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Abstract

We study the convex body L, defined by
En :={X | X = (x;) positive semidefinite n X n matrix ,z;; = 1 for all i}.

Our main motivation for investigating this body comes from combinatorial
optimization, namely from approximating the max-cut problem. An impor-
tant property of L, is that, due to the positive semidefinite constraints, one
can optimize over it in polynomial time. On the other hand, £, still inherits
the difficult structure of the underlying combinatorial problem. In particular,

it 18 NP-hard to decide whether the optimum of the problem
minTr(CX), X € Lo

is reached in a vertex. This result follows from the complete characterization
of the matrices C' of the form C' = bb* for some vector b, for which the optimum
of the above program is reached in a vertex. B

We describe several geometric properties of £,. Among other facts, we
show that £, has 277! vertices corresponding to all bipartitions of the set

{1,2,...,n}.

1 Introduction

This paper is motivated by a ‘hard’ combinatorial optimization problem, the maz-
imum cut problem (abbreviated as maxz-cut)

max Z cijles — xj). (1)

n
z€{0,1} 1<i<j<n

The max-cut problem is well known to be equivalent with the discrete 01-quadratic

programming problem
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where () is an n X n symmetric matrix. Since the exact optimum of the max-
cut problem (or of the discrete quadratic programming problem) cannot be found
efficiently unless N P = P, various approximating procedures have been proposed
in the literature. An approximation of the max-cut based on the minimization of
the maximum eigenvalue of the Laplacian matrix with respect to diagonal changes,
has been introduced and studied in [3, 4, 5]. The computational experiments of [18]
show that the eigenvalue bound provides a good approximation of the max-cut,
since the relative error typically ranges between 1% — 5%. It has been shown in
[17] that the dual formulation of the eigenvalue bound is the optimization problem

max Ct$

xed, (3)

where 7, is a convex body which is non-polyhedral and non-smooth. Actually,
J is a relaxation of the well studied cut polytope (see Section 3 for details).
Recently, it has been proved in [10] that the optimization problem (3) provides
a 0.878 approximation for the max-cut problem. The goal of our paper is to
study the geometrical properties of the body J,, in order to understand better
the structure of the optimization problem (3). It appears more convenient to work
with a geometric translate £,, instead of 7.

Let £, denote the set of n x n (symmetric) positive semidefinite matrices
X = (x;;) which satisfy 2;; = 1 for all ¢ = 1,...,n. Thus,

L, = {X| X =0,z =1,i=1,...,n}.

The matrices belonging to £, are called correlation matrices, see [11] and references
there. For a symmetric matrix X = (z;;), let 7(X) := (24;)i1<i<j<n denote the
(g)—vector which is the upper triangular part of X. We set

Ln:={r(X)| X eL,}

and observe that £, is the projection of L, on the (g)—dimensional subspace. As
an example, see the body L3 depicted in Fig. 1. We call the body L,, an elliptope
(coming from ellipsoid and polytope).

The elliptope £,, is the central object studied in this paper. By definition, L,
is nothing but a section of the cone PSD,, by the hyperplanes z; = 1 for all q.
The cone PSD,, has been extensively studied in the literature; see e.g.[2, 8, 15] for
results on its faces. As a matter of fact, L, inherits some of the good properties of
PSD,, but, however, its structure is much more complicated than that of PSD,,. For
instance, the description of the faces of L, follows from that of the faces of PSD,,
(see Proposition 2.6) but, unlike the case of PSD,,, there is no direct link between
the dimension of a face and the rank of a matrix of £, lying in its relative interior
(see Proposition 2.9). This leads to the interesting question of characterizing the
subspaces that can be realized as kernels of matrices from L.



Extreme points of L, have been studied in several papers, most recently, in [11].
It is shown there that £, has extreme points of rank k if and only if k(k+1) < 2n.

