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Abstract

We study the convex body

e

L

n

de�ned by

e

L

n

:= fX j X = (x

ij

) positive semide�nite n � n matrix ; x

ii

= 1 for all ig:

Our main motivation for investigating this body comes from combinatorial

optimization, namely from approximating the max-cut problem. An impor-

tant property of

e

L

n

is that, due to the positive semide�nite constraints, one

can optimize over it in polynomial time. On the other hand,

e

L

n

still inherits

the di�cult structure of the underlying combinatorial problem. In particular,

it is NP-hard to decide whether the optimum of the problem

minTr(CX); X 2

e

L

n

is reached in a vertex. This result follows from the complete characterization

of the matrices C of the formC = bb

t

for some vector b, for which the optimum

of the above program is reached in a vertex.

We describe several geometric properties of

e

L

n

. Among other facts, we

show that

e

L

n

has 2

n�1

vertices corresponding to all bipartitions of the set

f1; 2; : : :; ng.

1 Introduction

This paper is motivated by a `hard' combinatorial optimization problem, the max-

imum cut problem (abbreviated as max-cut)

max

x2f0;1g

n

X

1�i<j�n

c

ij

jx

i

� x

j

j: (1)

The max-cut problem is well known to be equivalent with the discrete 01-quadratic

programming problem

max

x2f0;1g

n

x

t

Qx (2)

1
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where Q is an n � n symmetric matrix. Since the exact optimum of the max-

cut problem (or of the discrete quadratic programming problem) cannot be found

e�ciently unless NP = P , various approximating procedures have been proposed

in the literature. An approximation of the max-cut based on the minimization of

the maximum eigenvalue of the Laplacian matrix with respect to diagonal changes,

has been introduced and studied in [3, 4, 5]. The computational experiments of [18]

show that the eigenvalue bound provides a good approximation of the max-cut,

since the relative error typically ranges between 1% { 5%. It has been shown in

[17] that the dual formulation of the eigenvalue bound is the optimization problem

max c

t

x

x 2 J

n

(3)

where J

n

is a convex body which is non-polyhedral and non-smooth. Actually,

J

n

is a relaxation of the well studied cut polytope (see Section 3 for details).

Recently, it has been proved in [10] that the optimization problem (3) provides

a 0:878 approximation for the max-cut problem. The goal of our paper is to

study the geometrical properties of the body J

n

, in order to understand better

the structure of the optimization problem (3). It appears more convenient to work

with a geometric translate L

n

instead of J

n

.

Let

e

L

n

denote the set of n � n (symmetric) positive semide�nite matrices

X = (x

ij

) which satisfy x

ii

= 1 for all i = 1; : : : ; n. Thus,

e

L

n

:= fX j X � 0; x

ii

= 1; i = 1; : : : ; ng:

The matrices belonging to

e

L

n

are called correlation matrices, see [11] and references

there. For a symmetric matrix X = (x

ij

), let �(X) := (x

ij

)

1�i<j�n

denote the

�

n

2

�

-vector which is the upper triangular part of X . We set

L

n

:= f�(X) j X 2

e

L

n

g

and observe that L

n

is the projection of

e

L

n

on the

�

n

2

�

-dimensional subspace. As

an example, see the body L

3

depicted in Fig. 1. We call the body L

n

an elliptope

(coming from ellipsoid and polytope).

The elliptope L

n

is the central object studied in this paper. By de�nition,

e

L

n

is nothing but a section of the cone PSD

n

by the hyperplanes x

ii

= 1 for all i.

The cone PSD

n

has been extensively studied in the literature; see e.g.[2, 8, 15] for

results on its faces. As a matter of fact,

e

L

n

inherits some of the good properties of

PSD

n

but, however, its structure is much more complicated than that of PSD

n

. For

instance, the description of the faces of

e

L

n

follows from that of the faces of PSD

n

(see Proposition 2.6) but, unlike the case of PSD

n

, there is no direct link between

the dimension of a face and the rank of a matrix of

e

L

n

lying in its relative interior

(see Proposition 2.9). This leads to the interesting question of characterizing the

subspaces that can be realized as kernels of matrices from

e

L

n

.
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Extreme points of

e

L

n

have been studied in several papers, most recently, in [11].

It is shown there that

e

L

n

has extreme points of rank k if and only if k(k+1) � 2n.

The study of the elliptope L

n

is also closely related to that of Euclidian distance

matrices, which has an extensive literature (see, e.g., [15, 14]). A symmetric matrix

X = (x

ij

) is called a Euclidian distance matrix if x

ij

=k v

i

�v

j

k

2

for some vectors

v

1

; : : : ; v

n

2 R

k

(k � 1). A well known result by Schoenberg [20] asserts that X is

a Euclidian distance matrix if and only if the (n � 1)� (n � 1) matrix P = (p

ij

)

de�ned by

p

ij

=

1

2

(x

in

+ x

jn

� x

ij

)

for 1 � i; j � n�1, is positive semide�nite. Equivalently, X is a Euclidian distance

matrix if and only if x = �(X) belongs to the cone NEG

n

, called negative type

cone, and de�ned by

NEG

n

= fx 2 R

(

n

2

)

+

j

X

1�i<j�n

b

i

b

j

x

ij

� 0 for all b 2 R

n

with

X

1�i�n

b

i

= 0g:

The supporting cone of

e

L

n

at each of its vertices is, up to symmetry, the cone

NEG

n

, i.e., the cone PSD

n�1

(up to linear bijection) (see Remark 2.5).

