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Abstract

This paper leans on results of Baranovskii [1], [2]. The covering radius R(L) of

a lattice L is the radius of smallest balls with centers in points of L which cover all

the space spanned by L. R(L) is tightly related to minimal vectors of classes of the

quotient

1

2

L=L. The convex hull of all minimal vectors of a class Q is a Delaunay

polytope P (Q) of dimension � n;dimension of L. Let

1

4

v

2

max

(

1

4

u

2

max

) be a maximal

squared radius of P (Q) of dimension n (of dimension less than n, respectively). If

1
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u

2

max

�

1
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v
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max

, then R

2

(L) =

1

4

v

2

max

. This is a case of the well-known Barnes-Wall

and Leech lattices. Otherwise,

1

4

v

2

max

� R

2

(L) �

1

3

u

2

max

. This is a re�nement of a

result of Norton ([3], ch.22).

Let L be an n-dimensional lattice. There are two important normal (face-to-face)

partitions of the space R

n

related to the lattice L, namely the well-known Voronoi par-

tition and an L-partition. These partitions are combinatorially dual each to other: a

k-dimensional face of one partition is orthogonal to a (n � k)-dimensional face of the

other partition. A Voronoi partition consists of mutually congruent Voronoi polytopes.

An L-partition consists of Delaunay polytopes and, in general, contains noncongruent

polytopes.

A Delaunay polytope of a lattice L of dimension n is the convex hull of all points

of L lying on an empty sphere and spanning n-dimensional space. A sphere is called

empty if there is no lattice points in its interior. Here and below, we use only (n � 1)-

dimensional spheres. Since the L-partition is normal, each face of a Delaunay polytope of

the L-partition is a face of this L-partition.

There are only two types of Delaunay polytopes: symmetric and asymmetric. A

Delaunay polytope is called symmetric if the antipode of each its vertex is a vertex of

it. A Delaunay polytope is called asymmetric if it has no pair of antipodal vertices.

(Two vertices of a polytope inscribed in a sphere are antipodal if they are endpoints of a

diameter of this sphere.)

We distinguish lattice points and lattice vectors. If origin is in general position with

respect to a lattice, then we say that a vector with a lattice point as its endpoint represents

this lattice point. The di�erence of two vectors representing two lattice points is called
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a lattice vector. If origin coincides with a lattice point, then any vector representing a

lattice point is a lattice vector.

If origin is a lattice point, then the lattice

1

2

L is well de�ned, and we can consider

the quotient

1

2

L=L. Minimal vectors of a class of

1

2

L=L are tightly related to symmetric

Delaunay polytopes. (A vector a of a set Q is called minimal if it has minimal norm a

2

among all vectors of Q.)

Proposition 1 Let

1

2

v be a minimal vector of a class Q of the quotient

1

2

L=L. Let S(Q)

be a sphere with the center in the point

1

2

v and squared radius r

2

=

1

4

v

2

. Then the sphere

S(Q) is empty.

Proof. If we take the point

1

2

v as origin, then each point of L is represented by a vector

a�

1

2

v, where a is a lattice vector. Hence vectors a�

1

2

v for all a 2 L belong to the class

Q. Since

1

2

v is a minimal vector of Q, the sphere S(Q) does not contain lattice points of

L in its interior, i.e. it is empty. 2

Let Q

min

be the set of minimal vectors of the class Q. Let P (Q) be the convex hull

of endpoints of vectors of Q

min

. Baranovskii [1], [2] calls the polytope P (Q) by "primary

element" of the L-partition. Let H(Q) be the space spanned by Q

min

. Clearly that all

lattice points of L lying on the empty sphere S(Q) lie in the space H(Q). Using de�nition

of a Delaunay polytope, we obtain

Corollary 1 P (Q) is a symmetric Delaunay polytope of the lattice L \H(Q). 2

Example. Consider the polytopes P (Q) of the root lattice A

n

. A vector a 2 A

n

can be

written in the form a =

P

n+1

i=1

z

i

e

i

, where fe

i

: 1 � i � n + 1g is an orthonormal basis of

R

n+1

, z

i

2 Z and

P

n+1

i=1

z

i

= 0. A class of the quotient

1

2

A

n

=A

n

is uniquely determined by

a set T � f1; 2; :::; n+1g of even cardinality jT j. Denote this class by Q

T

. Since there are

2

n

even subsets T of a (n+1)-set, the classes Q

T

exhaust all classes of

1

2

A

n

=A

n

. One can

easily to verify that minimal vectors of Q

T

are vectors

1

2

P

i2T

"

i

e

i

, where "

i

2 f�1g and

P

i2T

"

i

= 0. The polytope P (Q

T

) is a middle section of a jT j-dimensional unite cube.

Let jT j = 2k, then 0 � k � b

n+1

2

c. The one-dimensional skeleton of P (Q

T

) is the Johnson

graph J(2k; k). The squared radius of P (Q

T

) is equal to (

1

2

P

i2T

"

i

e

i

)

2

=

1

4

jT j =

1

2

k (see

also [3], ch.4, section 6).

