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Abstract

In this paper we study the topological aspects of dessins (via analytic

description) with two distinct goals. Firstly we are interested in �elds of

de�nition and �elds of moduli. We give a topological proof that there exist

some dessins with no model de�ned over their �eld of moduli. This answers

explicitly a question asked in [Har87]. Our second motivation is to collect

practical and theoretical data for the explicit computation of covers given

by some topological description, following ideas of Atkin [ASD71] Oesterl�e

and ourselves. This leads to a method for the computation of the linear

space associated to a divisor on a given dessin.

1 Introduction

This paper develops some practical applications of the archimedean analytic de-

scription of coverings through Puiseux series. In the second section, we recall a

classical result due to Klein concerning the classi�cation of genus zero Galois cov-

erings, and related to the classi�cation of regular polytopes. In the third section

we give a review of many possible de�nitions of what a moduli �eld is. We do

not claim to exhaust the list of various contradictory notions denoted by these

words, but simply to avoid the frequent confusion about it. The fourth section

is an illustration of what knowledge can be provided by local considerations at

in�nity. We show that such a study leads to interesting examples of coverings

with strange rationality properties, which we can state by mere combinatorial

considerations. In the �fth section we recall quite classical results related to the

Legendre form of elliptic curves, which are useful in the next section. The sixth

section consists in the analytic description of the linear systems associated with

some divisors on the curve corresponding to a given dessin. This provides us

with an algorithmic correspondance between abstract dessins and explicit Belyi

functions. We give quite general techniques. In the case where the genus of the

dessin is small, the equations have a simple general form which helps beautifying

the method. We detail that in the seventh section.
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The authors wish to thank Leila Schneps for many useful discussions and for

the organization of the Luminy conference in April 1993, where we found the

motivation for this work (specially the four talks given by Joseph Oesterl�e).

Throughout this paper we represent the coverings as dessins. For de�nitions

and motivations, the reader should read the article by Leila Schneps in this

volume, and of course the introduction to this book. There are many possible

combinatorial descriptions with such dessins. Let us illustrate this on a small

example which we will consider throughout this paper every time we need to

be more explicit. In our drawings, the points over 0 are denoted by a black

bullet and the points over 1 correspond to the middles of the segments and to

the extremities without bullets (unrami�ed points over 1). This corresponds to

Grothendieck's normalization. We ask that the rami�cation above 1 be equal to

1 or 2.

Let us consider the following genus zero and degree 3 dessin:

It has one vertex of multiplicity 3, corresponding to the totally rami�ed point over

0. There is one circular edge, corresponding to a point over 1 with rami�cation

degree equal to 2, and one half-edge the extremity of which is an unrami�ed point

over 1. To �nish, there are two faces. The inner one is unrami�ed and the outer

one is rami�ed of order 2.

Since the dessin is of degree 3, there are 3 
ags that we draw on the following

picture

1

2

3

The monodromy of the dessin is given by the following three permutations of
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the 
ags which correspond to the elementary loops around 0, 1 and 1.

0 1

�

0

= (1; 2; 3); �

1

= (1; 2); �

1

= (2; 3):

The dessin itself is the preimage of the segment [0; 1] under the Belyi function.

If we consider rather the preimage of the full real axis, we get a coloured triangu-

lation of the sphere, consisting of three (grey) triangles oriented in the positive

direction and sent by the Belyi function onto the upper half plane, and three

(white) triangles, oriented in the inverse direction and lying above the lower half

plane. This way, the dessin can be considered as a combinatorial covering of

coloured triangulations.

We now consider the elementary triangle 0; 1;1 on the Riemann sphere. The

middles of the three edges are �1, 1=2 and 2. This splits the real axis into six

open segments plus three points. The six open segments are called standards

and we give each of them a name which will become clearer later. The segment

(0; 1=2) is denoted by

~

01; the segment (1=2; 1) is denoted by

~

10, the segment (1; 2)

is denoted by

~

11, the segment (2;1) is denoted by

~

11, the segment (1;�1) is

denoted by

~

10 and the segment (�1; 0) is denoted by

~

01.
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The preimages of these six standards under the Belyi function give 3� 6 stan-

dards on the dessin. We draw these standards as little arrows and give an arbi-

trary number to each of them.

1

3 5 6

7 8 9 10

11 12

13

14

15

16

17

2

4

18

The standards above

~

01 are f7; 12; 18g, the standards above

~

10 are f11; 17; 8g

and so on. There is, on those standards, an action of the fundamental groupoid

with \tangential base points"

B = f

~

01;

~

10;

~

11;

~

11;

~

10;

~

01g

as de�ned by Deligne in [Del89] (see the aricle by Lochak and Emsalem in this

volume). This groupoid is generated by the paths x

~v

and y

~v

and z

~v

where ~v runs

through the six standards. The paths x

~

01

= x, y

~

01

= y and x

~

10

are shown in the

following drawing (we let the reader imagine what the other ones could be.)

x

y
0 1

4



We also show z

~

01

= z below:

0 1

z

This action is given by the following maps:

x

~

01

= (12; 18; 7); y

~

01

= (7 7! 8; 12 7! 11; 18 7! 17); y

~

10

= y

�1

~

01

:::

2 Topological classi�cation of genus zero covers

In this section, we recall a quite classical result �rst stated by Klein in its modern

formulation [Kle13]. We need to introduce a certain number of Galois genus zero

coverings of the sphere, corresponding to well-known dessins.

The �rst family corresponds to the dessins consisting of a star with e rays where

e is a positive integer. A corresponding Belyi function is

y = f(x) = x

e

where e is the degree of the covering, totally rami�ed over 0 and1 and unrami�ed

elsewhere. We call these dessins C

e

. Their topological Galois group is the cyclic

group with e elements, C

e

.

The second family corresponds to the polygon with 2e edges and admits the

following Belyi function

�4y = x

e

+ x

�e

� 2:

We call these dessins D

2e

. Their topological Galois group is the dihedral group

with 2e elements, D

2e

.

We then have three coverings consisting of

� The tetrahedron which we call T of degree 12 and with Galois group the

alternating permutation group on 4 letters A

4

. A corresponding Belyi func-

tion is given by

yx

3

(x

3

+ 8)

3

= 2

6

(x

3

� 1)

3

:

� The octahedron O, of degree 24 with Galois group the full symmetric group

on 4 letters S

4

. A corresponding Belyi function is given by

y(x

8

+ 14x

4

+ 1)

3

= 2

2

:3

3

:x

4

(x

4

� 1)

4

:
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� The icosahedron I, of degree 60 with Galois group the alternating permu-

tation group on 5 letters A

5

. A corresponding Belyi function is given by

y(x

20

+ 228x

15

+ 494x

10

� 228x

5

+ 1)

3

= x

5

(x

10

� 11x

5

� 1)

5

:

We can now state Klein's theorem ([Kle13]), in which two coverings � : C ! D

and �

0

: C

0

! D

0

are said to be weakly isomorphic if there exist two isomorphisms

c and d such that the following diagram commutes:

C
C

0

D
D

0

�

��

c

//

�

��

d

//

They are strongly isomorphic if D = D

0

and d can be chosen to be the identity.