Our main motivation for the study of the elliptope L

n

comes from its role

in approximating the max-cut problem. Actually, the elliptope L

n

displays an

example of an interesting complexity phenomenon. Namely, the weak optimization

problem over L

n

is polynomial (by the theory of [12] since checking whether a

matrix belongs to

e

L

n

can be done e�ciently), but testing whether the optimum is

reached in a vertex of L

n

is NP -hard.

In Section 1, we describe some basic geometric properties of

e

L

n

and L

n

.

Namely, we provide the formulas for polars, normal cones, and faces of

e

L

n

and

L

n

. As a consequence, we conclude that

e

L

n

has 2

n�1

vertices corresponding to

all bipartitions of the set f1; 2; : : : ; ng. In Section 2, we study the optimization

problem

minTr(CX)

X 2

e

L

n

(4)

and its equivalent formulation

min c

t

x

x 2 L

n

:

(5)

Since

e

L

n

is not polyhedral, the optimum need not be attained in a vertex of

e

L

n

.

We call a symmetric matrix C exact if the optimum of (4) is attained in a vertex

of

e

L

n

. Our main result is the complete characterization of the exact matrices of

the form C = bb

t

for some vector b. In Section 3, we explain in more detail the

connection with the approximation of the max-cut problem.
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We now give some preliminaries.

Given two n � n matrices A = (a

ij

); B = (b

ij

), we set

hA;Bi =

n

X

i;j=1

a

ij

b

ij

:

If A;B are symmetric, then we have the identity hA;Bi = Tr(AB). We write

A � 0 if A is a symmetric positive semide�nite matrix, i.e., x

t

Ax � 0 for all

x 2 R

n

. Let SYM

n

(resp. PSD

n

, DIAG

n

) denote the set of all n � n symmetric

(resp. symmetric positive semide�nite, diagonal) matrices. For x 2 R

n

, diag(x)

denotes the diagonal matrix with diagonal entries x

1

; : : : ; x

n

and, for a matrix A,

diag(A) denotes the vector consisting of the diagonal entries of A.

Let K be a convex body in R

n

, i.e., K is a compact convex subset of R

n

. The

polar K

�

of K is de�ned by

K

�

= fx 2 R

n

j x

t

y � 1 for all y 2 Kg:

If K is a convex cone, then its polar coincides with the set fx 2 R

n

j x

t

y � 0g.

Given a boundary point x

0

of K, its normal cone N(K; x

0

) is de�ned by

N(K; x

0

) = fc 2 R

n

j c

t

x � c

t

x

0

for all x 2 Kg:

The dimension of the normal cone permits to classify the boundary points of K.

Namely, a boundary point x

0

is a vertex of K if its normal cone is full dimensional,

and x

0

is a regular (or smooth) point of K if N(K; x

0

) has dimension 1, i.e., there

is only one supporting hyperplane for K passing through x

0

. The supporting cone

C(K; x

0

) at x

0

is then de�ned by

C(K; x

0

) = fx 2 R

n

j c

t

x � 0 for all c 2 N(K; x

0

)g:

A subset F of K is called a face (or extreme set) of K if, for all x 2 F; y; z 2 K,

0 � � � 1, x = �y+ (1��)z implies that y; z 2 F . The set F is called an exposed

set if S = K \H for some supporting hyperplane H for K. Clearly, each exposed

set is a face.

The convex bodies considered in this paper are

e

J

n

,

e

L

n

and their projections

J

n

, L

n

; we recall the precise de�nitions.

e

J

n

= fY = (y

ij

) 2 SYM

n

j

1

2

J � Y � 0; y

ii

= 0 for all i = 1; : : : ; ng;

e

L

n

= fX = (x

ij

) 2 SYM

n

j X � 0; x

ii

= 1 for all i = 1; : : : ; ng;

J

n

= �(

e

J

n

); and L

n

= �(

e

L

n

):
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Hence,

e

L

n

is the image of

e

J

n

under the linear bijection X = J � 2Y . Clearly, J

n

and L

n

can be alternatively descibed by

J

n

= fy 2 R

(

n

2

)

j

X

1�i<j�n

b

i

b

j

y

ij

�

1

4

(

X

1�i�n

b

i

)

2

; for all b 2 R

n

g;

L

n

= fx 2 R

(

n

2

)

j

X

1�i<j�n

b

i

b

j

x

ij

� �

1

2

X

1�i�n

b

2

i

; for all b 2 R

n

g:

Given a subset S of f1; : : : ; ng, let �

S

denote its characteristic vector, de�ned

by �

S

i

= 1 if i 2 S and �

S

i

= 0 otherwise, and set S = f1; : : : ; ng nS. Let J denote

the all ones matrix. We set

J

S

= J � �

S

(�

S

)

t

� �

S

(�

S

)

t

=

 

0 1

1 0

!

