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Abstract

This paper deals with logic programs containing two kinds of negation: negation

as failure and explicit negation, allowing two di�erent forms of uncertainty reasoning

in the presence of incomplete information. Such programs have been introduced by

Gelfond and Lifschitz and called extended programs. We provide them with a logical

semantics in the style of Kunen, based on Belnap's four-valued logic, and an answer

sets' semantics that is shown to be equivalent to that of Gelfond and Lifschitz.

The proofs rely on a translation into normal programs, and on a variant of

Fitting's extension of logic programming to bilattices.

1 INTRODUCTION

One of the striking features of logic programming is that it naturally supports various

forms of non-monotonic reasoning, by means of negative litterals. Simply infering neg-

ative information from a positive program is already a form of non-monotonic inference

that shows essential di�erences between the two main approaches to the model-theoretic

semantics of logic programs: namely the standard model approach and the program's

completion approach.

In the standard model approach, the semantics of a positive program is identi�ed to

the least Herbrand model of the program. Then :A must be infered if A is false in

the least Herbrand model of the program. In the program's completion approach, the

clauses de�ning the same predicate are read as a de�nition of the predicate using an

equivalence connective in place of implications. Then :A must be inferred if :A is a

logical consequence of the completion of the program.

From a programming language point of view, the standard model approach is not viable

because it is highly undecidable. From a knowledge representation point of view however,

standard models correspond naturally to the intended semantics of programs. Therefore
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the challenge is to provide constructs that capture the essential aspects of standard

models, in a recursively enumerable setting.

In the framework of normal programs which allow negation inside program clause bod-

ies, the stable models of [10] provide a general notion of standard model. Stable models

however may not exist or may not be unique. Strati�ed and perfect models [3], are

particular cases of stable models uniquely de�ned for restricted classes of normal pro-

grams. Three-valued standard models have also been de�ned to resolve the di�culty

of existence and uniqueness of a standard model for normal programs. None of these

notions of standard model for normal programs however is computable so any concrete

operational semantics is necessarily incomplete.

On the other hand, the completion of a normal program may be inconsistent, e.g. with

P = fp :�:pg, P

�

= fp$ :pg, in which case any litteral should be infered. In order to

resolve these di�culties, Kunen proposed to take the set of the consequences in three-

valued logic of the program's completion as the declarative semantics of the program.

In the previous example, taking the third truth value u for p provides a model of P

�

as

u$ :u. Kunen proved a completeness result [16] for the negation as failure rule w.r.t.

the three-valued completion of the program, followed by stronger completeness results

obtained by [17] for the constructive negation rule.

In this paper we study extended logic programs as introduced by Gelfond and Lifschitz

[11, 12] (see also [19, 1]) to deal with two kinds of negation: explicit negation allowed in

clause heads and bodies and negation by failure allowed in clause bodies only. These two

negations allow two di�erent forms of uncertainty reasoning in the presence of incomplete

information: to infer notA, you may want to know that A cannot be infered (it is the

case of negation by failure =A), or you may require an explicit inference process for

notA, when e.g. the closed world assumption cannot be made on A (it is the case of

explicit negation :A).

We develop a 9-valued Kunen-style semantics for extended programs and study the

existence of 4-valued Belnap's models for extended programs. Because the negation as

failure connective is not monotonic w.r.t. the knowledge ordering, our construction is

not an instance of the bilattice extension of logic programming proposed by Fitting in

[9], it corresponds rather to an extension of this frame to incorporate negation as failure.

Furthermore we show that the answer sets of [12] correspond to a notion of standard

4-valued Belnap's models, and we suggest with examples that our computable semantics

captures essential aspects of the answer set semantics for extended programs.

2 BELNAP'S LOGIC

In [4] Belnap introduced a four-valued logic intended to deal in a useful way with incon-

sistent or incomplete information (see also [2]).

The best way to interpret Belnap's truth values is to think of them as sets of clas-

sical truth values: we write t for ftrueg, f for ffalseg, ? for ; (indicating a lack of

information) and > for ftrue; falseg (indicating inconsistency).
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This set of truth values has two natural orderings: one is the subset relation, the knowl-

edge ordering (vertical ordering in the picture), and the other one (horizontal ordering

in the picture) represents the degree of truth. In this way, inconsistency (>) and lack

of information (?) cannot be distinguished according to the truth ordering. Each of

these orderings provides the set of truth values with the structure of a lattice, so that

the whole structure can be considered as the simplest non-trivial bilattice [13, 8].

