be performed before evaluating the argument, and this choice does not depend on the compile-time

type of the expression which generated the value, but on the run-time type of the value itself. The

formal description of the calculus is given by the following de�nitions:

Pretypes

V :: = A jV ! V j fV

0

1

! V

00

1

; : : : ; V

0

n

! V

00

n

g

Subtyping

The subtyping preorder relation is prede�ned as a partial lattice

4

on atomic types, and it is extended

to higher pretypes in the following way:

U

2

� U

1

V

1

� V

2

U

1

! V

1

� U

2

! V

2

8i 2 I; 9j 2 J U

0

j

! V

0

j

� U

00

i

! V

00

i

fU

0

j

! V

0

j

g

j2J

� fU

00

i

! V

00

i

g

i2I

Since the set (A,�) of atomic types is a partial lattice, the set of all types can be easily shown to be

a partial lattice too.

Types

1. A 2 Types

2. if V

1

; V

2

2 Types then V

1

! V

2

2 Types

3. if for all i; j 2 I

(a) (U

i

; V

i

2 Types) and

(b) (U

i

� U

j

) V

i

� V

j

) and

(c) (U

i

+U

j

) 9!h 2 I U

h

2

5

inffU

i

; U

j

g)

then fU

i

! V

i

g

i2I

2 Types

Terms (where V is a type)

M :: = x

V

j �x

V

:M j M�M j " jM&

V

M jM

�

M

Type-checking Rules

[Taut] x

V

:V

3

By the way note how these conditions are very related to the regularity condition discussed in [GM89], in the quite

di�erent framework of order-sorted algebras and order-sorted rewriting systems

4

i.e. it must satisfy the following constraints: A + A

0

) inffA;A

0

g 6= � and A * A

0

) supfA;A

0

g 6= �

5

Since � is not irre
exive, hence the g.l.b. of two types is generally not a unique type but a set of types; see

Section 3.1.
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[! Intro]

M :V

�x

U

:M :U ! V

[! Elim

(�)

]

M :U ! V N :W � U

M�N :V

[Taut

"

] ": fg

[fgIntro]

M :W

1

� fU

i

! V

i

g

i�(n�1)

N :W

2

� U

n

! V

n

(M&

fU

i

!V

i

g

i�n

N ): fU

i

! V

i

g

i�n

[fgElim]

M : fU

i

! V

i

g

i�n

N :U U

j

= min

i�n

fU

i

jU � U

i

g

M

�

N :V

j

In this paper fU

i

! V

i

g

i�n

is a meta notation for fU

1

! V

1

: : :U

n

! V

n

g.

Reduction

The reduction > is the compatible closure of the following notion of reduction:

�) (�x

S

:M )N >M [x

S

:= N ]

�

&

) If N :U is closed and in normal form, U

j

= min

i=1::n

fU

i

jU � U

i

g

and (M

1

&M

2

) : fU

i

! V

i

g

i=1::n

then

(M

1

&M

2

)

�

N >

�

M

1

�

N for j < n

M

2

�N for j = n

Main Theorems

For this calculus we have proved the following fundamental theorems (see [CGL92]):

- Subsumption Elimination: The language admits both a presentation with the subsumption rule

(M :W and W�U ) M :U ) and an equivalent subsumption-free presentation (the one chosen

here).

- Transitivity Elimination: Adding transitivity does not modify the subtyping relation.

- Type Uniqueness: Every well-typed term possesses a unique type.

- Generalized Subject Reduction: Let M :U . If M >

�

N then N :U

0

, where U

0

� U .

- Church-Rosser: Equal terms possess a common reductum.
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2.2 The strati�ed system

The �&-calculus many interesting properties, some were listed at the end of the previous section.

However it does not normalize. The reasons are explained in details in [CGL92]; we only observe

here that its expressive power allows (a restricted form of) self application. Namely, a suitably

overloaded variable may be applied to itself, by overloaded application. This may eventually increase

the computational power of this �-calculus, but it has no clear object-oriented meaning (that is why

in [CGL92] a normalizing variant was proposed and investigated). More precisely, the point is that

subtyping does not respect the size of the types: in most systems is two types are in subtyping relation

then their syntax tree are \similar" (for example, for record types one just erases some branches at

some nodes) . In �& this \strati�cation" of the subtyping relation is not respected. In particular the

syntax tree of a given type may be a subtree of the syntax tree of a subtype of that type. Consider,

say, the empty overloaded type: fg. Then, for any T , f fg ! T g � fg and fg is a syntactic occurrence

of f fg ! T g. A function of type f fg ! T g accepts arguments of type fg, but also arguments of

any type smaller than fg and thus also arguments of its own type; whence the self-application.

Thus no \strati�cation" is possible, as in the typed �-calculus, where all well-typed terms nor-

malize. The idea then is to de�ne a suitable notion of rank for types and allow application only in

presence of decreasing ranks. Moreover we want that types are preserved (or, at most, reduced

6

)

during computation: namely, we are interested in systems that satisfy (a generalized form of) the

Subject Reduction Theorem (such as �& in [CGL92]). Formally:

De�nition 2.1 A subsystem �&

-

of �& closed by Subject Reduction and with associated rank func-

tion from �&

-

types to integers (write (�&

-

, rank )), is strati�ed if:

1. If U (syntactically) occurs in T , then rank (U ) � rank (T ) ;

2. If M

T

N

U

is well typed, then rank (U ) < rank (T ).

2

Theorem 2.2 [CGL92] Let (�&

-

; rank) be a strati�ed subsystem of �&. Then �&

-

is Strongly Nor-

malizing.

Remark 2.3 We observe here that the proof in [CGL92] shows a more general fact than stated.

Indeed, the argument works for any strati�ed system (�&

-

; rank), not necessarily a subsystem of �&,

such that:

� �&

-

has the same terms, pretypes and type formation rules as �&;

� type formation and subtyping yield the Subject Reduction property (in the general sense above).

A variant of �& with the required properties as a strati�ed (�&

-

; rank) may be obtained by the following

simple modi�cation of the subtyping rules.

U

2

� U

1

V

1

� V

2

U

1

! V

1

� U

2

! V

2

rank(U

1

! V

1

) � rank(U

2

! V

2

)

8i 2 I; 9j 2 J U

0

j

! V

0

j

� U

00

i

! V

00

i

fU

0

j

! V

0

j

g

j2J

� fU

00

i

! V

00

i

g

i2I

rank(fU

0

j

! V

0

j

g

j2J

) � rank(fU

00

i

! V

00

i

g

i2I

)

In any well typed overloaded application M

fT

i

!U

i

g

i2I

�

N

T

0

, the rank of T

0

is then smaller than the

rank of some T

i

, hence it is strictly smaller than the rank of fT

i

! U

i

g

i2I

; similarly for functional

application. The examples below discuss in more details two cases where these rules are admissible or

even derivable.

6

According to the subtyping order
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As a matter of example in [CGL92] the following two calculi were considered.

Example 2.4 In the examples below the properties of system �&

-

in 2.1 are obtained either by

restricting the set of types (�&

-

T

), or by imposing a stricter subtyping relation (�&

-

�

). In either case,

the rank function is de�ned as follows:

rank(fg) = 0

rank(A) = 0

rank(T ! U ) = maxfrank (T ) + 1; rank(U )g

rank(fT

i

! U

i

g

i2I

) = max

i2I

frank(T

i

! U

i

)g

As it should be clear by now, the idea is that the types of a function and of its arguments are

\strati�ed" in a way that the rank of the functional type is strictly greater than the rank of the input

type, as required by de�nition 2.1.

� �&

-

�

is de�ned by substituting � in all �& rules with a stricter subtyping relation �

m

de�ned by

adding to any subtyping rule which proves T � U the further condition rank (T ) � rank(U ), see

remark 2.3. The subject reduction proof for �& works for �&

-

�

too, thanks to the transitivity

of the �

m

relation.