;

L

S

= 2�

S

(�

S

)

t

+ 2�

S

(�

S

)

t

� J =

 

1 �1

�1 1

!

:

Hence, J

S

2

e

J

n

, L

S

= J � 2J

S

2

e

L

n

, L

S

= L

S

, and L

;

= J

;

= J . We call

the matrices J

S

,L

S

a 01-cut matrix and a �1-cut matrix, respectively; we refer to

J

S

,L

S

as to the cut matrices.

2 Geometry of the elliptope L

n

The main result of this section is the characterization of the vertices of the elliptope

L

n

. As tools for this result, we describe the polar of L

n

and the normal cone at

any point of L

n

. We also present results on the faces of L

n

and full treatment in

the case of L

3

.

Let us �rst observe that the bodies

e

L

n

and L

n

have some symmetries. Given

a subset A of f1; : : : ; ng, consider the mapping Sw

A

on SYM

n

, called switching,

which is de�ned by Y = Sw

A

(X) with

y

ij

=

(

x

ij

if i; j 2 S or i; j 62 S

�x

ij

otherwise.

Then, Sw

A

(L

S

) = L

S4A

for each subset S and Sw

A

(

e

L

n

) =

e

L

n

. There is an obvious

analogue of switching for the body L

n

.

Let W denote the set of all n� n matrices X with diagonal entries equal to 1.

Then, we have the equality

L

n

= PSD

n

\W: (6)
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Hence, the inclusion PSD

�

n

�W

�

�

e

L

�

n

holds trivially. In fact, equality holds as

shown in the next result. Note that PSD

�

n

= �PSD

n

and W

�

is the set of diagonal

matrices with trace less than or equal to 1.

Proposition 2.1 (i)

e

L

�

n

= fD�M jM � 0; D 2 DIAG

n

;Tr(D) = 1g:

(ii) L

�

n

= Conv(�2�(bb

t

) j b 2 R

n

; k b k= 1).

Proof. (i) Let Y 2

e

L

�

n

and assume, for contradiction, that Y 62 fD �M j M 2

PSD

n

; D 2 DIAG

n

;Tr(D) = 1g. Then, for each D 2 DIAG

n

with Tr(D) = 1,

the matrix D � Y is not positive semide�nite, i.e., �

min

(D � Y ) < 0. There-

fore, we have that max(�

min

(D � Y ) j D 2 DIAG

n

;Tr(D) = 1) < 0. The

following result is shown in [3]. Let D

0

be the diagonal matrix with trace one

for which the above maximization problem attains its optimum and set �

0

=

�

min

(D

0

� Y ) < 0. Then, there exists a set of vectors v

1

; : : : ; v

k

which are eigen-

vectors of D

0

� Y for the eigenvalue �

0

and such that all diagonal entries of the

matrix X :=

k

X

h=1

v

h

v

t

h

are equal to 1. Hence, the matrix X belongs to

e

L

n

and

Tr((Y �D

0

)X) =

k

X

h=1

Tr((Y �D

0

)v

h

v

t

h

) = �

k

X

h=1

�

0

Tr(v

h

v

t

h

) = ��

0

Tr(X) = �n�

0

.

Therefore, hY;Xi = hD

0

; Xi+ hY �D

0

; Xi = 1� n�

0

> 1, contradicting the fact

that Y 2

e

L

�

n

.

(ii) Given y 2 R

(

n

2

)

, let Y denote the n � n symmetric matrix whose upper tri-

angular part is y and with diagonal entries equal to �

1

n

. Then, y 2 L

�

n

if and

only if Y 2

e

L

�

n

since hX; Y i = 2x

t

y � 1 for X 2 L

n

and x = �(X). By (i), we

know that Y 2

e

L

�

n

if and only if Y = D �

k

X

h=1

�

h

b

h

b

t

h

for some diagonal matrix

D with trace 1, b

1

; : : : ; b

k

unit vectors, and �

1

; : : : ; �

k

� 0 with

k

X

h=1

�

h

= 2 (since

�1 = Tr(Y ) = Tr(D)�

P

h

�

h

). Therefore, we deduce that y 2 L

�

n

if and only if

y = �

P

h

�

h

�(b

h

b

t

h

) for some unit vectors b

h

and scalars �

h

� 0 with

P

h

�

h

= 2,

i.e., y 2 Conv(�2�(bb

t

) j b 2 R

n

; k b k= 1).

Proposition 2.2 Let A 2

e

L

n

and a = �(A) 2 L

n

. Then

(i) N(

e

L

n

; A) = fD �M j D 2 DIAG

n

;M � 0; hM;Ai= 0g.

(ii) N(L

n

; a) = Cone(��(bb

t

) j b 2 Ker(A)).

