
Constructive Negation by Pruning and

Optimization Higher-order Predicates

for CLP and CC Languages

Fran�cois FAGES

Laboratoire d'Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

LIENS - 94 - 19

October 1994

Constructive negation by pruning

and optimization higher-order predicates

for CLP and CC languages

Fran�cois Fages

LIENS CNRS

?

, Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 Paris Cedex 05.

E-mail: fages@dmi.ens.fr

Abstract. We survey several forms of negation in constraint logic pro-

gramming following the program's completion approach. We show that

a new scheme called constructive negation by pruning provides a generic

operational semantics which is correct and complete w.r.t. Kunen's three-

valued logic semantics. We emphasis a full abstraction result which per-

mits to go beyond the theorem proving point of view and to completely

characterize the operational behavior of CLP programs with negation.

We derive from these results a complete scheme for optimization higher-

order predicates in CLP languages, and an operational semantics for

concurrent constraint (CC) languages extended with negation and opti-

mization higher-order agents.

1 Introduction

The amalgamation of constraint programming, logic programming and concur-

rent programming results in a very powerful model of computation that is con-

ceptually simple and semantically elegant [13] [23].

Several constraint logic programming (CLP) systems and concurrent con-

straint (CC) systems have been developed over the last decade. These systems

have been proved successful in complex problem modeling and combinatorial op-

timization problems across a variety of application domains, ranging from digital

and analog circuits analysis and synthesis, to options trading and �nancial plan-

ning, job-shop scheduling, crew management, etc. [14].

In these realizations the real components of the problem at hand are modeled

by relations over interface variables. These relations are de�ned with primitive

constraints, recursively de�ned predicates, conjunctions and disjunctions. Rela-

tional models can thus be arbitrarily assembled with the CLP and CC programs

constructors.

Extending the CLP and CC classes of languages with a negation operator

is a major issue as it allows the user to express arbitrary logical combination

of relational models. The full power of expression of �rst-order logic is then

?

This work has been partially supported by MESR contracts 92 S 0777 and PRC

AMN 93 S 0051.

accessible. In this way we obtain a framework to express also optimization and

preferred solutions [10].

However negation in logic programming is known to be a delicate problem

which raises many di�culties. Simply inferring negative information from a pos-

itive logic program is already a form of non-monotonic inference that shows

essential di�erences between the two main approaches to the model theoretic

semantics of logic programs: namely the standard model approach and the pro-

gram's completion approach [1].

From a programming language point of view the standard model approach

is not viable because it is highly undecidable. However from a knowledge rep-

resentation point of view standard models correspond naturally to the intended

semantics of programs. Therefore the challenge is to provide constructs which

capture the essential aspects of standard models, in a recursively enumerable

setting.

In this article we survey in a progressive manner the program's completion

approach to CLP programs with negation. We introduce a new principle called

constructive negation by pruning which is correct and complete w.r.t. the three-

valued logical consequences of the program's completion. We emphasize a full

abstraction result which permits to go beyond the theorem proving point of

view and to completely characterize the operational behavior of normal CLP

programs. These results are based on [8].

Then we show how constructive negation by pruning allows to de�ne opti-

mization higher-order predicates for CLP programs. We show that in this con-

text the operational semantics specializes into an e�cient branch and bound like

procedure proved correct and complete in a full �rst-order setting.

Finally we study the fundamental extension of the class CC of concurrent

constraint logic languages [23] with a negation operator. We show that the prin-

ciple of constructive negation by pruning can be applied in this context. We

derive from this principle an operational semantics for CC languages extended

with negation and optimization higher-order agents.

2 Preliminaries on de�nite Constraint Logic Programs

A language of constraints is de�ned on a signature � of constants, function and

predicate symbols (containing true, false and =), and on a denumerable set V

of variables. A primitive constraint is an atom of the form p(t

1

; :::; t

n

) where p is a

predicate symbol in � and the t

i

's are �; V -terms. A constraint is a conjunction

of primitive constraints. The set of free variables in an expression e is denoted

by FV (e).

CLP programs are de�ned using an extra set of predicate symbols � disjoint

from �. An atom has the form p(t

1

; :::; t

n

) where p 2 � and the t

i

's are �; V -

terms. A literal is an atom or a negated atom :A.

A de�nite CLP program is a �nite set of clauses of the form:

A cjA

1

; :::; A

n

where n � 0, A is an atom, called the head, c a constraint, and the A

i

's are

atoms (the sequence is denoted by 2 if n = 0). The local variables of a program

clause is the set of free variables in the clause which do not occur in the head.

A de�nite goal is a clause of the form

 cjA

1

; :::; A

n

where the A

i

's are atoms (resp. literals). In the rest of this paper we shall assume

that all atoms in programs and goals contain no constant or function symbol.

Of course this is not a restriction as any program or goal can be rewritten in

such a form by introducing new variables and equality constraints with terms.

For instance p(x+ 1) p(x) should be read as p(y) y = x+ 1jp(x):

A CLP (A) program is a CLP program given with a �-structure A which

�xes the interpretation of constraints. An A-valuation for a �-expression is a

mapping � : V ! A which extends by morphism to terms and constraints. A

constraint c is A-solvable i� there exists an A-valuation �, s.t. A j= c�.

We shall not suppose that A is solution compact [13], we suppose only that

the constraints are decidable in A, so that A can be presented by a �rst-order

theory th(A), satisfying:

1. (soundness) A j= th(A),

2. (satisfaction completeness) and for any constraint c, either th(A) j= 9c, or

th(A) j= :9c.

.

CLP (A) programs are interpreted operationally by a simple transition sys-

tem on goals, !2 G � G, de�ned by the following CSLD resolution rule:

CSLD :

(p(X) dj�) 2 P A j= 9(c ^ d)

cj�; p(X); �

0

! c ^ dj�; �; �

0

In such a transition, p(X) is called the selected atom. A CSLD derivation is a

sequence of transitions. A derivation is successful if it is �nite and ends with a

pure constraint goal containing no atom. A computed answer constraint (abbrev.

c.a.c.) for a goal G is a constraint c such that there exists a successful derivation

fromG to cj2. A (CSLD) derivation tree for a goal G is the tree of all derivations

from G obtained by �xing a selected atom in each node. The result of indepen-

dence of the selection rule [17] states that all CSLD derivation trees of a given

goal have the same set of computed answer constraints.