7

� �&

-

T

is de�ned by imposing, on overloaded types fT

i

! U

i

g

i2I

, the restriction that the ranks

of all the branch types T

i

! U

i

are equal, and by stipulating that fg is not a supertype of any

non-empty overloaded type (see the previous footnote). Then we can prove inductively that,

whenever T � U , then rank (T ) = rank (U ), and that �&

-

T

is a subsystem of �&

-

�

. To prove

the closure under reduction (i.e., that �&

-

T

terms reduce to �&

-

T

terms), observe �rst that a

�& term is also a �&

-

T

term i� all the overloaded types appearing in the indexes of variables

and of &'s are �&

-

T

overloaded types (this is easily shown by induction on typing rules). The

closure by reduction follows immediately, since variables and &'s indexes are never created by a

reduction step.

Note that �&

-

T

is already expressive enough to model object-oriented programming, where all methods

always have the same rank (rank 1), and that �&

-

�

is even more expressive than �&

-

T

. 2

Theorem 2.2 and the examples show that there exist (sub)systems of �& which are strongly normal-

izing and expressive enough for the purposes of modeling object-oriented programming. In [CGL92]

and section 2 we preferred to adopt the whole �& as target system, since it is easier to establish results

such as Subject Reduction and Con
uence on the general system and apply them in subsystems rather

than trying to extend restricted versions to more general cases.

3 Early Binding

We have presented in our introduction a limited overview of object-oriented languages. These lan-

guages are characterized by an interplay of many features, namely encapsulation, overloading, late-

binding, dynamic-binding, subtyping and inheritance. We have selected three of them|overloading,

late binding and subtyping|that, in our opinion, su�ce to model the relevant features of a class-

based object-oriented language. Not that these features are exclusive to this approach: overloading

existed long before object-oriented languages (FORTRAN already used it) while subtyping, even if it

was �rst suggest by object-oriented paradigms, has been included in other di�erent paradigms (e.g.

7

Note that, in this system, fg is not a supertype of any non-empty overloaded type; this is not a problem, since the

empty overloaded type is only used to type ", which is needed to start overloaded function construction. However, we

may alternatively de�ne a family of empty types fg

i2!

, each being the maximum overloaded type of the corresponding

rank, and a correspondent family of empty functions "

i2!

.
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EQLOG [GM85], LIFE [AKP91] or Quest [CL91]). But their combination is peculiar to object-oriented

programming. And exactly the interplay of all these features makes the object-oriented approach so

useful in the large-scale software production.

In our system we do not deal with encapsulation and dynamic-binding, but we think they can be

obtained using existential and reference types (even if, admittedly, there is still much to be done about

the combination of existential types and object-oriented programming), while our calculus accounts

for many other features although we had not the occasion to show it in this paper (see [Cas92]).

At the semantic level, our system presents three main technical challenges. The �rst is the true

dependence of overloaded functions from types. The second is the fact that subtyping is not an order

relation. The third is the distinction between run-time types and compile-time types. In the present

paper we just concentrate on the �rst two aspects, which already requires some technical e�orts, while

we will avoid the third problem by taking into consideration only a subsystem of full �& where the

type of the arguments of overloaded functions is \frozen", i.e. is the same at compile-time and at

run-time. This is just a �rst step in the direction of de�ning a semantics for the full system.

The resulting system is someway intermediate between late-binding and early-binding overloading.

It features early-binding, since for any application of an overloaded function the type which will be

used to perform branch selection is already known at compile-time, as happens for example with

arithmetic operators in imperative languages. It has still a form of late-binding since, as overloaded

functions are �rst class values which can be the result of expression evaluation, it is not possible to

get rid of branch selection at run time. For example, if a function applies a formal parameter x,

which has the type of an overloaded function, to an argument whose type is U , even if we know that

branch selection will be based on U , branch selection cannot be statically performed since the function

associated with x is unknown.

If overloaded functions were not �rst-class (i.e. if no variable were allowed to possess an overloaded

type) this restricted calculus would correspond to the \classical" (i.e. with early binding) implementa-

tion of overloading in imperative languages: the standard example is the operator + which is de�ned

both on reals and integers, though a di�erent code is used according to the type of the argument

8

.

What happens in these languages is that a preprocessor scans at compile time the text of a program

looking for all occurrences of + and it substitutes them by a call to the appropriated code, depend-

ing on whether they are applied to reals or integers

9

. As far as we know, all languages that use in

an explicit way overloading (and not implicitly as it is done in object-oriented programming via the

method de�nitions) base the selection of the code on the type possessed by the arguments at compile

time.

We obtain this \half-way early-binding" restriction of our system simply by adding explicit coer-

cions and imposing that every argument of an overloaded function is coerced. A coercion c

V

is just

an function which, informally, does nothing, but which cannot be reduced, so that the type of all the

residuals of a term c

V

(M ) is always V . Thus to model overloading with early binding we require that,

for each overloaded application, a coercion freezes the type of the argument up to branch selection.

We change the system in the following way: Pretypes, Types and Subtyping rules are as before. Terms

are now:

M :: = x

V

j �x

V

:M jM�M j c

V

(M ) j " jM&M jM

�

c

V

(M )

We add to the rules of type-checking the one for coercions:

8

This example is sometimes misleading because of the fact that the codes for the to branches must give the same

results when applied to integers (being integer numbers a subset of real numbers); this extra property is proper to this

example and it has nothing to do with overloading: in general the branches do not need to be related on the values

they return

9

The same is true for paradigms which have a cleverer use of overloading: for example, when the programmer can

de�ne its own overloaded operators. This is possible in Haskell; in this language the implementation of overloading is

based on strong theoretical grounds as shown in [WB89]; in that paper it is also shown how the selection in overloading

can be solved at compile time by the use of a preprocessor

9



[Coercion]

M :U � V

c

V

(M ):V

Finally we de�ne the reduction on the coercion; the minimal modi�cation required is the addition of

this rule to our notion of reduction:

(coerce) c

V

(M ) �N >M �N

where � denotes either � or

�

. This rule is needed since otherwise coercions could prevent some � or

�

&

reductions. This rule does not interfere with our use of coercions, since it only allows us to reduce

the left hand side, but not the right hand side, of an application. Another rule that could be added

to the calculus is

c

V

(c

U

(M )) > c

V

(M )

However it does not bring any interesting modi�cation to the system, so that we prefer not to include

it.

3.1 The completion of overloaded types

This section presents some general, syntactic, properties of (overloaded) types, which may be viewed

as some sort of \preprocessing" on the syntactic structures and which provide by this an interface

towards our semantic constructions.

Subtyping in our system (and in its variants in 2.2) is transitive but is not antisymmetric (it

is only a preorder relation). Consider, for example, fU ! V g and fU ! V; U

0

! V

0

g. Clearly,

fU ! V; U

0

! V

0

g � fU ! V g. But the opposite inclusion is also possible here, in contrast to record

types; namely, if U ! V � U

0

! V

0

, one also has fU ! V; U

0

! V

0

g � fU ! V g: \�" is not

antisymmetric.

This preorder relation makes perfectly sense w.r.t. type-checking. Suppose thatM : fU

i

! V

i

g

i2J

�

fU

0

i

! V

0

i

g

i2I

. The intended meaning of this subtyping relation is that M can be fed with any input

N which would be acceptable for a term M

0

in fU

0

i

! V

0

i

g

i2I

, and that the output can be used in

any context where M

0

�

N would be accepted. Indeed, let N :U

0

i

and C[ ] be a context where a value of

type V

0

i

can be put. Then, for some j2J , U

j

! V

j

� U

0

i

! V

0

i

, so that U

0

i

� U

j

and V

j

� V

0

i

, hence

the application M

�

N type-checks and can be used in the context C[M

�

N ]. \�" in �& is the least (or

less �ne) preorder that one can de�ne with this property.