Meet and join under the truth ordering are denoted ^ and _; they are generalizations

of the usual conjunction and disjunction. Meet and join under the knowledge ordering

are denoted 
 and �, respectively consensus and gullability operators; but we shall not

need them in our extended logic programs. On the other hand, there is a natural notion

of negation :, which 
ips the diagram from left to right, switching f and t, leaving ?

and > alone.

In [9] Fitting proposes an extension of logic programming to bilattices: to execute a

bilattice logic program, you just compute the actual (truth) value v of the body of

a clause and replace the value of the head by v. Since all connectives considered by

Fitting are monotone w.r.t. the knowledge ordering, this mechanism amounts to adding

information to the fact base: your knowledge about the situation increases (but not

necessarily following the truth ordering).

In this paper, we consider also connectives that are non-monotonic w.r.t. the knowledge

ordering, namely negation as failure slash /, which 
ips the diagram from bottom-left

to top-right, switching f and >, and t and ?. Hence our logic programming with two

negations is not an instance of logic programming on a bilattice in the sense of Fitting.

3 SYNTAX OF EXTENDED LOGIC PROGRAMS

The idea behind our extended programs is that, when dealing with possibly incomplete

or inconsistent information, the deduction process of the falsity of a sentence A has
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to be independent from that of the truth of A. Such a deduction process (e.g. logic

program) should then be able to infer negative information in another way than does

the usual negation as failure, namely it should be able to infer \explicitly" negated

information as well as positive one. In order to do this, one has to distinct between two

kinds of negation: explicit negation (denoted :) and negation as failure (denoted /).

Not unexpectedly, : will be allowed to occur in the head of clauses (but not /).

Syntactically, our extended programs look like the ones of Gelfond and Lifschitz [11, 12],

with negation as failure denoted / instead of not. This is intensional, and indeed we will

see (Section 5) that their answer sets are (almost) models of the completed program, if

negation as failure is interpreted by the connective / of Belnap's logic. (Gelfond and

Lifschitz's de�nition of answer set includes a rule that globalizes contradictions, saying

that a program which implies both A and :A implies everything, and that is removed

in our de�nition.)

Though sharing some resemblance with Fitting's logic programming on bilattices (see [9]

and [13] for motivation on bilattices), there is one essential di�erence: the connectives

considered by Fitting are all monotone in the inference ordering (the \knowledge" order-

ing of the bilattice), whereas negation as failure has to be represented by a non-monotone

connective (/ is indeed not monotone under this knowledge ordering). Roughly speak-

ing, as we shall see in the next Section, our extended programs are to Fitting's programs

on Belnap's logic, what programs with negation as failure are to positive programs.

Programs: we assume our language L to be �xed, and contain, for each n � 0, a

countable set of n-ary function symbols and a countable set of n-ary predicate symbols;

in addition, L has a symbol = for equality, that never occurs in a program, but is used

in forming the s.c. completed program. The set V of variables is �xed as well.

Atomic formulas are de�ned as usual from L and V . A classical literal is an atomic

formula or the explicit negation :A of an atomic formula A. A (general) literal is a

classical literal or the =-negation =L of a classical literal L. A literal of the form =L is

called a slashed literal. A clause is of the form:

L

0

:� L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

;

where the L

i

are classical literals, 0 � m � n, and commas stand as usual for con-

junctions ^. If n = 0, we just write L

0

. L

0

is called the head of the clause, and

(L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

) its body. Note that a clause admits explicitly negated lit-

erals in its head. An (extended) program is a �nite set of clauses.

Call-consistency: let PRED be the set of all predicate symbols or :-negated predicate

symbols. Let P be a given program. If p; q 2 PRED, we de�ne (as in [16]) p w

+1

q i� P

contains a clause in which p occurs in the head and q occurs in a classical (not-slashed)

literal of the body. We say p w

�1

q i� P contains a clause in which p occurs in the

head and q occurs in a slashed literal of the body. Let �

+1

and �

�1

be the least pair of

relations on PRED satisfying: p �

+1

p and p w

i

q & q �

j

r ) p �

i�j

r.