Theorem 1 Any algebraic Galois covering of the sphere is weakly isomorphic to

one of the following: C

e

or D

2e

with e � 1, or T, O, or I.

Proof

We �rst note that the Galois group G of such a covering G is a �nite subgroup

of PGL

2

(C ). Such subgroups are known to be isomorphic to one of the following:

C

e

, D

2e

with e � 2, A

4

, S

4

, or A

5

. The proof is quite elementary and uses the

fact that a non-trivial element of �nite order in PGL

2

(C ) has two �xed points

([Arm88] p. 104). If we call X the set of such �xed points, then G acts on X.

One of the consequences of the proof is that there are 2 orbits if G is cyclic and

3 otherwise. The order of the stabilizer of a point in X just depends on its orbit.

For each orbit O we denote by (o

O

; s

O

) the couple consisting of its cardinality

and the order of the stabilizer of some element in O. We list the values we obtain

in each case:

� (1; e), (1; e) for C

e

.

� (e; 2), (e; 2), (2; e) for D

2e

.

� (4; 3), (6; 2), (4; 3) for A

4

.

� (6; 4), (12; 2), (8; 3) for S

4

.

� (12; 5), (30; 2), (20; 3) for A

5

.

It is clear that these �xed points are the rami�cation points of the covering

with orders of rami�cation the orders of their stabilizer. This proves that either

the covering is cyclic or there are exactly three singular values.

If the covering is cyclic, one can suppose that it is totally rami�ed over 0 and

1 and that the single point above 0 is 0 and the single point above 1 is1. We
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then get a function of the form y = Ax

e

which is clearly equivalent to the one we

gave.

If there are three rami�cation values we can send them on 0, 1 and 1 using

the 3-transitivity of PGL

2

(C ). Note that we have put those three rami�cation

values in some de�nite order in the above table. We respect this order in that we

send the �rst one to 0, the second one to 1 and the third one to 1.

Then, a strong isomorphism class of �nite coverings is given by a subgroup of

�nite index of �

1

(P

1

(C )�f0; 1;1g; b) where b = 1=2 is the base point. We choose

the following basis of �

1

(P

1

(C )�f0; 1;1g; b) that induces an isomorphism to the

free group with two generators (�

0

; �

1

):

0 1

We write �

�1

1

= �

0

�

1

. Now we can associate to G a subgroup g of �

1

. Let us

write G

0

for the covering in the list given above which has G as Galois group,

and let g

0

be the corresponding subgroup. We prove that g = g

0

.

Suppose for example that G = A

4

. Both g

0

and g have index 12. They both

contain �

3

0

, �

2

1

and �

3

1

because of the rami�cation orders. The point now is that

the subgroup generated by �

3

0

, �

2

1

and �

3

1

is of �nite index 12 (trivial from the

classical presentation of A

4

) so that g = g

0

= h�

3

0

; �

2

1

; �

3

1

i. The remaining cases

are similar and reduce to the classical presentations of rotation groups.

Remark: Such a method no longer works for arbitrary genus. For example

the following genus one dessin (where the opposite sides are identi�ed) is Galois

and the corresponding subgroup contains �

4

0

, �

2

1

and �

4

1

.

But the following dessin has the same property, and yet it is di�erent. Indeed
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the subgroup generated by �

4

0

, �

2

1

and �

4

1

is not of �nite index.

3 Fields of de�nition, �elds of moduli

In this section we simply recall a certain number of de�nitions in order to clarify

our terminology for the rest of the paper.

Let D be a dessin, that is, an isomorphism class over

�

Q of Belyi pairs. We

recall that a Belyi pair is a made of a curve C de�ned over

�

Q and a function

� : C ! P

1

(

�

Q) de�ned over

�

Q and unrami�ed outside f0; 1;1g. Two Belyi pairs

are said to be equivalent if the corresponding coverings are strongly isomorphic.

Let K be a number �eld and C a projective curve and � a function on C, de�ned

over K. If the Belyi pair (C; �) belongs to D, we say that K is a �eld of de�nition

of D.

There is an action of � on the set of dessins. This action can be seen as the

naive action on the coe�cients of the equations of any Belyi pair. We call �

D

the stabilizer of D and K

D

its �xed �eld. We call K

D

the moduli �eld of D.

The moduli �eld is contained in any �eld of de�nition and is actually the

intersection of all the possible �elds of de�nition ([CH85]). It need not be a �eld

of de�nition itself as we will show in section 4.

Note that we do not ask that the automorphisms of the covering (if any) be

de�ned over the �eld of de�nition, which could have the e�ect of augmenting it.

On the other hand, the �eld of moduli of C itself might be strictly smaller than

the one of the dessin. For genus zero dessins, P

1

(C ) has Q as �eld of moduli but

Lenstra proved that there exist genus zero dessins with arbitrary �eld of moduli

(see the article by L. Schneps in this volume). To �nish with the distinguo we

should warn the reader that people studying modular forms over possibly non-

congruence subgroups, usually consider structures that are somewhat richer than

dessins. Following Birch (see his contribution in this volume), we de�ne marked

dessins to be dessins plus a �xed marked point over in�nity. In this case, of

course, the �eld of moduli might become bigger but it is more likely to be a �eld

of de�nition (for example, it will always be one in genus zero).

In the case where the dessin has no automorphisms, it must admit a model over

its �eld of moduli K

D

by Weil's criterion ([Wei56]). In this case we note that the
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corresponding K

D

-isomorphism class of curves is characteristic of the dessin. We

will see an example of this in the next section.

4 Galois action. Descending from C to R

In this section we illustrate the problems of �elds of de�nition and descent on the

toy example of descending from C to R. This is particularly interesting because

we can give topological criteria for the descent. Further results on this subject

can be found in [FD90]. Here, we are only interested in descent with extensions

rami�ed over three points which thus can be chosen to be real, and which we

take to be our favourite ones.

Let us denote by S

3

the sphere minus three points P

1

(C )�f0; 1;1g with base

point b = 1=2 and the same basis as above for the �

1

. A covering is thus given

by two permutations a

0

and a

1

of the �bre over b, corresponding to the paths �

0

and �

1

.

We write M

0;1;1

for the maximal extension of R(t) unrami�ed outside f0; 1;1g.

We consider the following tower of extensions

M

0;1;1

C (t)

R(t)

�̂

1

Z=2Z

and the corresponding exact sequence of groups

1 ! �̂

1

! G !Z=2Z! 1:

We recall that there exist two R-isomorphism classes of genus zero curves, the

class of the straight line P

1

(R) and the class of the plane curve given by the

equation

x

2

+ y

2

+ z

2

= 0;

which we call

~

P

1

(R).