Proof. (i) First, if D 2 DIAG

n

,M � 0 with hM;Ai = 0, then D�M 2 N(

e

L

n

; A)

since, for all X 2

e

L

n

, hD �M;Xi = Tr(D) � hM;Xi � Tr(D) = hD �M;Ai.

Conversely, let Y 2 N(

e

L

n

; A), i.e., hY;Xi � hY;Ai holds for all X 2

e

L

n

. We can

suppose that the diagonal entries of Y are equal to 0 (since hD;Xi= Tr(D) holds

6



for all X 2

e

L

n

and D 2 DIAG

n

). Suppose �rst that hY;Ai = 0. We show that

�Y is positive semide�nite, i.e., that hY;Xi � 0 for all X 2 PSD

n

. If X 2

e

L

n

,

then hY;Xi � 0 holds by the assumption that Y 2 N(

e

L

n

; A). If X � 0 with

x

ii

� 1 for all 1 � i � n, then X

0

:= X + diag(1 � x

11

; : : : ; 1 � x

nn

) 2

e

L

n

.

Hence, hY;X

0

i � 0, i.e., hY;Xi � 0. Finally, if X � 0, let � be a positive

scalar such that the diagonal entries of �X are less than or equal to 1. By the

previous case, hY; �Xi � 0 which implies that hY;Xi � 0. We now suppose that

a := hY;Ai 6= 0. Then, a > 0 since 0 = hY; Ii � hY;Ai. So, a

�1

Y 2

e

L

�

n

and,

therefore, by Proposition 2.1, Y = D �M for some diagonal matrix D with trace

a and M � 0 with hM;Ai = hD;Ai� hY;Ai = Tr(D)� a = 0. This concludes the

proof of (i).

(ii) Applying (i), we obtain that N(L

n

; a) = f��(M) jM � 0; hM;Ai = 0g. The

result follows since, for a decomposition M =

P

1�h�k

b

h

b

t

h

of M as a sum of rank

one matrices, hM;Ai = 0 holds if and only if Ab

h

= 0, i.e., b

h

2 Ker(A), for all h.

Remark 2.3 Let us remark that, for n = 3, the normal cone at each point �(L

S

)

of L

n

is a circular cone. By symmetry, it su�ces to check this fact for the cut

matrix L

;

= J . Let us consider the section of the normal cone N(L

n

; �(J)) by the

hyperplane with equation x

12

+ x

13

+ x

13

= 3. Note that the point c = (1; 1; 1)

belongs to N(L

n

; �(J))\H . One can easily check that each extreme ray ��(bb

t

)

of N(L

n

; �(J)) intersects H in a point which is at constant distance

p

6 from c.

This shows, therefore, that N(L

n

; �(J)) is a circular cone. We show in Fig. 2 the

normal cone at a vertex.

We can now characterize the vertices of L

n

.

Theorem 2.4 L

n

has 2

n�1

vertices, namely, the vectors �(L

S

), for S � f1; : : : ; ng.

Proof. We �rst check that each vector �(L

S

) is a vertex of L

n

. Indeed, for

1 � i < j � n, the hyperplane x

ij

= 1 (resp. �x

ij

= 1) is supporting for L

n

at

�(L

S

) if i; j 2 S

2

[ (f1; : : : ; ng n S)

2

(resp. if i 2 S; j 62 S or vice versa). This

shows that the normal cone of L

n

at �(L

S

) is full dimensional, i.e., that �(L

S

) is a

vertex of L

n

. Conversely, let A 2

e

L

n

and suppose that a = �(A) is a vertex of L

n

.

Then, there exist

�

n

2

�

vectors b

1

; : : : ; b

(

n

2

)

such that the system (b

i

b

t

i

j 1 � i �

�

n

2

�

) is

linearly independent. Consider the

�

n

2

�

�

�

n

2

�

matrixM whose rows are the vectors

b

i

b

t

i

and the submatrix M

1

formed by its �rst n� 1 columns, indexed by the pairs

(1; j) for 2 � j � n. Then,M

1

has rank n�1 and, thus, contains an (n�1)�(n�1)

nonsingular submatrix which is indexed, say, by the vectors b

1

; : : : ; b

n�1

. It is easy

to check that the vectors b

1

; : : : ; b

n�1

are linearly independent. This shows that

the matrix A has rank one and, thus, A = aa

t

for some a 2 R

n

. But, a 2 f�1; 1g

n

7



since the diagonal entries (a

i

)

2

of A are all equal to 1. Therefore, A is one of the

cut matrices L

S

.

In particular, the vectors �(L

S

) are the only �1-valued members of L

n

(indeed,

every �1-member of L

n

has a full dimensional normal cone, i.e., is a vertex of L

n

).

Remark 2.5 As a consequence of Proposition 2.2, we have the following asser-

tions.

(i) The regular points of L

n

, i.e., having a normal cone of dimension one, are of

the form �(A) for A 2

e

L

n

whose kernel Ker(A) has dimension 1.

