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Abstract

We study the skeleton of several polytopes related to the n-cube, the halved

n-cube, and the folded n-cube. In particular, the Gale polytope of the n-cube,

its dual and the duals of the halved n-cube and the complete bipartite sub-

graphs polytope.

1 Introduction

The general references are [?, ?, ?] for polytopes, [?] for graphs and [?] for lattices.

We �rst recall some basic properties of the cube and the halved cube.

The vertices of the n-cube 

n

= [0; 1]

n

are all the 2

n

characteristic vectors �

S

for

S � N = f1; 2; : : : ; ng, that is, �

S

i

= 1 for i 2 S and 0 otherwise. With jS�S

0

j

denoting the size of the symmetric di�erence of the subsets S and S

0

, two vertices

�

S

and �

S

0

are adjacent if and only if jS�S

0

j = 1. The skeleton of 

n

is denoted by

H(n; 2) and the skeleton of its dual, the cross-polytope �

n

= 

�

n

, is K

2�n

, which is

also called the Cocktail-Party graph. The diameter of the n-cube and its dual are,

respectively, n and 2.

The halved n-cube h

n

(see Section 8:6 of [?]) is obtained from the n-cube 

n

by

selecting the vertex of even cardinality on each edge, that is, h

n

is the convex hull

of all the 2

n�1

characteristic vectors �

S

for S � N = f1; 2; : : : ; ng and jSj even. Two

vertices �

S

and �

S

0

are adjacent if and only if jS�S

0

j = 2. The skeleton of the halved

n-cube is denoted by

1

2

H(n; 2); its diameter is b

n

2

c.
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2 Skeleton of the dual halved n-cube

The halved 3-cube is a regular tetrahedron �

3

. The halved 4-cube is the simplicial

polytope h

4

= �

4

. For n > 4, the facets of h

n

-cube are partitioned into the following

two orbits of its symmetry group 2

n�1

Sym(n). The orbit O

n

1

consists of the 2n facets

belonging to the facets of the n-cube and de�ned by the inequalities:

x

i

� 1 for i 2 N , (1)

x

i

� 0 for i 2 N . (2)

The orbit O

n

2

consists of the 2

n�1

facets cutting o� the vertices of odd cardinality

from the n-cube and de�ned by the inequalities:

n

X

i=1

x

i

(1� 2�

A

i

) � jAj � 1 for A � N and jAj odd. (3)

The facets de�ned by the inequalities (1), (2) and (3) are respectively denoted by

F

i

1

, F

i

0

and F

A

. Since the symmetries of a polytope preserve adjacency and linear

independence, we can describe the properties of its facets by simply considering a

representative facet of each orbit. The facets F

i

1

' F

i

0

' h

n�1

(here and in the

following \ ' " denotes the a�ne equivalency) and each facet F

A

is the simplex

containing the n vertices: �

A[fig

for i 2

�

A and �

Anfig

for i 2 A.

The skeleton of the dual halved n-cube, denoted by h

�

n

, is the graph whose nodes

are the facets of h

n

, two facets being adjacent if and only if their intersection is a

face of codimension 2. This skeleton is given below.

Lemma 2.1 The facets of O

n

1

and O

n

2

form, respectively, the coclique

�

K

2n

, and the

coclique

�

K

2

n�1
; each facet F

A

is adjacent, either to F

i

1

if i 2 A, or to F

i

0

if i 2

�

A for

each i 2 N .

Corollary 2.2 For n � 4, the skeleton of the dual halved n-cube is a bipartite graph

of diameter 4.

Proof. Since the valency of a facet belonging to O

n

1

, respectively to O

n

2

, is half

the size of O

n

2

, respectively of O

1

, we have �(h

�

n

) � 4. On the other hand, the facets

F

i

1

and F

i

0

, having no common neighbour, we get �(h

�

n

) > 3. 2
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Corollary 2.3 The halved n-cube has n 2

n�2

faces of codimension 2 which are all

simplices, that is h

n

is quasi-simplicial. For n!1, h

n

is asymptotically simplicial.