Given a dessin D by its monodromy (a

0

; a

1

), or equivalently, a triangulation of

a surface, we ask three questions:

� Is the moduli �eld of D equal to C or R?

� If the moduli �eld is R, does the dessin admit a model over R?

� If a real genus zero dessin has no automorphisms, it admits a real model.

Then can we say whether the underlying curve is P

1

or

~

P

1

?
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We will give examples of all the possible situations and �nish with an example

of a real dessin (i.e. a dessin with real moduli �eld) with no real model.

To answer the �rst question we note that the outer action ofZ=2Zon �̂

1

comes

from an action on �

1

itself. Let � denote the re
ection of the plane induced by the

unique non-trivial element � 2 Gal(C =R) =Z=2Z. This re
ection is continuous

and thus induces an involution of �

1

. The images of �

0

, �

1

, �

1

are given by

�

�

0

= �

�1

0

,

�

�

1

= �

�1

1

, and

�

�

1

= �

1

�

0

.

0 1

Let now � : C ! S

3

be an algebraic covering of degree d and

�

� :

�

C ! S

3

its conjugate under � . There is a bijection induced by � between the �bre of �

above b and the �bre of

�

� above b. Let fb

1

; b

2

; :::; b

d

g denote the points above

b and f

�

b

1

;

�

b

2

; :::;

�

b

d

g their images under � . If � is a closed path in �

1

and b

i

a

point above b on C, then �(b

i

) denotes the extremity of the lifted path on C, with

origin b

i

. On the other hand, we can lift

�

� onto

�

C, with origin

�

b

i

, so

�

�(

�

b

i

) is

the extremity of the lifted path. Then

�

�(

�

b

i

) =

�

(�(b

i

)).

This means that the action of � on the �bre �

�1

(b) is conjugated by � to the

action of

�

� on the �bre

�

�

�1

(b). Therefore, if � was given by its monodromy

(a

0

; a

1

), the monodromy of

�

� is (a

�1

0

; a

�1

1

) where a

�1

0

and a

�1

1

can be seen as

permutations of f

�

b

1

;

�

b

2

; :::;

�

b

d

g through the bijection with fb

1

; b

2

; :::; b

d

g induced

by � . This gives an explicit description of the outer action of Gal(C =R) in the

above exact sequence.

Now, a dessin of degree d will be said to be real if and only if its �eld of moduli is

R. If (a

0

; a

1

) is its monodromy, this is just saying that there exists a permutation

! 2 S

fb

1

;b

2

;:::;b

d

g

such that

�

(a

0

; a

1

) = (a

�1

0

; a

�1

1

) =

!

(a

0

; a

1

) = (!

�1

a

0

!; !

�1

a

1

!)

If this is the case, we note that ! belongs to the normalizer of G = ha

0

; a

1

i

in S

fb

1

;b

2

;:::;b

d

g

, and is de�ned up to an automorphism of D (we recall that the

automorphism group of D is a = Z

S

fb

1

;b

2

;:::;b

d

g

(G), the centralizer of G in the full

permutation group, see [Cou94]). Furthermore, since � is an involution, we have

!

2

2 a. Now, the dessin D admits a model over R if and only if ! can be chosen

to satisfy Weil's cocycle condition

!

2

= 1:
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Indeed, associated to !, there is a morphismH : C !

�

C such that the following

diagram commutes

C

�

C

P

1

(C )

�

E

E

E

E

E

E

E

""

H

//

�

�

||x

x

x

x

x

x

x

and H and ! are linked by the following identity

H(b

i

) =

�

(!(b

i

)):

The cocycle condition on H for the existence of a real model is

�

HH = I which

is immediately translated on ! as !

2

= 1.

We now come to the situation where the dessin D has no automorphisms. In

this case ! is unique and !

2

can only be equal to 1 and we have a model over R

(here H is nothing but the identity)

C

P

1

(R)

�

��

and the action of � extends to the real curve C in a way that makes the following

diagram commute:

C C

P

1

(C ) P

1

(C )

�

��

�

//

�

��

�

//

The action of � on the �bre above b is thus given by the formula

�

b

i

= !(b

i

)

and since ! conjugates a

0

and a

�1

0

, it induces a permutation of the cycles of a

0

which gives the action of � on the �bre �

�1

(0). In the same way we describe the

Galois action on �

�1

(1) and �

�1

(1).

Suppose that among the cycles of �

0

and �

1

there is one which is �xed under the

action of !. Then, the corresponding point on C is real and thus C is isomorphic

over R to the projective line P

1

(C ).

To state the reciprocal assertion, we need to work a bit more. Suppose that

� is a real rational fraction: � : P

1

(R) ! P

1

(R) associated to the dessin D.

Let c be some connected component of the preimage of the open segment (0; 1).

Because � is real and unrami�ed over (0; 1), c is either contained in R, or does

not intersect it. If there exists such a c contained in R then its extremities are

real thus proving the assertion that at least one point over f0; 1g is real, and so
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the corresponding cycle must be �xed by !. On the other hand, suppose that

�

�1

((0; 1)) \R is empty. We note that �

�1

([0; 1]) \R cannot be empty because

�

�1

([0; 1]) is a connected non-empty subset of the plane which is invariant under

the re
ection � . This again proves the desired statement.

We �nish by stating

Theorem 2 Let D be a dessin, given by its monodromy (a

0

; a

1

; a

1

).

The �eld of moduli of D is R if and only if there exists some ! such that

a

�1

0

=

!

a

0

and a

�1

1

=

!

a

1

.

In the latter case, the dessin admits a real model if and only if ! can be chosen

so that !

2

= 1.

If D is of genus zero and its automorphism group (the centralizer of ha

0

; a

1

i)

is trivial, then the dessin admits a rational model over some real genus 0 curve.

This curve is isomorphic to P

1

(R) if and only if the action of ! over the cycles

of a

0

and a

1

has at least one �xed point.

Examples

The rabbit is a real dessin with no automorphisms and admits a real model on

the projective line.

To see this, we give numbers to the 
ags and compute the monodromy.

1 2

3 4

5 6
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a

0

= (3; 5; 6; 4); a

1

= (1; 3)(2; 4)(5; 6); a

1

= (4; 2; 6; 3; 1):

It is clear that there are no automorphisms. If a is a permutation which com-

mutes with a

0

, it must �x 1. But since it commutes with a

1

as well, it must �x 3

as well. Now, coming back to a

0

we see that a must be the identity. Furthermore

we have

! = (3; 4)(1; 2)(5; 6);

and check that the dessin is real.

The action of ! on the cycles of a

0

and a

1

�xes the cycle (3; 5; 6; 4) in a

0

and

the cycle (5; 6) in a

1

. This is more than enough to prove that the dessin has a

real model on the projective line.

The rabbit with a lopped o� left ear is a non-real dessin.