However, since we want to interpret \�" by an order relation among semantic types, in this section

we look for a mechanism to get rid of irrelevant di�erences between equivalent types. The construction

below may be given in �& or in any strati�ed (sub-)system.

De�nition 3.1 Given types U and V , set U � V if U � V and V � U . 2

Remark 3.2 If fU ! V g � fU ! V; U

0

! V

0

g then U

0

� U and V

0

� V . Indeed, one must have

U ! V � U

0

! V

0

, so that U

0

� U and V � V

0

, while V

0

� V follows from U

0

� U by covariance.

This gives the intuitive meaning of the equivalence: a type U

0

! V

0

can be freely added or removed

from an overloaded type if there is another type U ! V which \subsumes" it, i.e. which is able to

produce the same output type on a wider input type (V � V

0

but U � U

0

).

We now extend the usual de�nitions of g.l.b., l.u.b., etc., to a preorder relation. For any partial

preorder � de�ned on a set Y and for any X � Y we de�ne:

minX =

def

fU 2Xj8V 2X:U � V g

maxX =

def

fU 2Xj8V 2X:V � Ug

infX =

def

maxfU 2Y j8V 2X:U � V g

supX =

def

minfU 2Y j8V 2X:V � Ug

10



Note that the four functions above denote a subset of Y , which in the �rst two cases, if not empty, is

an element of X= �, and in the last two cases an element of Y= �.

Our next step is now the de�nition of the \completion" of overloaded types; intuitively, the com-

pletion of an overloaded type is formed by adding all the \subsumed types" (in the sense of remark

3.2), so that two equivalent overloaded types should be transformed, by completion, in essentially

the same completed type. For this purpose and for the purpose of their semantics, we now adopt a

di�erent notation for overloaded types. Write + H, if the collection H of types has a lower bound.

De�nition 3.3 [g.o.t.] A general overloaded type (g.o.t.) is a pair (K; out) where K is a set of types,

i.e. a subset of Type, and out is a function from K to Type such that:

1. H � K and + H imply that there is V 2 K such that V 2 infH.

2. out is monotone w.r.t. the subtype preorder.

We may write fU ! out(U )g

U2K

for a general overloaded type. 2

Notice that V at the point 1 of the de�nition is not required to be unique, and also that K is not

required to be �nite. Thus a g.o.t. is not a type. But any overloaded type can be seen as a g.o.t.

(K; out), with a �nite K.

The preorder on g.o.t.'s is the one de�ned by applying to g.o.t.'s the rules given in the previous

section.

We are now ready to de�ne the notion of completion. We complete a g.o.t. by enlarging its domain

to its downward closure and by extending the \out" map to the enlarged domain. The extended map

c

out is de�ned over a type U

0

, essentially, by setting

c

out(U

0

) = out(minfU 2 KjU

0

� Ug):

But recall that min denotes a set of types; thus we have to choose one of them. To this aim, we suppose

that a choice function choose is de�ned which chooses a type out of a non-empty set of equivalent

types. Then, the extended map can be de�ned as:

c

out(U

0

) = out(choose(minfU 2 KjU

0

� Ug)):

For brevity, we will denote the functional composition of choose and min as a min:

a min(X) =

def

choose(min(X))

Remark 3.4 Even if � is a preorder on Types, in the rule [f gElim] there is not ambiguity in the

selection of the minimum. Indeed, by the de�nition of good formation of (overloaded) types we required

the property

(c) (U

i

+U

j

) 9!h 2 I U

h

2 inffU

i

; U

j

g)

Thus the rule picks up the unique U

j

with the required property. For the same reason, when the g.o.t.

which is the argument of completion (see below) is actually a type, the argument of the choose function

is just a singleton.

De�nition 3.5 [completion] Let fU ! out(U )g

U2K

be a g.o.t.. Its completion fU !

c

out(U )g

U2

b

K

is

the g.o.t. given by:

b

K = fU

0

j9U 2K U

0

� Ug and

c

out(U

0

) = out(a minfU 2 KjU

0

� Ug). 2

Fact 3.6 The completion of a g.o.t. fU ! out(U )g

U2K

is a well de�ned g.o.t..

Proof. Recall �rst that Type is a partial lattice: this gives 1 in 3.3. As for 2 (

c

out monotonicity), let

U

0

� V

0

be two types such that out is de�ned on both of them. Both U

00

= a minfU 2KjU � U

0

g and

V

00

= a minfU 2KjU � V

0

g are well de�ned by 1; moreover, V

00

2K, V

00

� V

0

and V

0

� U

0

imply

that V

00

2 fU 2KjU � U

0

g, and then that U

00

� V

00

, so that

c

out(U

0

) = out(U

00

) � out(V

00

) =

c

out(V

0

).

2
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Remark 3.7 In the completion of a g.o.t. fU ! out(U )g

U2K

, if U 2K, then

c

out(U ) � out(U ), since

a minfV 2KjU � V g � U and out is monotone.

Clearly, the completion is an idempotent operation (modulo equivalence). Note also that, even for

a singleton K = fUg;

b

K may be in�nite (e.g. U equal to the type of " i.e. f g).

Fact 3.8 By completion, one obtains an equivalent g.o.t., that is:

fU ! out(U )g

U2K

� fU !

c

out(U )g

U2

b

K

Proof. \�": we have to prove that

8U 2K:9U

0

2

b

K:U ! out(U ) � U

0

!

c

out(U

0

):

Take U

0

= U . By remark 3.7, since U 2K,

c

out(U ) � out(U ), hence U ! out(U ) � U !

c

out(U ).

Conversely, we have to prove that

8U

0

2

b

K:9U 2K:U ! out(U ) � U

0

!

c

out(U

0

):

For U

0

2

b

K, 9U 2K:U

0

� U ; thus, let Z = a minfV 2KjV � U

0

g, one has Z ! out(Z) � U

0

!

c

out(U

0

), since by de�nition of completion

c

out(U

0

) = out(Z). 2

The idea is to interpret overloaded types by using their completions, in the model. However, as

some preliminary facts may be stated at the syntactic level, we preferred to de�ne syntactic completions

and work out their properties. The theorem 3.9 below, is the most important one, since it guarantees

the monotonicity of completion. Note that subtyping between overloaded types is contravariant w.r.t.

the collections

b

K and

b

H. The reader familiar with the semantics of records as indexed products

(see [BL90]) may observe analogy with that contravariant understanding of records. Indeed in [CGL92]

we showed that record types may be coded as particular overloaded types.

Theorem 3.9 Let (K; out) and (H; out

0

) be g.o.t.. Then

fU ! out

0

(U )g

U2H

� fU ! out(U )g

U2K

,

b

K �

b

H and 8U 2

b

K: U !

d

out

0

(U ) � U !

c

out(U )

Proof. ()) As for

b

K �

b

H, just observe that, 8U 2

b

K, 9U

0

2K;U � U

0

; hence 9V 2H:U

0

� V , by

the assumption, and, thus, U 2

b

H. Let now U 2

b

K. There exists then V 2K such that U � V : take

V = a minfW 2KjU � Wg. As V 2K, by the assumption one has:

9U

0

2H:V � U

0

and out

0

(U

0

) � out(V ) (4)

Now,

c

out(U ) = out(a minfW 2KjU �Wg) = out(V ) (5)

Thus:

d

out

0

(U ) �

d

out

0

(U

0

) since U � V � U

0

and U;U

0

2

b

H

� out

0

(U

0

) by remark 3.7, since U

0

2 H

� out(V ) by (4)

=

c

out(U ) by (5)

In conclusion, 8U 2

b

K:U !

d

out

0

(U ) � U !

c

out(U ).

