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Abstract

Let X be a set of vectors in R

m

. X is said to be a Hilbert base if every vector

in R

m

which can be written both as a linear combination of members of X with

nonnegative coe�cients and as a linear combination with integer coe�cients can also

be written as a linear combination with nonnegative integer coe�cients. Denote by

H the collection of the graphs whose family of cuts is a Hilbert base. It is known that

K

5

and graphs not contractible to K

5

belong to H and that K

6

does not belong to H.

We show that every proper subgraph of K

6

belongs to H and that every graph from

H is not contractible to K

6

. We also study how the class H behaves under several

operations.

1 Introduction

Let X be a set of vectors in R

m

. Set

R

+

(X) := f

X

x2X

�

x

x : �

x

� 0 (x 2 X)g

Z(X) := f

X

x2X

�

x

x : �

x

2Z(x 2 X)g

Z

+

(X) = f

X

x2X

�

x

x : �

x

2Z

+

(x 2 X)g

So, R

+

(X) is the cone generated by X and Z(X) is the lattice generated by X .Clearly,

Z

+

(X) � R

+

(X)\Z(X). The setZ

+

(X) is sometimes called the integer cone generated

by X . The set X is said to be a Hilbert base if equality holds in the above inclusion,

i.e. Z

+

(X) = R

+

(X)\Z(X).

Let G = (V;E) be a graph. For each subset S � V , the cut �(S) consists of the

edges ij with jS \ fi; jgj = 1, for i; j 2 V . For simplicity, we also denote by �(S) the
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incidence vector of the cut determined by S; so �(S)

ij

= 1 if jS\fi; jgj = 1 and �(S)

ij

= 0

otherwise, for distinct i; j 2 V . Let K

G

denote the set of all cuts of G. For simplicity, we

let R

+

(G) := R

+

(K

G

) denote the cone generated by the cuts of G, and Z(G) := Z(K

G

)

denote the lattice generated by the cuts of G. We also set Z

+

(G) :=Z

+

(K

G

).

Let H denote the set of the graphs G whose family of cuts K

G

is a Hilbert base.

We suppose here that the graphs are without loops and without multiple edges. This

is no loss of generality since, if a graph G has multiple edges and loops, then G 2 H if and

only if the graph obtained from G by deleting the loops and replacing the multiple edges

by single edges belongs to H.

In this paper, we show the following results.

Theorem 1.1 Let G be a subgraph of K

6

. Then, G 2 H if and only if G is distinct from

K

6

.

Proposition 1.2 If G belongs to H, then G is not contractible to K

6

.

We also study in Section 2 how the class H behaves under several operations (deletion

and contraction of edges, k-sum of graphs, switching of faces).

So, K

6

is the smallest example of a graph which does not belong to H. Indeed, set

x

e

= 2 for all edges of K

6

except x

e

= 4 for one edge of K

6

. Then, x 2 R

+

(K

6

) \Z(K

6

)

but x 62 Z

+

(K

6

) ([2]; see also Example 3). This is the only counterexample known to us

for K

6

. In fact, the proof of Proposition 1.2 is based on the fact that this counterexample

for K

6

can be extended to a counterexample for any graph containing K

6

.

Let us now recall several results that we need for the paper.

The lattice Z(G) can be easily characterized. Namely, given x 2Z

E

,

x 2Z(G) if and only if x(C) � 0 ( mod 2) (1)

for each circuit C of G. (We set x(C) :=

P

e2C

x

e

for each subset C � E.) On the

other hand, in general, characterizing the cone R

+

(G) or the integer cone Z

+

(G) are hard

problems. The next Theorems 1.3 and 1.4 give the characterization of R

+

(G) and Z

+

(G)

for the class of graphs not contractible to K

5

.

Let x 2 R

+

(G). Then, x satis�es the following inequalities

x

e

� x(C � e) � 0 (2)

for each e 2 C and each circuit C of G. The inequality (2) is called a cycle inequality.
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Theorem 1.3 [14] Let G be a graph. Then, R

+

(G) consists of the vectors x 2 R

E

+

satis-

fying the inequalities (2) for all e 2 C, C circuit of G, if and only if G is not contractible

to K

5

.

Theorem 1.4 [10] Let G be a graph. Then, Z

+

(G) consists of the vectors x 2 Z

E

+

satis-

fying the inequalities (2) and the condition (4) for all e 2 C, C circuit of G, if and only

if G is not contractible to K

5

.

In other words, Fu and Goddyn showed that every graph not contractible to K

5

be-

longs to H. The proof of this result is based on the following facts:

- graphs not contractible to K

5

can be obtained by means of k-sums (k = 1; 2; 3) of planar

graphs and copies of the graph V

8

(shown in Figure 1)([15])

- planar graphs belong to H ([12])

- V

8

belongs to H

- H is closed under the k-sum operation (see Proposition 2.6).

In fact, the graph K

5

, which is excluded in Theorem 1.4, also belongs to H ([5], [7]).

Let H

6

denote the graph obtained by splitting evenly a node in K

5

; H

6

is shown in Figure

2. From Seymour's splitter theorem ([13]), every graph not contractible to H

6

can be

obtained by means of k-sums (k = 1; 2) of graphs not contractible to K

5

and copies of K

5

.