From a programming language point of view, computed answer constraints

constitute a natural notion of observation which is �ner than the simple exis-

tence of a successful derivation for a goal, characterized by ground success set

semantics [13]. In this paper two programs will be said operationally equivalent

if they have the same sets of c.a.c. (see [4] for other notions of observations). We

shall thus consider formal semantics of CLP programs which permit to charac-

terize computed answer constraints [18], [12], instead of ground semantics which,

outside the case of pure logic programs over the Herbrand domain [2], generally

do not su�ce to modelize the operational behavior of CLP programs.

The c.a.c. for a composite goal can be retrieved from the c.a.c. for the atoms

which appear in the goal (and-compositionality lemma 1), therefore the opera-

tional semantics of a CLP (A) program is de�ned as a set of constrained atoms

which gives the set of c.a.c. for unconstrained atomic goals solely:

Lemma1 (And-compositionality lemma). Let P be a CLP (A) program. d

is a computed answer constraint for the goal cjA

1

; :::; A

n

if and only if there

exist computed answer constraints d

1

; :::; d

n

for the goals truejA

1

; :::; truejA

n

respectively such that d = c ^

V

n

i=1

d

i

.

De�nition2. The operational semantics of a CLP program P is the set

O(P) = fcjp(X) j p 2 �; c is a c.a.c. for the goal truejp(X)g:

The corresponding logical semantics of a de�nite CLP (A) program is given

by the logical consequences of the clauses of the program together with the

theory of the structure, whereas the algebraic semantics is de�ned by the truth

in all A-models of P .

De�nition3. The logical semantics of a CLP (A) program P is the set

L(P) = fcjp(X) j p 2 �; P; th(A) j= 8(c! p(X)) ^ 9(c)g:

The algebraic semantics of P is the set

Alg(P) = fcjp(X) j p 2 �; P;A j= 8(c! p(X)) ^ 9(c)g:

The equivalence between the semantics can be expressed by inclusion and by

several covering pre-orders on sets of constrained atoms:

{ strong covering: I v J i� for all cjA 2 I there exists djA 2 J such that

th(A) j= c! d,

{ �nite covering: I v

f

J i� for all cjA 2 I; there exists fd

1

jA; :::; d

n

jAg � J

such that th(A) j= c!

W

n

i=1

d

i

,

{ in�nite covering: I v

1

J i� for all cjA 2 I; there exists a (possibly in�nite)

set fd

k

jAg

k2K

� J such that

2

A j= c!

W

k2K

d

k

.

Theorem4 (Soundness of CSLD resolution) [13]. O(P) � L(P).

Theorem5 (th(A)-completeness) [18]. L(P) v

f

O(P).

Theorem6 (A-completeness). Alg(P) v

1

O(P).

2

Note that the in�nite covering is de�ned via the truth in structure A of an in�nite

formula, whereas the �nite and strong coverings are syntactic notions based on the

logical consequences of th(A).

It is worth noting that for the observation of answer constraints it is not

equivalent to consider the logical consequences of P ^ th(A) or the truth in all

A-models of P . For the latter stronger algebraic semantics, the completeness

result involves a possibly in�nite set of c.a.c.

For example, with the logic program P = fp(0); p(s(X)) p(X)g over the

Herbrand universe H formed over function symbols 0 and s, the goal p(X)

admits an in�nity of c.a.c. of the form X = s

i

(0) for i � 0. We have P;H j=

8xp(x), and H j= 8x

W

i�0

x = s

i

(0) indeed. However P;CET 6j= 8xp(x), we

have CET 6j= 8x

W

i�0

x = s

i

(0), where CET is Clark's equational theory or

any �rst-order theory of the Herbrand structure, as such a theory necessarily

contains non-standard models in which

W

i�0

x = s

i

(0) doesn't hold (otherwise

the compactness theorem of �rst-order logic would be violated).

The departure of the algebraic semantics from the logical semantics becomes

even more important with the study of �nite failure.

3 Negative answers to de�nite goals

A further natural observable property of de�nite CLP program is �nite failure,

observed when all fair derivations of a goal are �nite and not successful. A CSLD

derivation is fair if it is �nite or any atom in a goal of the derivation is selected

within a �nite number of steps. A goalG is �nitely failed if any fair CSLD tree for

G is �nite and contains no successful derivations. Now the answer \no" is thus

another possible outcome of an execution in addition to the computed answer

constraints.

For this extra notion of observation, the logical semantics can no longer be

based on the logical consequences of the clauses of the program as the set of

all atoms instanciated in A (i.e. the A-base) is a model of the program where

everything is true. The solution proposed by Clark in 1978 is to consider instead

the formula obtained from P by reading the de�nitions of the predicates with

an equivalence symbol instead of implications.

The Clark's completion of a CLP (A) program P is the conjunction of th(A)

with formulae

1) of the form

8X p(X)$

_

i

9Y

i

c

i

^ �

i

obtained for each predicate symbol p by collecting the clauses fp(X) c

i

j�

i

g

in P , where Y

i

= FV (c

i

j�

i

) nX,

2) or of the form 8X :p(X) if p doesn't appear in any head in P .

The Clark's completion of P is denoted by P

�

; th(A).

The �nite failure rule is correct and complete w.r.t. the logical consequences

of the program's completion without any restriction on the structure. It is in-

structive to see that the proof relies on the compactness theorem of �rst-order

logic which holds for P

�

; th(A) but not necessarily in the A-models of P

�

.

Theorem7 [13]. A goal G is �nitely failed if and only if P

�

; th(A) j= :9(G).

Proof.) By induction on the height of the CSLD derivation tree.

(We show that if G is not �nitely failed then fP

�

; th(A); 9Gg is satis�able.

If G is not �nitely failed, then either G admits a successful derivation, in

which case P

�

; th(A) j= 9G by the soundness theorem, or G admits a fair

in�nite derivation

G = c

0

j�

0

! c

1

j�

1

! c

2

j�

2

! :::

By the compactness theorem of �rst-order logic, c

!

=

S

c

i

is th(A)-satis�able.

Let B be a model of th(A) such that B j= 9c

!

.

Let I

0

= fA� j A 2 G

i

for i � 0 and B j= c

!

�g and let us consider the im-

mediate consequence operator T

B

P

of [13]. We have I

0

� T

B

P

(I

0

) (by fairness)

hence as T

B

P

is monotonic, by Knaster-Tarski's theorem, T

B

P

admits a �xed

point containing I

0

, hence containing G�.

A �xed point of T

B

P

is a B-model of P

�

, the previous �xed point is thus a

B-model of P

�

; 9G, therefore P

�

; th(A); 9G is satis�able.