Proof. Since the number of faces of codimension 2 of a polytope is half of the

total valency of the skeleton of its dual, the result is a straightforward calculation. All

faces of codimension 2 being incident to the simplex facets of h

n

, the halved n-cube

is a quasi-simplicial. 2

3 Gale transform of the n-cube

Let A be a (2

n

� n � 1) � 2

n

matrix which rows form a basis for the space of all

the a�ne dependencies on the vertices of the n-cube. A Gale transform of 

n

is the

collection of the 2

n

points in IR

2

n

�n�1

which are the columns of A.

We consider the matrix A induced by the following 2

n

�n� 1 a�ne dependencies

on the vertices of 

n

:

(1� jT j)�

;

+

X

i2T

�

fig

� �

T

= 0 for T � N and jT j � 2: (4)

Since each column of A corresponds to a vertex �

S

of 

n

for S � N , we simply

denote by v

S

the vector formed by this column of A. For example, the �rst column

of A corresponds to �

;

and forms the vector v

;

which 2

n

� n� 1 coordinates are

v

;

T

= (1� jT j), where IR

2

n

�n�1

is naturally indexed by T � N , jT j � 2.

A Gale polytope, Gale(P ), of a polytope P is the convex hull of a Gale transform

of P . In the following we consider Gale(

n

) associated to the a�ne dependencies (4).

The polytope Gale(

3

) is a prism over a tetrahedron; see also Example 5.6 in [?] for

relation with Lawrence polytopes. For n � 4, we introduce some edges and facets of

Gale(

n

) in order to compute its diameter and the one of its dual.

Consider the following inequalities, where x

T

for T � N and jT j � 2 are the

coordinates of a point x in IR

2

n

�n�1

indexed by T � N , jT j � 2.

�x

A

� 1 for jAj = 2, (e

1

)

x

Anfig

� x

A

� 1 for jAj � 3 and i 2 A, (e

2

)

x

A

� 1 for jAj = 2, (e

3

)

x

A[fig

� x

A

� 1 for jAj � 2 and i 62 A, (e

4

)

2

X

j2N

x

fjg

�2x

fig

+(n�1)(x

N

�1) �0 for i 2 N , (e

5

)
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X

jT j�2

x

T

� 2

n

(x

A

+x

B

) � 2

n

�1 for jAj; jBj �2 and 2(jAj+jBj) � n+3. (e

6

)

One can easily check that each of those inequalities induces an edge of Gale(

n

). More

precisely, (e

1

) and (e

2

) induce the edges [v

;

; v

A

] for jAj � 2, (e

3

); (e

4

) and (e

5

) induce

the edges [v

i

; v

A

] for jAj � 1 and i 62 A or A = N and (e

6

) induce the edges [v

A

; v

B

]

for jAj; jBj � 2 and 2(jAj+ jBj) � n+ 3.

Property 3.1 The diameter of Gale(

n

) is at most 2. Moreover, �(Gale(

3

)) = 2

and �(Gale(

4

)) = 1.

Proof. The vertices v

;

and v

A

are respectively linked by the edges [v

;

; v

N

] and

[v

N

; v

A

] for jAj = 1 and by the edge [v

;

; v

A

] for jAj � 2. The vertices v

i

and v

j

always form an edge, v

i

and v

A

are linked by [v

i

; v

j

] and [v

j

; v

A

] with j 62 A, for

2 � jAj � n� 1, and [v

i

; v

N

] form an edge. Finally, the vertices v

A

and v

B

are linked

by the edges [v

A

; v

;

] and [v

;

; v

B

] for jAj; jBj � 2. 2

We then consider the following 2

n�1

inequalities.

2

n�1

x

�

A

�

X

jT j�2

x

T

� 1 for A � N and jAj � 1;

2

n�1

(x

A

+ x

�

A

)�

X

jT j�2

x

T

� 1 for A � N and 2 � jAj � n � 1:

One can easily check that each of those inequalities induces a facet G

A

of Gale(

n

)

for A � N and jAj � n� 1. Since each facet G

A

contains all vertices except the pair

fv

S

; v

�

S

g, we call them the huge facets.

Lemma 3.2 The huge facets form the clique K

2

n�1
in the skeleton of Gale

�

(

n

).