Hence, from Theorem 1.4 and Proposition 2.6, we deduce that every graph not contractible

to H

6

belongs to H. Note that the graph H

6

also belongs to H (by Theorem 1.1).

Figure 1 : V

8

Figure 2 : H

6

The proof of Theorem 1.1 relies mainly on the following Theorem 1.5. However, this

result does not imply immediately that every subgraph of K

6

belongs to H, since we do

not know whether H is closed under deletion of edges (we have only a partial result; see

Proposition 2.3).
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Theorem 1.5 The graph K

6

ne belongs to H.

The full characterization of the class H seems a hard problem. One reason for that is

that we could not prove that H is closed under deletion of edges. Another major di�culty

for showing that a given graph G belongs to H is that the cone R

+

(G) is not known in

general (i.e. if G is contractible to K

5

). For instance, for showing that K

6

ne belongs to

H, we need �rst to �nd the linear description of the cone R

+

(K

6

ne) (which we did using

computer).

On the other hand, the dual problem, i.e. the characterization of the graphs whose

family of circuits is a Hilbert base, is completely solved. Namely, the family C

G

of circuits

of a graph G is a Hilbert base if and only if G is not contractible to the Petersen graph

P

10

([1]). Note that the cone R

+

(C

G

) is \easy"; indeed, for any graph G, the cone R

+

(C

G

)

consists of the vectors x 2 R

E

+

satisfying the inequalities (2) for all e 2 C and all cuts

C of G ([12]). Hence, for a graph G not contractible to P

10

, the integer cone Z

+

(C

G

) is

characterized by the inequalities (2) and the parity condition (1), for each e 2 C and each

cut C of G.

One may ask the same questions at the more general level of binary matroids. Let M

be a binary matroid on a set E with family of circuits C

M

. It is shown in [10] that the

integer cone Z

+

(C

M

) consists of the vectors x 2 R

E

+

satisfying the inequalities (2) and the

parity condition (1), for each e 2 C and each cocircuit C of M, if and only if M does not

have F

�

7

(the dual Fano matroid), R

10

,M

�

(K

5

) (the cographic matroid of K

5

), orM(P

10

)

(the graphic matroid of P

10

) as a minor. The proof of this result is based on Seymour's

decomposition for matroids with no F

�

7

, R

10

minor, and on the fact that the result holds

for graphic matroids (the above mentioned result of [1]), for cographic matroids (Theorem

1.4) and for the Fano matroid F

7

. Note that the exclusion of the minors F

�

7

, R

10

and

M

�

(K

5

) ensures that the cone R

+

(C

M

) is \easy", i.e. is completely determined by the

inequalities (2), for C cocircuit of M ([14]). The binary matroidsM for which the lattice

Z(C

M

) is completely determined by the parity condition (1) are characterized in [11].

The paper is organized as follows. In Section 2, we study how the class H behaves

under several operations, namely, under contraction and deletion of edges, under the k-

sum operation, and with respect to switching. In Section 3, we give the proof of Theorem

1.5, i.e. we show that the cuts of K

6

ne form a Hilbert base; Section 3.1 contains the

description of the cone R

+

(K

6

ne). In Section 4.1, we present the description of the cones

R

+

(H

6

) and R

+

(H

6

+ e); in Section 4.2, we give the proof of Theorem 1.1 and, in Section

4.3, we prove Proposition 1.2.
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2 Operations

In this section, we group several results showing that the class H is closed under some

operations, namely, under contraction of an edge, under deletion of an edge with some

additional conditions, and under the 1-, 2-, 3-sum operations. We also give a result on H

related to the switching operation; see Proposition 2.7.

Let G=e (resp. Gne) denote the graph obtained from G by contracting (resp. deleting)

the edge e.

Proposition 2.1 If G 2 H, then G=e 2 H for each edge e of G.

Proof. Let e be the edge uv where u; v 2 V . Let N

u

denote the set of nodes of G distinct

from v that are adjacent to u. N

v

is de�ned similarly. Then, G=e has node set V � fvg

and edge set E � fvw : vw 2 Eg [ fuw : w 2 N

v

�N

u

g.

Let y 2 R

+

(G=e) \ Z(G=e). We show that y 2 Z

+

(G=e). Since y 2 R

+

(G=e),

y =

P

S�V�fu;vg

�

S

�(S) where �

S

� 0 for all S � V � fu; vg. Set x =

P

S�V�fu;vg

�

S

�(S)

where the cuts are now taken in the graph G. Hence, by construction, x 2 R

+

(G) with

x

e

= 0 and x

vw

= x

uw

= y

uw

for all w 2 N

v

. In fact, x 2 Z(G). This follows from the

fact that y 2Z(G=e) and from the fact that, if w is a node adjacent to u and v in G, then

x

uv

+ x

uw

+ x

vw

= 2y

uw

is an even integer. By assumption, G 2 H; hence, x 2 Z

+

(G)

which implies easily that y 2Z

+

(G=e). 2

In fact, the proof of Proposition 2.1 shows the following result.

Proposition 2.2 Assume that G=e 2 H for some edge e of G. If x 2 R

+

(G)\Z(G) and

x

e

= 0, then x 2Z

+

(G).

We now turn to the case of deletion minors. We can prove an analogue of Proposi-

tion 2.1 only if we make some additional assumptions on the graph G.