The study of the elliptope L, is also closely related to that of Fuclidian distance
matrices, which has an extensive literature (see, e.g., [15, 14]). A symmetric matrix
X = (w;j) is called a Fuclidian distance matriz if z;; =|| v; — v, ||* for some vectors
Vi, .., € RF (B> 1), A well known result by Schoenberg [20] asserts that X is
a Euclidian distance matrix if and only if the (n — 1) x (n — 1) matrix P = (p;;)
defined by

1
pij = 5(Tin + Tjn — i)

for 1 <1i,j5 < n-—1,is positive semidefinite. Equivalently, X is a Euclidian distance
matrix if and only if # = 7(X) belongs to the cone NEG,, called negative type
cone, and defined by

NEG, = {ac € RS?) | Z bib]wij < 0 for all b € R™ with Z b; = 0}.
1<i<j<n 1<i<n

The supporting cone of L, at each of its vertices is, up to symmetry, the cone
NEG,, i.e., the cone PSD,,_; (up to linear bijection) (see Remark 2.5).

Our main motivation for the study of the elliptope £, comes from its role
in approximating the max-cut problem. Actually, the elliptope £, displays an
example of an interesting complexity phenomenon. Namely, the weak optimization
problem over L, is polynomial (by the theory of [12] since checking whether a
matrix belongs to L,, can be done efficiently), but testing whether the optimum is
reached in a vertex of £, is N P-hard.

In Section 1, we describe some basic geometric properties of L, and L,.
Namely, we provide the formulas for polars, normal cones, and faces of £, and
L. As a consequence, we conclude that L, has 27! vertices corresponding to
all bipartitions of the set {1,2,...,n}. In Section 2, we study the optimization
problem

min Tr(C'X)
= 4
XeLl, )
and its equivalent formulation
min clx (5)
x € L,.

Since £, is not polyhedral, the optimum need not be attained in a vertex of L.
We call a symmetric matrix C' ezact if the optimum of (4) is attained in a vertex
of £,,. Our main result is the complete characterization of the exact matrices of
the form C' = bb! for some vector b. In Section 3, we explain in more detail the
connection with the approximation of the max-cut problem.



We now give some preliminaries.
Given two n x n matrices A = (a;;), B = (b;;), we set

n
(A,B) = > ayby;.
=1
If A, B are symmetric, then we have the identity (4, B) = Tr(AB). We write
A > 0 if A is a symmetric positive semidefinite matrix, i.e., z'Az > 0 for all
z € R". Let SYM,, (resp. PSD,,, DIAG,,) denote the set of all n x n symmetric
(resp. symmetric positive semidefinite, diagonal) matrices. For z € R", diag(x)
denotes the diagonal matrix with diagonal entries zy,..., 2, and, for a matrix A,
diag(A) denotes the vector consisting of the diagonal entries of A.

Let K be a convex body in R”, i.e., K is a compact convex subset of R™. The
polar K* of K is defined by

K*={zcR"|z'y <1forall y € K}.
If K is a convex cone, then its polar coincides with the set {# € R" | a'y < 0}.
Given a boundary point zg of K, its normal cone N(K,xz¢) is defined by
N(K,z0) = {c €R"| ¢’z < c'zg for all x € K}.

The dimension of the normal cone permits to classify the boundary points of K.
Namely, a boundary point zg is a vertex of K if its normal cone is full dimensional,
and zg is a regular (or smooth) point of K if N(K,x) has dimension 1, i.e., there
is only one supporting hyperplane for K passing through zo. The supporting cone

C(K,zg) at zg is then defined by
C(K,z0) = {z €R"| ¢’z <0 forall c € N(K,z0)}.

A subset F' of K is called a face (or extreme set) of K if, for all z € F.y,z € K,
0<a<l,z=ay+(l—a)zimplies that y,z € F. The set F is called an exposed
setif S = K N H for some supporting hyperplane H for K. Clearly, each exposed
set is a face.

The convex bodies considered in this paper are jn, L, and their projections
Tno Ln; we recall the precise definitions.

1
jn:{Y:(yij)ESYMn|§J—Y§0, yii=0forall i =1,...,n},

L =AX=(2;5)€SYM, | X >0, 2y =1foralli=1,...,n},
T =7(Jn), and Ly, = 7(Ly).



