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Abstract

This paper leans on results of Baranovskii [1], [2]. The covering radius R(L) of
a lattice L is the radius of smallest balls with centers in points of L which cover all
the space spanned by L. R(L) is tightly related to minimal vectors of classes of the
quotient %L /L. The convex hull of all minimal vectors of a class @ is a Delaunay

polytope P(Q) of dimension < n,dimension of L. Let %vﬁm (+u?,,,) be a maximal

4 %Ymaz
squared radius of P(Q)) of dimension n (of dimension less than n, respectively). If

tu? o < o2 then R*(L) = 1v2,.. Thisis a case of the well-known Barnes-Wall
and Leech lattices. Otherwise, ivﬁm < RYL) < %u?mm, This is a refinement of a

result of Norton ([3], ch.22).

Let L be an n-dimensional lattice. There are two important normal (face-to-face)
partitions of the space R" related to the lattice L, namely the well-known Voronoi par-
tition and an L-partition. These partitions are combinatorially dual each to other: a
k-dimensional face of one partition is orthogonal to a (n — k)-dimensional face of the
other partition. A Voronoi partition consists of mutually congruent Voronoi polytopes.
An L-partition consists of Delaunay polytopes and, in general, contains noncongruent
polytopes.

A Delaunay polytope of a lattice I of dimension n is the convex hull of all points
of L lying on an empty sphere and spanning n-dimensional space. A sphere is called
empty if there is no lattice points in its interior. Here and below, we use only (n — 1)-
dimensional spheres. Since the L-partition is normal, each face of a Delaunay polytope of
the L-partition is a face of this L-partition.

There are only two types of Delaunay polytopes: symmetric and asymmetric. A
Delaunay polytope is called symmetric if the antipode of each its vertex is a vertex of
it. A Delaunay polytope is called asymmetric if it has no pair of antipodal vertices.
(Two vertices of a polytope inscribed in a sphere are antipodal if they are endpoints of a
diameter of this sphere.)

We distinguish lattice points and lattice vectors. If origin is in general position with
respect to a lattice, then we say that a vector with a lattice point as its endpoint represents
this lattice point. The difference of two vectors representing two lattice points is called



a lattice vector. If origin coincides with a lattice point, then any vector representing a
lattice point is a lattice vector.

It origin is a lattice point, then the lattice %L is well defined, and we can consider
the quotient %L/L. Minimal vectors of a class of %L/L are tightly related to symmetric
Delaunay polytopes. (A vector a of a set () is called minimal if it has minimal norm a?

among all vectors of ).)

Proposition 1 Let tv be a minimal vector of a class Q of the quotient 1L/L. Let S(Q)
be a sphere with the center in the point %v and squared radius r* = Lo, Then the sphere

1
S(Q) is empty.

Proof. If we take the point %v as origin, then each point of L is represented by a vector
a — v, where a is a lattice vector. Hence vectors a — v for all a € L belong to the class
(). Since %v is a minimal vector of (), the sphere S((Q)) does not contain lattice points of
L in its interior, i.e. it is empty. O

Let Qmin be the set of minimal vectors of the class ¢). Let P(Q) be the convex hull
of endpoints of vectors of @)i,. Baranovskii [1], [2] calls the polytope P(Q) by "primary
element” of the L-partition. Let H(Q) be the space spanned by Q. Clearly that all
lattice points of L lying on the empty sphere S(Q) lie in the space H(Q). Using definition

of a Delaunay polytope, we obtain
Corollary 1 P(Q) is a symmetric Delaunay polytope of the lattice L N H(Q). O

Example. Consider the polytopes P(Q) of the root lattice A,. A vector a € A, can be
written in the form a = Z?:"'ll zie;, where {¢; : 1 <7 <n+1} is an orthonormal basis of
R, 2 € Z and 3" z; = 0. A class of the quotient %An/An is uniquely determined by
aset T'C {1,2,....n+1} of even cardinality |T'|. Denote this class by ). Since there are
2" even subsets T of a (n + 1)-set, the classes Q7 exhaust all classes of %An/An. One can
easily to verify that minimal vectors of ()7 are vectors %ZZET ;¢;, where ¢; € {£1} and
Sieréi = 0. The polytope P(Qr) is a middle section of a |T|-dimensional unite cube.
Let |T'| = 2k, then 0 < k& < L”zllj The one-dimensional skeleton of P(Q)r) is the Johnson
graph J(2k, k). The squared radius of P(Qr) is equal to (3 Y ey ciei)? = 3T = 1k (see
also [3], ch.4, section 6).