Consider the following properties

v 2 f0; 1;�1g

E

(3)

v

T

�(S) 2 2Z for all cuts �(S) of G (4)

for each inequality v

T

x � 0 de�ning a facet of R

+

(G).

Each cycle inequality (2) clearly satis�es the properties (3) and (4).

Proposition 2.3 Let G be a graph satisfying (3) and (4) for each inequality v

T

x � 0

de�ning a facet of R

+

(G). If G 2 H, then Gne 2 H for each edge e of G.
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Proof. Let y 2 R

+

(Gne) \Z(Gne). We show that y 2 Z

+

(Gne). Set x

f

= y

f

for each

edge f of G distinct from e; we de�ne x

e

below.

Clearly, x 2 R

+

(G) if and only if (a) x

max

� x

e

� x

min

, where

x

max

= max(

�v

T

y

v

e

: v

e

< 0; v

T

z � 0 de�ning a facet of R

+

(G)) and

x

min

= min(

�v

T

y

v

e

: v

e

> 0; v

T

z � 0 de�ning a facet of R

+

(G)).

Moreover, x 2 Z(G) if and only if (b) x

e

has the same parity as y(C � e), where C is an

arbitrary circuit of G containing e.

By (3), x

min

; x

max

2 Z. Hence, if x

max

< x

min

, then x

max

+ 1 � x

min

and we

can choose x

e

satisfying the above conditions (a) and (b). If x

min

= x

max

, then we set

x

e

= x

max

= x

min

. We verify that x

e

has indeed the correct parity. For instance, x

e

= v

T

y,

where v

T

z � 0 de�nes a facet of R

+

(G) and v

e

= �1. De�ne x

0

2 R

E

by setting x

0

f

= y

f

if f is an edge of G distinct from e, and x

0

e

= 0 (resp. x

0

e

= 1) if y(C � e) is even (resp.

odd). Clearly, x

0

2 Z(G). Therefore, using (4), we deduce that v

T

x

0

is an even integer,

implying that x

e

has the same parity as x

0

e

, i.e. as y(C � e).

So, we can choose x

e

in such a way that x 2 R

+

(G) \Z(G). Since G 2 H, we have

that x 2Z

+

(G), implying that y 2Z

+

(Gne). 2

Note that the following weaker form of Proposition 2.3 holds. Suppose that, for each

inequality v

T

x � 0 de�ning a facet of R

+

(G) with v

e

6= 0, v

e

2 f1;�1g and v

T

�(S) 2 2Z

for all cuts �(S) of G. Then, Gne 2 H whenever G 2 H.

The following result is an easy consequence of Theorem 1.3 and Propositions 2.1 and

2.3.

Corollary 2.4 Suppose that G is not contractible to K

5

. If G 2 H, then every minor

of G belongs to H.

Example 1. Every graph on at most 5 nodes belongs to H.

Indeed, K

5

2 H ([5], [7]). Moreover, K

5

satis�es the properties (3) and (4) since its facets

are de�ned by the triangle inequalities x

ij

� x

ik

� x

jk

� 0, for i; j; k 2 V (K

5

), and the

pentagonal inequality x

12

+x

23

+x

13

+x

45

�

P

i=1;2;3

j=4;5

x

ij

� 0 for any labeling of the nodes

of K

5

as 1; 2; 3; 4; 5 ([5], [7]).

Let G

t

= (V

t

; E

t

) be a graph, for t = 1; 2. When the subgraph induced by V

1

\ V

2

is a

complete graph on k = jV

1

\ V

2

j nodes, the k-sum of G

1

and G

2

is de�ned as the graph

G = (V;E) with V = V

1

[ V

2

and E = E

1

[E

2

.

Proposition 2.5 [3] Let G be the k-sum (k = 1; 2; 3) of two graphs G

1

and G

2

. Then, a

system of linear inequalities su�cient to describe the coneR

+

(G) is obtained by juxtaposing

the inequalities that de�ne the cones R

+

(G

1

) and R

+

(G

2

) and identifying the variables
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associated with the common edges to G

1

and G

2

.

In particular, G satis�es the property (3) (resp. (4)) if and only if G

1

and G

2

satisfy the

property (3) (resp. (4)).

Proposition 2.6 Let G be the k-sum (k = 1; 2; 3) of two graphs G

1

and G

2

. Then,

G 2 H if and only if G

1

2 H and G

2

2 H.

Proof. We give the proof in the case k = 3; the cases k = 1; 2 are similar but easier. Set

V

1

\ V

2

= fu; v; wg. We �rst suppose that G

1

; G

2

2 H and we show that G 2 H. Let

x 2 R

+

(G)\Z(G). The projection x

t

of x on R

E

t

belongs to R

+

(G

t

)\Z(G

t

), for t = 1; 2.

Since G

t

2 H, then x

t

2 Z

+

(G

t

), for t = 1; 2. Say, x

1

=

P

A2A

�(A), x

2

=

P

B2B

�(B),

where A is a multiset of cuts of G

1

, i.e. repetition is allowed in A, and B is a multiset

of cuts of G

2

. We can suppose that w 62 A;B for all A 2 A; B 2 B. Let A

0

(resp. A

1

,

A

2

, A

3

) denote the multiset consisting of all members �(A) of A such that u; v 62 A (resp.