For example with the program P = fq(s(X)) q(X)g over the Herbrand

universe formed over function symbols 0 and s, the goal q(0) is �nitely failed

and we have P

�

; CET j= :q(0). On the other hand the goal q(X) admits

an in�nite fair derivation, we have P

�

; CET 6j= q(X) and P

�

; CET 6j= :q(X),

despite the fact that q(X) is false in all Herbrand models of P

�

: P

�

;H j= :q(X).

Therefore the logical consequences of P

�

; th(A) correctly capture the op-

erational behavior of �nite failure whereas the truth in all A-models of P

�

is

not recursively enumerable and corresponds to an abstract notion of failure by

ground derivations [14]. The situation is that from a knowledge representation

point of view, the algebraic semantics is likely to reect the intuition of the

programmer who reasons in a �xed \domain of discourse" [13], but from a pro-

gramming language point of view the algebraic semantics is not viable as it is

highly undecidable. The logical semantics provides a declarative semantics which

is faithful to the operational behavior of the program, and which constitutes a

computable approximation of the \intended" algebraic semantics.

4 Goals with negation

The next step is to allow negation inside goals. The logical semantics can be

extended accordingly with the following:

De�nition8. Let P be a de�nite CLP (A) program. The logical semantics for

positive and negative goals is de�ned by L

2

(P) =< L

+

2

(P);L

�

2

(P) > where

L

+

2

(P) = fcjp(X) j P

�

; th(A) j= 8(c! p(X)) ^ 9cg

L

�

2

(P) = fcjp(X) j P

�

; th(A) j= 8(c! :p(X)) ^ 9cg

The operational semantics based on �nite failure does not allow to compute

an answer constraint for a negative goal containing variables, it is thus too weak

w.r.t. the logical semantics. The principle of constructive negation proposed by

Chan [6] and Wallace provides a complete scheme. The main notion is the one

of a frontier of a CSLD tree. A frontier of a CSLD tree is a �nite set of nodes

such that every derivation in the tree is either �nitely failed or passes through

exactly one frontier node. We can easily state the following:

Lemma9. Let P be a de�nite CLP (A) program, G a goal, and fc

i

j�

i

g

1�i�n

be a frontier in a CSLD tree for G. Then P

�

; th(A) j= G$ (9Y

1

c

1

^ �

1

) _ :::_

(9Y

n

c

n

^ �

n

).

To resolve a goal cj:A, constructive negation amounts simply to develop a

fair CSLD tree for cjA, take a frontier fc

i

j�

i

g

1�i�n

in that tree, and return the

answer constraint c ^

V

1�i�n

:9Y

i

c

i

, whenever it is satis�able, the deeper the

frontier, the more general the answer (see �gure 1).

�

�

�

�

�

�

�

�

�

�

�

�A

A

A

A

A

A

A

A

A

A

A

A

cj:A cjA

fc

i

jG

i

g

1�i�n

frontier

c ^

V

n

i=1

:9Y

i

c

i

Fig. 1. Constructive negation for de�nite CLP programs.

As constraints must be negated, we shall suppose from now on that the

language of constraints is closed by negation, and thus that a constraint can

be any �; V -formula (a weaker assumption based on the notion of admissible

structure is studied in [24]). The satisfaction completeness condition is then

equivalent to say that the theory of the structure is complete, and thus that all

models of the theory are elementary equivalent. In this setting soundness and

completeness of constructive negation w.r.t. the logical semantics are a simple

corollary of the previous theorem for �nite failure.

Theorem10. Let P be a CLP (A) program, c be an A-satis�able constraint,

and G a goal. Then P

�

; th(A) j= c! :G if and only if there exists a computed

answer constraint d to the goal :G such that th(A) j= c! d.

Proof.

(Let fc

i

j�

i

g

i2I

be a frontier in a CSLD tree for G such that d =

V

i2I

:9Y

i

c

i

is satis�able. We have P

�

; th(A) j= G$

W

i2I

9Y

i

c

i

^ �

i

,

so P

�

; th(A) j= :G$

V

i2I

:9Y

i

c

i

_ :�

i

,

hence P

�

; th(A) j= :G d.

) We have p

�

; th(A) j= :(c ^ G), hence by theorem 7, the goal cjG admits a

�nitely failed fair CSLD tree. Let fc

i

j�

i

g be the frontier corresponding to the

lifting of that tree to the goal truejG.

For all i 2 I, c ^ 9Y

i

c

i

is A-unsatis�able, thus c ^

W

i2I

9Y

i

c

i

is A-unsatis�able.

Let d =

V

i2I

:9Y

i

c

i

, we have A j= c ! d, hence d is A-satis�able, therefore d

is a computed answer constraint to the goal :G.

Note that for a negative goal a correct answer constraint is covered by a single

computed answer constraint (strong completeness). Hence under the constructive

negation rule a goal is not operationally equivalent to its double negation. In

the later form the covering of a correct answer constraint is done by a single

computed answer constraint which basically collects in a disjunction a �nite set

of computed answer constraints obtainable with the former form.

5 Programs with negation

5.1 Logical semantics

General (or normal) CLP programs allow negation in clause bodies. A general

(or normal) clause is noted

A cj�

where � is a �nite sequence of literals (�

+

denotes the subsequence of atoms in

� and 2 denotes the empty sequence). General logic programs have the power of

expression of full �rst-order logic, as any de�nition of a predicate by a �rst order

formula can be transformed into a normal CLP program [17], obtained basically

by replacing a clause of the form p(X) �; 8Y q(X;Y); � by p(X) :q

0

(X)

and q

0

(X) :q(X;Y) where q

0

is a new predicate symbol.

Now the Clark's completion of a normal program can be inconsistent, e.g.

with P = fp ! :pg, P

�

= fp $:pg, in which case the logical semantics

demands that there exists a successful derivation for each goal, that is clearly

not the intended semantics of logic programs. The solution proposed by Kunen

[15] to make the program's completion consistent is to de�ne the logical semantics

within three valued logic [11]. The usual strong 3-valued interpretations of the

connectives and quanti�ers are assumed, except for the connective a$ b used to

form the Clark's completion, which is interpreted as t if a and b have the same

truth value (f , t or u), and f otherwise (i.e. Lukasiewicz's 2-valued interpretation

of$). In the previous example taking p unde�ned we have u$:u true. In this

way the Clark's completion of a normal program is always 3-valued consistent.

The logical consequence relation in three-valued logic is denoted by j=

3

.

The logical semantics of a normal CLP(A) program P w.r.t. answer con-

straints is thus de�ned by the following partial constrained interpretation

3

:

L

3

(P) =< L

+

3

(P);L

�

3

(P) > where

L

+

3

(P) = fcjp(X) 2 B : P

�

; th(A) j=

3

c! p(X)g,

L

�

3

(P) = fcjp(X) 2 B : P

�

; th(A) j=

3

c! :p(X)g.