Hence, L, is the image of J., under the linear bijection X = J — 2Y. Clearly, J,
and L, can be alternatively descibed by

Tn = {y S R(g) | Z bib]‘yij < %( Z bi)z, for all b € Rn},
1<i<j<n 1<i<n

n 1
L, ={zeREG) S by -5 > b forallbe R,
1<i<j<n 1<i<n

Given a subset S of {1,...,n}, let x* denote its characteristic vector, defined
by x? = 1ifi € § and x?¥ = 0 otherwise, and set § = {1,...,n}\ 5. Let .J denote
the all ones matrix. We set

Js=J = X505 = (5) = (%’L) :

3, 3 1 -1
Ls =2 () +20° () - T = ( 1 ) :
Hence, Jg € jn, Ls = J—-2Jg € Zn, Ls = Lg, and Ly = Jy = J. We call
the matrices Jg,Lg a 01-cut matrix and a £1-cut matrix, respectively; we refer to
Js,Ls as to the cut matrices.

2 Geometry of the elliptope L,

The main result of this section is the characterization of the vertices of the elliptope
L. As tools for this result, we describe the polar of £, and the normal cone at
any point of £,. We also present results on the faces of £, and full treatment in
the case of L.

Let us first observe that the bodies Zn and £, have some symmetries. Given
a subset A of {1,...,n}, consider the mapping Sws on SYM,,, called switching,
which is defined by Y = Swa(X) with

X4 ife,jeSori,j &8
Yij =

— T4 otherwise.

Then, Swa(Ls) = Lsaa for each subset S and SwA(Zn) = £,,. There is an obvious
analogue of switching for the body L,,.

Let W denote the set of all » X n matrices X with diagonal entries equal to 1.
Then, we have the equality

L, = PSD, nW. (6)



Hence, the inclusion PSD} ¢ W* C 57*1 holds trivially. In fact, equality holds as
shown in the next result. Note that PSD; = —PSD,, and W* is the set of diagonal
matrices with trace less than or equal to 1.

ProposITION 2.1 (i) L5 ={D - M | M = 0, D € DIAG,, Tr(D) = 1}.
(11) LF = Conv(=27(bb%) | b€ R™, || b= 1).

ProoF. (i) Let Y € £ and assume, for contradiction, that Y ¢ {D — M | M €
PSD,,, D € DIAG,,Tr(D) = 1}. Then, for each D € DIAG, with Tr(D) = 1,
the matrix D — Y is not positive semidefinite, i.e., Apin(D — YY) < 0. There-
fore, we have that max(Amin(D —Y) | D € DIAG,,Tr(D) = 1) < 0. The
following result is shown in [3]. Let Dg be the diagonal matrix with trace one
for which the above maximization problem attains its optimum and set A\g =
Amin(Do — Y') < 0. Then, there exists a set of vectors vy, ..., v, which are eigen-

vectors of Dg — Y for the eigenvalue Ay and such that all diagonal entries of the
k

matrix X := Z vyl are equal to 1. Hence, the matrix X belongs to L, and
h=1

k k
Tr((Y = Do)X) = > Tr((Y — Do)opvf) = — Y AoTr(vpvf) = —ATr(X) = —no.
h=1 h=1
Therefore, (Y, X) = (Do, X)+ (Y — Do, X) =1 — n)g > 1, contradicting the fact

that Y € L.

(i7) Given y € R(g), let Y denote the n x n symmetric matrix whose upper tri-
angular part is y and with diagonal entries equal to —%. Then, y € L if and
only if Y € £* since (X,Y) = 22ty — 1 for X € £, and z = 7(X). By (i), we

k
know that ¥ € £ if and only if ¥ = D — Z Apbpbl for some diagonal matrix

h=1
k

D with trace 1, by, ..., b unit vectors, and Ay,..., Ay > 0 with Z Ap = 2 (since
h=1

—1=Tr(Y) =Tr(D) - >, An). Therefore, we deduce that y € £ if and only if

y = — >, AnT(bpbt) for some unit vectors by, and scalars A, > 0 with 3, A, = 2,

i.e., y € Conv(=27(bb") | b€ R™ || b= 1). |

PROPOSITION 2.2 Let A € L, and a = 7(A) € L,. Then
(i) N(L,,A)={D - M | D € DIAG,,M » 0,(M, A) = 0}.
(ii) N(L,,a) = Cone(—7(bb") | b € Ker(A)).