We say that P is call-consistent i� we never have p �

�1

p, i.e. no predicate symbol or

:-negated predicate symbol p is de�ned negatively from itself.
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Strati�ed and p.o.c. extended programs: following [10] we say that an extended

program P is strati�ed (resp. locally strati�ed) i� no predicate symbol or :-negated

predicate symbol (resp. ground symbol) depends on itself through at least one / negation

(but any positive number, odd or even).

Following [6] we say that an extended program P is positive order consistent (p.o.c.)

i� the graph of positive (w.r.t. /) dependance among ground classical litterals has no

in�nite decreasing chain.

4 9-VALUED KUNEN-STYLE SEMANTICS VIA

BELNAP'S LOGIC

In the usual case (programs without explicit negation :), the semantics is 3-valued, and

this corresponds to the three possible situations for a ground query: `yes' answer (true),

�nite failure (false) and looping (unde�ned).

In the case of programs with both negations, the answers concerning the truth and falsity

of a query are completely independant. So the truth value assigned to a formula A will

be a couple of classical truth values (true, false, unde�ned), the 1

st

element of this couple

corresponding to the knowledge about the truth of A, and the 2

nd

one corresponding

to the knowledge about its falsity. Hence logic programs with both negations shall be

provided with a 9-valued Kunen-sytle semantics.
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Truth values are then handled as points in a square, whose coordinates are set ac-

cording to the picture. For instance, t = (1; 0), ? = (0; 0): : : We can de�ne two
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projections on truth values: �

1

(x; y) = x and �

2

(x; y) = y, where x; y 2 f0; u; 1g.

Now de�ne an order <

t

on f0; u; 1g by 0 <

t

u <

t

1, and the order-reversing function

v 7! v by 0 = 1, 1 = 0 and u = u: then we may extend the connectives de�ned in

Section 2 by (v

1

; v

2

) ^ (w

1

; w

2

) = (min

<

t

(v

1

; w

1

);max

<

t

(v

2

; w

2

)), (v

1

; v

2

) _ (w

1

; w

2

) =

(max

<

t

(v

1

; w

1

);min

<

t

(v

2

; w

2

)), :(v

1

; v

2

) = (v

2

; v

1

) and =(v

1

; v

2

) = (v

1

; v

2

).

In addition to the preceding connectives, we shall need one more connective $ for the

de�nition of the completed program (see below): v $ w is t i� �

1

(v) = �

1

(w) and f

otherwise.

4.1 COMPLETED PROGRAM AND 9-VALUED MODELS

Completed program.

Let L(�

1

; :::; �

n

) :� � be a clause, with variables Y

1

: : :Y

j

. Its normalization is

L(X

1

; :::; X

n

) :� 9Y

1

� � �9Y

j

(X

1

= �

1

^ :::^X

n

= �

n

^ �)

where X

1

: : :X

n

are new variables.

Let P be an extended program and L(X

1

; :::; X

n

) :�  

i

(1 � i � m) be the m normal-

izations of the clauses in P where L occurs in the head. Then the completed de�nition

of the n-ary classical literal L is 8X

1

� � � 8X

n

(L(X

1

; :::; X

n

)$  

1

_ � � � _  

m

). If m = 0,

we just write =L(X

1

; :::; X

n

).

Now the completed program P

?

is the set of the completed de�nitions of all classical

literals, together with the axioms of Clark's equational theory CET (see [5]).

9-Valued structures.

A 9-valued structure A for the �xed language L consists of a nonempty set A (the domain

of interpretation), and:

(i) for every n-ary function symbol f , A(f) : A

n

! A is a n-ary function,

(ii) for every n-ary predicate symbol p other than =, A(p) is a mapping from A

n

to the

set of 9 truth values; A(=) is always true identity, i.e., A(=)(a; b) is t i� a and b are the

same object and f otherwise.

A 4-valued structure is simply a 9-valued structure in which, for every predicate p, neither

�

1

(A(p)) nor �

2

(A(p)) takes the value u. As usual, the interpretation is extended to

formulas according to the 9-valued truth tables (de�ned above componentwise); for the

quanti�ers, we de�ne obviously A(9X�) =

W

a2A

A(�(a)) and A(8X�) =

V

a2A

A(�(a)).