5.2 Operational semantics

A �rst way to adapt the principle of constructive negation to general logic pro-

grams, that is to use it not only for the top-level goal, but recursively at each

resolution step with a negative literal, is to transform the entire frontier ob-

tained for a negated atom into disjunctive normal form, and produce a resolvant

with each complex goal in a disjunct. The constructive negation rule is then the

following:

CN : (cj�; (:9Y �); �

0

) ! (c ^ c

j

j�; �

j

; �

0

)

for each 1 � j � n where

W

1�j�n

c

j

^ �

j

is a disjunctive normal form of

V

1�k�m

:9Z

k

(c^ d

k

^�

k

), where fc^ d

k

j�

k

g

1�k�m

is a frontier in a CSLDCN

derivation tree for cj�, and Z

k

= (V (d

k

j�

k

) n V (cj�)) [Y .

This is the way undertaken by Chan [6] for logic programs, and by Stuckey

[24] for constraint logic programs. The e�ect is to introduce complex subgoals

with explicit quanti�ers and to compute the disjunctive normal form at each

resolution step with a negative literal. This makes the scheme hardly amenable

to a practical implementation for normal CLP programs in all generality. The

compilative version proposed by Bruscoli et al. [5], named intensional negation,

performs all disjunctive normal form transformations once and for all at compile

time, but still all quanti�ers need be explicit at run time and derivation rules

need be de�ned for complex goals.

Another way undertaken independently in [7] and [8] is to use the principle of

constructive negation as a concurrent pruning mechanism over standard CSLD

3

It is worth noting that a complete notion of three-valued logic programming could

also take into account the set

L

u

3

(P) = fcjp(X) 2 B : P

�

; th(A) j=

3

c! (p(X) = u)g

of constrained atoms which are unde�ned in all three-valued models of the program's

completion. This set is recursively enumerable. If it is not empty then the program's

completion is clearly inconsistent. Of course the converse of that proposition doesn't

hold. For instance the program

P = fp :p; r; q :q;:r; r rg

is inconsistent but L

u

3

(P) = ;. To our knowledge, this generalized three-valued logic

semantics has not been considered up to now, and there has been some confusion

about the unde�ned truth value standing for goals which operationally loop forever.

In fact the absence of a �xed truth valued for a goal should model operational loops,

but a �xed unde�ned truth value for a goal could be distinguished and reported

as a local contradiction in the program. A re�nement of the operational semantics

presented in the next section in order to detect such contradictions will be presented

elsewhere.

trees. The idea to resolve a goal cj�;:A where :A is the selected literal is to

develop concurrently two CSLD-derivation trees, one 	 for cj�; (:A) in which

:A is not selected, and one 	

0

for cjA.

Once a successful derivation is found in 	

0

, say with answer constraint d,

then 	 is pruned by adding the constraint :9Y d where Y = V (d) n V (cjA), to

the nodes in 	 where that constraint is satis�able, and by removing the other

nodes. This operation is called \pruning by success".

Once a successful derivation is found in 	 , say with answer constraint e,

we get a successful derivation for the main goal with answer constraint f =

e ^

V

n

i=1

:9Y

i

d

i

where Y

i

= V (d

i

) n V (cjA), for each frontier fd

i

j�

i

g

1�i�n

in

	

0

such that f is satis�able (the deeper the frontier is, the more general is the

computed answer). This operation is called \success by pruning".

The main goal is �nitely failed if 	 gets �nitely failed after pruning. Figure

2 illustrates the pruning mechanism.

tt

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

	 	

0

c j �; (:A) c j A

d j 2ej2; (:A)

pruning by success

:9Y d

Frontier

fd

i

j�

i

g

1�i�n

Success

e ^

V

n

i=1

:9Y

i

d

i

j2

success by

pruning

c j � , :A

Fig. 2. Constructive negation by pruning.

The pruning by success rule is not redundant with the success by pruning

rule. The former modi�es the non successful nodes in a frontier of the �rst tree.

This is necessary for �nite failure or more generally for the completeness of the

scheme if there are chains of dependencies through several negations.

Example 1. The nesting of negation can be illustrated by the following program:

p(0).

p(X):-p(X).

q(X):-not p(X).

with the goal:

? not q(X)

X=0

As the goal contains no positive literal the �rst derivation tree is a trivial success

with constraint true. The second derivation tree for q(X) contains one derivation

to the goal truej:p(X), thus a third derivation tree is developed for p(X). As

X = 0 is a success for p(X), the pruning by success rule has for e�ect to prune

the second with X 6= 0 (note that the success by pruning rule doesn't apply as

any frontier in the third tree contains the goal truejp(X) coming from the clause

p(X) p(X), and that goal cannot be negated). Hence by negating the frontier

in the second tree after pruning we get a successful derivation for the main goal

with answer constraint X = 0.

The practical advantage of constructive negation by pruning is that it re-

lies on standard CSLD derivation trees for de�nite goals only. The only extra

machinery to handle negation is a concurrent pruning mechanism over standard

CSLD derivation trees, in particular there is no need for considering complex

subgoals with explicit quanti�ers.

In [8] constructive negation by pruning is formalized as a calculus over fron-

tiers. The set of frontiers is the set P

f

(G) of �nite sets of goals. The main op-

eration is the cross product of frontiers. Given two frontiers F = fc

i

j�

i

g

1�i�m

,

and F

0

= fd

j

j�

j

g

1�j�n

, the cross product of F and F

0

is the frontier:

F � F

0

= f(c

i

^ d

j

j�

i

; �

j

) j 1 � i � m; 1 � j � n; A j= 9(c

i

^ d

j

)g:

The negation of the projection of the constraint in a frontier F on a set of

variables X is denoted by

:

X

F =

^

cj�2F; Y=V (c)nX

:9Y c:

The operational semantics of general CLP programs is then de�ned by a relation

/ 2 G�P

f

(G) which associates a frontier to a goal (big step semantics). Relation

/ is de�ned as the least relation satisfying the axioms and rules given in table 1.

The �rst rule (RES) is the usual resolution rule for positive literals (note that

cjp(x) / ; if k = 0). The second rule (FRT) expresses the formation of frontiers

by cross products

4

. The third rule called \pruning" (PRN) is the new inference

rule introduced for negative literals. It is worth noting that the usual negation

as failure rule is the restriction of the pruning rule to the case F = ;.