Proposition 2 Let P be a symmetric Delaunay polytope of a lattice L with the center
in origin. Then vectors representing vertices of P are all minimal vectors of a class of

LL/L.

Proof. Since the vector connecting a pair of antipodal vertices of P is a lattice vector,
i.e. it belongs to L, the center of P belongs to %L. Hence, when the center of P is
origin, vectors representing points of L belong to a class () of %L/L. Clearly, the vectors
representing vertices of P are all minimal vectors of (). O

Proposition 3 Let P be a Delaunay polytope of a lattice L with a vertex in origin. Lel
v be the lattice vector representing a vertex of P. Let () be the class of %L/L containing
%v, and let P(Q) be convex hull of all minimal vectors of Q). Then

(i) v is minimal vector of @,

(ii) P(Q) is a symmetric face of P.



Remark. Proposition 3 is a reformulation of a result of Baranovskii ([1], Lemma 1).

Proof. Let n be dimension of L (and P). Let S, be the sphere of squared radius

1,2 : V| Col
707 with the center in the point jv. If we take the point 3

vectors representing points of L belong to the class ). Suppose that %v is not minimal
vector of (). Then the sphere S, contains in its interior points of L. Let u be such a point.

Then (u — $v)? < o2, ie.

v as a new origin, then the

u? < wo. (1)

Let @ be a vector representing the center of P. Then (w — x)? > 2 for all points w of L,
ie. w? > 2wz, with equality if w is a vertex of P. In particular, u*> > 2uz. Since v is a
vertex of P, the equality

v? = vz (2)

holds. We show that the point v — u € L belongs to the interior of the sphere S’ circum-
scribing P. We have

(v — u)2 —2(v —u)r = v? — 20u + u? — 2uz + 2uzx.
Using the equality (2) and the inequality 2ux < u?, we have
(v —u)? —2(v —u)z < 2(u?* —vu).

Using the inequality (1), we obtain that the point v — u lies in the interior of the sphere
S. This contradiction shows that %v is a minimal vector of ().

So, the sphere 5, is empty, and the convex hull of all points lying on S, is P(Q).

At first we show that all vertices of P((Q)) are vertices of P. This assertion is obvious
if there are only 2 minimal vectors :I:%v in the class Q). Let P(Q) has a vertex u distinct

from v and 0. Since (u — 1v)? = 1v? we have u?

5 1 = uv. Recall that the point v — u is also
a vertex of P(Q), since P(()) is symmetric. Hence the equality (v —u)? = (v — u)v holds.

Using (2) and the equality u* = uv, we obtain
(v — u)2 +u? =0 —u 4+ 2u? = vz = 2(v — u)x + 2ux.

Since u? > 2ux and (v — u)* > 2(v — u)z, the above equality shows that these last
inequalities hold as equalities. This means that v and v — u lie on the sphere S, and, by
definition of a Delaunay polytope, v and v — u are vertices of P.

Now we show that P(Q) is a face of P. Let H be a hyperplane spanning the intersection
SN S,. Clearly, P(Q) C H. Note that if z = %v, then S = 5, and H coincides with the
whole space spanned by L (and P). In this case P is symmetric and, by Proposition 2,
P = PQ).

Let S £ S,. Then H is a hyperplane which partitions the space spanned by L into two
open halfspaces. Let U be that of these halfspaces that does not contain the center = of
S. Then B,NU D> BNU, where B, (B) is the ball with the surface S, (5, respectively).
Since B, is empty and all points of L. on S, are contained in H N S,, BN U does not



contain vertices of P. This means that H is a hyperplane supporting P(Q), and P(Q) is
a face of P. O

We say that two faces of the L-partition are equivalent if one face can be obtained
from another by a translation or by central reflection.

Corollary 2 There is one-to-one correspondence between classes of equivalent symmetric
faces of the L-partition of a lattice L and polytopes P(Q) of classes of $L/L.

Proof. By Proposition 3, each symmetric face of the L-partition (as a face of a Delaunay
polytope) is equivalent to P(Q) for some class @ of £L/L. Proposition 1, Corollary 1 and
analysis of the proof of Proposition 3 show that converse is also true. O

Since any edge of a Delaunay polytope is a symmetric one-dimensional Delaunay
polytope, we obtain

Corollary 3 [-dimensional P(Q)’s describe all types of edges (i.e. classes of equivalent
edges) of Delaunay polytopes of a lattice.