(u 2 A; v 62 A), (u 62 A; v 2 B), (u; v 2 A)). De�ne similarly B

0

, B

1

, B

2

and B

3

. Hence,

x(uv) = x

1

(uv) = x

2

(uv) = jA

1

j+ jA

2

j = jB

1

j+ jB

2

j,

x(uw) = x

1

(uw) = x

2

(uw) = jA

1

j+ jA

3

j = jB

1

j+ jB

3

j,

x(vw) = x

1

(vw) = x

2

(vw) = jA

2

j+ jA

3

j = jB

2

j+ jB

3

j,

yielding that jA

1

j = jB

1

j = (x(uv) + x(uw)� x(vw))=2, jA

2

j = jB

2

j = (x(uv) + x(vw)�

x(uw))=2 and jA

3

j = jB

3

j = (x(uw) + x(vw)� x(uv))=2. Since jA

k

j = jB

k

j, we can order

the members of A

k

as A

1

; : : : ; A

jA

k

j

, and those of B

k

as B

1

; : : : ; B

jA

k

j

, for each k = 1; 2; 3.

Then, x =

P

A2A

0

�(A)+

P

B2B

0

�(B)+

P

k=1;2;3

�

P

1�i�jA

k

j

�(A

i

[B

i

)

�

: This shows that

x 2Z

+

(G). Hence, G 2 H.

Conversely, let us assume that G 2 H. We show that G

1

2 H. Let y 2 R

+

(G

1

)\Z(G

1

).

So, y =

P

S

�

S

�(S) for some scalars �

S

� 0, where the cuts �(S) are taken in G

1

with

w 62 S. Set x =

P

S

�

S

�(S) where the cuts �(S) are now taken in the graph G. Hence,

x

iw

= 0, x

iv

= y

vw

, x

iu

= y

uw

for each node i 2 V

2

� V

1

, and x

ij

= 0 for all nodes

i; j 2 V

2

� V

1

. This observation permits to check that x(C) 2 2Zfor each circuit of G,

i.e. x 2Z(G). Therefore, x 2Z

+

(G) since G 2 H. This implies that y 2Z

+

(G

1

). Hence,

G

1

2 H. 2

Example 2. As application of Proposition 2.6, we deduce that the graph K

6

� P

3

(i.e.

K

6

with a path on three nodes deleted) belongs to H (since it is the 3-sum of K

4

and K

5

).

As application of Propositions 2.3 and 2.5, the graph obtained by deleting an edge from

K

6

� P

3

still belongs to H. In particular, the graph H

6

+ e (i.e. H

6

with one more edge

among its nodes) belongs to H. (H

6

is shown in Figure 2 and H

6

+ e in Figure 7.) Then,

H

6

too belongs to H since all the inequalities de�ning facets of H

6

+ e atisfy (3) and (4)

(see Section 4.1).

We conclude this section with a result related to the switching operation.
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Given a cut �(A) in G and v 2 R

E

, de�ne v

�(A)

2 R

E

by (v

�(A)

)

e

= �v

e

if �(A)

e

= 1

and (v

�(A)

)

e

= v

e

if �(A)

e

= 0, for all edges e 2 E. Then, the mapping r

�(A)

: R

E

�! R

E

de�ned by r

�(A)

(v) = v

�(A)

+ �(A), for all v 2 R

E

, is called switching mapping. It is

well known that switching preserves the cut polytope ([4]) and the cone R

+

(G) ([5]).

Namely, if the inequality v

T

x � 0 is valid for R

+

(G) and if v

T

�(A) = 0, then the

inequality (v

�(A)

)

T

x � 0, obtained by switching w

T

x � 0 by the cut �(A), is valid for

R

+

(G); moreover, (v

�(A)

)

T

x � 0 de�nes a facet of R

+

(G) if and only if v

T

x � 0 de�nes a

facet of R

+

(G).

In other words, if F is a face of R

+

(G) with R = f�(A

1

); : : : ; �(A

t

)g denoting the

set of nonzero cuts lying on F , then the set F

�(A

1

)

:= f�

1

�(A

1

) +

P

2�i�t

�

i

�(A

i

4A

1

) :

�

1

; �

2

; : : : ; �

t

� 0g is also a face of R

+

(G), obtained by switching the face F by the cut

�(A

1

).

We now give a result which will be very useful for showing that some given graph G

belongs to H.

Given x 2 R

+

(G), we de�ne its minimum R

+

-size s(x) by

s(x) := min(

X

S�V

�

S

: x =

X

S�V

�

S

�(S) with all �

S

� 0)

and, given x 2Z

+

(G), we de�ne its minimum Z

+

-size h(x) by

h(x) := min(

X

S�V

�

S

: x =

X

S�V

�

S

�(S) with all �

S

2Z

+

):

As above, let F be a face of R

+

(G) and let R = f�(A

1

); : : : ; �(A

t

)g denote the set of

nonzero cuts lying on F . We consider the following two properties (5) and (6).