The monodromy is given by:

1 2

3

4 5

a

0

= (1; 4; 5; 2); a

1

= (2; 3)(4; 5); a

1

= (5; 1; 2; 3):

Here there is no hope of �nding an ! since such a permutation should �x 3

(from a

0

) and 4 (from a

1

) and thus 2 and 5 as well (from a

1

). This does not

work.
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The smiling rabbit evidently has an automorphism group of order 2.

The rabbit with a lopped o� left ear and a sidelong smirk on the right hand

side is a real dessin with no non-trivial automorphisms and real model on the

real curve

~

P

1

with equation x

2

+ y

2

+ z

2

= 0.

Its monodromy is:

1

2

3

4

6 7

5

8

9
10

a

0

= (1; 4; 5; 2)(9; 6; 7; 10); a

1

= (2; 3)(4; 6)(8; 9)(7; 5);

a

1

= (4; 9; 8; 10; 7)(3; 5; 6; 1; 2):

14



There are no non-trivial automorphisms (exercise) and there is a unique ! de�ned

as

! = (1; 10)(3; 8)(9; 2)(6; 5)(4; 7);

and none of the cycles of a

0

and a

1

are �xed by !.

The double rabbit is a real dessin with no real model.

Its monodromy is:

1

2

3
4

5 6

7 8

9

10
11

12
13

14

15

16

17

18
19

20

a

0

= (3; 2; 14; 4)(5; 20; 19; 6)(7; 11; 10; 8)(15; 13; 12; 16);

a

1

= (1; 2)(4; 5)(6; 7)(11; 12)(13; 14)(16; 17)(8; 9)(18; 20);

a

1

= (18; 5; 14; 15; 16; 17; 12; 7; 19; 20)(4; 6; 8; 9; 10; 11; 13; 2; 1; 3):

There is an automorphism group of order 2 generated by

a = (3; 10)(8; 2)(9; 1)(14; 7)(6; 13)(5; 12)(11; 4)(20; 16)(15; 19)(17; 18):

15



The dessin is real for we can choose ! to be

! = (15; 3; 19; 10)(16; 2; 20; 8)(17; 1; 18; 9)(13; 4; 6; 11)(12; 14; 5; 7):

We could have chosen a! instead. But (a!)

2

= !

2

is not the identity. This

proves that our dessin although real, has no real model.

5 Spheres minus four points

In this section we recall the basics about the Legendre form for elliptic curves. We

are interested in building moduli spaces for spheres minus four points. To begin

with, we de�ne two di�erent kinds of spheres minus four points. A non-coloured

sphere minus four points is de�ned as a set of four distinct points fa; b; c; dg on

the complex projective line. A coloured sphere is a quadruplet of distinct points

in P

1

(C ).

There are actions of PGL

2

(C ) on both sets. De�ned by

Hfa; b; c; dg = fHa;Hb;Hc;Hdg; H(a; b; c; d) = (Ha;Hb;Hc;Hd):

The set of coloured spheres is C = P

4

1

�D where D is the discriminant variety

de�ned as (a � b)(a � c)(a � d)(b � c)(b � d)(c � d) = 0. The group S

4

acts

naturally on C. The set of non-coloured spheres is the quotient N of C by S

4

.

We thus have a decolouration covering s

4

which is Galois with Galois group S

4

.

C

D

s

4

��

We de�ne the classical function cross-ratio on C

[a; b; c; d] = �(a; b; c; d) =

c� a

c � b

�

d� b

d� a

:

It is well known that two elements in C belong to the same PGL

2

(C )-orbit if

and only if � takes the same value at those points .

We note that � is invariant under the Klein group, seen as the subgroup V of

S

4

generated by the permutations of type (2; 2). This subgroup is normal so that

the covering splits in two. We note H = C=V , v the corresponding V -covering,

and s

3

the S

3

-covering of the lower part:

C

H

P

1

D

v

��

s

3

��

�

//

16



and we have the exact sequence

1 ! V ! S

4

! S

3

! 1:

It is tempting (although not particularly original...) to look at the action of S

3

on �. It is given in the following list:

[[1; 2]] � 7! 1=�

[[1; 3]] � 7! �=(� � 1)

[[2; 3]] � 7! 1� �

[[1; 2; 3]] � 7! (�� 1)=�

[[1; 3; 2]] � 7! 1=(1 � �)

This action is killed by the function

J(�)

def

= 2

8

(�

2

� � + 1)

3

�

2

(� � 1)

2

which de�nes a Galois covering with (strong) automorphism group S

3

. Note the

following amusing fact: J also admits a weak automorphism, namely

J(�

�+ 1

�� 2

) =

1728J

J � 1728

(1)

The linear fraction

�(�) = �

�+ 1

�� 2

is the one which sends the triangle (0; 1;1) to the triangle (�1; 1=2; 2). It is of

order six. The linear fraction

�(J) =

1728J

J � 1728

is of order two and permutes the rami�cation locus of J . We have

�J = J�:

This will appear later on. We can draw the reciprocal image of [0; 1728] under

J and �nd the dessin below:

-1 1/20 1 2

-j

1+j

0 1728

17



We note J(a; b; c; d) = J(�(a; b; c; d)) and get a symmetric function of (a; b; c; d)

de�ned over D:

J(a; b; c; d) = 2

8

�

(12�

4

+ �

2

2

� 3�

1

�

3

)

3

disc(a; b; c; d)

; (2)

J � 1728 = 2

6

�

(72�

2

�

4

� 2�

3

2

+ 9�

1

�

2

�

3

� 27�

2

3

� 27�

4

�

2

1

)

2

disc(a; b; c; d)

;

where disc(a; b; c; d) is the discriminant.

C

H

P

1

D

P

1

v

��

s

3

��

�

//

J

��

J

//

We note that the above commutative diagram is compatible with the Galois

actions of S

3

on each side. It seems as well that the right hand side of this is

incomplete (one level is lacking). In the sequel we try to see what can be done

to complete this construction. We �rst remember of the existence of a Galois

genus 0 extension of the sphere with group S

4

. We build such an extension in

the following way. Let B(x) = 1=4(x + 1=x)

2

= 1 + 1=4(x � 1=x)

2

be the Galois

function with automorphism group V , rami�ed over 0, 1, 1.

We draw the corresponding dessin:

-1 +1

+i

-i

0 1

The composition J �B is a function rami�ed over 0, 1728, 1 which de�nes the

only genus zero S

4

-extension of P

1

rami�ed at those places (in that order).

To each value of x we associate the quadruplet Q(x) = (x;�x; 1=x;�1=x) such

that �(Q(x)) = [x;�x; 1=x;�1=x] = B(x) and get the following commutative

diagram:

18



C

P

1

H

P

1

D

P

1

v

��

Q

oo

B

��

s

3

��

�

//

J

��

J

//

Note also that we can de�ne q(�) = v(Q(x)) = v(x;�x; 1=x;�1=x) where x is

any point such that B(x) = �. Such a point q(�) on H can be de�ned by its V -

symmetric functions �

1

= 0, �

2

= 8��4, �

3

= 0, �

4

= 1, and [x;�x; 1=x;�1=x] =

�.