Proposition 2 Let P be a symmetric Delaunay polytope of a lattice L with the center

in origin. Then vectors representing vertices of P are all minimal vectors of a class of

1

2

L=L.

Proof. Since the vector connecting a pair of antipodal vertices of P is a lattice vector,

i.e. it belongs to L, the center of P belongs to

1

2

L. Hence, when the center of P is

origin, vectors representing points of L belong to a class Q of

1

2

L=L. Clearly, the vectors

representing vertices of P are all minimal vectors of Q. 2

Proposition 3 Let P be a Delaunay polytope of a lattice L with a vertex in origin. Let

v be the lattice vector representing a vertex of P . Let Q be the class of

1

2

L=L containing

1

2

v, and let P (Q) be convex hull of all minimal vectors of Q. Then

(i)

1

2

v is minimal vector of Q,

(ii) P (Q) is a symmetric face of P .
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Remark. Proposition 3 is a reformulation of a result of Baranovskii ([1], Lemma 1).

Proof. Let n be dimension of L (and P ). Let S

v

be the sphere of squared radius

1

4

v

2

with the center in the point

1

2

v. If we take the point

1

2

v as a new origin, then the

vectors representing points of L belong to the class Q. Suppose that

1

2

v is not minimal

vector of Q. Then the sphere S

v

contains in its interior points of L. Let u be such a point.

Then (u�

1

2

v)

2

<

1

4

v

2

, i.e.

u

2

< uv: (1)

Let x be a vector representing the center of P . Then (w � x)

2

� x

2

for all points w of L,

i.e. w

2

� 2wx, with equality if w is a vertex of P . In particular, u

2

� 2ux. Since v is a

vertex of P , the equality

v

2

= 2vx (2)

holds. We show that the point v � u 2 L belongs to the interior of the sphere S circum-

scribing P . We have

(v � u)

2

� 2(v � u)x = v

2

� 2vu+ u

2

� 2vx+ 2ux:

Using the equality (2) and the inequality 2ux � u

2

, we have

(v � u)

2

� 2(v � u)x � 2(u

2

� vu):

Using the inequality (1), we obtain that the point v � u lies in the interior of the sphere

S. This contradiction shows that

1

2

v is a minimal vector of Q.

So, the sphere S

v

is empty, and the convex hull of all points lying on S

v

is P (Q).

At �rst we show that all vertices of P (Q) are vertices of P . This assertion is obvious

if there are only 2 minimal vectors �

1

2

v in the class Q. Let P (Q) has a vertex u distinct

from v and 0. Since (u�

1

2

v)

2

=

1

4

v

2

, we have u

2

= uv. Recall that the point v� u is also

a vertex of P (Q), since P (Q) is symmetric. Hence the equality (v�u)

2

= (v�u)v holds.

Using (2) and the equality u

2

= uv, we obtain

(v � u)

2

+ u

2

= v

2

� 2vu+ 2u

2

= 2vx = 2(v � u)x+ 2ux:

Since u

2

� 2ux and (v � u)

2

� 2(v � u)x, the above equality shows that these last

inequalities hold as equalities. This means that u and v � u lie on the sphere S, and, by

de�nition of a Delaunay polytope, u and v � u are vertices of P .

Now we show that P (Q) is a face of P . LetH be a hyperplane spanning the intersection

S \ S

v

. Clearly, P (Q) � H. Note that if x =

1

2

v, then S = S

v

and H coincides with the

whole space spanned by L (and P ). In this case P is symmetric and, by Proposition 2,

P = P (Q).

Let S 6= S

v

. Then H is a hyperplane which partitions the space spanned by L into two

open halfspaces. Let U be that of these halfspaces that does not contain the center x of

S. Then B

v

\ U � B \ U , where B

v

(B) is the ball with the surface S

v

(S, respectively).

Since B

v

is empty and all points of L on S

v

are contained in H \ S

v

, B \ U does not

3



contain vertices of P . This means that H is a hyperplane supporting P (Q), and P (Q) is

a face of P . 2

We say that two faces of the L-partition are equivalent if one face can be obtained

from another by a translation or by central re
ection.

Corollary 2 There is one-to-one correspondence between classes of equivalent symmetric

faces of the L-partition of a lattice L and polytopes P (Q) of classes of

1

2

L=L.

Proof. By Proposition 3, each symmetric face of the L-partition (as a face of a Delaunay

polytope) is equivalent to P (Q) for some class Q of

1

2

L=L. Proposition 1, Corollary 1 and

analysis of the proof of Proposition 3 show that converse is also true. 2

Since any edge of a Delaunay polytope is a symmetric one-dimensional Delaunay

polytope, we obtain

Corollary 3 1-dimensional P (Q)'s describe all types of edges (i.e. classes of equivalent

edges) of Delaunay polytopes of a lattice.