If x 2 R

+

(G) \Z(G) and x 2 F ; then x 2Z

+

(G) (5)

For each x 2 F ; s(x) 2Zand

P

1�i�t

�

i

= s(x)

for each decomposition x =

P

1�i�t

�

i

�(A

i

) with �

i

� 0 for 1 � i � t:

(6)

Proposition 2.7 Assume that the face F has the property (5) and that both faces F and

F

�(A

1

)

have the property (6). Then, the face F

�(A

1

)

has the property (5).

Proof. Let z 2 R

+

(G) \Z(G) such that z 2 F

�(A

1

)

. We show that z 2 Z

+

(G). By

assumption, we have that z = �

1

�(A

1

)+

P

2�i�t

�

i

�(A

t

4A

1

) for some scalars �

1

; : : : ; �

t

�

0. Since F

�(A

1

)

has the property (6), we have that

P

1�i�t

�

i

= s(z) 2Z.
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Set y =

P

2�i�t

�

i

�(A

i

). Hence, y 2 F . Since F has the property (6), we deduce that

P

2�i�t

�

i

= s(y) 2Z. Note also that y = r

�(A

1

)

(z)+�(A

1

)(s(z)�1). Moreover, y 2Z(G);

indeed, z 2Z(G) which implies obviously that r

�(A

1

)

(z) 2Z(G).

Therefore, from the property (5) applied to F , we deduce that y 2 Z

+

(G), i.e.

y =

P

1�i�t

�

i

�(A

i

) for some nonnegative integers �

i

. Moreover,

P

1�i�t

�

i

= s(y). Then,

from z = r

�(A

1

)

(y)+�(A

1

)(s(z)�1), we obtain that z =

P

2�i�t

�

i

�(A

i

)+�(A

1

)(s(z)�s(y)).

This shows that z 2Z

+

(G), since s(z)� s(y) = �

1

2Z

+

. 2

3 The cuts of K

6

ne form a Hilbert base

In this section, we show that the cuts of K

6

ne form a Hilbert base.

Let G

6

denote the graph on the nodes 1,2,3,4,5,6 whose edges are all pairs except the

pair (5; 6), i.e. G

6

= K

6

ne for e = 56. We present the description of the facets of the cone

R

+

(G

6

) in Section 3.1 and we show that G

6

2 H in Section 3.2.

3.1 Description of the cone R

+

(G

6

)

The facets of R

+

(G

6

) are grouped into three classes.

� The �rst class is composed of 48 triangle facets; they are induced by the cycle inequali-

ties (2), where C is one of the 16 triangles ofG

6

, namely, C = (i; j; k) for 1 � i < j < k � 4,

C = (i; j; 5) and C = (i; j; 6) for 1 � i < j � 4. There are 23 nonzero cuts lying on each

triangle facet.

� The second class consists of 20 pentagonal facets. They are induced by the inequalities

Q(b

1

; b

2

; b

3

; b

4

; b

5

; b

6

)(x) :=

X

1�i<j�6

b

i

b

j

x

ij

� 0

where b = (b

1

; : : : ; b

6

) is one of the sequences (b

i

= b

j

= �1; b

k

= 1 for k 2 f1; 2; 3; 4; 5g�

fi; jg; b

6

= 0) for 1 � i < j � 5, or (b

i

= b

j

= �1; b

k

= 1 for k 2 f1; 2; 3; 4; 6g�fi; jg; b

5

=

0) for i < j, i; j 2 f1; 2; 3; 4; 6g. There are 19 nonzero cuts lying on each pentagonal facet.

For instance, the pentagonal inequality Q(1; 1; 1;�1;�1; 0)(x)� 0 is shown in Figure

3. We use the following notation: a plain edge ij represents a coe�cient +1 for the variable

x

ij

and a dotted edge represents a coe�cient -1, while no edge means a coe�cient 0.
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Figure 3 : Q(1; 1; 1;�1;�1; 0)

� The third class consists of 56 facets, which are grouped into 4 switching classes. Set

w

T

1

x := x

16

+ x

46

+ x

45

� x

15

+ x

23

�

X

i=2;3

j=4;5;6

x

ij

:

The vector w

1

is shown in Figure 4. The inequality w

T

1

x � 0 is valid for the cone R

+

(G

6

).

There are exactly 13 nonzero cuts satisfying the equality w

T

1

x = 0, namely, the cuts of the

set

A

1

:= f�(A) : A = 1; 4; 6; 14; 15; 24; 26; 34; 36; 124; 125; 134; 135g:

They are linearly independent. Hence, the inequality w

T

1

x � 0 de�nes a simplicial facet

of R

+

(G

6

). Observe that the inequality w

T

1

x � 0 arises as the sum of the pentagonal

inequality Q(0;�1;�1; 1; 1; 1)(x) � 0 and of the triangle inequality x

16

� x

15

� x

56

� 0,

which de�ne both facets of the cone R

+

(K

6

).

For each �(A) 2 A

1

, the inequality (w

�(A)

1

)

T

x � 0, obtained by switching the inequality

w

T

1

x � 0 by the cut �(A), de�nes a (simplicial) facet of R

+

(G

6

). We show in Figure 5 the

vector w

�(4)

1

. In fact, Figures 4 and 5 show the two possible patterns for the coe�cients

of the switchings of w

1

.