4

Note that a more standard operational semantics where frontiers are not formed by

cross products but by elementary CSLD resolution steps can be de�ned by replacing

TRIV: cj� / fcj�g

RES:

c ^ c

1

j�

1

/ F

1

::: c ^ c

k

j�

k

/ F

k

cjp(X) / F

1

[:::[F

k

where f(p(X) c

i

j�

i

)g

1�i�k

is the set of renamed clauses

de�ning p(X) in P such that A j= 9(c ^ c

i

).

FRT:

cjA / F cj�;�

0

/ F

0

cj�;A;�

0

/ F � F

0

PRN:

cjA / F c ^ :

X

Sj�;�

0

/ F

0

cj�;:A;�

0

/ fcj:Ag � F

0

[F

00

where X = V (cjA), S is a set of successful nodes in F

and F

00

= f(c ^ :

X

F j�) : cj� 2 F

0

; �

+

= ;g

Table 1. De�nition of the goal-frontier relation for normal CLP languages.

Example 2. Going back to example 1, the goal :q(x) has the following derivation:

x = 0j2 / fx = 0j2g truejp(X) / ftruejp(X)g

truejp(x) / fx = 0j2; truejp(x)g x 6= 0j2 / fx 6= 0j2g

truej:p(x) / fx 6= 0j2; x 6= 0j:p(x)g

truejq(x) / fx 6= 0j2; x 6= 0j:p(x)g x = 0j2 / fx = 0j2g

truej:q(x) / fx = 0j2; x = 0j:q(x)g

De�nition11. The operational semantics of a general CLP (A) program is the

tuple: O(P) =< O

+

(P);O

�

(P) >

O

+

(P) = f9Y cjp(X) 2 B : truejp(X) / fcj2g [F; Y = V (c) nXg

O

�

(P) = fcjp(X) 2 B : truej:p(X) / fcj2g [Fg

The next section presents completeness results for constructive negation by

pruning through a �xed point semantics which is fully abstract for the observa-

tion of computed answer constraints

the RES and FRT rules by the following CSLD rule

CSLD :

c ^ c

1

j�;�

1

; �

0

/ F

1

::: c ^ c

k

j�;�

k

; �

0

/ F

k

cj�;p(X); �

0

/ F

1

[::: [F

k

The only e�ect of this variant is to generate additional unnecessary redundant answer

constraints. We refer to [8] for the details.

5.3 Fixed point semantics

Fitting [11] �rst introduced the idea that the formal semantics of normal logic

programs should be de�ned in three-valued logic by partial interpretations. A

partial interpretation I is a couple < I

+

; I

�

> which determines truth and

false things and leave unde�ned remaining atoms, and remaining formula by

extension. Fitting's immediate consequence operator �

A

P

is de�ned for normal

CLP (A) programs by:

De�nition12. �

A

P

(I) =< �

A

P

+

(I); �

A

P

�

(I) > where

�

A

P

+

(I) = fA� j � is a valuation s.t. for some clause (A cj�) 2 P;

A j= c�; I(��) = tg

�

A

P

�

(I) = fA� j � is a valuation s.t. for all clause (A cj�) 2 P;

either A j= c�; or I(��) = tg:

Non-ground versions of Fitting's operator based on pairs of sets of constrained

atoms have appeared in [15], [24], [5], [3], [8], as they are more suitable to es-

tablish the links with the operational semantics. A partial constrained inter-

pretation is a pair I =< I

+

; I

�

> of constrained interpretations such that

[I

+

]

A

\ [I

�

]

A

= ;. Partial constrained interpretations form a semi-lattice for

pairwise set inclusion (not a lattice as the union of two partial interpretations

may be inconsistent), it is denoted by (I;�

3

). The covering preorders are also

extended pairwise to partial constrained interpretations.

The operator used in [8] is a �nitary non-ground version of Fitting's operator:

each constrained atom in the image of a constrained interpretation depends on

a �nite number of constrained atoms, such an operator is thus continuous in the

semi-lattice of constrained partial interpretation.

De�nition13. Let P be a CLP (A) program. T

A

P

is an operator over 2

B

� 2

B

de�ned by T

A

P

(I) =< T

A

P

+

(I); T

A

P

�

(I) > where:

T

A

P

+

(I) = fcjp(X) 2 B : there exists a clause in P with local variables Y ,

p(X) djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

there exist c

i

jA

i

2 I

+

for 1 � i � m,

c

j

jA

j

2 I

�

for m+ 1 � j � n,

such that c = d ^

V

n

i=1

c

i

is A-satis�ableg

T

A

P

�

(I) = fcjp(X) 2 B : for any clause de�ning p in P , with local variable Y

k

,

p(X) A

k;1

; :::; A

k;m

k

; �

k

, where m

k

� 0,

there exist fe

k;i

jA

k;i

g

1�i�m

k

� I

�

, n

k

� m

k

fe

k;j

jA

k;j

g

m

k

+1�j�n

k

� I

+

where (:A

k;j

) 2 �

k

,

such that c

k

= 8Y

k

(:d

k

_

W

n

k

i=1

e

k;i

) is A-satis�able,

and c =

V

k

c

k

is A-satis�ableg

Proposition14. T

A

P

is a continuous operator in the semi-lattice (I;�

3

).

De�nition15. The �xed point semantics of a general CLP program is the set

of constrained atoms

F(P) = lfp(T

A

P

) = T

A

P

" !:

A somewhat surprising result from [8] is that this �xed point semantics is fully

abstract for the observation of computed answer constraints with constructive

negation by pruning.

Theorem16 (Full abstraction)[8]. O(P) = F(P).

Constructive negation by pruning is the �rst scheme to receive a fully abstract

�xed point semantics w.r.t. computed answer constraints. This result means

that the �xed point semantics fully characterizes the operational behavior of

general CLP programs. It is thus possible to analyze and transform general

CLP programs by reasoning at the �xed point semantics level of abstraction

while preserving the equivalence based on the observation of computed answer

constraints.

Completeness w.r.t. the logical semantics follows from the fact that the �nite

powers of T

A

P

de�ne the same ground partial interpretation as the �nite powers

of �

A

P

. Hence by the result of Kunen [15] the �xed point semantics de�nes the

same three-valued consequences as the Clark's completion of the program.

Lemma17 [8]. [F(P)] = �

A

P

" ! = [L

3

(P)].

Theorem18 (Completeness of the operational semantics) [8]. O(P) �

L

3

(P). L

+

3

(P) v

f

O

+

(P) and L

�

3

(P) v O

�

(P).

Here again one can remark that putting double negations on positive goals

in the program su�ces to obtain a strong completeness result w.r.t. the logical

semantics (i.e. L

3

(P) v O(P) instead of L

3

(P) v

f

O(P)).