ProoF. (i) First, if D € DIAG,, M > 0 with (M, A) = 0, then D—M € N(L,, A)
since, for all X € L, (D — M,X) = Tr(D) — (M, X) < Te(D) = (D — M, A).
Conversely, let ¥ ¢ N(ZR,A), ie., (Y, X) < (Y,A) holds for all X € L,. We can
suppose that the diagonal entries of Y are equal to 0 (since (D, X ) = Tr(D) holds



for all X € £, and D € DIAG,). Suppose first that (¥, A) = 0. We show that
—Y is positive semidefinite, i.e., that (Y, X) < 0 for all X € PSD,. If X € Lo,
then (Y, X) < 0 holds by the assumption that Y € N(£,,A). If X = 0 with
i < 1forall 1 < i < n, then X' := X + diag(1 — z11,...,1 — Zpy) € L.
Hence, (Y, X’) < 0, ie., (Y,X) < 0. Finally, if X > 0, let a be a positive
scalar such that the diagonal entries of a X are less than or equal to 1. By the
previous case, (Y, aX) < 0 which implies that (Y, X) < 0. We now suppose that
a:= (Y,A) # 0. Then, a > 0 since 0 = (V,I) < (Y, A). So, a~'V € L* and,
therefore, by Proposition 2.1, Y = D — M for some diagonal matrix D with trace
aand M > 0 with (M, A) = (D, A) — (Y, A) = Tr(D)—a = 0. This concludes the
proof of (¢).

(i) Applying (¢), we obtain that N(L,,a) = {-7(M)| M >0, (M, A) = 0}. The
result follows since, for a decomposition M = 3", ;< bpbl of M as a sum of rank
one matrices, (M, A) = 0 holds if and only if Ab, = 0, i.e., b, € Ker(A), for all h.
|

REMARK 2.3 Let us remark that, for n = 3, the normal cone at each point 7(Lg)
of L, is a circular cone. By symmetry, it suffices to check this fact for the cut
matrix Ly = J. Let us consider the section of the normal cone N(L,,7(J)) by the
hyperplane with equation x12 + 213 + 213 = 3. Note that the point ¢ = (1,1,1)
belongs to N(L,,7(J))N H. One can easily check that each extreme ray —7(bb')
of N(L,,7(J)) intersects H in a point which is at constant distance v/6 from c.
This shows, therefore, that N(L,,7(J)) is a circular cone. We show in Fig. 2 the
normal cone at a vertex.

We can now characterize the vertices of £,,.
THEOREM 2.4 L, has2"~! vertices, namely, the vectors T(Ls), for S C {1,...,n}.

Proor. We first check that each vector 7(Lg) is a vertex of L£,. Indeed, for
1 < i< j <n, the hyperplane 2;; = 1 (resp. —z;; = 1) is supporting for £, at
r(Ls)if 4,5 € S2U({1,...,n} \ S)? (resp. if i € 5,5 € S or vice versa). This
shows that the normal cone of £,, at 7(Lg) is full dimensional, i.e., that 7(Lg) is a
vertex of L,. Conversely, let A € L, and suppose that a = 7(A) is a vertex of £,,.
Then, there exist (3) vectors by, .. "b(’;) such that the system (b;b! | 1 <4 < (3))is

linearly independent. Consider the (3) x (}) matrix M whose rows are the vectors
b;b% and the submatrix My formed by its first n — 1 columns, indexed by the pairs
(1,7)for 2 < j < n. Then, My has rank n—1 and, thus, contains an (n—1)x(n—1)
nonsingular submatrix which is indexed, say, by the vectors by,...,b,_1. It is easy
to check that the vectors by,...,b,_1 are linearly independent. This shows that

the matrix A has rank one and, thus, A = aa® for some « € R™. But, a € {-1,1}"



since the diagonal entries (a;)? of A are all equal to 1. Therefore, A is one of the
cut matrices Lg. |

In particular, the vectors 7(Lg) are the only £1-valued members of £,, (indeed,
every +1-member of £,, has a full dimensional normal cone, i.e., is a vertex of £,,).

REMARK 2.5 As a consequence of Proposition 2.2, we have the following asser-
tions.

(i) The regular points of £, i.e., having a normal cone of dimension one, are of
the form 7(A) for A € £, whose kernel Ker(A) has dimension 1.

(i7) Given A € L., the supporting cone of £,, at the point @ = 7(A) is given by
C(Lnya) = {2 € RG) | S i e, bibjey > 0 for all b€ Ker(A)}.