(() We have to prove that 8U 2K:9V 2H:V � U and out

0

(V ) � out(U ). Let U 2K. By hyp.,

U 2

b

H. Hence, V = a minfZ 2HjU � Zg is well de�ned. Thus:

out

0

(V ) =

d

out

0

(U ) by de�nition

�

c

out(U ) hypothesis

� out(U ) by remark 3.7, since U 2K

2
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Corollary 3.10 Let (K; out) and (H; out

0

) be g.o.t.; then:

fU ! out

0

(U )g

U2H

� fU ! out(U )g

U2K

,

b

K =

b

H and 8U 2

b

K:

d

out

0

(U ) �

c

out(U )

In conclusion, completions are not exactly canonical representatives of equivalence classes, but at

least they push the di�erences between two overloaded types one level inside the types. In this way

in the interpretation of types we will be able to get rid of the di�erences between equivalent types by

iterating completion at all the levels inside the type structure. The fact that a type is equivalent to

its completion makes it clear that an overloaded type, seen modulo �, does not describe the structure

of the corresponding functions (e.g. how many di�erent branches they have) but just which are the

contexts where they can be inserted. Hence we understand overloaded types as \type-checkers", used

to check the \dimension" of programs, similarly as in Physics where, by a \dimensional analysis",

one checks that in an equation, say, a force faces a force etc.. This will be the crucial semantic

di�erence between arrow types and overloaded types, since arrow types will keep their usual, more

restrictive, meaning as \collection of functions or morphisms identi�ed by the input and output types"

(see section 4.1.3 for further discussions).

4 Semantics

4.1 PER as a model

In this section we give the basic structural ideas which will allow us to interpret the syntax of �&-early.

Namely, we state which geometric or algebraic structures may interpret arrow and overloaded types;

terms will be their elements and will be interpreted in full details in section 4.1.5.

A general model theory of �&-early may be worth pursuing as an interesting development on the

grounds of the concrete model below. Indeed, by some general categorical tools, one may even avoid

to start with a model of type-free lambda calculus, but this may require some technicalities from

Category Theory (see [AL91]). Thus we use here a model (D; �) of type-free lambda calculus and

a fundamental type structure out of it. We survey �rst the basic ideas for the construction. Later

we specialize the general construction by starting out of a speci�c type-free model which will yield a

semantic for our typed calculus.

4.1.1 PER out of (D; �)

Let (D; �) be an applicative structure, which yields a model of type-free lambda calculus (see [Bar84]).

Example 4.1 Let P! be the powerset of the natural numbers, !. P! may be turned into an ap-

plicative structure (P!; �), indeed a model of type-free �-calculus, by setting:

a � b = fkj9e

h

� b;�h; k�2 ag

where a and b are elements of P!, fe

i

g

i2!

is an enumeration of �nite sets of numbers and � ; � is a

bijective coding of !�! into ! (see [Sco76] and also [Lon83] for a general set-theoretic construction).

2

We �rst de�ne the category of types as Partial Equivalence Relations out of (D; �). When A is a

symmetric and transitive relation on D, we set, for n;m 2 D:

nAm

def

, n is related to m by A

dom(A)

def

= fnjnAng

dne

A

def

= fmjmAng (the equivalence class of n with respect to A)

Q(A)

def

= fdne

A

jn 2 dom(A)g (the quotient set of A).
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Clearly, if A is a symmetric and transitive relation on D then A is an equivalence relation on dom(A),

as a subset of D. (Note that, even if we will use n;m for arbitrary elements of D, when D is P! each

element n in D is actually a set of numbers).

De�nition 4.2 The category PER (of Partial Equivalence Relations) is de�ned as:

� objects: A 2 PER i� A is a symmetric and transitive relation on D

� morphisms: f 2 PER[A;B] i� f : Q(A)! Q(B) and 9n 2 D:8a 2 dom(A):f(dae

A

) = dn � ae

B

2

Note that the morphisms in PER are computable, w.r.t. (�;D), in the sense that any n 2 D such that

8a 2 dom(A):f(dae

A

) = dn � ae

B

computes or realizes f : Q(A)! Q(B) in the de�nition (notation:

n

j

`

A!B

f). Thus PER is a category where the identity map, in each type, is computed by (at least)

the interpretation of the term �x:x, i.e. the identity function on D.

Theorem 4.3 PER is a CCC's.

Proof.(Hint, the proof is in several papers since [Sco76]; in particular, in [AL91]). The exponent

object A! B is de�ned by

8m;n: m(A ! B)n , 8p; q(pAq) (m � p)B(n � q))

Products are de�ned by taking a coding of pairs of D into D, as given for example by the fact that D

is a model of type free lambda-calculus. 2

To clarify the construction, let us look more in detail to exponent objects in PER. Take say A! B,

that is, the representative of PER[A;B]. Then by de�nition each map f 2 PER[A;B] is uniquely

associated with the equivalence class of its realizers, dne

A!B

2 A ! B in the sense above. It should

be clear that the notion of realizer, or \type-free computation" computing the typed function, is made

possible by the underlying type-free universe, (D; �). As we will discuss later, this gives mathematical

meaning to the intended type-free computations of a typed program after compilation. In this context,

it is common to identify, by an abuse of language, each typed function with the equivalence class of

its realizers. Of course, the semantic \!" gives meaning to arrow types.

De�nition 4.4 The semantics of arrow types is given by [[U ! V ]] = [[U ]]! [[V ]] 2

4.1.2 Subtyping

Before going into the semantics of the other types, we brie
y introduce the meaning of \subtypes", in

view of the relevance this notion has in our language. The semantics of subtypes over PER is given

in terms of \subrelations", (see [BL90]).

De�nition 4.5 [subtypes] Let A;B 2 PER. De�ne: A � B i� 8n;m:(nAm) nBm) 2

The intuition for this approach to subtyping is better understood when looking at \arrow types".

Proposition 4.6 Let A;A

0

; B;B

0

2 PER be such that A

0

� A and B � B

0

. Then A! B � A

0

! B

0

.

In particular, for n 2 dom(A! B), one has dne

A!B

� dne

A

0

!B

0

Proof.

n(A! B)m , 8p; q:(pAq ) n � pBm � q)

) 8p; q:(pA

0

q ) n � pB

0

m � q) as pA

0

q ) pAq ) n � pBm � q ) n � pB

0

m � q

, n(A

0

! B

0

)m

The rest is obvious. 2
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The proposition gives the antimonotonicity of ! in its �rst argument, as formalized in the rules and

required by subtyping. Moreover, and more related to the speci�c nature of this interpretation of !,

this gives a nice interplay between the extensional meaning of programs and the intensional nature of

the underlying structure, namely between functions and the set of indexes that compute them. Indeed,

typed programs are interpreted as extensional functions in their types, as we identify each morphism

in PER with the equivalence class of its realizers. That is, in the notation of the proposition, let

dne

A!B

2 A ! B represent f 2 PER[A;B] in the exponent object A ! B. Note then that the

intended meaning of subtyping is that one should be able to run any program in A ! B on terms

of type A

0

also, as A

0

is included in A. When n

j

`

A!B

f , this is exactly what dne

A!B

� dne

A

0

!B

0

expresses: any computation which realizes f in the underlying type-free universe actually computes f

viewed in A

0

! B

0

also. Of course, there may be more programs for f in A

0

! B

0

, in particular if A

0

is strictly smaller than A. This elegant interplay between the extensional collapse, which is the key

step in the hereditary construction of the types as partial equivalence relations, and the intensional

nature of computations is a fundamental feature of these realizability models. Clearly \�" is a partial

order which turns the objects of PER into an algebraic complete lattice. The crucial point here is

that \�" de�nes a re�nement relation which goes exactly in the sense we want in order to interpret

subtypes. Namely if A � B then the equivalence class of A are included in those of B or A is �ner

than B.