6 Optimization higher-order predicates

For crucial practical reasons, most CLP systems with arithmetic constraints,

such as CHIP, CLP(R) or Prolog III, include metalevel facilities for �nding

optimal solutions to a goal w.r.t. an objective function [26]. These constructs do

not belong however to the formal scheme of constraint logic programming. In

[9] and [21] it is shown that optimization higher-order predicates can be de�ned

with a faithful logical semantics based on constructive negation. It is interesting

to see that constructive negation by pruning specializes in this context into an

e�cient concurrent branch and bound like procedure. Furthermore, completeness

w.r.t. logical semantics and full abstraction of the �xed point semantics continue

to hold without any restriction on the degree of nesting of, and the degree of

recursion through, optimization predicates in the program.

De�nition19. Let (A;�) be a total order. Theminimization higher-order pred-

icate

min(G(X); f(X))

where G(X) is a goal and f(X) is a term, is de�ned as an abbreviation for the

formula:

G(X) ^ :9Y (f(Y) < f(X) ^G(Y))

A �CLP program over A is a de�nite CLP program over A which may

contain minimization predicates in clause bodies.

�CLP programs can be transformed into normal CLP programs by reading

min(G(X); f(X) as:

G(X);:gf(X)

where gf is a new predicate symbol, and by adding the following clause to the

program:

gf(X) f(Y) < f(X)jG(Y):

It is easy to see that in this context negation of constraints and negation of

frontiers amount to a simple form of term minimization:

Proposition20. Let (A;�) be a total order.

Let d(X;Y; Z) = c(X)^f(X) < f(Y)^d

0

(Y; Z), then c(X)^:9Y; Z d(X;Y; Z) is

A-equivalent to c(X)^f(X) � v, if v = min

d(X;Y;Z)

f(Y) exists, false otherwise.

Corollary21. If c(X) ^ f(Y) < f(X)jG(Y) / F then the c(X) ^ :

X

F is A-

equivalent to c(X)^ f(X) � v if v = min

dj�2F

min

d

f(Y) exists, false otherwise.

The pruning by success rule of the general scheme can thus be replaced by

a restricted form of pruning with a term minimization constraint. The next

corollary shows that the success by pruning rule can be replaced by a check for

�nite failure after pruning.

Corollary22. Let c(X)^f(Y) < f(X)jG(Y)/F , c(X)j�;G(X); �

0

/fdj2g[F

0

.

Then d^:

X

F is A-satis�able i� w = min

d

f(X) exists and (f(X) � w)�F = ;.

The procedural interpretation can thus be simpli�ed accordingly by replacing

frontier computations with a check for �nite failure. To resolve a goal of the form

cj�;min(G(X); f(X)); �

0

, two CSLD derivation trees are developed, one 	 for

cj�;G(X); �

0

, and one 	

0

for c ^ f(Y) < f(X)jG(Y).

Once a successful derivation is found in 	

0

, say with answer constraint d,

then 	 is pruned by adding the constraint f(X) � v if v = min

d

f(Y) exists,

false otherwise.

Once a successful derivation is found in 	 , say with answer constraint e,

then 	 and 	

0

are pruned by adding the constraint f(X) � w if w = min

e

f(X)

exists, false otherwise.

By de�nition a successful derivation for the minimization goal is a successful

derivation in 	 such that 	

0

is �nitely failed after pruning. The minimization

goal is �nitely failed if 	 is �nitely failed after pruning. Figure 3 illustrates the

pruning mechanism.

As these modi�cations preserve the equivalence with the general scheme in

the context of optimization predicates the results of the previous section continue

to hold.

Theorem23. [8] Let P be a �CLP (A) program. The �xed point semantics

F(P) is fully abstract w.r.t. computed answer constraints. The operational se-

mantics is sound and complete w.r.t. the logical semantics L(P).

tt

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

dj2ej(:gf(X))

pruning	 	

0

cj�;min(G(X); f(X)); �

0

f(X) � v

v = min

d

f(Y)

cj�;G(X); �

0

; (:gf(X))

pruning

f(X) � w

w = min

e

f(X)

c ^ f(Y) < f(X)jG(Y)

Fig. 3. Procedural interpretation of optimization predicates.

Example 3. An important particular case is when the only occurrence of the

optimization predicate is in the head of the top-level goal. This is the case

studied in [20]. This case is typical of scheduling applications for example where

the top-level goal is

? min(schedule([X1,...,Xn], Xn))

and schedule(L,X) is de�ned by a de�nite CLP program over some numerical

domain.

In that case both CSLD trees 	 and 	

0

are identical up to variable renaming.

The mutual pruning mechanism of the optimization scheme can thus be simpli-

�ed into a single pruning in 	 with constraint f(X) � w, as described in [20] or

[26].

This is no longer true if the top-level goal contains a constraint or an atom

outside the minimization predicate.

Example 4. Consider the �CLP (R) program P

p(0)

p(X) :- X>1, p(X).

and the goal X>1|min(p(X),X).

The �rst CSLD tree for X>1|p(X) is in�nite. The second CSLD tree for

X>1,Y<X|p(Y) contains a success with answer constraint Y = 0. The pruning

by success rule has for e�ect to prune the �rst tree with the constraint X � 0,

therefore the �rst tree gets �nitely failed and the answer to the minimization

goal is no, in accordance to the logical semantics.

Note that the optimization procedures described in [26], [9] and [21] either

incorrectly answer X = 1, or loop forever on this example. This shows the

di�culty to de�ne a complete scheme for optimization w.r.t. logical failures, and

w.r.t. successes as well when minimization predicates are nested.

Completeness theorem 23 holds without any restriction on �CLP (A) pro-

grams. Minimization predicates can thus be composed arbitrarily in a program,

and, as an extreme case, one can also remark that recursion through optimization

predicates is supported by the scheme.

The optimization predicates de�ned in [9] or [21] are however more general

than those considered here as they allow to protect a set of variables in the

goal subject to optimization. The e�ect is to localize the optimization to the

remaining variables, and relativize the result to the set of protected variables.

De�nition24. The local minimization predicate

min(G(X;Y); [X]; f(X;Y))

where [X] is the set of protected variables is de�ned as an abbreviation for the

formula

G(X;Y) ^ :9Z(f(X;Z) < f(X;Y) ^G(X;Z)):

The local maximization predicate is de�ned similarly.

Example 5. For example local optimization predicates allow to express the min-

max method of game theory simply with the following goal (for depth 2)

? max(min((move(X,Y),move(Y,Z)),[X,Y],val(Z)), [X], val(Z))

Note that protected variables are necessary in this example to conform to the

intended semantics.