(ii) Given A 2

e

L

n

, the supporting cone of L

n

at the point a = �(A) is given by

C(L

n

; a) = fx 2 R

(

n

2

)

j

P

1�i<j�n

b

i

b

j

x

ij

� 0 for all b 2 Ker(A)g:

In particular, the supporting cone at the vertex �(L

;

) coincides with the cone

�NEG

n

(i.e., is a linear bijective image of PSD

n�1

) and the suporting cone

at any other vertex �(L

S

) is a symmetric image of it, namely, C(L

n

; �(L

S

)) =

Sw

S

(�NEG

n

).

We now turn to the description of the faces of L

n

. Let us �rst recall some well

known facts about the faces of the cone PSD

n

of positive semide�nite matrices (see

[15]). Let A;B 2 PSD

n

and let �(A) denote the smallest face of PSD

n

containing

A. Then, B 2 �(A) if and only if Ker(A) � Ker(B). In particular, every face of

PSD

n

is of the form

�

V

:= fX 2 PSD

n

j V � Ker(X)g

for some subspace V of R

n

and, conversely, �

V

is a face of PSD

n

for each subspace

V . Moreover, each face of PSD

n

is isomorphic to PSD

r

and, thus, has dimension

�

r+1

2

�

, for some 0 � r � n.

It is well known that, if K

1

, K

2

are two convex bodies and F

1

, F

2

are faces of

K

1

, K

2

, respectively, then F

1

\ F

2

is a face of K

1

\K

2

and, moreover, each face

of K

1

\K

2

arises in this way.

As noted in relation (6), the body

e

L

n

is the intersection of PSD

n

and W .

Clearly, W is the only face of W . Hence, we have the following result.

Proposition 2.6 Let A;B 2

e

L

n

and let F (A) denote the smallest face of

e

L

n

containing A. Then, B 2 F (A) if and only if Ker (A) � Ker(B). In particular,

every face of

e

L

n

is of the form

F

V

:= fX 2

e

L

n

j V � Ker(X)g

for some subspace V of R

n

and F (A) = F

Ker(A)

for A 2

e

L

n

.

8



Corollary 2.7 Every face of

e

L

n

is exposed.

Proof. Consider a face F

V

where V is a subspace of R

n

. Let b

1

; : : : ; b

k

be an

orthogonal base of V . Then, for X 2

e

L

n

, X 2 F

V

if and only if b

t

i

Xb

i

= 0 for all

i = 1; : : : ; k or, equivalently,

P

1�i�k

b

t

i

Xb

i

= 0. Hence, the face F

V

arises as the

intersection of

e

L

n

by the supporting hyperplane

P

1�i�k

b

t

i

Xb

i

= 0. This shows

that F

V

is exposed.

Note that, given a subspace V , there always exists X � 0 such that V �

Ker(X), but there may exist no such X 2

e

L

n

. This is the case, for instance, if

V � R

2

is generated by the vector (2; 1). For this reason, we call a subspace V

of R

n

realizable if there exists X 2

e

L

n

such that V � Ker(X). Clearly, the only

realizable subspaces of dimension n � 1 are the kernels of the cut matrices L

S

.

We give in the next section the characterization of the 1-dimensional realizable

subspaces.

Unlike the case of the cone PSD

n

, a more precise description of the faces of

the convex body

e

L

n

(or L

n

), as e.g. their dimension, seems a hard problem. We

give some partial results. In particular, we show that the convex segment joining

any two vertices of

e

L

n

is a face of

e

L

n

. We also indicate how every face of

e

L

n

can

be \lifted" to a face of

e

L

n+1

.

Proposition 2.8 Let A;B be distinct subsets of f1; : : : ; ng. Then, the convex

segment [L

A

; L

B

] = f�L

A

+ (1� �)L

B

j 0 � � � 1g is a face of

e

L

n

.

Proof. Using the switching symmetry, we can suppose that B = ;. We show that

the segment [L

;

; L

A

] is a face of

e

L

n

. Set Y =

1

2

(L

;

+ L

A

). Then, Ker(Y ) = fb 2

R

n

j

P

i2A

b

i

=

P

i 62A

b

i

= 0g. One can easily check that a symmetric n�n matrix

matrix X belongs to F (Y ) if and only if there exists a scalar a such that jaj � 1

and X = (x

ij

) with x

ij

= 1 for i; j 2 A or i; j 62 A and x

ij

= a for i 2 A; j 62 A. In

other words, X 2 F (Y ) if and only if X is the convex combination

a+1

2

L

;

+

1�a

2

L

A

of L

;

and L

A

. This shows that [L

;

; L

A

] = F (Y ) is, thus, a face of

e

L

n

.

Note that there exist faces of

e

L

n

of dimension 2 that are not polyhedral. We de-

scribe such a face for L

4

in Example 2.10 below. We now present a full description

of the faces of the body L

3

.

Proposition 2.9 Every proper face of L

3

is, either reduced to a single point of

L

3

, or is an edge (1-dimensional face) joining two vertices of L

3

(there are six

such faces).