Note �nally that, given n 2 dom(A) and A � B, we may view the passage from dne

A

to dne

B

as

an obvious coercion.

De�nition 4.7 [semantic coercions] Let A;B 2 PER with A � B . De�ne c

AB

2 PER[A;B] by

8n 2 dom(A) c

AB

(dne

A

) = dne

B

2

Remark 4.8 By the previous de�nition, for any a2Q(A), c

AB

(a) � a

For the sake of conciseness if U and V are syntactic types, we denote by c

UV

the semantic coercion

c

[[U ]][[V ]]

Note that semantic coercions do not do any work, as type-free computations, but, indeed, change

the \type" of the argument, i.e. its equivalence class and the equivalence relation where it lives . Thus

they are realized by the indexes of the type free identity map, among others, and they are meaningful

maps in the typed structure.

Since terms will be interpreted as equivalence classes in (the meaning as p.e.r.'s of) their types,

we need to explain what the application of an equivalence class to another equivalence class may

mean, as, so far, we only understand the application \�" between elements of the underlying type-free

structure (D; �).

De�nition 4.9 [Application] Let A;A

0

and B be p.e.r.'s, with A

0

� A. De�ne then, for n(A! B)n

and mA

0

m, dne

A!B

� dme

A

0

= dn �me

B

. 2

Note that this is well de�ned, since mA

0

m

0

impliesmAm

0

and, thus, n �mBn

0

�m

0

, when n(A! B)n

0

.

This is clearly crucial for the interpretation of our \arrow elimination rule". We end this section on

subtyping by two technical lemmas that will be heavily used in the next sections.

Lemma 4.10 (Monotonicity of application) Let a; b; a

0

; b

0

be equivalence classes such that the

applications a � b and a

0

� b

0

are well de�ned (i.e. a 2 Q(A

1

! A

2

) and b 2 Q(B) with B � A

1

, and

similarly for a

0

and b

0

). If a � a

0

and b � b

0

then a � b � a

0

� b

0

Proof. n 2 a � b , 9p2a; q2b: n = p � q ) p2a

0

; q2b

0

) n = p � q2a

0

� b

0

2

Lemma 4.11 (Irrelevance of coercions) Let A;A

0

and B be p.e.r.'s, with A

0

� A. Assume that

n(A! B)n and mA

0

m. Then

dne

A!B

�c

A

0

A

(dme

A

0

) = dne

A!B

�dme

A

= dn �me

B

= dne

A!B

�dme

A

0

= c

A!BA

0

!B

(dne

A!B

) �dme

A

0

:

Proof. Immediate 2
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4.1.3 Overloaded types as Products

The intuitive semantics of overloaded types is quite di�erent from the meaning of arrow types. The

essential di�erence is that types directly a�ect the computation: the output value of a �

&

reduction

explicitly depends on the type of the (M

1

&M

2

) term, and on the type of the argument N .

10

A second di�erence has to do with the ability of accepting as parameters values of any type which

is a subtype of the input types explicitly speci�ed. This fact is managed implicitly in arrow types.

For example, let M :U ! V , then M will be interpreted as a function from the meaning of U to the

meaning of V , as sets (or objects in a category of sets) and U ! V will be interpreted as the collection

of such functions. Robust structural properties of the model we propose will allow a function in U ! V

to be applied to elements of a subtype of U , as if they were in U . This kind of interpretation is not

possible with overloaded types, at least since the set of acceptable input types has not, generally, a

maximum.

Thus two crucial properties need to be described explicitly in the semantics of overloaded terms.

First, output values depend on types; second, as a type may have in�nitely many subtypes and the

choice of the branch depends on \�", overloaded semantic functions explicitly depend on in�nitely

many types. By this, we will consider overloaded functions as, essentially, functions which take two

parameters, one type and one value, and give a result whose type depend on the �rst parameter.

Hence overloaded functions of, e.g., a type fU ! V; U

0

! V g will be elements of the indexed product

(see later)

Y

W�U;U

0

(W ! V ):

In other words, the interpretation of U ! V will be given by the usual set of functions from

the interpretation of U to the interpretation of V (in a suitable categorical environment), while the

meaning of fU ! V; U

0

! V g will directly take care of the possibility of applying overloaded functions

to all the subtypes of the argument types.

The fact that the index in the product ranges over all subtypes of U;U

0

, not just over fU;U

0

g, solves

a third problem of overloaded types: the fact that subtyping is just a preorder, while its semantics

interpretation is an order relation. By exploiting the notion of completion de�ned in section 3.1, we

will be able to interpret all equivalent types as the same object.

We are now ready to be formal.

In set theory, given a set A and a function G : A ! Set (Set is the category of sets and set-

theoretical maps), one de�nes the indexed product:

O

a2A

G(a) = ff j f : A! [

a2A

G(a) and 8a 2 A: f(a) 2 G(a)g

If A happens to be a subset of an applicative structure (�;D) and G : A ! PER, then the resulting

product may be viewed as a p.e.r. on D, as follows.

De�nition 4.12 Let A � D and G : A! PER. De�ne the p.e.r.

Q

a2A

G(a) by

n(

Y

a2A

G(a))m , 8a 2 A: n � aG(a)m � a

2

Remark 4.13 (Empty product) Notice that, by the de�nition above, for any G:

Y

a2�

G(a) = D � D

10

The fact that terms depend on types should not be confused with the di�erent situation of \dependent types" where

types depend on terms, e.g. in the Calculus of Constructions

16



Clearly,

Q

a2A

G(a) is a well de�ned p.e.r. and may be viewed as a collection of computable functions,

relatively to D: any element in dom(

Q

a2A

G(a)) computes a function in

N

a2A

G(a), and when

n

Q

a2A

G(a)m, then n and m compute the same function. That is, by the usual abuse of language,

we may identify functions and equivalence classes and write:

f 2

Y

a2A

G(a) i� f 2

O

a2A

G(a) and 9n2D:8a2A:f(a) = dn � ae

G(a)

: (6)

We then say that n realizes f .

Our aim is to give meaning to functions \computing with types". The idea is to consider the type

symbols as a particular subset of D and use some strong topological properties of a particular model

(D; �), namely of (P!; �) in 4.1, to interpret these peculiar functions. Thus, from now on, we specialize

(D; �) to (P!; �). Recall that P! may be given a topological structure, the Scott topology, by taking

as a basis the empty set plus the sets fa 2 P! j e

n

� ag, where fe

n

g

n2!

is an enumeration of the

�nite subsets of P!.

Assume then that each type symbol U is associated, in an injective fashion, with an element n in

D, the semantic code of U in D. Call [Type]� D the collection of semantic codes of types. The

choice of the set of codes is irrelevant, provided that

� it is in a bijection with Type;

� the induced topology on [Type] is the discrete topology.

These assumptions may be easily satis�ed, in view of the cardinality and the topological structure

of the model D we chose. For example, enumerate the set of type symbols and �x [Type] to be the

collection of singletons ffigji 2 !g of P! (Type is countable as each type has a �nite representation).

We then write T

n

for the type-symbol associated with code n

11

and, given K � Type, we set

[K] = fnjT

n

2 Kg.

We can now interpret as a p.e.r. any product indexed over a subset [K] of [Type]. Indeed, this

will be the semantic tool required to understand the formalization of overloading we proposed: in

�&, the value of terms or procedures may depend on types. This is the actual meaning of overloaded

terms: they apply a procedure, out a �nite set of possible ones, according to the type of the argument.

As terms will be functions in the intended types (or equivalence classes of their realizers), our choice

functions will go from codes of types to (equivalence classes in) the semantic types.