For local optimization predicates the previous operational scheme of opti-

mization predicates is not correct as proposition 20 becomes irrelevant in pres-

ence of protected variables. This is not surprising and there is no hope to signi�-

cantly improve a general scheme for negation in the context of local optimization

predicates, as it is easy to see that any normal logic program can be encoded

into a CLP program with local optimization predicates encoding negations [9].

7 Negation and optimization in CC languages

The class CC of concurrent constraint languages of Saraswat [23] adds to CLP

languages a synchronization mechanism based on constraint entailment, called

the ask operator. In this section we study the fundamental extension of CC

languages with negation.

CC programs are usually presented with the following process algebra syntax

to which we have added a negation operator, we call these programs normal CC

programs:

Programs P::= D.A (declarations and empty agent)

Declarations D::= � (empty declaration)

j D:D (sequence of declarations)

jp(X) :: A (procedure declaration)

Agents A::= c (tell)

jc! A (ask)

jp(X) (procedure call)

j9X A (hiding)

jA ^A (conjunction)

jA _A (disjunction)

j:A (negation)

Provided the underlying structure (A;�) is a total order, normal CC pro-

grams allow to de�ne an optimization higher-order agent

min(A(X); f(X))

as an abbreviation for the agent

A(X) ^ :9Y:(f(Y) < f(X) ^A(Y)):

For the purpose of this article and to make clear the links with previous

sections, we shall stick to the CLP syntax augmented with guarded literals to

model the ask operator. A guarded literal will have the following syntax

(c! L)

where c is a constraint and L a literal. A (normal) CCLP program clause is a

clause

A cj�

where A is a an atom, c is a (tell) constraint and � is a �nite sequence of literals

or guarded literals (�

+

will denote the subsequence of atoms in �, 2 will denote

the empty sequence). A (normal) concurrent constraint logic program (CCLP) is

a �nite set of guarded clauses. A (normal) CCLP goal has the following syntax

 cj�

where c is a (tell) constraint and � is a conjunction of literals or guarded literals.

Clearly CC declarations can rewritten as CCLP programs, CC agents as CCLP

goals, and CC programs as CCLP programs with a query goal,

Example 6. Several Prolog implementations make it possible to execute a goal

in coroutine. For example the system prede�ned predicate freeze(X,A) has

for e�ect to delay the selection of atom A as long as X is a free variable (i.e.

unless nonvar(X) becomes true). This is a typical use of the ask operator over

the Herbrand domain H. Predicate freeze can be de�ned by the CCLP (H)

program freeze(X,A):-(nonvar(X) -> A).

Now the principle of constructive negation by pruning can be used to provide

normalCCLP programs with an operational semantics. However the formation of

frontiers by cross products for composite goals is not compatible with the guard

mechanism based on the ask operator. Therefore we present the operational

semantics of normal CCLP programs with a goal-frontier relation // 2 G�P

f

(G)

de�ned with the CSLD rule in place of the RES and FRT rules, with a new rule

for the ask, and with the PRN rule kept unchanged. Relation // is de�ned as

the least relation satisfying the axioms and rules given in table 2.

TRIV: cj� // fcj�g

CSLD:

c ^ c

1

j�;�

1

; �

0

// F

1

::: c ^ c

k

j�;�

k

; �

0

// F

k

cj�;p(X); �

0

// F

1

[::: [F

k

where f(p(X) c

i

j�

i

)g

1�i�k

is the set of renamed clauses

de�ning p(X) in P such that A j= 9(c ^ c

i

).

ASK:

cj�;L;�

0

// F A j= c! d

cj�; (d! L); �

0

//F

PRN:

cjA // F c ^ :

X

Sj�;�

0

// F

0

cj�;:A;�

0

// fcj:Ag� F

0

[F

00

where X = V (cjA), S is a set of successful nodes in F

and F

00

= f(c ^ :

X

F j�) : cj� 2 F

0

; �

+

= ;g

Table 2. De�nition of the goal-frontier relation for normal CCLP languages.

Note that the negation of frontiers (:

X

F) is not a�ected by the presence of

guarded literals. The guards are simply ignored just as in the standard semantics

of CC [22] an agent c! A is blocked forever if the store entails :c

5

.

De�nition25. Let P be a normal CCLP (A) program. A computed answer

constraint for a goal cj� is a constraint d such that cj�//fcj2g[F . A computed

answer suspension for a goal cj� is a goal G = dj(d

1

! L

1

); :::; (d

n

! L

n

)

composed of a constraint and guarded literals, such that cj�//fGg [F .

5

Clearly one can also argue that if the store entails :c the ask agent (c! A) should

fail [23]. This convention can be accommodated in our scheme simply by negating

the ask constraints as well as the tell constraints in the negation of a frontier.

Note that the opposite convention is used in [25], i.e. c ! A succeeds if the

store entails :c. This choice corresponds to the interpretation of the arrow as an

implication in classical logic. This should not be confused with the interpretation

of the ask operator as a pure control mechanism. The classical implication operator

c) A is de�ned with two ask operators by c! A ^ :c! true

Example 7. Consider the following CCLP program

p(0).

p(1).

q(X,Y):-p(X),(X#0 -> p(Y))

The goal ?q(X,Y) has one answer suspension and two answer constraints:

? q(X,Y)

X=1,Y=0;

X=1,Y=1;

X=0,(X#0 -> p(Y));

These answers are obtained with the following derivation:

x = 1; y = 0j2 //fx = 1; y = 0j2g x = 1; y = 1j2 //fx = 1; y = 1j2g

x = 1jp(y) //fx = 1; y = 0j2; x = 1; y = 1j2g

x = 1j(x 6= 0! p(y)) //fx = 1; y = 0j2; x = 1; y = 1j2g

x = 0j (x 6= 0! p(y)) //fx = 0j(x 6= 0! p(y))g

00

truejp(x); (x 6= 0! p(y) //fx = 0j(x 6= 0! p(y)); x = 1; y = 0j2; x = 1; y = 1j2g

truejq(x; y) //fx = 0j(x 6= 0! p(y)); x = 1; y = 0j2; x = 1; y = 1j2g

Example 8. If we place a negation on p(x) in the de�nition of q in the previous

example, then the program

p(0).

p(1).

q(X,Y):-not p(X),(X#0 -> p(Y))

produces two answer constraints and no answer suspension to the goal ?q(X,Y):

? q(X,Y)

X#0,X#1,Y=0;

X#0,X#1,Y=1;