Hilbert bases of cuts 11

Figure 4 : w

1

Figure 5 : w

�(4)

1

By permuting cyclically the nodes of (1; 2; 3; 4), we obtain three more inequalities

w

T

2

x � 0, w

T

3

x � 0, w

T

4

x � 0, de�ned by

w

T

2

x := x

26

+ x

16

+ x

15

� x

25

+ x

34

�

X

i=3;4

j=1;5;6

x

ij

w

T

3

x := x

36

+ x

26

+ x

25

� x

35

+ x

14

�

X

i=1;4

j=2;5;6

x

ij

w

T

4

x := x

46

+ x

36

+ x

35

� x

45

+ x

12

�

X

i=1;2

j=3;5;6

x

ij

:

Each of them yields, via switching, 14 other facets of R

+

(G

6

). We show in Figure 6 the

vectors w

2

, w

3

and w

4

. Let A

i

denote the set of nonzero cuts satisfying the equality

w

T

i

x = 0, for i = 2; 3; 4; they are easily obtained from A

1

.

We refer to the facets of R

+

(G

6

) induced by the inequalities w

T

i

x � 0 and their

switchings (w

�(A)

i

)

T

x � 0, for A 2 A

i

, i = 1; 2; 3; 4, as the special facets of R

+

(G

6

). We

call the facet induced by w

T

1

x � 0 the main special facet of R

+

(G

6

).
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Figure 6 : w

2

; w

3

; w

4

We checked, using computer, that the above triangle facets, pentagonal facets and

special facets are all the facets of R

+

(G

6

). Hence, R

+

(G

6

) has 48 + 20 + 56 = 124 facets

in total.

We conclude with an observation.

Remark 3.1 (i) If v

T

x � 0 de�nes a triangle facet, then v

T

�(A) 2 f0;�2g for all cuts.

(ii) If v

T

x � 0 de�nes a pentagonal facet, then v

T

�(S) 2 f0;�2g for all cuts except

two cuts for which v

T

�(S) = �6. Namely, v

T

�(ij) = v

T

�(hkl) = �6 for the pentagonal

inequality Q(b)(x)� 0 with b

i

= b

j

= �1 and b

h

= b

k

= b

l

= 1.

(iii) If v

T

x � 0 de�nes a special facet, then v

T

�(S) 2 f0;�2g for all cuts except four cuts

for which v

T

�(S) = �4;�6. Namely, for the main special facet, w

T

1

�(45) = w

T

1

�(146) =

�4 and w

T

1

�(23) = w

T

1

�(123) = �6. (One deduces easily for which cuts every other

special facet takes value -4 or -6 using permutation and switching; for instance, w

T

2

�(15) =

w

T

2

�(126) = �4 and w

T

2

�(34) = w

T

2

�(234) = �6.)

3.2 The Proof of Theorem 1.5

We show in this section that G

6

belongs to H. Observe that, in order to show that G

6

belongs to H, it su�ces to show that, for each y 2 R

+

(G

6

)\Z(G

6

) with y 6= 0, there exits

a cut �(A) of G

6

such that y� �(A) 2 R

+

(G

6

). Indeed, we then deduce that y 2Z

+

(G

6

),

by applying induction on

P

e2E

y

e

.

Let y 2 R

+

(G

6

) \Z(G

6

), y 6= 0. We suppose, for contradiction, that y satis�es

y � �(A) 62 R

+

(G

6

) for all cuts �(A): (7)

We show that no such y exists. Clearly, y

e

� 1 for all edges e of G

6

(since every

contraction minor of G

6

belongs to H).
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Let F denote the smallest face of R

+

(G

6

) that contains y, let R denote the set of

nonzero cuts lying on F and let V denote the set of vectors v for which the inequality

v

T

x � 0 de�nes a facet of R

+

(G

6

) such that v

T

y = 0.

The next Claim 3.2 follows from (7).

Claim 3.2 For each cut �(A) 2 R, there exists an inequality v

T

x � 0 de�ning a facet of

R

+

(G

6

) such that (v

T

y = �2; v

T

�(A) 2 f�4;�6g) or (v

T

y = �4; v

T

�(A) = �6).

Corollary 3.3 Every cut of R is of the form �(A) where A belongs to the set

f5; 6g

S

f12; 13; 14; 23; 24; 34g

S

f15; 16; 25; 26; 35; 36; 45; 46g

S

f56g

S

f123; 124; 134; 156g

S

f125; 126; 135; 136; 145; 146g. (We have grouped together the sets according to the sym-

metries of G

6

.)

Proof. By Claim 3.2, �(i) 62 R since no pentagonal or special facet satis�es v

T

�(i) =

�4;�6, for i = 1; 2; 3; 4 (see Remark 3.1). 2

Claim 3.4 y does not lie on any of the special facets.

Proof. Let us �rst suppose that y lies on the main special facet, i.e. w

T

1

y = 0. So,

y =

P

�(A)2A

1

�

A

�(A), for some scalars �

A

� 0. Using the condition (1), we show that all

�

A

's are integers. (We use again the following notation: y([12]3) := y

12

� y

13

� y

23

.)

� Since y([16]2) = �2�

24

2 2Z, we deduce that �

24

2 Z. Similarly, �

34

; �

124

2 Z, from

y([16]3); y([12]5)2 2Z.

� From y([16]4) 2 2Z, �

4

+ �

24

+ �

34

2Z, implying that �

4

2Z.