Remark 4.14 The reader may observe that there is an implicit higher order construction in this:

terms may depend on types. However:

� in view of the countable (indeed �nite) branching of overloaded terms and types, we do not need

higher order models to interpret this dependency;

� note though that the intended meaning of an overloaded term is a function which depends on

a possibly in�nite set of input types, as it accepts terms in any subtype of the U

i

types in the

fU

i

! V

i

g types. Whence the use of g.o.t.'s and completions.

� known higher order systems (System F, Calculus of Constructions...) would not express our

\true" type dependency, where di�erent types of the argument may lead to essentially di�erent

computations. This was mentioned in the introduction and it is understood in the PER model

of these calculi by a deep fact: the product indexed over (uncountable) collections of types is iso-

morphic to an intersection (see [LM91]). A recent syntactic understanding of this phenomenon

may be found in [LMS93].

11

Remember that, despite the letter n, n is a singleton, not just an integer.
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Remark 4.15 Overloaded functions are similar, in a sense, to records; in the �rst case the basic

operation is selection of a function depending on a type, while in the second case it is selection of

a �eld depending on a label. Consequently, subtyping is strictly related too: theorem 3.9 shows that,

working with the completion of types, subtyping is the same in the two cases. However we cannot get

rid of overloaded type in �&-early by encoding them as product types, using the technique developed

in [CL91] for record types, since the completion of an overloaded type is an in�nite structure, and also

because we want to lay foundations which can be used to study the whole late-binding version of �&.

4.1.4 The semantics of strati�ed types and subtyping

We are ready to de�ne the semantics of overloaded types as products. As we want to interpret

subtyping, which is a preorder, by an order relation in the model, we will use completion to get rid of

\irrelevant di�erences" between overloaded types. Note now that the semantics below is well de�ned

only in case of strati�ed variants of �&, as given in section 2.2. This extra condition, which also lead

us to normalizing overloaded and functional applications, is essential in order to avoid a circularity

in the de�nition of meaning for overloaded types: in the notation of de�nition 4.16, T

n

� U 2 [

b

K]

implies that T

n

is \structurally simpler" than U (has a smaller equal rank than U), when the system

is strati�ed. Thus fU ! out(U )g

U2K

may be understood in terms of the \composition of meanings"

of the T

n

's. Let then (�&

-

, rank) be a strati�ed system

De�nition 4.16 The semantics of overloaded types is given by

[[fU ! out(U )g

U2K

]] =

Y

n2[

b

K]

[[T

n

!

c

out(T

n

)]]

where [

b

K] =

n

n

�

�

�

T

n

2

b

K

o

2

This is a well de�ned meaning over PER, by de�nition 4.12, where A = [

b

K] and G: [

b

K] ! PER is

given by G(n) = [[T

n

!

c

out(T

n

)]]. It clearly extends to g.o.t.'s, as we only need that K is countable,

here. Now we are �nally in the position to check that the preorder on types is interpreted as the

partial order \�" on PER.

Theorem 4.17 If U � V is derivable, then [[U ]]� [[V ]] in PER.

Proof. The proof goes by induction on the structure of types, the only critical case concerns the

overloaded types and will be an easy consequence of theorem 3.9.

atomic types

by de�nition

arrow types

by proposition 4.6

overloaded types

Let (K; out) and (H; out

0

) be g.o.t.. Assume that fU ! out

0

(U )g

U2H

� fU ! out(U )g

U2K

.

We need to show that

Q

i2[

b

H ]

[[T

i

!

d

out

0

(T

i

)]] �

Q

i2[

b

K ]

[[T

i

!

c

out(T

i

)]] in PER.

By 3.9, [

b

K] � [

b

H] and 8i2 [

b

K]:T

i

!

d

out

0

(T

i

) � T

i

!

c

out(T

i

). Hence:

m

Q

i2[

b

H ]

[[T

i

!

d

out

0

(T

i

)]]n , 8i2 [

b

H]:m[[T

i

!

d

out

0

(T

i

)]]n by de�nition

) 8i2 [

b

K]:m[[T

i

!

c

out(T

i

)]]n by 3.9

) m

Q

i2[

b

K]

[[T

i

!

c

out(T

i

)]]n
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2

It should be clear that we presented here a core extension of the typed �-calculus with overloading and

subtyping. Note though that it su�ces to represent records, as shown in [CGL92]. As for recursively

de�ned procedures, the natural extension of our language by a �xed point operator over terms may

represent them. A sound model, as a substructure of our semantics, may be derived from the work in

[Ama90].

4.1.5 The semantics of terms

We can now give meaning to terms of the �&-calculus, with the use of coercions introduced in the

previous section.

Syntactic coercions were denoted by c

V

where V was the type the argument was coerced to; the

type-checker assured that this type was greater than the type of the argument of c

V

. In the semantics

we need also to know the type of the argument since the semantic coercions are \typed functions",

from a p.e.r. to another: thus, we denote semantic coercions between p.e.r.'s [[U ]] and [[V ]] by c

UV

;

the double indexation distinguishes them from the syntactic symbol. Also, in the following we index

a term by a type as a shorthand to indicate that the term possesses that type.

An environment e for typed variables is a map e:V ar !

S

A2PER

A such that e(x

U

) 2 [[U ]].

Thus each typed variable is interpreted as an equivalence class in its semantic type. This will be now

extended to the interpretation of terms by an inductive de�nition, as usual.

In spite of the heavy notation, required by the blend of subtyping and overloading, the intuition

in the next de�nition should be clear. The crucial point 6 gives meaning to an overloaded term by a

function which lives in an indexed product (as it will be shown formally below): the product is indexed

over (indexes for) types and the output of the function is the (meaning of the) term or computation

that one has to apply. Of course, this is presented inductively. Some coercions are required as M

1

and

M

2

may live in smaller types than the ones in &

fV

i

!W

i

g

i�n

. Then, in point 7, this term is actually

applied to the term argument of the overloaded term.

De�nition 4.18 [semantics of terms] Let e:V ar �!

S

A2PER

A be an environment. Set then:

1. [["]]

e

= D, the only equivalence class in the p.e.r. D �D (see remark 4.13)

2. [[x

U

]]

e

= e(x

U

)

3. [[�x

U

:M

V

]]

e

= dne

[[U!V ]]

where n is a realizer of f such that 8u2 [[U ]]:f(u) = [[M

V

]]

e[x=u]

4. [[M

U!V

N

W

]]

e

= [[M

U!V

]]

e

[[N

W

]]

e

5. [[c

V

(M

U

)]]

e

= c

UV

([[M

U

]]

e

) (the semantic coercion)

6. Let (M

1

&

fV

i

!W

i

g

i�n

M

2

): fU ! out(U )g

U2fV

i

g

i�n

with M

1

:T

1

� fV

i

! W

i

g

i<n

and M

2

:T

2

�

V

n

!W

n

.

Set then [[M

1

&M

2

]]

e

= f such that, given j 2 [

d

fV

i

g

i�n

] and Z = min

12

fU 2 fV

i

g

i�n

jT

j

� Ug,

one has

f(j) =

(

c

T

2

(T

j

!cout(T

j

))

([[M

2

]]

e

) if Z = V

n

(c

T

1

(fV

i

!W

i

g

i<n

)

[[M

1

]]

e

)(j) else

7. [[M

fU!out(U)g

U2K

�

c

V

(N

W

)]]

e

= [[M

fU!out(U)g

U2K

]]

e

(i)[[c

V

(N

W

)]]

e

where T

i

= V .

2

12

We should write a minf: : :g, but note that in this case the set minf: : :g is a singleton.
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Remark 4.19 Notice that this semantics does not interpret reduction as equality. Indeed:

[[(�x

V

:Q

U

)P

W

]]

e

= [[�x

V

:Q

U

]]

e

[[P

W

]]

e

= dne

[[V!U ]]

[[P

W

]]

e

with n as in point 3 of de�nition 4.18

= dne

[[V!U ]]

(c

WV

[[P

W

]]

e

) by 4.11

= [[Q

U

]]

e[x=c

WV

[[P

W

]]

e

]

by point 3 of de�nition 4.18

In general, [[Q]]

e[x=c

WV

[[P

W

]]

e

]

is di�erent from [[Q[x=P

W

]]]

e

. For example, if Q = x, the two expressions

evaluate to c

WV

[[P

W

]]

e

and to [[P

W

]]

e

respectively. This will be more generally understood in 4.22.