9



Proof. Let F

V

be a face of L

3

, where V is a (realizable) subspace of R

3

. If

dim(V ) = 2, then F

V

is reduced to a vertex of L

3

. Suppose now that V has

dimension 1. Let b 2 V . Then, by Lemma 3.1, b is balanced. We can suppose that

jb

1

j; jb

2

j; jb

3

j � 1 and, for instance, b

1

= 1. Then, b = (1; �; �) with 1 � j�j+ j�j.

Let X 2

e

L

3

be of the form

0

B

@

1 x y

x 1 z

y z 1

1

C

A

, where x; y; z 2 R. Then, X 2 F

V

if and

only if Xb = 0, i.e., x; y; z satisfy the system

8

>

<

>

:

�x + �y = �1

x+ �z = ��

y + �z = ��:

(7)

The determinant of the system (7) is equal to �2��. If �� 6= 0, then the system

(7) has a unique solution (x; y; z), i.e., F

V

consists of a single point of

e

L

3

. If, say,

� = 0, then � = �1. The solutions of the sytem (7) are of the form (��z;��; z)

for z 2 R. For � = 1, we obtain that X 2 F

V

if and only if X =

z+1

2

L

f1g

+

1�z

2

L

f3g

with jzj � 1 and, thus, F

V

= [L

f1g

; L

f3g

]. Similarly, for � = �1, X 2 F

V

if and

only if X =

z+1

2

L

;

+

1�z

2

L

f2g

, i.e., F

V

= [L

;

; L

f2g

].

Example 2.10 Let V denote the 1-dimensional subspace of R

4

spanned by the

vector b = (1; 1; 1; 0). One can check easily that a symmetric 4 � 4 matrix X

belongs to F

V

if and only if X is of the form X =

0

B

B

B

@

1 �1=2 �1=2 x

�1=2 1 �1=2 y

�1=2 �1=2 1 z

x y z 1

1

C

C

C

A

;

where x; y; z 2 R satisfy x + y + z = 0 and x

2

+ xy + y

2

�

3

4

(the �rst condition

ensures thatXb = 0 and the second one that X � 0). Hence, F

4

is a 2-dimensional

face of

e

L

4

with the shape of an ellipse.

Finally, we present an operation which permits to lift each face of

e

L

n

to a face

of

e

L

n+1

. Let X be a symmetric n�n matrix with diagonal entries equal to 1 and

let c 2 R

n

denote its last n-th column. Consider the (n + 1)� (n+ 1) symmetric

matrix L

n

(X) de�ned by L

n

(X) =

0

B

@

X c

c

t

1

1

C

A

:

Lemma 2.11 X 2

e

L

n

if and only if L

n

(X) 2

e

L

n+1

.

Proof. Let y 2 R

n�1

; x

n

; x

n+1

2 R and set x = (y; x

n

); x

0

= (y; x

n

+ x

n+1

) 2 R

n

,

z = (y; x

n

; x

n+1

) and z

0

= (y; x

n

; 0) 2 R

n+1

. Then, we have that z

t

L

n

(X)z =

x

0t

Xx

0

and x

t

Xx = z

0t

L

n

(X)z

0

. This shows that X � 0 if and only if L

n

(X) � 0

10



and, thus, X 2

e

L

n

if and only if L

n

(X) 2

e

L

n+1

.

Corollary 2.12 Let F be a face of

e

L

n

. Then, F

0

:= fL

n

(X) j X 2 Fg is a face

of

e

L

n+1

.

Proof. Suppose F = F (Y ) is the smallest face of

e

L

n

containing some Y 2

e

L

n

.

We show that F

0

coincides with F (L

n

(Y )), the smallest face of

e

L

n+1

containing

L

n

(Y ). The kernel of L

n

(Y ) is spanned by the vectors (b; 0) for b 2 Ker(Y ) and

(0; : : : ; 0; 1;�1). Hence, if Z 2 F (L

n

(Y )), then the n-th and (n + 1)-th columns

of Z coincide because (0; : : : ; 0; 1;�1) 2 Ker(Z), and the submatrix of Z formed

by its �rst n columns and rows belongs to F (Y ) because (b; 0) 2 Ker(Z) for

all b 2 Ker(Y ). Therefore, Z = L

n

(X) for some X 2 F (Y ). This shows that

F

0

= F (L

n

(Y )) is, thus, a face of

e

L

n+1

.

3 Optimizing over L

n

Let us recall that a symmetric matrix C is called exact if the optimum of (4) is

attained in a vertex of

e

L

n

. The motivation to study this question comes from the

application to the max-cut problem, which will be discussed in the next section.

The main result of this section is the characterization of the exact matrices C

which are of the form C = bb

t

for a vector b.

Let b = (b

1

; : : : ; b

n

) be a vector. The gap of b, denoted as 
(b), is de�ned as


(b) := min

S�f1;:::;ng

jb(S)� b(S)j (8)

where b(S) :=

P

i2S

b

i

. In particular, we have 
(b) = 0 if b(S) = b(S) for some S.