We say that the 9-valued structure A is a model of the completed program P

?

, denoted

A j=

9

P

?

, i� all formulas in P

?

have truth value t in A. If A is in fact a 4-valued

structure, then we write A j=

4

P

?

.

Extensions.

Let <

k

be the ordering on f0; u; 1g such that u <

k

0 and u <

k

1. If A and B are two

9-valued structures, we shall say that B is an extension of A i� A and B have the same

domain of interpretation and agree on the interpretations of all function symbols, and for

each ground formula �, �

1

(A(�)) �

k

�

1

(B(�)) and �

2

(A(�)) �

k

�

2

(B(�)). The natural

ordering between extensions is induced by the ordering �

k

de�ned component-wise on

the 9 truth values from �

k

.
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Intuitively, an extension of A is \less unde�ned" than A. It is a concept di�erent from

that of \expansion" (see [16]) and more natural in our context, but Kunen's proofs of

interest for us can be easily adapted to the notion of extension.

To see this, let us come back temporary to the classical setting and recall the de�nition

of an expansion: if P and Q are sets of predicate symbols, P � Q, M is a 3-valued P-

structure (i.e. a structure that interprets only predicate symbols in P) and N a 3-valued

Q-structure, then N is called an expansion ofM ifM and N have the same domain and

agree on the interpretations of all function symbols and predicate symbols in P . Let us

de�ne an extension of a classical 3-valued structureM to be a 3-valued structure N such

that for every formula �,M(�) �

k

N (�). If P is a set of predicate symbols andM is a

3-valued P-structure, let M

P

denote the structure such that M

P

(p) = M(p) if p 2 P

else M

P

(p) = u. Then the following (trivial) proposition establishes the connection

between expansions and extensions.

A

A

A

A

A

A

A

A

A

A

A

�

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�
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H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

(1; u)(0; u)

(u; u)

(u; 0)

(0; 0) (0; 1) (1; 0) (1; 1)

(u; 1)

�

� � � �

� � � �

Proposition 1 Let M be a 3-valued P-structure and N a 3-valued Q-structure, with

P � Q. N

Q

is an extension of M

P

i� N is an expansion of M.

This shows that expansions and extensions are about the same notion (for instance:

Kunen's immediate consequence operator 	 maps each 3-valued structure to an \ex-

tension" of it; besides if M is a 3-valued Q-structure and S a signing for P � Q, then

2val(M; S)

Q

is an \extension" of M

Q

; etc.).

Immediate consequence operator.

Given an extended program P , we de�ne an operator T

P

which maps each 9-valued

structure to an extension of it. Let A be a 9-valued structure, p a n-ary predicate

and a

1

: : : a

n

2 A. The domain of T

P

(A) equals that of A; T

P

(A) and A agree on the

interpretations of all function symbols. For predicate symbols, let v = T

P

(A)(p)(a

1

:::a

n

)

be de�ned by:
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1. � �

1

(v) = 1 i� there is a clause in P of the form p(�

1

:::�

n

) :� �, with variables

Y

1

: : : Y

j

, and some b

1

: : : b

j

2 A, such that �

1

(A(�)(b

1

:::b

j

)) = 1 and 8i,

A(�

i

)(b

1

:::b

j

) = a

i

;

� �

1

(v) = 0 i� for each clause in P of the form p(�

1

:::�

n

) :� �, with variables

Y

1

: : : Y

j

and every b

1

: : : b

j

2 A, we have either �

1

(A(�)(b

1

:::b

j

)) = 0 or some

A(�

i

)(b

1

:::b

j

) 6= a

i

;

� �

1

(v) = u otherwise.

2. � �

2

(v) = 1 i� there is a clause in P of the form :p(�

1

:::�

n

) :��, with variables

Y

1

: : : Y

j

, and some b

1

: : : b

j

2 A, such that �

1

(A(�)(b

1

:::b

j

)) = 1 and 8i,

A(�

i

)(b

1

:::b

j

) = a

i

;

� �

2

(v) = 0 i� for each clause in P of the form :p(�

1

:::�

n

) :� �, with variables

Y

1

: : : Y

j

and every b

1

: : : b

j

2 A, we have either �

1

(A(�)(b

1

:::b

j

)) = 0 or some

A(�

i

)(b

1

:::b

j

) 6= a

i

;

� �

2

(v) = u otherwise.