Proof. Let us �rst consider g = G

A

\G

B

with A;B � N and 2 � jAj; jBj � n�1.

The face g contains all the vertices of Gale(

n

) except fv

A

; v

�

A

; v

B

; v

�

B

g. We show that

g is of codimension 2 by exhibiting a family V of 2

n

� n � 2 a�nely independent

vertices belonging to g, this will imply that G

A

and G

B

are adjacent. Namely, V

is formed by the vertices v

S

with S 62 fA;

�

A;B;

�

Bg and jSj � 2 and the vertices

fv

i

; v

j

g with 1 � i < j � n such that v

i

A

= v

j

B

= 1 and v

i

B

= v

j

A

= 0. In the case

0 � jAj; jBj � 1, V is formed by the vertices v

S

with S 62 f

�

A;

�

Bg and jSj � 2. Finally,

in the case 0 � jAj � 1 and 2 � jBj � n � 1, V is formed by the vertices v

S

with

S 62 f

�

A;B;

�

Bg and jSj � 2 and the vertex v

;

. 2
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Property 3.3 The huge facets form a dominating clique in the skeleton of Gale

�

(

n

).

Proof. Since the pairs fv

S

; v

�

S

g form a partition of all the vertices of Gale(

n

),

for any facet F , at least one huge facet G

A

satis�es jG

A

\ F j = jF j � 1. This implies

that G

A

is adjacent to F ; in other words, the huge facets form a dominating clique.

2

Corollary 3.4 The diameter of Gale

�

(

n

) is at most 3. Moreover, it is 2 for n = 3; 4.

Conjecture 3.5 For n � 4, the diameters of the Gale polytope of the n-cube and of

its dual are 1 and 2, respectively.

4 Complete bipartite subgraphs polytope

We recall that the folded n-cube 2

n

is the graph whose vertices are the 2

n�1

partitions of N = f1; : : : ; ng into two subsets, S and

�

S; two partitions being adjacent

when their common re�nement contains a singleton. In particular, 2

4

= K

4;4

and

�

2

5

=

1

2

H(5; 2), also called the Clebsch graph.

The complete bipartite subgraphs polytope c

n

, which is also called the cut polytope

of the complete graph, is a relative of the folded n-cube. More precisely, the vertices

of c

n

are the 2

n�1

incidence vectors �(S) in IR

(

n

2

)

of the partitions of N , that is,

�(S)

ij

= 1 if exactly one of i, j is in S and 0 otherwise for 1 � i < j � n. It is easy to

check that the squared Euclidian distance between two partitions, seen as vertices of

c

n

, is d(n � d), where d is their path distance, in the graph 2

n

. Now, c

3

= h

3

= �

3

and c

4

is combinatorially equivalent to the simplicial 6-dimensional cyclic polytope

with 8 vertices. The symmetry group of c

n

is isomorphic to the automorphism group

of 2

n

, see [?]. See [?] for a detailed treatment of c

n

.

The skeleton of c

n

is the clique K

2

n�1
, see [?].The determination of all the facets

of c

n

for large n seems to be hopeless, but a wide range of facets has been already

found (including all for n � 7). It seems that the huge majority of them are simplices

for large n, that is, c

n

is asymptotically simplicial, as well as h

n

,. In [?] it was

conjectured (and proved for n � 7) that �(c

�

n

) � 4; moreover, �(c

�

4

) = �(c

�

5

) = 2 and

�(c

�

6

) = 3. Actually, the skeleton of c

�

4

is the line graph of the folded 4-cube.

Remark 4.1 Using the basis of the space of a�ne dependencies on c

5

given in [?],

we found by computer that Gale(c

5

) ' h

5

; recall that

�

2

5

=

1

2

H(5; 2). Clearly,

Gale(h

4

) ' �

3

and Gale(h

5

) ' c

5

; more generally, for n odd, Gale(h

n

) can be

obtained from the following basis of 2

n�1

� n� 1 a�ne dependencies:

5



(n� 1)

X

i2X

x

Nnfig

� jAj

X

i2N

x

Nnfig

+ (n� 1)x

A

= 0 for jAj even, 2 � jAj � n� 2.