We say that a vector b = (b

1

; : : : ; b

n

) is balanced if

jb

i

j �

i�1

X

j=1

jb

j

j+

n

X

j=i+1

jb

j

j (9)

for every i = 1; : : : ; n. In other words, a vector b is balanced if none of its entries

(in absolute value) is larger than the sum of the remaining entries (in absolute

value).

Given a pair of vectors x and y, let x�y denote the vector z = (z

i

) with entries

z

i

:= x

i

y

i

. Let V

?

denote the orthogonal complement of a linear subspace V . Let

e = (1; : : : ; 1) denote the vector of all ones.

Lemma 3.1 A linear subspace V is realizable if and only if e 2 conefx � x j x 2

V

?

g.

11



Proof. Assume that V is realizable, i.e., V � Ker(X) for some X 2

e

L

n

. Since

X is positive semide�nite, Ker(X) is the eigenspace of the minimum eigenvalue

�

min

= 0, and hence X can be written as X =

P

k

i=1

x

i

x

t

i

where x

1

; : : : ; x

k

2

(Ker(X))

?

� V

?

. Since diag(X) = e, we have e =

P

k

i=1

x

i

� x

i

� conefx � x j

x 2 V

?

g. Conversely, let e =

P

k

i=1

x

i

� x

i

for some x

1

; : : : ; x

k

2 V

?

. Set X :=

P

k

i=1

x

i

x

t

i

. Obviously, V � Ker(X), and X 2

e

L

n

since X is positive semide�nite

and diag(X) = e.

The following lemma is a re-phrasing (using a di�erent terminology) of a result

of [4, Theorem 3.2].

Lemma 3.2 ([4]) Let b 2 R

n

be a vector. Then the linear space V = hbi generated

by b is realizable if and only if b is balanced.

Theorem 3.3 Let C be a matrix of the form C = bb

t

for some b 2 R

n

. Then, C

is exact if and only if one of the following holds

(i) b is balanced and has gap 
(b) = 0, or

(ii) b is unbalanced.

Proof. We have hbb

t

; Xi = b

t

Xb � 0 for every b and every X 2

e

L

n

. Hence

min

X2

e

L

n

b

t

Xb � 0, with equality if and only if b 2 Ker(X) for some X 2

e

L

n

, i.e.,

if the subspace hbi is realizable. Hence, from Lemma 3.2, the minimum is equal to

zero if and only if b is balanced. Assume that b is balanced. We claim that

bb

t

is exact if and only if 
(b) = 0. (10)

The matrix bb

t

is, by de�nition, exact if and only if min

X2

e

L

n

b

t

Xb is reached in a

vertex L

S

, i.e., hbb

t

; L

S

i = b

t

L

S

b = 0 for some S. Hence L

S

b = 0 since L

S

� 0.

The latter is equivalent to b(S)� b(S) = 0. Hence (10) is proved. Assume that b

is not balanced. We claim that

bb

t

is exact. (11)

Assume that all b

i

; i = 1; : : : ; n, are nonnegative. Without loss of generality we

may also assume that b

1

>

P

n

i=2

b

i

. De�ne the vector a = (a

i

) by a

1

=

P

n

i=2

b

i

and a

i

= b

i

for i = 2; : : : ; n. Hence, a

t

L

f1g

a = 0, which shows that the minimum

of haa

t

; Xi is reached in the vertex L

f1g

of

e

L

n

. Hence, �aa

t

belongs to the normal

cone of L

f1g

,

� aa

t

2 N(

e

L

n

; L

f1g

): (12)

12



For every i = 2; : : : ; n, set f

i

= (1; 0; : : : ; 0; 1; 0; : : : ; 0) (the 1- and i-th entries are

equal to 1), and observe that f

i

2 Ker(L

f1g

). Hence

� f

i

f

t

i

2 N(

e

L

n

; L

f1g

): (13)

Now, it is easy to check that bb

t

can be expressed as

bb

t

= aa

t

+

n

X

i=2

�

i

f

i

f

t

i

for �

i

= (b

1

� a

1

)a

i

� 0, and hence (12) and (13) imply that �bb

t

2 N(

e

L

n

; L

f1g

):

Thus, bb

t

is exact. In case that some b

i

's are negative, apply switching with the

set S = fi j b

i

< 0g.

For every S � f1; : : : ; ng, let O

S

� R

(

n

2

)

denote the orthant

O

S

:= fx = (x

ij

) j x

ij

� 0 for i; j 2 S; or i; j =2 S and x

ij

� 0 otherwiseg:

Since L

n

is contained in the unit cube [�1; 1]

(

n

2

)

, we have

Lemma 3.4 For every S, the orthant O

S

is entirely contained in the normal cone

N(L

n

; �(L

S

)) of the vertex �(L

S

).

Let p

n

denote the probability that a random vector c 2 R

(

n

2

)

, with kck :=

P

c

2

ij

= 1, is exact.

Corollary 3.5 We have p

n

� 2

�

1

2

(n

2

�3n+2)

.