In particular, the supporting cone at the vertex 7(Ly) coincides with the cone
—NEG,, (i.e., is a linear bijective image of PSD,_;) and the suporting cone
at any other vertex 7(Lg) is a symmetric image of it, namely, C(L,,7(Ls)) =

Sws(—=NEG,,).

We now turn to the description of the faces of £,,. Let us first recall some well
known facts about the faces of the cone PSD,, of positive semidefinite matrices (see
[15]). Let A, B € PSD,, and let ®(A) denote the smallest face of PSD,, containing
A. Then, B € ®(A) if and only if Ker(A) C Ker(B). In particular, every face of
PSD,, is of the form

by :={X € PSD,, | V C Ker(X)}

for some subspace V of R™ and, conversely, ®y is a face of PSD,, for each subspace
V. Moreover, each face of PSD,, is isomorphic to PSD, and, thus, has dimension
(Hz'l), for some 0 < r < n.

It is well known that, if Ky, Ky are two convex bodies and Fj, Fy are faces of
Ky, K5, respectively, then Fy N Fy is a face of Ky N K5 and, moreover, each face
of K1 N K5 arises in this way.

As noted in relation (6), the body L, is the intersection of PSD,, and W.
Clearly, W is the only face of W. Hence, we have the following result.

PROPOSITION 2.6 Let A, B € L, and let F(A) denote the smallest face of L,
containing A. Then, B € F(A) if and only if Ker (A) C Ker(B). In particular,
every face of L, is of the form

Fy:={X€eLl,|VCKe(X)}

for some subspace V' of R™ and F(A) = FKer(A) for AeL,.



COROLLARY 2.7 FRwery face of L, is exposed.

ProoF. Consider a face Fy where V is a subspace of R". Let by,...,b; be an
orthogonal base of V. Then, for X € £,,, X € Fy if and only if b!Xb; = 0 for all
i=1,...,k or, equivalently, >, ., b!Xb; = 0. Hence, the face Fy arises as the

intersection of £, by the supporting hyperplane >y ;<5 bXb; = 0. This shows
that Fy is exposed. |

Note that, given a subspace V, there always exists X > 0 such that V C
Ker(X), but there may exist no such X € L,. This is the case, for instance, if
V C R? is generated by the vector (2,1). For this reason, we call a subspace V
of R™ realizable if there exists X € £, such that V C Ker(X). Clearly, the only
realizable subspaces of dimension n — 1 are the kernels of the cut matrices Lg.
We give in the next section the characterization of the 1-dimensional realizable
subspaces.

Unlike the case of the cone PSD,, a more precise description of the faces of
the convex body L, (or L), as e.g. their dimension, seems a hard problem. We
give some partial results. In particular, we show that the convex segment joining
any two vertices of Zn is a face of Zn We also indicate how every face of Zn can
be “lifted” to a face of Zn—l—l-

ProOPOSITION 2.8 Let A, B be distinct subsets of {1,...,n}. Then, the convex
segment [La, Ll ={als+ (1 —a)lp|0<a <1} isa face of L,.

Proor. Using the switching symmetry, we can suppose that B = (). We show that
the segment [Ly, L 4] is a face of £,,. Set ¥ = 2(Ly+ La). Then, Ker(Y) = {b €
R™ | > ieabi = 2igabi = 0}. One can easily check that a symmetric n X n matrix
matrix X belongs to F(Y') if and only if there exists a scalar a such that |a| <1
and X = (z;;) with 2;; = 1fori,je Aori,j¢g Aand z;; =aforie A,j¢ A In

other words, X € F(Y)if and only if X is the convex combination 4 Ly + 1541 4

of Ly and L 4. This shows that [Lg, L4] = F(Y) is, thus, a face of L,,. |

Note that there exist faces of £,, of dimension 2 that are not polyhedral. We de-
scribe such a face for £4 in Example 2.10 below. We now present a full description

of the faces of the body Ls.

PRrOPOSITION 2.9 FEwery proper face of Lz is, either reduced to a single point of
L3, or is an edge (1-dimensional face) joining two vertices of L3 (there are six
such faces).



PrOOF. Let Fy be a face of L3, where V is a (realizable) subspace of R3. If
dim(V) = 2, then Fy is reduced to a vertex of L3. Suppose now that V has
dimension 1. Let b € V. Then, by Lemma 3.1, b is balanced. We can suppose that
|b1], [b2], |bs| < 1 and, for instance, by = 1. Then, b = (1,a, ) with 1 < |a| + |3].