The soundness of this de�nition is split into two theorems and is proved right below. We recall �rst,

in a lemma, that P! is an \injective" topological space.

Lemma 4.20 (injectivity) Let Y be a topological space and X � Y , a subspace with the induced

topology. Then any continuous h : X ! P! can be extended to a continuous �h : Y ! P!. Indeed, �h

is given by �h(y) = tfufh(x)jx 2 X \ Ugj y 2 Ug. (The proof is easy; see [Sco76] for this and more

properties of P!).

Theorem 4.21 (soundness w.r.t. type-checking) If N :U then, for any environment e, [[N ]]

e

is

well de�ned and [[N ]]

e

2 [[U ]].

Proof. The proof goes by induction on the structure of N :

1. If N � x

U

, then e(x

U

) 2 [[U ]] by de�nition.

2. If N � ", since [["]] = D, then [["]] 2 [[fg]]� D � D (see 4.13).

3. If N � �x

U

:M

V

, consider [[�x

U

:M

V

]]

e

= f such that 8u 2 [[U ]]:f(u) = [[M

V

]]

e[u=x]

. We need to

show that f lives in the right type and it is realized, or, equivalently, that f , as a set of realizers,

is in [[U ! V ]]. This is a consequence of the proof that PER is a CCC, as lambda abstraction

is the currying operation (see for instance [AL91]).

4. If N � M

U!V

P

W

, where W � U . By induction [[M

U!V

]]

e

2 [[U ! V ]] and [[P

W

]]

e

2 [[W ]] �

[[U ]]. Then the result follows by 4.9.

5. Assume that N � (M

1

&

fV

i

!W

i

g

i�n

M

2

): fU ! out(U )g

U2fV

i

g

i�n

with M

1

:T

1

� fV

i

! W

i

g

i<n

and M

2

:T

2

� V

n

! W

n

. Set [[M

1

&M

2

]]

e

= f as in the de�nition 4.18. We prove this case by

induction on n; in each case we have to prove that f lives in the set-theoretic indexed product

N

j2[

d

fV

i

g

i�n

]

[[T

j

!

c

out(T

j

)]] and that it is realized.

(n = 1) . In this case fV

i

g

i�n

= fV

1

g By de�nition 4.18 we have that 8j 2 [

d

fV

1

g]:f(j) =

c

T

2

(T

j

!W

1

)

([[M

2

]]

e

) as there is only one branch to choose. By induction [[M

2

]]

e

2 [[T

2

]] and,

since T

j

� V

1

, the coercion application makes sense. The result lives in the correct type

since, for each j2 [

d

fV

1

g], f(j) = c

T

2

(T

j

!W

1

)

([[M

2

]]

e

) 2 [[T

j

!

c

out(T

j

)]] and, thus, the whole

f lives in the correct set-theoretic indexed product. To conclude the proof we have to show

that f is realizable.

Intuitively, f can be realized by an index for a constant function, since for any input type

f executes always the same code M

2

; this code is coerced to di�erent types T

j

!

c

out(T

j

),

but, thanks to the interpretation of subtyping, any realizer for this code in the minimum

type T

2

lives in the domain of any of its supertypes T

j

!

c

out(T

j

).
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Formally, consider �rst a map f

0

: [

d

fV

1

g]! P! which chooses, for each j 2 [

b

K], always the

same element n of the equivalence class [[M

2

]]

e

2 [[T

2

]]. Then f

0

is computed by any index

of the chosen constant function. These indexes realize f : since f

0

(j) lives in [[M

T

2

]]

e

, then

df

0

(j)e

[[T

j

!cout(T

j

)]]

= c

T;T

j

!cout(T

j

)

[[M

T

2

]]

e

= f(j):

Note that, though f is realized by an index of a constant function, f itself is not constant.

(n > 1) . In this case, we have that M

1

:T

1

� fV

i

! W

i

g

i<n

� fU ! out(U )g

U2fV

i

g

i<n

. By

induction hypothesis, [[M

1

]]

e

2 [[T

1

]] and thus c

T

1

(fV

i

!W

i

g

i<n

)

([[M

1

]]

e

) 2 [[fV

i

!W

i

g

i<n

]]. In

particular, let g be the map such that for each j2 [

d

fV

i

g

i<n

]:g(j) = c

T

1

(fV

i

!W

i

g

i<n

)

([[M

1

]]

e

)(j).

Then, by the induction, g is in

Q

j2[

d

fV

i

g

i<n

]

[[T

j

!

c

out(T

j

)]]. Consider now f de�ned

as in 4.18 point 6 from (M

1

&

fV

i

!W

i

g

i�n

M

2

), that is, f(j) = c

T

2

(T

j

!cout(T

j

))

([[M

2

]]

e

) or

f(j) = g(j) according to whether Z = minfU 2 fV

i

g

i�n

jT

j

� Ug is equal to V

n

or to some

V

m

for m < n. Note that f is well de�ned, as, for each j 2 [

d

fV

i

g

i�n

] there exists (and is

unique) the least V

z

such that T

j

� V

z

, by the de�nition of well-formed overloaded types.

By this, f is in

N

j2[

d

fV

i

g

i�n

]

[[T

j

!

c

out(T

j

)]].

To prove that f is realizable, consider the map f

0

which chooses for each j 2 [

d

fV

i

g

i�n

] an

element f

0

(j) of the equivalence class f(j). Clearly, f

0

is (well de�ned and) continuous,

since [

d

fV

i

g

i�n

] � P! is endowed with the discrete topology. Then its continuous extension

f

0

:P! ! P!, given as in the lemma, is computed by some n 2 P!, i.e. f

0

(p) = n � p, see

[Sco76]. In conclusion,

9n2P!: 8j2 [

d

fV

i

g

i�n

]: f(j) = df

0

(j)e

[[T

j

!cout(T

j

)]]

= dn � je

[[T

j

!cout(T

j

)]]

and thus f 2

Q

j2[

d

fV

i

g

i�n

]

[[T

j

!

c

out(T

j

)]]. (Equivalently, one could extend by continuity

g, de�ned as above, to f , by the same \injectivity" argument; this argument is needed,

anyway, as an extension by a constant value, does not need to be continuous, in general.

We preferred to de�ne a new realizer and use the inductive hypothesis just to check the

semantic types).

6. If N�M

fU!out(U)g

U2K

�

c

V

(P

W

): out(Z) where Z = minfU 2KjV � Ug , then

[[N ]] = [[M

fU!out(U)g

U2K

]]

e

(j)c

WV

([[P

W

]]) for T

j

= V:

By the previous point, [[M

fU!out(U)g

U2K

]]

e

(j) 2 [[T

j

!

c

out(T

j

)]]� [[V ! out(Z)]], hence

[[N ]]

e

2 [[out(Z)]]

2

We observed that reductions are not interpreted as equalities in the model. Indeed they yield set

theoretic inclusions.

Lemma 4.22 (substitution) [[Q[x=P ]]]

e

� [[Q]]

e[x=p]

where p = c

T

0

T

[[P ]]

e

, x:T , P :T

0

� T

Proof. The proof goes by induction on the structure of the terms:

1. Q�y 6= x or Q�": trivial

21



2. Q�x

[[x[x=P ]]]

e

= [[P ]]

e

2 [[T

0

]] is contained in [[x]]

e[x=p]

= p = c

T

0

T

[[P ]]

e

2 [[T ]], by the de�nition of

semantic coercions.