Intuitively, a clause in an extended program means the new truth value that shall be

assigned to the head has to be the lub (w.r.t. the knowledge ordering �

k

de�ned above)

of the previous one and the one assigned to the body.

One veri�es easily that T

P

(A) indeed is an extension of A.

Theorem 1 Let A be a 9-valued structure. T

P

(A) = A i� A j=

9

P

?

.

Conversion to 4-valued structures.

Since T

P

is monotone (w.r.t. the well-founded ordering �

k

induced on 9-valued struc-

tures), it has a �xed point (see [7]), hence P

?

always has a 9-valued model. More specif-

ically, as in the classical case, we would like to know when P

?

has in fact a 4-valued

model. This is given by the condition of call-consistency introduced in the preceding

Section:

Theorem 2 If P is call-consistent and A j=

9

P

?

, then A has a 4-valued extension B

such that B j=

4

P

?

. As a consequence, if P is call-consistent, then P

?

has a 4-valued

model.

In the next Section, we shall give proofs of these theorems through a \faithful" transla-

tion from extended programs to normal programs.

4.2 REDUCTION TO NORMAL PROGRAMS

Let L be a �xed �rst-order language. We build a new �rst-order language L

:

by adding

to L, for each predicate symbol p, a new predicate symbol p

0

.

Let L be a classical literal built on the language L: if L is an atomic formula, then let

L

:

be L; if L = :p(a

1

:::a

n

), then L

:

= p

0

(a

1

:::a

n

). (Note that in any case, L

:

is an

atomic formula built on L

:

.)

Let P be an extended program. P

:

is the classical program obtained by replacing each

clause L

0

:�L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

by L

:

0

:� L

:

1

; : : : ; L

:

m

; =L

:

m+1

; : : : ; =L

:

n

. In P

:

, =

8



stands for negation as failure. The notation = is unusual, but using : could have lent to

confusion. Similarly we can de�ne �

:

for any set � of L-formulas such that negation :

occurs only in front of atomic formulas.

Let A be a 9-valued (L-)structure. The 3-valued (L

:

-)structure A

:

is de�ned as follows:

(i) the domain of A

:

is A, the domain of A;

(ii) for every n-ary function symbol f , A

:

(f) = A(f);

(iii) for n-ary predicate symbols other than =, we have to distinct between two cases:

A

:

(p) = �

1

(A(p)) and A

:

(p

0

) = �

2

(A(p)); A

:

(=) is always true (2-valued) identity, i.e.

A

:

(=)(a; b) is 1 i� a and b are the same object and 0 otherwise.

Finally, if � is a normal program, 	

�

denotes the immediate consequence operator of

Kunen [16] on 3-valued structures, and �

?

denotes Clark's completed program [5].

Proposition 2 Let A and B be 9-valued (L-)structures and P an extended program.

The following statements hold:

(i) A is 4-valued i� A

:

is 2-valued;

(ii) B is an extension of A i� B

:

is an extension of A

:

;

(iii) P

?

:

= P

:

?

;

(iv) T

P

(A) = A i� 	

P

:
(A

:

) = A

:

;

(v) A j=

9

P

?

i� A

:

j=

3

P

?

:

.

Proof:

(i) and (iii) clear;

(ii) the main observation is that ^, : and / are monotone w.r.t. the ordering �

k

,

and that ^ and : are monotone w.r.t. �

k

. Now:

B is an extension of A

() for every ground formula �, �

1

(A(�)) �

k

�

1

(B(�)) and �

2

(A(�)) �

k

�

2

(B(�))

() for every n-ary predicate symbol p and each a

1

: : : a

n

2 A = B,

�

1

(A(p(a

1

:::a

n

))) �

k

�

1

(B(p(a

1

:::a

n

))) and �

2

(A(p(a

1

:::a

n

))) �

k

�

2

(B(p(a

1

:::a

n

))) (for ^, : and / are monotone w.r.t. �

k

)

() for every n-ary predicate symbol p and each a

1

: : : a

n

2 A = B,

A

:

(p(a

1

:::a

n

)) �

k

B

:

(p(a

1

:::a

n

)) and A

:

(p

0

(a

1

:::a

n

)) �

k

B

:

(p

0

(a

1

:::a

n

))