Finally, we mention cont

m

, the contact polytope of the lattice ZZ(V

m

) in IR

(

m

2

)

studied in [?], where V

m

denotes the set of vertices of c

m

, that is, cont

m

is the convex

hull of all vectors of this lattice having the minimal length � = min(4;m�1). Clearly,

it comes from the construction A given in Chapters 5, 7 of [?] with V

m

seen as a linear

binary code with n =

�

m

2

�

, M = 2

m�1

and d = m� 1. We have,

� cont

2

= convf�e

1

g = �

1

and ZZ(V

2

) = ZZ = A

1

,

� cont

3

= convf�e

i

� e

j

: 1 � i 6= j � 3g is the cubo-octahedron (the vertices of

this Archimedean solid are the midpoints of the edges of 

3

) and ZZ(V

3

) is the

face-centered cube lattice A

3

�

=

D

3

,

� cont

4

= convf��(i);��(i)� 2e

ij

: 1 � i 6= j � 4g ' h

6

,

� cont

5

is a 10-polytope with the following 100 vertices: f�2e

ij

: 1 � i � j � 5g

[ f�(i)�2

P

fjkg2X

e

jk

: 1 � i � 5, X � E(K

i;f1;2;3;4;5g�i

). So, cont

5

is the union

of 2�

10

and �ve 4-cubes 

4

, this polytope has 4 624 facets divided into 4 orbits

of its symmetry group 2

5

Sym(5), moreover, the orbit formed by the 384 facets

equivalent to the one induced by the inequality

P

fijg2C

1;2;3;4;5

x

ij

� 2 forms a

dominating set in the skeleton of cont

�

5

,

� for m � 6, cont

m

= convf�2e

ij

: 1 � i � j � mg ' �

(

m

2

)

.

So, the kissing number of the lattice, that is the number of vertices of cont

m

, is

� = 2; 12; 32; 100;m(m � 1) for m = 2; 3; 4; 5;� 6.

Figure 4.1: The contact polytope of ZZ(V

3

) is a cubo-octahedron

6



References

1. F. Barahona and R. Mahjoub, \On the cut polytope", Mathematical Program-

ming 36 (1986) 157-173.

2. M. Bayer and C. Lee, \Combinatorial aspects of convex polytopes ", in P. Gruber

and J. Wills (eds.) Handbook on Convex Geometry, North Holland (1994) 485-

534.

3. L. Billera, P. Filliman and B. Sturmfels, \Constructions and complexity of sec-

ondary polytopes", Advances in Mathematics 83 (1990) 155-179.

4. A. Brouwer, A. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-

Verlag, Berlin, 1989.

5. J. Conway and N. Sloane, Sphere Packing, Lattices and Groups 290 Grundlehren

der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1987.

6. H. Coxeter, Regular Polytopes, Second edition, McMillan 1963, corrected reprint,

Dover, New York, 1973.

7. A. Deza and M. Deza, \On the skeleton of the dual cut polytope", Proceedings

of Jerusalem Combinatorics 93, to appear in H. Barcelo and G. Kalai (eds.)

Contemporary Mathematics (1994).

8. M. Deza, \Isometries of hypergraphs", Proceedings of the International Con-

ference on the Theory of Graphs, in A. Rao (ed.), McMillan, Calcutta (1979)

174-189.

9. M. Deza and V. Grishukhin, \Cut polytopes and its lattices", Rapport de

Recherche du LIENS 94-18, Ecole Normale Sup�erieure, Paris (1994).

10. M. Deza, V. Grishukhin and M. Laurent, \The symmetries of the cut polytope

and of some relatives", in P. Gritzmann and B. Sturmfels (eds.) Applied Geome-

try and Discrete Mathematics, the "Victor Klee Festschrift" DIMACS Series in

Discrete Mathematics and Theoretical Computer Science 4 (1991) 205-220.

11. M. Deza, M. Gr�otschel and M. Laurent, Cuts and Metrics (book in preparation).

12. G. Ziegler, Lectures on Polytopes, (book to appear).

7