3. Q��y

U

:M

As usual we identify a function with the set of its realizers, in the intended type. Thus

[[�y

U

:M [x=P ]]]

e

= f such that 8u 2 [[U ]]:f(u) = [[M [x=P ]]]

e[y=u]

while

[[�y

U

:M ]]

e[x=p]

= f

0

such that 8u 2 [[U ]]:f

0

(u) = [[M ]]

e[x=p;y=u]

� [[M [x=P ]]]

e[y=u]

(the inclusion holds by induction hypothesis), thus each realizer for f is also a realizer for f

0

,

that is

[[�y

U

:M [x=P ]]]

e

� [[�y

U

:M ]]

e[x=p]

4. Q�M �N

the proof goes by the usual induction. Just recall 4.11 and the monotonicity of application

(Lemma 4.10).

5. Q�M

�

c

V

(N )

[[M

�

c

V

(N )]]

e[x=p]

=

= [[M ]]

e[x=p]

(j)([[c

V

(N )]]

e[x=p]

) for T

j

= V

� [[M [x=P ]]]

e

(j)([[c

V

(N )[x=P ]]]

e

) by ind. and by the monotonicity of application in P!

= [[(M [x=P ])

�

(c

V

(N )[x=P ])]]

e

= [[(M

�

c

V

(N ))[x=P ]]]

e

6. Q�M

1

&M

2

: fV

i

!W

i

g

i<n

[[M

1

&M

2

]]

e[x=p]

= f such that f(j) =

(

c

T

2

(T

j

!cout(T

j

))

([[M

2

]]

e[x=p]

) if Z = V

n

(c

T

1

(fV

i

!W

i

g

i<n

)

[[M

1

]]

e[x=p]

)(j) else

[[(M

1

&M

2

)[x=P ]]]

e

= f

0

such that f

0

(j) =

(

c

T

2

(T

j

!cout(T

j

))

([[M

2

[x=P ]]]

e

) if Z = V

n

(c

T

1

(fV

i

!W

i

g

i<n

)

[[M

1

[x=P ]]]

e

)(j) else

the result follows by the same reasoning as in (3.). More precisely, since in this case [[Q[x=P ]]]

e

and [[Q]]

e[x=p]

have the same type, from [[Q[x=P ]]]

e

� [[Q]]

e[x=p]

we can deduce [[Q[x=P ]]]

e

=

[[Q]]

e[x=p]

.

2

The immediate consequence of the work done so far is the construction of a simplemodel of \reduction"

and not, as customary in denotational semantics, of \conversion". This is precisely stated by the

following theorem.

Theorem 4.23 (soundness wrt reductions) M

U

>N

V

) [[M

U

]]

e

� [[N

V

]]

e

Proof. The proof goes by induction on the de�nition of >. The critical cases are:
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1. M� (�x:P )Q

W

and N�P [x=Q] with (�x:P ):U ! V and Q:W

[[(�x:P )Q]]

e

= [[(�x:P )]]

e

[[Q]]

e

= [[(�x:P )]]

e

c

WU

([[Q]]

e

) by 4:11

= [[P ]]

e[x=q]

where q = c

WU

([[Q]]

e

)

� [[P [x=Q]]]

e

by the substitution lemma

= [[N ]]

e

2. M� (M

1

&M

2

)

�

P with (M

1

&

fV

i

!W

i

g

i�n

M

2

): fU ! out(U )g

U2fV

i

g

i�N

, M

1

:T

1

� fV

i

!W

i

g

i<n

,

M

2

:T

2

� V

n

! W

n

and P� c

T

j

(P

0

): T

j

for some P

0

2Terms and T

j

2Types. Thus, N�M

h

P

for h = 1 or h = 2. More precisely, for Z = minfU 2 fV

i

g

i�N

jT

j

� Ug,

N �

�

M

2

� P if Z = V

n

M

1

�

P else

Compute then

[[(M

1

&M

2

)

�

P

T

j

]]

e

= [[(M

1

&M

2

)]]

e

(j)[[P ]]

e

=

(

c

T

2

(T

j

!cout(T

j

))

([[M

2

]]

e

)[[P ]]

e

if Z = V

n

(c

T

1

(fV

i

!W

i

g

i<n

)

[[M

1

]]

e

)(j)[[P ]]

e

else

In the �rst case,

[[M ]]

e

= c

T

2

(T

j

!cout(T

j

))

([[M

2

]]

e

)[[P ]]

e

� ([[M

2

]]

e

)[[P ]]

e

by monotonicity and by a � c

UV

(a)

= [[N ]]

e

Otherwise

[[M ]]

e

= (c

T

1

(fV

i

!W

i

g

i<n

)

[[M

1

]]

e

)(j)[[P ]]

e

� [[M

1

]]

e

(j)[[P ]]

e

by monotonicity and by a � c

UV

(a)

= [[M

1

�

P ]]

e

= [[N ]]

e

2

Remark 4.24 Clearly, theorem 4.23 specializes to the implicative fragment of our calculus, which is

simply typed �-calculus with subtyping. Thus, by a simple observation of the properties of PER, we

spotted a mathematical model of the reduction predicate \ >" between terms of �-calculi, instead of

conversion \=". The non-syntactic models so far constructed could only give mathematical meaning

to the theory of \=" between �-terms and �-reduction was interpreted as the \=".

It is important to notice, however, that the decrease of the size of the equivalence class which is

the interpretation of a term is not directly related to the reduction process, but to the fact that types

decrease during computation. In fact, if you consider two terms M and c

V

(M ) and apply the same

reduction steps to both of them, while the semantics of M can decrease, any time its type changes, the

semantics of c

V

(M ) remain �xed, even if the same reduction steps are executed.

5 Summary

As already mentioned in the introduction, there is a general understanding that polymorphism, as

intended in �-calculus, is not compatible with \procedures depending on input types". As pointed out
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in [Gir72], one cannot extend II order �-calculus with a term giving di�erent output terms according

to di�erent input types. Indeed, in [LMS93], it is shown that terms depending on types use types

as \generic", i.e. the value on just one type determines the value everywhere. This is why, in order

to express an explicit type dependency, it was not su�cient to extend simply typed �-calculus by

type variables, and we proposed an entirely new feature, based on \�nite branching of terms", in

order to formalize the dependency we wanted. Moreover, the use of late-binding and subtyping added

expressiveness to the system. Indeed, the expressive power of the syntax poses some problems which

were partly dealt with by a \strati�cation" of the subtyping relation.

As for the stepwise construction of the model, the use of a pre-order between types is �rst handled at

a syntactic level, by the notion of completion in section 3.1. But then our �nite branching immediately

becomes an in�nite one: this is indeed what is actually meant in the syntax, by the rules, as we allow

terms to work also on inputs inhabiting types smaller than the intended one. Thus, the intended

function depending on the type of the input, may depend on an in�nity of input types, implicitly.

This must be made explicit in the semantics.

Finally, we considered types as \coded" in the semantics, by using their indexes also as meaning

in the model. Note that this mathematical meaning of types corresponds to the practice of type-

dependent computations. In programming, when and if computing depends on types, this is possible

as types, after all, are just \code" (in OOP it corresponds to consider classes as tags); thus they are

handled like any countable (and enumerated) data type. This is impossible in sound mathematical

models which respect the logical \second order" convention. Indeed, in this case, types must be (arbi-

trary) subsets of the (in�nite) sets interpreting terms. Observe �nally that the implicit polymorphism

of our approach shows up in the semantics by the interpretation of overloaded functions as elements

of an (in�nite) indexed product.

To sum up, in this phase of the work we focused on the problems related to type dependency

and to the lack of antisymmetry of the subtyping relation. The result obtained may be the basis, in

futere work, for the de�nition of a denotational semantics for the full language, dealing also with the

problem of late-binding.
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