� From y([12]3)� y([12]4) 2 2Z, �

36

+ �

124

� �

4

2Zand, thus, �

36

2Z.

� From y(2[36]) 2 2Z, �

24

+ �

36

+ �

124

+ �

125

2Z, implying that �

125

2Z.

� From y([12]6) 2 2Z, �

6

+ �

36

+ �

124

+ �

125

2Z, implying that �

6

2Z.

� From y(1[23])� y(1[34]) 2 2Z, �

14

� �

34

� �

125

2Z, implying that �

14

2Z.

� From y(1[35]) 2 2Z, �

1

+ �

14

+ �

124

2Z, i.e. �

1

2Z.

� From y([14]2)� y(1[25]) 2 2Z, �

26

� �

1

2Z, i.e. �

26

2Z.

� From y(1[34]) 2 2Z, �

1

+ �

15

+ �

34

+ �

125

2Z, i.e. �

15

2Z.

� From y(2[14]) 2 2Z, �

14

+ �

26

+ �

134

2Z, i.e. �

134

2Z.

� Finally, y(1[24]) 2 2Z, i.e. �

1

+ �

15

+ �

24

+ �

135

2Z, i.e. �

135

2Z.

So, we have just shown that the face G of R

+

(G

6

), de�ned by the inequality w

T

1

x � 0, has

the property (5). Note that G has the property (6); indeed, s(x) = (x

14

+ x

16

+ x

46

)=2

for any x 2 G (since the triangle (1; 4; 6) cuts all the cuts of A

1

). It is easy to see that

every switching G

�(B)

of G by a cut �(B) 2 A

1

also has the property (6). Therefore, by

Proposition 2.7, the face G

�(B)

has the property (5). Hence, if y lies on a switching of the

main special facet, then y 2Z

+

(G

6

), contradicting (7). By symmetry, y cannot lie on any
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switching of the facets de�ned by the inequalities w

T

i

x � 0, for i = 2; 3; 4. 2

Let G denote the face of R

+

(G

6

) which is de�ned by the pentagonal inequality

Q(1; 1; 1;�1;�1; 0)(x) � 0 and the triangle inequalities x(1[45]) � 0, x(2[45]) � 0 and

x(3[45])� 0. The set of nonzero cuts lying on G is

R

G

:= f�(A) : A = 6; 14; 146; 15; 156; 24; 135; 25; 134; 34; 125; 35; 124g:

Note that the only cuts lying on the pentagonal facet de�ned by Q(1; 1; 1;�1;�1; 0)(x)� 0

but not on G are �(A) for A 2 f1; 2; 3; 16; 26; 36g.

Claim 3.5 y does not lie on the face G.

Proof. Suppose, for contradiction, that y 2 G. Then, y =

P

�(A)2R

G

�

A

�(A) for some

scalars �

A

� 0. We can assume that 0 � �

A

< 1 for all �(A) 2 R

G

. Else, if �

A

� 1 for

some A 2 R, then y � �(A) would still belong to the cone R

+

(G

6

), contradicting (7).

� From y(4[ij]); y(5[ij]) 2 2Z, for 1 � i < j � 3, we obtain that

(a) �

14

+ �

146

; �

15

+ �

156

; �

24

+ �

135

; �

25

+ �

134

; �

34

+ �

125

; �

35

+ �

124

2 f0; 1g:

Note that there is a pairing of the �

A

's; namely, �

14

and �

146

are paired together, �

15

and �

156

are paired together, etc. (It comes from the fact that the projection of y on the

subgraph K

5

induced by the nodes 1,2,3,4,5 lies again on a pentagonal facet which is now

simplicial for the cone R

+

(K

5

).)

� From y(6[ij]) 2 2Z, for 1 � i < j � 3, we obtain that

(b)

8

>

<

>

:

�

6

+ �

124

+ �

125

2Z

�

6

+ �

134

+ �

135

2Z

�

6

+ �

146

+ �

156

2Z

� From y(i[46]) 2 2Z, for 1 � i � 3, we obtain that

(c)

8

>

<

>

:

�

15

+ �

135

+ �

125

2Z

�

25

+ �

146

+ �

125

2Z

�

35

+ �

146

+ �

135

2Z

� From y(6[i4]) 2 2Z, for 1 � i � 3, we obtain that

(d)

8

>

<

>

:

�

6

+ �

14

+ �

134

+ �

124

2Z

�

6

+ �

24

+ �

156

+ �

124

2Z

�

6

+ �

34

+ �

134

+ �

156

2Z

In fact, the parity condition (1) applied to the other triangles of G

6

yields no new

condition on the �

A

's. We now distinguish two cases depending whether some paired sum
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from (a) is equal to 0 or not. In both cases, we �nd that y must be one of a small number

of instances for which we can check directly that they belong to Z

+

(G

6

), contradicting

(7).

Case A: All paired sums in (a) are equal to 1.