The derivation is obtained basically with the following PRN derivation step:

x 6= 0; x 6= 1j(x 6= 0! p(y)) //

p(x) //fx = 0j2; x = 1j2g fx 6= 0; x 6= 1; y = 0j2; x 6= 0; x 6= 1; y = 1j2g

:p(x); (x 6= 0! p(y)) // fx 6= 0; x 6= 1; y = 0j2; x 6= 0; x 6= 1; y = 1j2;

x 6= 0; x 6= 1; y = 0j:p(x); x 6= 0; x 6= 1; y = 1j:p(x)g

If we look at the procedural interpretation, in order to resolve a goal cj�;:A;�

0

where :A is the selected literal, two CSLD resolution trees are developed follow-

ing the CSLD and ASK rules, one 	 for cj�; �

0

and one 	

0

for cjA. Suspended

goals in 	 can be unblocked by the pruning by success rule, while suspensions

in 	

0

limit the choice of frontiers. Suspended goals in 	

0

however are never un-

blocked once :A has been selected, although the constraints of some nodes in 	

may entail the guard. This is a limitation of our operational scheme due to the

principle of developing a single auxiliary CSLD derivation tree for the resolution

of a negative literal.

8 Conclusion

The principle of constructive negation by pruning provides normal CLP pro-

grams with a complete operational semantics w.r.t. Kunen's three-valued logic

semantics. The practical advantage of constructive negation by pruning for con-

straint logic programming is that it relies on standard CSLD derivation trees for

de�nite goals only. The only extra machinery to handle negation is a concurrent

pruning mechanism over standard CSLD derivation trees, in particular there is

no need for considering complex subgoals with explicit quanti�ers.

Constructive negation by pruning provides also a fundament to branch and

bound procedures and min-max methods lifted to a full �rst-order setting. We

have indicated a class of optimization higher-order predicates for which the oper-

ational semantics of constructive negation by pruning simpli�es into a concurrent

branch and bound like procedure without frontier computation.

On the theoretical side, constructive negation by pruning possesses a fully

abstract �xed point semantics w.r.t. computed answer constraints. The �xed

point semantics is based on a simple �nitary version of Fitting's operator. The

full abstraction result shows that the operational behavior of the program is

fully characterized by the �xed point semantics.

Finally we have shown that the principle of constructive negation by pruning

could be used to extend the class CC of concurrent constraint languages with

negation and optimization higher-order agents. The operational semantics of

normal CLP programs has been generalized to deal with normal CC programs.

This fundamental extension now raises many interesting questions both on the

operational aspects of the interactions between ask and negation, and on the

nature of a denotational semantics in the style of [23] for normal CC languages.

References

1. K. Apt, R. Bol, \Logic programming and negation: a survey", Journal of Logic

Programming, 19-20, pp.9-71, 1994.

2. K. Apt, M. Gabrielli, \Declarative interpretations reconsidered", Proc. 11th

ICLP'94, MIT Press, 1994.

3. A. Bossi, M. Fabris, M.C. Meo, \A bottom-up semantics for constructive negation",

Proc of the 11th Int. Conf. on Logic Programming, pp.520-534, MIT Press, 1994.

4. A. Bossi, M. Gabbrielli, G. Levi, M. Martelli, \The s-semantics approach: theory

and applications", Journal of Logic Programming, 19-20, pp.149-197, 1994.

5. P. Bruscoli, F. Levi, G. Levi, M.C. Meo, \Intensional negation", GULP'93, eight

conference on logic programming, Italy. June 1993.

6. D. Chan, \Constructive negation based on the completed database", in: R.A.

Kowalski and K.A. Bowen (eds), Proc. of the �fth International Conference on

Logic Programming, MIT Press, Cambridge, MA, pp.11-125, 1988.

7. W. Drabent, "What is failure? An approach to constructive negation", to appear

in Acta Informatica, 1994.

8. F. Fages, \Constructive negation by pruning", Technical report 94-14, Ecole Nor-

male Sup�erieure, Paris. Sept. 1994. Submitted for publication.

9. F. Fages, \On the semantics of optimization predicates in CLP languages", 13th

FSTTCS conference, Bombay, LNCS 761, Springer-Verlag, pp. 193-204, 1993.

10. F. Fages, J. Fowler, T. Sola, \Handling preferences in constraint logic programming

with relational optimization", Proc of PLILP'94, Madrid, 1994.

11. M. Fitting, \A Kripke/Kleene semantics for logic programs", Journal of Logic

Programming, 2(4), pp.295-312, 1985.

12. M. Gabbrielli, G. Levi, \Modeling answer constraint in constraint logic programs",

ICLP'91, Paris, MIT Press, 1991.

13. J. Ja�ar, J.L. Lassez, \Constraint Logic Programming", Proc. of POPL'87, Mu-

nich. 1987.

14. J. Ja�ar, M.J. Maher, \Constraint logic programming: a survey", Journal of Logic

Programming, 19-20, 1994.

15. K. Kunen, \Negation in logic programming", Journal of Logic Programming, 4(3),

pp.289-308, 1987.

16. K. Kunen, \Signed data dependencies in logic programming", Journal of Logic

Programming, 7(3), pp.231-245, 1989.

17. J.W. Lloyd, \Foundations of Logic Programming", Springer Verlag. 1987.

18. M.J. Maher, \Logic semantics for a class of committed-choice languages", Proc.

4th International Conference on Logic Programming, pp.858-876, MIT Press, 1987.

19. M.J. Maher, \A logic programming view of CLP", Proc. 10th International Con-

ference on Logic Programming, pp.737-753, MIT Press, 1993.

20. M. Maher, P.J. Stuckey, \Expanding query power in constraint logic programming

languages", Proc. NACLP'89, MIT Press, 1989.

21. K. Marriott, P.J. Stuckey, \Semantics of CLP programs with optimization", Tech-

nical report, Univ. of Melbourne, 1993.

22. V. Saraswat, \Concurrent constraint programming", Proc. POPL'90, San Fran-

cisco, pp.232-245, 1990.

23. V. Saraswat, \Concurrent constraint programming", MIT Press, 1993.

24. P. Stuckey, \Constructive negation for constraint logic programming", Proc.

LICS'91, 1991.

25. P. Van Hentenryck, H. Simonis, M. Dincbas, \Constraint satisfaction using con-

straint logic programming", Arti�cial Intelligence 58, pp.11-159, 1992.

26. P. Van Hentenryck : "Constraint Satisfaction in Logic Programming", MIT Press

1989.

This article was processed using the L

a

T

E

X macro package with LLNCS style