1 2z y
Let X € L3 be of the form | z 1 =z , where z,y,z € R. Then, X € Fy if and
y 2z 1
only if Xb =0, i.e., x,y, z satisfy the system
ar + 0y = -1
r+ 0z =-a (7)
y+az =-—0.

The determinant of the system (7) is equal to —2a3. If afg # 0, then the system
(7) has a unique solution (z,y, z), i.e., F'y consists of a single point of L. If, say,
a = 0, then § = £1. The solutions of the sytem (7) are of the form (-3z, -3, 2)
for 2 € R. For # = 1, we obtain that X € Fy if and only if X = Z"2'1 Ly + IEZL{:))}
with |z| < 1 and, thus, Fv = [Ly, Lygy]. Similarly, for 8 = -1, X € Fy if and

only if X = ZL Ly + 1525 L0y e, Fy = [Ly, Lin). I

EXAMPLE 2.10 Let V denote the 1-dimensional subspace of R* spanned by the
vector b = (1,1,1,0). One can check easily that a symmetric 4 x 4 matrix X

1 -1/2 —-1/2 =
. . . | -1/2 1 -1/2 ¥

belongs to Fy if and only if X is of the form X = “12 —1/2 1 P
T Y z 1

where z,y,2 € Rsatisfy 2 + y + 2 = 0 and 22 + 2y + % < % (the first condition
ensures Ehat Xb = 0 and the second one that X > 0). Hence, Fj is a 2-dimensional
face of £4 with the shape of an ellipse.

Finally, we present an operation which permits to lift each face of L, to a face
of En—l—l- Let X be a symmetric n X n matrix with diagonal entries equal to 1 and
let ¢ € R™ denote its last n-th column. Consider the (n 4 1) x (n 4 1) symmetric

X e
matrix L, (X ) defined by L,(X) =

|1
LEMMA 2.11 X € £, if and only if L,(X) € Lpy1.
Proo¥F. Let y € R" 1 2, 2,11 € Rand set 2 = (y,2,),2" = (y,2, + 2,11) € R,

2 = (y,2p,2p41) and 2’ = (y,2,,0) € R™! Then, we have that z'L,(X)z =
¢""Xa' and #'Xa = 2""L,(X)z'. This shows that X = 0 if and only if L,(X) > 0

10



and, thus, X € £, if and only if L.(X)€ Zn—l—l- |

COROLLARY 2.12 Let I be a face of L. Then, I' := {L(X)| X € FY} is a face
Of 'Cn-l-l'

PROOF. Suppose F = F(Y) is the smallest face of £, containing some Y € L,.
We show that F’ coincides with F(L,(Y)), the smallest face of £, 4, containing
L,(Y). The kernel of L,(Y) is spanned by the vectors (b,0) for b € Ker(Y) and
(0,...,0,1,—1). Hence, if Z € F(L,(Y)), then the n-th and (n 4 1)-th columns
of Z coincide because (0,...,0,1,—1) € Ker(Z), and the submatrix of Z formed
by its first n columns and rows belongs to F(Y') because (b,0) € Ker(Z) for
all b € Ker(Y). Therefore, 7 = L,(X) for some X € F(Y). This shows that
F' = F(L,(Y)) is, thus, a face of £, ;. |

3 Optimizing over L,

Let us recall that a symmetric matrix C' is called exact if the optimum of (4) is
attained in a vertex of £,. The motivation to study this question comes from the
application to the max-cut problem, which will be discussed in the next section.
The main result of this section is the characterization of the exact matrices C
which are of the form C = bb' for a vector b.

Let b = (b1,...,b,) be a vector. The gap of b, denoted as v(b), is defined as

b):= i b(S)—b(S 8

F0)i= _in [(8) - (5| )

where b(5) := ;¢ ;. In particular, we have y(b) = 0 if b(.5) = b(,5) for some S.
We say that a vector b = (by,...,b,) is balanced if

i—1 n
il <161+ D bl (9)
Jj=1 J=i+l

for every 1 = 1,...,n. In other words, a vector b is balanced if none of its entries
(in absolute value) is larger than the sum of the remaining entries (in absolute
value).