This way we get the following commutative diagram

C

P

1

H

P

1

D

P

1

v

��

Q

oo

B

��

s

3

��

q

oo

J

��

We would like to build four algebraic functions f

1

(x), f

2

(x), f

3

(x) and f

4

(x)

with the following properties:

� The set ff

1

; f

2

; f

3

; f

4

g is invariant under the automorphism group of J � B,

and this group G acts on ff

1

; f

2

; f

3

; f

4

g like S

4

.

� The cross-ratio [f

1

; f

2

; f

3

; f

4

] is (something like) � = [x;�x; 1=x;�1=x] =

B(x).

To do this, we write S

i

3

for the stabilizer of i in S

4

for i 2 f1; 2; 3; 4g. The

corresponding subextensions of C (x)=C (j) are genus zero �elds. We choose f

1

to

be a generator of C (x)

S

1

3

. We then can choose f

2

(x) = f

1

(�x), f

3

(x) = f

1

(1=x)

and f

4

(x) = f

1

(�1=x). Note that the f

i

are de�ned up to a linear transform on

the left.

C (x)

C (f

1

) C (f

2

) C (f

3

) C (f

4

)

C (j)

S

1

3

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

S

2

3

w

w

w

w

w

w

w

S

3

3

G

G

G

G

G

G

G

S

4

3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

G

G

G

G

G

G

G

w

w

w

w

w

w

w

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

We can be more precise if we look for the minimal polynomial of f

1

with

coe�cients in C (j). To compute it, we just quotient the dessin corresponding to
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a cube by the group S

1

3

which can be seen as the stabilizer of one of the four

diagonals of the cube.

We thus get the following dessin.

If we send the vertex of order three to zero and the one of order one to one,

the corresponding Belyi function will be X 7! Y such that

9Y + 2

8

�X

3

(X � 1) = 0:

In other words, we choose for f

i

the four roots of the equation

9j + 2

8

� f

3

(f � 1) = 0: (3)

On the other hand, the map x 7! f

1

is a Galois covering with group S

3

. As

we saw in the second section, such a covering must be equal to the classical J

covering up to linear transforms L and R on both sides:

f

1

(x) = L(J(R(x))):

We don't worry too much about L since it does not change the cross-ratio

[f

1

; f

2

; f

3

; f

4

]. As for R, it can be de�ned as follows. Let r be the primitive 8-th

root of unity given by

r =

p

2 �

1 + i

2
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and let R be the linear transform de�ned by the matrix

R =

"

3� r � 2r

2

+ 4r

3

1 � r + 2r

2

3� 2r � r

2

+ 2r

3

2 + r � 2r

2

+ 3r

3

#

We set f

1

(x) = L(J(R(x))) and f

2

(x) = f

1

(�x), f

3

(x) = f

1

(1=x) and f

4

(x) =

f

1

(�1=x). Then it can be easily shown that the cross-ratio [f

1

; f

2

; f

3

; f

4

] satis�es

[f

1

(x); f

2

(x); f

3

(x); f

4

(x)] = �(B(x)) = �

x

4

+ 6x

2

+ 1

x

4

� 6x

2

+ 1

We also get the j-invariant thanks to (2)

J(f

1

(x); f

2

(x); f

3

(x); f

4

(x)) = J(f

1

(x); f

1

(�x); f

1

(1=x); f

1

(�1=x))

= �(J(x;�x; 1=x;�1=x))

= �(j)

=

1728j

j � 1728

The symmetric functions of the f

i

are given by (3):

�

1

= 1; �

2

= 0; �

3

= 0; �

4

=

9

2

8

j:

It is important not to confuse j, the invariant of [x;�x; 1=x;�1=x], with �(j),

the invariant of the f

i

.

We now de�ne three maps. The �rst one, called D, from the j-space P

1

(C )

to the non-coloured space D, is such that D(j) is the point of D de�ned by its

symmetric functions

�

1

= 1; �

2

= 0; �

3

= 0; �

4

=

9

2

8

j:

The second map, called H, from the �-space P

1

(C ) to the half-coloured space H,

is such that H(�) is de�ned by its V -symmetric functions

�

1

= 1; �

2

= 0; �

3

= 0; �

4

=

9

2

8

J(�) = 2

8

(�

2

� �+ 1)

3

=�

2

=(� � 1)

2

;

and the cross-ratio de�ned as

�(�) = �(�+ 1)=(� � 2):

The third map, called C, from the x-space P

1

(C ) to the coloured space C, is such

that C(x) is de�ned by the quadruplet (f

1

(x); f

2

(x); f

3

(x); f

4

(x)) as above.
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We then get the following commutative diagram in which the actions of S

4

as

a Galois group on both sides are compatible with the arrows.

C

P

1

H

P

1

D

P

1

v

��

C

oo

B

��

s

3

��

H

oo

J

��

D

oo

We have thus realized the covering of moduli spaces as a restriction of the

covering of naive spaces. We �nish by noting that �H = � and JD = � which

stresses the importance of (1). The functions (H;D) de�ne something which is

almost but not quite a section of (�; J).

6 Approximating dessins from Puiseux series

In this section we now come to the problem of computing explicitely some al-

gebraic model for a given abstract dessin. In fact, we will do better: we will

compute the linear space associated with any given divisor on the dessin. The

result is given as Puiseux series. Of course, we must truncate the series and

consider 
oating point coe�cients if we want to work with �nite memory and

time. We show in the next section how to obtain some exact solution from such

approximations.

We consider the subgroup of PGL

2

(C ) consisting of six linear transforms per-

muting 0, 1, and 1. We describe it explicitly as follows:

H

~

01

(�) = � = �

~

01

; H

~

01

(�) =

�

�� 1

= �

~

01

;

H

~

10

(�) = 1 � � = �

~

10

; H

~

11

(�) =

� � 1

�

= �

~

11

;

H

~

10

(�) =

1

1� �

= �

~

10

; H

~

11

(�) =

1

�

= �

~

11

:

We note that for any standard ~v we have H

~v

(~v) =

~

01 = (0; 1=2). Now let e be a

positive integer. We build an e-th root of �

~v

as follows. First let �

~

01;e

be de�ned

for �

~

01

2 C � (�1; 0] as

�

~

01;e

(�

~

01

) = �

1=e

~

01

= exp(2i� Log(�

~

01

)e

�1

)

where Log is the principal determination of the logarithm. We then de�ne the

�

~v;e

as

�

~v;e

(�

~

01

) = �

~

01;e

(H

~v

(�

~

01

)) = �

~

01;e

(�

~v

):
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Now we de�ne the domain K

~

01

to be the open circle of center 0 and radius 1

minus the segment (�1; 0),

0 1

and similarly, K

~v

is such that H

~v

(K

~v

) = K

~

01

. For example K

~

01

is the half-plane

<(z) < 1=2 minus the segment (0; 1=2).