Now we can deduce our main result. Recall that covering radius R(L) of a lattice L is
the greatest radius of spheres circumscribing Delaunay polytopes of L. Call a Delaunay
polytope deep (s-deep, a-deep, u-deep, respectively) if it has maximal radius among radii of
all (symmetric, asymmetric, symmetric of dimension less than n, respectively) Delaunay
polytopes of the L-partition of L. If L has symmetric Delaunay polytopes, then they are
P(Q) for some classes of £L/L. The squared radius of P(Q) is equal to $v?, where 1v

is a minimal vector of the class (). Let ivz be squared radius of a s-deep (symmetric)

maxr

Delaunay polytope of L of dimension n. Then clearly

1
RQ(L) > _p?

=4 max*
This bound is attained if L has a symmetric deep Delaunay polytope.

Let all deep Delaunay polytopes of L be asymmetric, and let iu?mm, be squared radius
of a u-deep (symmetric) face of the L-partition of L. So, iu?mm, is squared radius of a
u-deep polytope P(Q) (of dimension less than dimension of L).

Let P be an a-deep asymmetric Delaunay polytope of L with center . Obviously
TR*(L) is squared covering radius of L. Let P(Q) be the u-deep symmetric face of P.
Recall that the center y of P(Q)) belong to %L and note that y is one of the nearest to
x points of %L. Hence the squared distance between the centers of P(()) and P is not
greater than iRQ(L), since distance of any point of the space from a nearest point of %L

is not greater than $R(L). Therefore we have

1 1
2 < 1 p2 19
R (L) — 4R (L) —I_ 4umax7
i.e.
RQ(L) S _uznaac
We have



Theorem 1 Let 11)2 be the squared radius of an s-deep symmetric Delaunay polytope

maxr

of a lattice L. We set Upar = 0 if L has no symmetric Delaunay polytope of dimension
n. Let 1u2 be the squared radius of a u-deep symmetric face of the L-partition of L. If

max

u? <3 4 v? . then the squared covering radius of L is equal to
R*(L) = lv2
4 max

Otherwise, the following bounds on R*(L) hold:

The case u2,,, < 2v2,,, occurs in many well-known lattices. For example, this inequal-

ity is true for Leech lattlce Aoy, Barnes-Wall lattice Aqg, and root lattices Dgp, Fr, Fs.
Minimal vectors of the corresponding classes of 2L /L are described in the book [3] (ch.6,
section 5 for Barnes-Wall lattice; ch.10, Th.28 for Leech lattice; ch.6, section 3 for 7 and
Eg).

Recall that all Delaunay polytopes of the root lattice A,, are Johnson polytopes J(n +
1,k), 1 <k <[], All these polytopes are asymmetric, except J(n + 1, 2+) for n odd.
Using the given in above example description of polytopes P(Qr) of the root lattice A,
2 _ ntl 1.2  _op=l ;. 12 2(n — 1) > L = Ly2

1
for n odd, we obtain v, = "=, Jus ., = 5,16 SUL L, = 3 = Ve

Therefore, for the root lattice A, with odd n, we have R*(A,) = ”"'1 = l1)2 < %u

2
max max

Corollary 4 Let a lattice L has no symmetric Delaunay polytope. If L has an (asym-

metric) Delaunay polytope of squared radius then R*(L) = Ltu?

max} 3 “maz-
Corollary 4 is applied to the root lattice Eg, since R?*(Eg) = = and u? =4,
Note that the given here proof of the equality R*(L) = tv2 . for the Leech and

Barnes-Wall lattices is much more simple than one given in the book [3].

Recall that Baranovskii [2] discover that the 9-dimensional lattice A$® gives the
thinnest known lattice covering of a 9-dimensional space For this lattice, both the in-
equalities of Theorem 1 are strict: jv?,, = 1=, tu2 . =2, and R*(AJ°) =2

It is well known (see, for example, [3]) that all Delaunay polytopes of the lattice
Az, the dual of the root lattice A,,, are mutually congruent simplexes. Hence P(Q) is a
segment for all classes @ (distinct from zero class). For even n, the bound R*(L) < fu?,
gives a bound on the covering density § of A* which coincides with the following exact
value:

For odd n, the above upper bound on R?(L) gives the following upper bound on é:

n(n+2)+1 n/2
=M
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