Given a pair of vectors z and y, let z oy denote the vector z = (z;) with entries
2 = ;y;. Let V1 denote the orthogonal complement of a linear subspace V. Let
e=(1,...,1) denote the vector of all ones.

LEMMA 3.1 A linear subspace V is realizable if and only if e € cone{z oz | x €
V4l

11



PROOF. Assume that V is realizable, i.e., V C Ker(X) for some X € £,. Since
X is positive semidefinite, Ker(X ) is the eigenspace of the minimum eigenvalue
Amin = 0, and hence X can be written as X = Zle vzl where xq,...,2) €
(Ker(X))* ¢ V1. Since diag(X) = e, we have e = S5 a0 2; C cone{z oz |
z € V1}. Conversely, let ¢ = Zle z; o z; for some z1,...,2, € VL. Set X :=

le z;xt. Obviously, V' C Ker(X), and X € L, since X is positive semidefinite
and diag(X)=e. |

The following lemma is a re-phrasing (using a different terminology) of a result
of [4, Theorem 3.2].

LemMa 3.2 ([4]) Let b € R"™ be a vector. Then the linear space V = (b) generated
by b is realizable if and only if b is balanced.

THEOREM 3.3 Let C be a matriz of the form C' = bb! for some b € R™. Then, C
i1s exact if and only if one of the following holds

(1) b is balanced and has gap v(b) = 0, or

(ii) b is unbalanced.

Proor. We have (bb', X) = b'Xb > 0 for every b and every X € L,. Hence
minX€~n b'Xb > 0, with equality if and only if b € Ker(X) for some X € L., ie.,
if the subspace (b) is realizable. Hence, from Lemma 3.2, the minimum is equal to
zero if and only if b is balanced. Assume that b is balanced. We claim that

bb' is exact if and only if ~(b) = 0. (10)

The matrix bb! is, by definition, exact if and only if minXeZ b' X b is reached in a

vertex Lg, i.e., (bb', Ls) = b'Lsb = 0 for some 5. Hence Lgb = 0 since Lg > 0.

The latter is equivalent to b(.S) — b(5) = 0. Hence (10) is proved. Assume that b
is not balanced. We claim that

bb' is exact. (11)
Assume that all b;,2 = 1,...,n, are nonnegative. Without loss of generality we
may also assume that by > Y i—, b;. Define the vector @ = (a;) by a1 = Y i, b;
and a; = b; for ¢ = 2,...,n. Hence, atL{l}a = 0, which shows that the minimum

of (aa’, X') is reached in the vertex Ly of £,,. Hence, —aa! belongs to the normal
cone of Ly,

—aa" € N(Ly, Liyy). (12)
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For every ¢ = 2,...,n,set f; = (1,0,...,0,1,0,...,0) (the 1- and ¢-th entries are
equal to 1), and observe that f; € Ker(Ly). Hence
— fift € N(Lns Liny)- (13)
Now, it is easy to check that bb! can be expressed as
bb' = aa® + Z /\Z"]CZ"]CZ?5
=2

for \j = (by — a1)a; > 0, and hence (12) and (13) imply that —bb* € N(ZR,L{l}).
Thus, bb' is exact. In case that some b;’s are negative, apply switching with the

set 5 ={i|b; <O0}. |
For every S C {1,...,n},let Os C R(:) denote the orthant
Os:={x= (i) |z >0fori,j€ 85, ori,j¢ S and z;; <0 otherwise}.

Since L, is contained in the unit cube [—1, 1](3), we have

LEMMA 3.4 For every S, the orthant Og is entirely contained in the normal cone
N(L,,7(Ls)) of the vertex 7(Lg).

i
Let p, denote the probability that a random vector ¢ € R(g), with ||¢|| =
Yot =1, is exact.
COROLLARY 3.5 We have p,, > 2~ 3(n*=3n+2)
Proor. Since Os C N(L,,7(Lg)) for every S by the above lemma, we have
pn = Prob(c € | JN(Ln,7(Ls)) = Prob(c € | | Os).
S S
Hence .
po > B 2 preney
- 2(2)
since Zn has 277! vertices and the total number of orthants is 2(3) |

In particular, we have ps > 0.5 by the corollary. Ch. Delorme (personal
communication) computed the exact value ps = 0.845.