10

Note that there are two uniformizing parameters at any given point. For ex-

ample, �

~

01;e

will be useful for analytic continuation from 0 to 1 and �

~

01;e

will

be useful for analytic continuation from 0 to 1. The six domains of convergence

form a covering of P

1

� f�; ��g where � = exp(

2i�

6

).

We consider a dessin D together with a Belyi function � : C ! P

1

�f0; 1;1g for

some algebraic curve C, and a divisor D over D, i.e. a divisor over the underlying

curve C whose points all lie over f0; 1;1g. We write

D =

X

i

o

i

P

i

and we write L(D) for the corresponding linear space. We will characterize it

as the kernel of a certain operator built from some universal hermitian blocks.

Let f be some function in L(D). Associated to each standard ~v above

~

01 there

is a connected component of �

�1

(K

~

01

), and also an expansion of f as a series in

�

~

01;e

i

, where e

i

is the rami�cation at the associated point P

i

over 0.

f =

X

k�o

i

a

~v;k

�

k

~

01;e

i

;
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where o

i

is the valence of f at P

i

.

Similarly, we de�ne uniformizing parameters and expansions of f at any stan-

dard of the dessin. We call S the set of all standards in the dessin. To a function

f 2 L(D) we associate the list of sequences of coe�cients of its expansions at all

standards

((a

~v;k

)

k

)

~v2S

:

The sequence (a

~v;k

)

k

is such that the associated entire series

X

k

a

~v;k

X

k

is convergent on the open disk of radius one and is bounded outside any neigh-

bourhood of f0; 1g in the disk. Such sequences form a linear space which we call

J. To each function f 2 L(D) we associate a vector in J

S

. This clearly induces

an injection of linear spaces. We want to characterize its image as the kernel of

a certain linear operator.

We now study the relations between the various expansions. The relations will

be of three types. The �rst two types involve expansions at various standards

related to the same point. The third one relates the expansions at two standards

facing each other.

Let P

i

be a point above 0 with rami�cation order e

i

and ~v a standard at P

i

.

Let's say that ~v is over

~

01. We call ~w = x

~

01

(~v) the next standard over

~

01 at P

i

reached when turning counterclockwise.

A typical situation of that is in our example from the introduction, the stan-

dards 7 and 12. We write the two corresponding expansions

f =

X

k�o

i

a

~v;k

�

k

~

01;e

i

;

f =

X

k�o

i

a

~w;k

�

k

~

01;e

i

;

where the coe�cients are related by the obvious relations

a

~w;k

= �

k

e

i

� a

~v;k

(4)

where �

e

i

= exp(2i�e

�1

i

) is the smallest primitive e

i

-th root of unity. This relation

simply expresses the monodromy of the logarithm.

We may think now of relating the expansion at ~v and the expansion at ~u =

z

~

01

(~v), which is the �rst 
ag over

~

01 met when turning counterclockwise. For

example the standards 7 and 13.

f =

X

k�o

i

a

~v;k

�

k

~

01;e

i

;

f =

X

k�o

i

a

~u;k

�

k

~

01;e

i

:
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This requires no more than expressing �

~

01;e

i

from �

~

01;e

i

. Let �

e

i

= exp(i�e

�1

i

)

be the smallest e

i

-th root of �1; we �nd that

�

~

01
;e

i

= �

e

i

�

�

~

01;e

i

(1� �

~

01

)

1=e

i

= �

e

i

� �

~

01
;e

i

X

k�0

 

e

i

�1

k

!

�

k

~

01

(5)

Now comes the only non-trivial type of relation. For example the standards

7 and 8. This time the two expansions are not over the same point since when

~v is over

~

01 and concerns a point P

i

over 0, on the contrary

~

t is over

~

10 and is

attached to some point P

j

above 1. We have the two corresponding expansions

f =

X

k�o

i

a

~v;k

�

k

~

01;e

i

;

f =

X

k�o

j

a

~

t
;k

�

k

~

10;e

j

:

Following Atkin [ASD71], we now equate these two expansions at some point x

on the open segment (�; ��) where � = exp(2i�=6) is a sixth root of unity. It is to

be noted that for such an x, 1 � x = �x.

0 1

x

For convenience we adopt the following notation. Let ja

~v;k

i denote the in�nite

column vector of all coe�cients in the expansion at ~v, namely

ja

~v;k

i = (a

~v;o

i

; a

~v;o

i

+1

; a

~v;o

i

+2

; :::)~

where the tilde stands for transposition.

We also write hx; o

i

; e

i

j for the in�nite line vector

hx; o

i

; e

i

j = (�

o

i

~

01;e

i

(x);�

o

i

+1

~

01;e

i

(x);�

o

i

+2

~

01;e

i

(x); :::)

Then the value taken by f at x is given by

f(x) = hx; o

i

; e

i

jja

~v;k

i

and the relation between the two expansions can be expressed for all x in the

segment (�; ��) as
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hx; o

i

; e

i

jja

~v;k

i = h1 � x; o

j

; e

j

jja

~

t
;k

i = h�x; o

j

; e

j

jja

~

t
;k

i (6)

We write j�x; o

i

; e

i

i for the adjoint of hx; o

i

; e

i

j and similarly, j�x; o

j

; e

j

i for the

adjoint of hx; o

j

; e

j

j. We also de�ne the operators v

x;o

i

;e

i

, v

x;o

j

;e

j

and c

x;o

i

;e

i

;o

j

;e

j

by

v

x;o

i

;e

i

= j�x; o

i

; e

i

ihx; o

i

; e

i

j

v

x;o

j

;e

j

= j�x; o

j

; e

j

ihx; o

j

; e

j

j

c

x;o

i

;e

i

;o

j

;e

j

= j�x; o

i

; e

i

ih�x; o

j

; e

j

j

We deduce from (6) that

"

v

x;o

i

;e

i

�c

x;o

i

;e

i

;o

j

;e

j

�c

�

x;o

i

;e

i

;o

j

;e

j

�v

x;o

j

;e

j

#

ja

~v;k

i � ja

~

t
;k

i = 0 (7)

where �v

x;o

j

;e

j

is the conjugate of v

x;o

j

;e

j

.