() for every ground formula �, A

:

(�) �

k

B

:

(�) (for ^ and : are

monotone w.r.t. �

k

)

() B

:

is an extension of A

:

;

(iv) follows from the de�nition of T

P

and the remark that �

2

(T

P

(A)(p)(a

1

:::a

n

)) =

�

1

(T

P

(A)(:p)(a

1

:::a

n

));

(v) one can prove easily by induction that for every ground formula � such that :

occurs only in front of atomic formulas, we have A

:

(�

:

) = �

1

(A(�)). Now, for

any completed de�nition 8X

1

� � � 8X

n

(p(X

1

; :::; X

n

)$  in P

?

, we have:

A j=

9

p$  () �

1

(A(p)) = �

1

(A( ))() A

:

(p) = A

:

( 

:

) (thanks to the

above remark) () A

:

j=

3

p$  

:

; and for any completed de�nition 8X

1

� � �

8X

n

(:p(X

1

; :::; X

n

)$  in P

?

, we have: A j=

9

:p$  () �

1

(A(:p)) =

�

1

(A( ))() A

:

(p

0

) = A

:

( 

:

) (thanks to the above remark) ()

A

:

j=

3

p

0

$  

:

. 2
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Proof of Theorem 1: it follows directly from Proposition 2 (iii, iv, v) and [16] (Lemma

3.1). 2

Proof of Theorem 2: it is an easy consequence of Proposition 2 (i, ii, v) and [16]

(Theorem 3.4 and Corollary 3.5: namely if � is a call-consistent normal program and

M is a 3-valued structure such that M j=

3

�

?

, then M has a 2-valued extension N

such that N j=

2

�

?

). 2

Operational Semantics.

The reduction to normal programs allows to consider that litterals A and :A have a

\separate life". Hence SLDNF resolution [16] and constructive negation [17] provide

extended programs with operational semantics, in the following way: the answer to an

given goal G in an extended logic program is obtained by combining the answers to

G and G

:

(in the corresponding normal program); each answer sets the value of one

component v

1

or v

2

of the truth value (v

1

; v

2

) of G: 'yes' is 1, 'no' is 0, no answer means

u.

5 CONNECTION WITH THE ANSWER SETS'

SEMANTICS

In this Section we de�ne answer sets for our extended programs, which are obtained

from those of Gelfond and Lifschitz's by droping their rule that globalizes contradictions

(saying that a program which implies both A and :A implies anything). We prove that

our answer sets for a given program P are 4-valued models of P

?

, if explicit negation

and negation as failure are interpreted by the connectives : and /, respectively, i.e. that

the logic underlying logic programming with classical negation and negation as failure

is indeed Belnap's logic.

Let P be a program with no negation by failure: de�ne �(P ) as the least set S of

ground classical literals such that for every ground rule instance L :� L

1

; : : : ; L

m

in P ,

L

1

; : : : ; L

m

2 S =) L 2 S.

Let P be an extended program (with negation by failure) and S a set of ground classical

literals: de�ne P

S

as the program (with no negation by failure) obtained from P by:

� removing every ground rule instance L :� L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

such that

for some i, m+ 1 � i � n, L

i

2 S;

� removing all slashed literals from all other ground rules instances.

Now de�ne an answer set of an extended program P to be a solution S to the equation

S = �(P

S

).

Finally we de�ne a translation m between sets of ground classical literals and 4-valued

structures: if S is a set of ground classical literals, m(S) is the structure whose domain

is the Herbrand universe, that interprets terms by themselves and such that, if A is any

ground atomic formula:

� if A 2 S, then �

1

(m(S)(A)) = 1,

10



� if :A 2 S, then �

2

(m(S)(A)) = 1,

� if A =2 S, then �

1

(m(S)(A)) = 0,

� if :A =2 S, then �

2

(m(S)(A)) = 0.

Theorem 3 If S is an answer set of an extended program P , then m(S) is a 4-valued

model of P

?

.

Proof: let S be an answer set of P , i.e. S = �(P

S

), 8X

1

� � � 8X

n

(L(X

1

; :::; X

n

)$  be

any completed de�nition in P

?

, and a

1

� � �a

n

be Herbrand terms. We have to prove that

�

1

(m(S)(L)(a

1

; :::; a

n

)) = �

1

(m(S)( )).