Let us conclude this section with pointing out an interesting complexity aspect
of the optimization over L, .
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(i) The weak optimization problem (WOPT) over L,, is polynomial time solvable;
(ii) Testing whether the optimum over £, is attained at a vertex is NP-hard.

Let us recall that the weak optimization problem for a convex body K is defined
in [12] as follows. Given a rational vector ¢ and a rational number ¢ > 0, either (7)
find a rational vector y such that y € S(K,¢) and ¢z < c'y+eforall z € S(K, —¢),
or (i7) assert that S(A, —¢) is empty. (Here S(I,¢) denote the set of points which
lie in the e-neighborhood of K; and S(K,—¢) denote the set of points whose
e-neighborhood is contained in K.) The polynomial-time solvability of WOPT
follows from the theory developed in [12], since one can efficiently check the (weak)
membership of X € L, (by computing the minimum eigenvalue of X with sufficient
precision, and inspecting its diagonal entries). On the other hand, the problem
(ii) is NP-hard for £, as a corollary of Theorem 3.3. Given an integer vector
b = (by,...,b,), it is NP-hard to decide whether the gap v(b) is zero (cf. the
exact sum problem in [9]). Thus, if we could decide whether or not the optimum
of z'7(bb") is reached in a vertex of £,, we would be able to solve the exact sum
problem.

A practically efficient algorithm which can be used for the optimization problem
over the elliptope £,, was described in [19].

4 The max-cut problem

Let G = (V, F)be agraph and ¢ : £ — R be an edge-weight function. The maz-cut
problem consists of finding a subset S of vertices for which the sum of the weights
on the edges between S and S is maximum. Let us denote

me(G, ) = max Z Cij
i€S,¢S

The max-cut problem is polynomial-time solvable when G'is planar ([13, 16]), and
it is NP-complete for GG general ([9]). Barahona and Mahjoub [1] introduced a
polytope associated with the max-cut problem called the cut polytope. For our
purpose, it is sufficient to recall the definition only for the case when G = K,
is the complete graph. For a set § C V, let 6(5) (the cut) denote the edge set
0(5):={ij|ie€S8,j¢ S5}, and let v*9) denote the characteristic vector of the
cut 6(9) defined by ij(s) = 1 for ij € 6(9), and ij(s)
polytope P, is defined as P, := conv{x*®) | § ¢ V'}. Hence, the max-cut problem
can be alternatively defined as

= 0 otherwise. The cut

me(G,e) := max c'z (14)

rEP,

The cut polytope P, has been extensively studied; see, e.g., [6, 7].
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Schrijver [21] introduced the convex body 7, as a relaxation of the cut poly-
tope. Indeed, since x*®) € 7, for every S, we have

LEMMma 4.1
(ii) me(G, ¢) < maxgey, ca, setting ¢;j = 0 if the pair ij is not an edge of G.

|
Clearly, the symmetric matrix C' = (¢;;) is exact if and only if the program

max,e.7, ¢’z solves the max-cut problem.

Delorme and Poljak ([3, 4, 5]) considered earlier an eigenvalue upperbound

¢(Ge), defined as

o(Ge) = min z/\maX(L(G, ¢)+ diag(u))
uER",Z u; =0 4

where L(G, ¢) denotes the Laplacian matrix of the weighted graph (G, ¢) and Apax
the maximum eigenvalue.
Actually, the two bounds coincide, i.e.,

14
= (G
maxc'z = ¢(G, ¢),

as was shown by Poljak and Rendl [17], using duality.

For nonnegative weigths ¢, the quality of the approximation can be measured
by the ratio
max,e.7, c'a

me(G, c)

It has been conjectured in [4] that this ratio is bounded by 1.131 (with C5 as the
worst case). A recent result of [10] shows that this ratio is bounded by gg=5 =
1.139. Using a result of [4], one can prove a better bound for some special classes
of weights.

PROPOSITION 4.2 Let the weights c;; be given by ¢;; = a;a; where aq,...,a, € R,.
Then,
¢ 9
MmaXzeJ, € & < 2 =1.125.
me(G, c) 8

Proor. For aq,...,a, balanced, this result was shown in (Corollary 5.1,[4]). If
ai,...,a, is not balanced, then C'is exact by Theorem 3.3, implying that the ratio
is equal to 1. |
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