This proves that the direct sum ja

~v;k

i� ja

~

t;k

i, obtained as concatenation of the

two column-vectors, is in the kernel of a given hermitian positive operator which

we call

j

x;o

i

;e

i

;o

j

;e

j

=

"

v

x;o

i

;e

i

�c

x;o

i

;e

i

;o

j

;e

j

�c

�

x;o

i

;e

i

;o

j

;e

j

�v

x;o

j

;e

j

#

:

We now choose a positive measure � with non-�nite support on (�; ��), such that

� is small enough around � and ��. For example we can choose it with non-�nite

compact support in (�; ��). This is safe enough but it may be even better to take

�(x)dx, where �(x) is a suitable power of 1 � jxj

2

= 1 � x + x

2

or equivalently

J(x) = (1 � x + x

2

)

3

x

�2

(x � 1)

�2

. Then we integrate (7) over (�; ��). We de�ne

the integrals of the above operators:

V

o

i

;e

i

=

Z

v

x;o

i

;e

i

d�

V

o

j

;e

j

=

Z

v

x;o

j

;e

j

d�

C

o

i

;e

i

;o

j

;e

j

=

Z

c

x;o

i

;e

i

;o

j

;e

j

d�

J

o

i

;e

i

;o

j

;e

j

=

Z

j

x;o

i

;e

i

;o

j

;e

j

d�;

and we obtain

J

o

i

;e

i

;o

j

;e

j

ja

~v;k

i � ja

~

t
;k

i = 0: (8)

This �nishes the characterization of L(D). We can collect all the relations in a

blockwise matrix. The blocks are universal junction matrices, and the disposition

of all the blocks re
ects the topology of the dessin since it comes from the action
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of the fundamental groupoid on the standards. We note that all the entries of

the junction operators are of the form

Z

x

a

(1� x)

b

d�

where a and b are rationals. We can think of expressing them with the beta

function plus some hypergeometric functions.

Now, for the actual computation of a dessin we �rst choose a divisor on the

dessin. For example, the Riemann-Hurwitz formula gives us a divisor which is

in the canonical class, made up of rami�cation points. We then choose a given

precision P and write down the junction matrices, truncated at rank P . We then

build a blockwise matrix from the truncated junction matrices, and compute its

kernel. Actually, this matrix, being no more than an approximation, is not very

likely to have a kernel. We just look for vectors with small images under this

matrix, using the least-squares method. This provides us with an explicit, though

approximate, description of our covering. Then, we can re�ne this approximation

with an iterative method such as the one detailed below, which leads us to an

algebraic solution.

To �nish with, we show how the above ideas could be used to compute any

Belyi function. Let D be a dessin, we call P

i

, Q

j

, R

k

the points above 0, 1,

1 respectively, and p

i

, q

j

, r

k

their multiplicities. If the dessin is clean, q

j

= 2.

We call K the following divisor, which is in the canonical class by the Riemann-

Hurwitz formula:

K = �

X

i

(P

i

) +

X

j

(q

j

� 1)(Q

j

)�

X

k

(R

k

):

If the genus is greater than or equal to 2 then the divisor 2K is very ample. We

compute the associated linear space L(2K) with enough accuracy as the kernel of

the operator introduced above. This kernel de�nes an embedding of the curve in

a projective space. By looking for algebraic dependancies between the elements

of a given base (f

1

; ::; f

`(2K)

) of L(2K), we build an algebraic regular model C for

the curve (if the genus is 0, a model of the curve is P

1

; if the genus is 1, we have

some elliptic curve which can be determinated by looking at any ample divisor,

although there exist simpler techniques).

Now it remains to compute the Belyi function '(f

1

; ::; f

`(2K)

) from C to P

1

.

We �rst compute the linear space associated to the divisor �(') =

P

k

r

k

(R

k

)�

P

i

p

i

(P

i

). It is of dimension 1, and we take a generator that we normalize with

the conditions '(Q

j

) = 1. From all the Puiseux series expansions we have, we

can express ' as an algebraic function of (f

1

; ::; f

`(2K)

).

Of course, all that is quite tedious, and we must develop sharper techniques

depending on the genus of the curve as we will see in the next section for genus

0.

27



7 Iterative ad hoc methods

In this section we describe iterative methods to compute genus zero dessins as

rational functions from P

1

(C ) to P

1

(C ). We compute the positions �

i

, �

i

and




i

of the points over 0, 1 and 1. Algebraic methods are feasible in the case

of relatively small dessins of low degree; numerous examples are given in the

articles by Shabat, Malle, Birch in this volume. However it is possible to do the

calculations much more e�ciently via approximation and iteration.

Our method consists of three stages:

� Computing approximations of the positions of the points with ad hoc meth-

ods.

� Use an iterative algorithm to obtain the numeric convergence and compute

the positions with hundreds of digits. We obtain a very good approximation

of the Belyi function.

� Find the number �eld where the coe�cients of the Belyi function are. We

use a lattice reduction.

We work all the way with the geometrical de�nition of the dessins: we try to

compute some canonical positions of the vertices of a coloured triangulation of the

curve. Thanks to this intuitive approach, we can occasionally help the computer

with human intervention, if part of the solution seems obvious.

Finding the �rst approximation

The more general method uses Puiseux series, as stated in section 6, but this

method needs memory and time, and cannot be used to analyse families of dessins.

In genus 0, we can use visual intuition and very quickly build an approximation

of the Belyi function.

We can say that two dessins are close if their combinatorial structure is close.

For example, if we add one vertex to a dessin, the resulting dessin has a similar

shape. This leads to a method of growing families of dessins where we add

branches to an initial seed.

Here is for example a family of dessins, with the vertices in their correct po-

sitions. We see that the deformation caused by adding a point is small, so each

time we can build an approximation of the positions of the vertices from the
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previous dessin.

This stage needs our intuition, so we can place the new point near its future

position, with visual considerations such as the regularity of the graph �

�1

([0; 1])

and the local symmetry around a vertex.

Numeric convergence

The second stage consists in solving some equations to �nd the position of the

vertices with arbitrary precision.

We want to have a good system of equations, so as to really be able to compute

the solutions with our computer. This system must be as simple and as small

as possible and it must be stable, so we can converge to the exact solution even

with rough approximations.

The case of trees

A dessin is called a \tree" if it is clean, of genus 0 and totally rami�ed over 1.

If the dessin is a tree, there is a system of polynomial equations in the coordi-

nates of the vertices, that is easy to compute and easy to solve.

We follow the ideas of [Cou94].

We write A the set of the N vertices of the dessin and B the set of the edges.

We write � a Belyi function of degree d, it is a rational function with rami�cation

points (�

i

)

i2A

of degree �

i

over 0, rami�cation points (�

j

)

j2B

of degree 2 over 1

and totally rami�ed over 1. Hence we can write, if we put 1 over1:

� =

�1

�

Y

i2A

(X � �

i

)

�

i

=

�1

�

 

Y

i2B

(X � �

i

)

!

2

+ 1

Since we �xed 1 over 1, the positions of the vertices are de�ned up to an

a�ne transformation: we have 2 degrees of liberty.

Now we have an equation in the positions of the vertices (�

i

) and the segments

(�

i

):

Y

i2A

(X � �

i

)

�

i

=

 

Y

i2B

(X � �

i

)

!

2

� � which we write as: � = Q

2

� � (9)
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This is the equation used by Atkin in [ASD71] and Shabat and Birch in this

volume. This system could be solved with a Gr�obner basis reduction algorithm,

but the dessin should not be too large.

We want to build a better system of equations. We want to reduce the number

of unknowns and obtain a system of equations independent of the (�

i

).