Proof. Since O

S

� N(L

n

; �(L

S

)) for every S by the above lemma, we have

p

n

= Prob(c 2

[

S

N(L

n

; �(L

S

)) � Prob(c 2

[

S

O

S

):

Hence

p

n

�

2

n�1

2

(

n

2

)

= 2

�

1

2

(n

2

�3n+2)

since

e

L

n

has 2

n�1

vertices and the total number of orthants is 2

(

n

2

)

.

In particular, we have p

3

� 0:5 by the corollary. Ch. Delorme (personal

communication) computed the exact value p

3

= 0:845.

Let us conclude this section with pointing out an interesting complexity aspect

of the optimization over L

n

.
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(i) The weak optimization problem (WOPT) over L

n

is polynomial time solvable;

(ii) Testing whether the optimum over L

n

is attained at a vertex is NP-hard.

Let us recall that the weak optimization problem for a convex body K is de�ned

in [12] as follows. Given a rational vector c and a rational number " > 0, either (i)

�nd a rational vector y such that y 2 S(K; ") and c

t

x � c

t

y+" for all x 2 S(K;�"),

or (ii) assert that S(K;�") is empty. (Here S(K; ") denote the set of points which

lie in the "-neighborhood of K; and S(K;�") denote the set of points whose

"-neighborhood is contained in K.) The polynomial-time solvability of WOPT

follows from the theory developed in [12], since one can e�ciently check the (weak)

membership ofX 2

e

L

n

(by computing the minimum eigenvalue ofX with su�cient

precision, and inspecting its diagonal entries). On the other hand, the problem

(ii) is NP-hard for L

n

, as a corollary of Theorem 3.3. Given an integer vector

b = (b

1

; : : : ; b

n

), it is NP-hard to decide whether the gap 
(b) is zero (cf. the

exact sum problem in [9]). Thus, if we could decide whether or not the optimum

of x

t

�(bb

t

) is reached in a vertex of L

n

, we would be able to solve the exact sum

problem.

A practically e�cient algorithm which can be used for the optimization problem

over the elliptope L

n

was described in [19].

4 The max-cut problem

Let G = (V;E) be a graph and c : E ! Rbe an edge-weight function. The max-cut

problem consists of �nding a subset S of vertices for which the sum of the weights

on the edges between S and

�

S is maximum. Let us denote

mc(G; c) := max

S�V

X

i2S;j =2S

c

ij

:

The max-cut problem is polynomial-time solvable when G is planar ([13, 16]), and

it is NP-complete for G general ([9]). Barahona and Mahjoub [1] introduced a

polytope associated with the max-cut problem called the cut polytope. For our

purpose, it is su�cient to recall the de�nition only for the case when G = K

n

is the complete graph. For a set S � V , let �(S) (the cut) denote the edge set

�(S) := fij j i 2 S; j =2 Sg, and let �

�(S)

denote the characteristic vector of the

cut �(S) de�ned by �

�(S)

ij

= 1 for ij 2 �(S), and �

�(S)

ij

= 0 otherwise. The cut

polytope P

n

is de�ned as P

n

:= convf�

�(S)

j S � V g. Hence, the max-cut problem

can be alternatively de�ned as

mc(G; c) := max

x2P

n

c

t

x (14)

The cut polytope P

n

has been extensively studied; see, e.g., [6, 7].
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Schrijver [21] introduced the convex body J

n

as a relaxation of the cut poly-

tope. Indeed, since �

�(S)

2 J

n

for every S, we have

Lemma 4.1

(i) P

n

� J

n

,

(ii) mc(G; c) � max

x2J

n

c

t

x, setting c

ij

= 0 if the pair ij is not an edge of G.

Clearly, the symmetric matrix C = (c

ij

) is exact if and only if the program

max

x2J

n

c

t

x solves the max-cut problem.

Delorme and Poljak ([3, 4, 5]) considered earlier an eigenvalue upperbound

'(G; c), de�ned as

'(G; c) := min

u2R

n

;

P

u

i

=0

n

4

�

max

(L(G; c)+ diag(u))

where L(G; c) denotes the Laplacian matrix of the weighted graph (G; c) and �

max

the maximum eigenvalue.

Actually, the two bounds coincide, i.e.,

max

x2J

n

c

t

x = '(G; c);

as was shown by Poljak and Rendl [17], using duality.

For nonnegative weigths c, the quality of the approximation can be measured

by the ratio

max

x2J

n

c

t

x

mc(G; c)

:

It has been conjectured in [4] that this ratio is bounded by 1.131 (with C

5

as the

worst case). A recent result of [10] shows that this ratio is bounded by

1

0:878

=

1:139. Using a result of [4], one can prove a better bound for some special classes

of weights.

Proposition 4.2 Let the weights c

ij

be given by c

ij

= a

i

a

j

where a

1

; : : : ; a

n

2 R

+

.

Then,

max

x2J

n

c

t

x

mc(G; c)

�

9

8

= 1:125:

Proof. For a

1

; : : : ; a

n

balanced, this result was shown in (Corollary 5.1,[4]). If

a

1

; : : : ; a

n

is not balanced, then C is exact by Theorem 3.3, implying that the ratio

is equal to 1.
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