� If �

1

(m(S)(L)(a

1

; :::; a

n

)) = 1 then L(a

1

; :::; a

n

) 2 S; because of the de�nition of �,

there must be a ground rule instance R

S

= (L(a

1

; :::; a

n

) :�L

1

; : : : ; L

k

) in P

S

such

that L

1

; : : : ; L

k

2 S. This rule comes from a rule R = (L :� L

1

; : : : ; L

k

; =L

k+1

; : : :

=L

n

) in P , and therefore L

k+1

; : : : ; L

n

=2 S. Thus �

1

(m(S)(L

1

)) = � � � =

�

1

(m(S)(L

k

)) = �

1

(m(S)(=L

k+1

)) = � � ��

1

(m(S)(=L

n

)) = 1, and  = � _ 9(L

1

^

� � � ^ L

k

^ =L

k+1

^ � � � ^ =L

n

). Hence �

1

(m(S)( )) = 1.

� If �

1

(m(S)(L)(a

1

; :::; a

n

)) = 0 then L(a

1

; :::; a

n

) =2 S; for all ground rule instance

R

S

in P

S

of the form (L(a

1

; :::; a

n

) :� L

1

; : : : ; L

k

), one of the L

1

; : : : ; L

k

does not

belong to S, say L

i

, so that �

1

(m(S)(L

i

)) = 0 and hence �

1

(m(S)( )) = 0.

� �

1

(m(S)(L)(a

1

; :::; a

n

)) = u never happens.

2

Thus our answer sets can be identi�ed with models in Belnap's logic. Besides the well-

known results about answer sets' semantics for normal programs extend easily to our

setting; we just sketch 2 important theorems (for the de�nitions see Section 3):

Theorem 4 (Gelfond and Lifschitz [10]) If P is a locally strati�ed extended pro-

gram, then P has exactly one answer set.

Theorem 5 (Fages [6]) If P is a p.o.c. extended program, then the answer sets of P

coincide with the 4-valued Herbrand models of P

?

.

6 APPLICATION TO KNOWLEDGE

REPRESENTATION

The di�erence between =p and :p is essential when one cannot assume that the available

information about p is complete, in other words when the \closed world assumption" is

not applicable to p.
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It arises when a database misses some information: the two kinds of negation allow us

then to distinct between temporary and de�nitive lack of information. Similar facts can

also arise due to human factors, like in the following example (taken from [12]).

A College uses the following rules for awarding scholarships to its students:

1. Every student with a GPA of at least 3.8 is eligible.

2. Every minority student with a GPA of at least 3.6 is eligible.

3. No student with the GPA under 3.6 is eligible.

4. The students whose eligibility is not determined by these rules are interviewed by

the scholarship committee.

These rules can be encoded in the following extended program:

eligible(X) :� highGPA(X):

eligible(X) :�minority(X); fairGPA(X):

:eligible(X) :� :fairGPA(X):

interview(X) :� = eligible(X); =:eligible(X):

Assume this program is used in conjunction with a database containing the following

facts about one of the students:

fairGPA(ann):

:highGPA(ann):

The database contains no information about minority(ann), whereas Ann is a minority

student, but declined to state this fact on her application, as a matter of principle. Our

Kunen-style semantics (weaker than the answer sets' semantics) su�ces to deduce the

expected assertion interview(ann), i.e. interview(ann) is a 4-valued consequence of the

completed program.

7 CONCLUSION

The contribution of this paper is twofold:

1. From the viewpoint of Fitting's programs on bilattices, we extend the programs

on (the bilattice of) Belnap's logic by the adjunction of a non-monotonic operator

/, and we show that this notion of extended programs corresponds to the one of

Gelfond and Lifschitz.

2. From the viewpoint of the extended programs of Gelfond and Lifschitz, we pro-

vide them with a logical semantics in the style of Kunen, and we show that the

underlying logic is precisely Belnap's logic.

The generalization of our work to logic programs on a general bilattice seems to raise

new problems, at least in the spirit of this paper, as the simplicity of our semantics relies

12



on the cartesian product structure of the set of Belnap's truth values w.r.t. classical

logic.

Though a generalization in the spirit of annotated programs [14] (which subsume bilattice

programs) could be interesting and more natural, and constitute the matter of further

work.
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