We can factor the right-hand part of the equation (9): Q

2

�� =

�

Q�

p

�

� �

Q+

p

�

�

,

so we can split the set of vertices A in two subsets A

+

and A

�

{ the blue and

the red vertices { such that i 2 A

+

if and only if Q(�

i

) = +

p

�. We factor the

left-hand part of equation (9):

�

+

=

Y

i2A

+

(X � �

i

)

�

i

=

�

Q+

p

�

�

�

�

=

Y

i2A

�

(X � �

i

)

�

i

=

�

Q�

p

�

�

We use the notation:

� =

Y

i2A

(X � �

i

)

� =

X

i2A

�

i

X � �

i

�

+

=

X

i2A

+

�

i

X � �

i

�

�

=

X

i2A

�

�

i

X � �

i

� = �� �

+

= ��

+

�

�

= ��

�

to di�erentiate equation (9):

�� = 2QQ

0

i.e.

�

�

� = 2QQ

0

but since Q is prime to � and to

�

�

, we deduce

� = dQ i.e. �

+

+ �

�

= dQ (10)

Now, we can compute �

+

� �

�

, and we obtain an equation with the (�

i

) and �

but without the (�

i

).

�

+

� �

�

= d

p

� (11)

because (�

+

��

�

)�d

p

� is a polynomial of degree less than N�1 with N distinct

roots:

for i in A

+

, (�

+

� �

�

)(�

i

) = �

+

(�

i

) = dQ(�

i

) = d

p

�

for i in A

�

, (�

+

� �

�

)(�

i

) = ��

�

(�

i

) = �dQ(�

i

) = d

p

�.

If we add and substract equations (10) and (11), we obtain a system in the (�

i

)

that respects the coloration of the vertices:

2�

+

= d�

�

and 2�

�

= d�

+

:
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Let us de�ne ��

i

= �

i

for i 2 A

+

and ��

i

= ��

i

for i 2 A

�

. Equation (11) divided

by � and with U = 1=X is

d

p

�U

N�1

Q

i2A

(1 � U�

i

)

=

X

i2A

+

�

i

1 � U�

i

�

X

i2A

�

�

i

1 � U�

i

=

X

i2A

��

i

1� U�

i

:

Now, � does not interfere with the terms of degree less than N ; to eliminate �,

we write down the N � 1 �rst terms of the Taylor expansion of this equation:

8 0 � k � N � 2;

X

i2A

��

i

�

k

i

= 0 (12)

The equation for k = 0 is trivial, so we have N � 2 equations for N in-

determinates. The set of solutions is invariant under a�ne transformations

(�

i

)

i

7! (A�

i

+B)

i

.

We add a few inequalities to the system, namely �

i

6= �

j

if i 6= j. This de�nes

a smooth variety of dimension 2 in the space of dimension N . If we quotient this

by the action of the group of a�ne transformations, we get a variety of dimension

0 in P

N�2

(C ). It is not necessarily a single point, not even necessarily irreducible

over Q, but one point must correspond to our Belyi function.

That proves that our system has a unique solution near our �rst approximation:

the dessin we want to compute.

The case of dessins with all rami�cation orders even

If all the rami�cation orders of the dessin are even, we obtain equations similar

to (12).

Let �

i

, of rami�cation 2�

i

, denote the vertices and 


i

of rami�cation 2�

i

the

faces. Since all rami�cation indices are even, we can colour the vertices and the

faces. We denote ��

i

and ��

i

the algebraic rami�cations.

Then we have the system:

8 i; 8 0 � k � �

i

� 1;

X

j

��

j

(


j

� �

i

)

k

= 0

8 j; 8 0 � k � �

j

� 1;

X

i

��

i

(�

i

� 


j

)

k

= 0:

Solving the system

The system (12) is a Vandermonde-like system. Let A = (�

1

; :::; �

N

) and the

function F(A) = (

P

i2A

��

i

�

k

i

)

k=1:::N�2

be such that our system is F(A) = 0.

Newton's algorithm for solving such equations begins with an approximation

of the solution A

0

and iterates the formula: A

n+1

= A

n

�F

0

A

n

�1

F(A

n

).

But F

0

A

n

is not invertible and F

0

A

n

�1

is de�ned up to an element of the kernel.

We choose an F

0

A

n

�1

orthogonal to the kernel.
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Now we have a method to solve F(A) = 0, but we must be careful: the numeric

representation forces us to work with A

n

2 C

N

, but we must be aware that A

n

is de�ned up to a�ne transformation.

We must normalize the A

n

to avoid a shift to in�nity. We �x the center of

the dessin at 0, and the scale of the dessin to a diameter of 1. The sum of the

coordinates of the vertices is 0 and the maximal distance between two vertices is

1.

To handle large numbers, we use the PARI library.

Back to the algebraic point of view

The third stage uses the powerful lattice reduction tools to go from the geo-

metrical point of view to the algebraic description: given very precise complex

approximations of algebraic complex numbers, we build a lattice such that the

shortest vector of this lattice gives the minimal polynomial. We use the method

described in [LLL82].

The problem of �nding a short vector in an integer lattice is hard, but e�cient

algorithms have been published in [LLL82], [Sch87] and [Sch88]. We use the

e�cient implementation of Antoine Joux ([Jou93]) on a SparcStation 10.

The previous stage allows us to compute these numbers to any desired precision.

However, a priori we do not know what precision is necessary to �nd the exact

solution with the lattice reduction method. We compute upper bounds for the

degree and we guess the size of the coe�cients of the polynomial.

The degree is lower than the number of \combinatorial" conjugates of the dessin

i.e. the cardinal of the variety of dimension 0 in P

N�2

(C ), solution of our system.

This number can be approximated by character formulae, see [Ser92].

Application to an example

Consider the dessin given by this graph, a tree with 10 vertices:

1

2

5

6

7

8

10

4

9

3

It is the 6th of the family of dessins shown above. We make the tree grow step

by step, and then we compute the solution to 2000 digits. We normalise the sum
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of vertices to 0.

Then the minimal polynomial of �

1

=�

2

is the polynomial given here, of de-

gree 24 and of discriminant �1:2

799

:3

270

:5

90

:7

54

:N

2

(N is a large number with no

smaller factor than 127):

1216396531470080000x

24

+ 15167128532892096000x

23

+88567164003405619200 x

22

+ 320465331330548463040 x

21

+801926461469806116168 x

20

+ 1468854325860309911334 x

19

+2037128673503852027315x

18

+ 2189254042743982149456x

17

+1858352449953325455855x

16

+ 1271096908385844699688x

15

+717291487653207390204 x

14

+ 342482003051130999024 x

13

+140622333198259937516 x

12

+ 49205805780202178532 x

11

+13997991682162739850 x

10

+ 2897517763455570160x

9

+284441186456050050 x

8

� 67794459856593624 x

7

�41017353384312340x

6

� 10862737575891504x

5

�1796582490031788 x

4

� 178029020920154x

3

�7529198821413 x

2

+ 14589968448 x � 34245281017

Note that the leading coe�cient 1216396531470080000 = 2

11

:5

4

:950309790211.
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