Now we can deduce our main result. Recall that covering radius R(L) of a lattice L is

the greatest radius of spheres circumscribing Delaunay polytopes of L. Call a Delaunay

polytope deep (s-deep, a-deep, u-deep, respectively) if it has maximal radius among radii of

all (symmetric, asymmetric, symmetric of dimension less than n, respectively) Delaunay

polytopes of the L-partition of L. If L has symmetric Delaunay polytopes, then they are

P (Q) for some classes of

1

2

L=L. The squared radius of P (Q) is equal to

1

4

v

2

, where

1

2

v

is a minimal vector of the class Q. Let

1

4

v

2

max

be squared radius of a s-deep (symmetric)

Delaunay polytope of L of dimension n. Then clearly

R

2

(L) �

1

4

v

2

max

:

This bound is attained if L has a symmetric deep Delaunay polytope.

Let all deep Delaunay polytopes of L be asymmetric, and let

1

4

u

2

max

be squared radius

of a u-deep (symmetric) face of the L-partition of L. So,

1

4

u

2

max

is squared radius of a

u-deep polytope P (Q) (of dimension less than dimension of L).

Let P be an a-deep asymmetric Delaunay polytope of L with center x. Obviously

1

4

R

2

(L) is squared covering radius of

1

2

L. Let P (Q) be the u-deep symmetric face of P .

Recall that the center y of P (Q) belong to

1

2

L and note that y is one of the nearest to

x points of

1

2

L. Hence the squared distance between the centers of P (Q) and P is not

greater than

1

4

R

2

(L), since distance of any point of the space from a nearest point of

1

2

L

is not greater than

1

2

R(L). Therefore we have

R

2

(L) �

1

4

R

2

(L) +

1

4

u

2

max

;

i.e.

R

2

(L) �

1

3

u

2

max

:

We have
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Theorem 1 Let

1

4

v

2

max

be the squared radius of an s-deep symmetric Delaunay polytope

of a lattice L. We set v

max

= 0 if L has no symmetric Delaunay polytope of dimension

n. Let

1

4

u

2

max

be the squared radius of a u-deep symmetric face of the L-partition of L. If

u

2

max

�

3

4

v

2

max

, then the squared covering radius of L is equal to

R

2

(L) =

1

4

v

2

max

:

Otherwise, the following bounds on R

2

(L) hold:

1

4

v

2

max

� R

2

(L) �

1

3

u

2

max

:2

The case u

2

max

�

3

4

v

2

max

occurs in many well-known lattices. For example, this inequal-

ity is true for Leech lattice �

24

, Barnes-Wall lattice �

16

, and root lattices D

2k

, E

7

, E

8

.

Minimal vectors of the corresponding classes of

1

2

L=L are described in the book [3] (ch.6,

section 5 for Barnes-Wall lattice; ch.10, Th.28 for Leech lattice; ch.6, section 3 for E

7

and

E

8

).

Recall that all Delaunay polytopes of the root lattice A

n

are Johnson polytopes J(n+

1; k), 1 � k � b

n+1

2

c. All these polytopes are asymmetric, except J(n+1;

n+1

2

) for n odd.

Using the given in above example description of polytopes P (Q

T

) of the root lattice A

n

,

for n odd, we obtain

1

4

v

2

max

=

n+1

2

,

1

4

u

2

max

=

n�1

2

, i.e.

1

3

u

2

max

=

2

3

(n � 1) >

n+1

2

=

1

4

v

2

max

.

Therefore, for the root lattice A

n

with odd n, we have R

2

(A

n

) =

n+1

2

=

1

4

v

2

max

<

1

3

u

2

max

.

Corollary 4 Let a lattice L has no symmetric Delaunay polytope. If L has an (asym-

metric) Delaunay polytope of squared radius

1

3

u

2

max

, then R

2

(L) =

1

3

u

2

max

. 2

Corollary 4 is applied to the root lattice E

6

, since R

2

(E

6

) =

4

3

and u

2

max

= 4.

Note that the given here proof of the equality R

2

(L) =

1

4

v

2

max

for the Leech and

Barnes-Wall lattices is much more simple than one given in the book [3].

Recall that Baranovskii [2] discover that the 9-dimensional lattice A

+5

9

gives the

thinnest known lattice covering of a 9-dimensional space. For this lattice, both the in-

equalities of Theorem 1 are strict:

1

4

v

2

max

=

9

16

,

1

3

u

2

max

=

3

4

, and R

2

(A

+5

9

) =

3

5

.

It is well known (see, for example, [3]) that all Delaunay polytopes of the lattice

A

�

n

, the dual of the root lattice A

n

, are mutually congruent simplexes. Hence P (Q) is a

segment for all classes Q (distinct from zero class). For even n, the bound R

2

(L) �

1

3

u

2

max

gives a bound on the covering density � of A

�

n

which coincides with the following exact

value:

� =

p

n+ 1

 

n(n+ 2)

12(n + 1)

!

n=2

:

For odd n, the above upper bound on R

2

(L) gives the following upper bound on �:

� �

p

n+ 1

 

n(n+ 2) + 1

12(n + 1)

!

n=2

:
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