Then, �

146

= 1 � �

14

; : : : ; �

124

= 1 � �

35

. This permits to compute explicitely the

components of y. In fact, the components of y indexed by the pairs of 1,2,3,4,5 do not

depend on the �

A

's. Namely, y

12

= y

13

= y

23

= 4, y

14

= y

15

= y

24

= y

25

= y

34

= y

35

= 3,

y

45

= 6. Moreover,

y

16

= 4 + �

6

+ �

14

+ �

15

� �

24

� �

25

� �

34

� �

35

,

y

26

= 4 + �

6

� �

14

� �

15

+ �

24

+ �

25

� �

34

� �

35

,

y

36

= 4 + �

6

� �

14

� �

15

� �

24

� �

25

+ �

34

+ �

35

,

y

46

= 3 + �

6

+ �

14

� �

15

+ �

24

� �

25

+ �

34

� �

35

.

Using (b), we deduce that �

14

+ �

15

; �

24

+ �

25

; �

34

+ �

35

2 f�

6

; �

6

+ 1g. This gives the

following four possibilities.

Case A1: �

14

+ �

15

= �

24

+ �

25

= �

34

+ �

35

= �

6

: Then, y

16

= y

26

= y

36

= 4 and

y

46

2 f3; 5; 7g. In fact, y 2 R

+

(G

6

) in all three cases. Indeed,

- if y

46

= 3, then y = �(146)+ �(156)+ �(135)+ �(134)+ �(125)+ �(124)

- if y

46

= 5, then y = �(14) + �(15) + �(24) + �(25)+ �(34) + �(35) + 2�(6)

- if y

46

= 7, then y = �(14) + �(156) + �(24) + �(134) + �(34) + �(124)+ �(6).

Case A2: �

14

+�

15

= �

6

+1 and �

24

+�

25

= �

34

+�

35

= �

6

: Then, y

16

= 5, y

26

= y

36

= 3

and y

46

2 f2; 4; 6g. Again, y 2Z

+

(G

6

). Indeed,

- if y

46

= 2, then y = �(146)+ �(15) + �(135) + �(134) + �(125) + �(124)

- if y

46

= 4, then y = �(14) + �(156) + �(135) + �(134) + �(125) + �(124)

- if y

46

= 6, then y = �(14) + �(15) + �(24) + �(134)+ �(34)+ �(124)+ �(6).

Case A3: �

14

+ �

15

= �

24

+ �

25

= �

6

+ 1 and �

34

+ �

35

= �

6

: Then, y

16

= y

26

= 4,

y

36

= 2 and y

46

2 f1; 3; 5g. Again, y 2Z

+

(G

6

). Indeed,

- if y

46

= 1, then y = �(146)+ �(15) + �(135) + �(25) + �(125) + �(124)

- if y

46

= 3, then y = �(14) + �(156) + �(135) + �(25) + �(124) + �(125)

- if y

46

= 5, then y = �(14) + �(156) + �(24) + �(134) + �(125) + �(124).

Case A4: �

14

+ �

15

= �

24

+ �

25

= �

34

+ �

35

= �

6

+ 1: Then, y

16

= y

26

= y

36

= 3 and

y

46

2 f0; 2; 4; 6g. Again, y 2Z

+

(G

6

). Indeed,

- if y

46

= 0, then y = �(146)+ �(15) + �(135) + �(25) + �(125) + �(35)

- if y

46

= 2, then y = �(14) + �(156) + �(135) + �(25) + �(125) + �(35)
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- if y

46

= 4, then y = �(14) + �(156) + �(24) + �(134) + �(125) + �(35)

- if y

46

= 6, then y = �(14) + �(156) + �(24) + �(134) + �(34) + �(124).

Case B: Some paired sum in (a) is equal to 0. For instance, �

14

= �

146

= 0. We deduce

from (b) that �

6

+ �

156

2 f0; 1g.

Case B1: Suppose that �

6

= �

156

= 0. Then, �

15

= 0 and, reading from (b); (c); (d), we

deduce that the quantities �

124

+�

125

; �

134

+�

135

; �

135

+�

125

; �

25

+�

125

; �

35

+�

135

; �

134

+

�

124

; �

24

+ �

124

; �

34

+ �

134

all belong to f0; 1g. If one of them is equal to 0, then all

�

A

's are equal to 0. Else, we obtain that �

25

= �

34

= �

124

= �

135

=: �. Hence,

y = �(�(34)+�(124)+�(25)+�(135))+(1��)(�(24)+�(125)+�(134)+�(35)). So, y

ij

= 2 for

all edges except y

23

= y

45

= 4. Then, y 2Z

+

(G

6

) since y = �(34)+�(124)+�(25)+�(135).

Case B2: Suppose that �

156

= 1 � �

6

; then, �

15

= �

6

> 0. From (c) and (d),

�

25

+�

125

; �

35

+�

135

; �

24

+�

124

; �

34

+�

134

belong to f0; 1g. If one of them is equal to 0, say,

�

25

= �

125

= 0, then �

34

= �

134

= 0, from which we deduce that y

24

= 0 and, thus, y 2

Z

+

(G

6

). Else, �

24

= �

35

and �

25

= �

34

and, thus, y = �

6

(�(6)+�(15))+(1��

6

)�(156)+

�

24

(�(24)+�(35))+(1��

24

)(�(135)+�(124))+�

25

(�(25)+�(34))+(1��

25

)(�(134)+�(125)).

Therefore, y

12

= y

13

= y

14

= y

25

= y

35

= y

26

= y

36

= y

46

= 3, y

15

= y

24

= y

34

= 2,

y

23

= 4, y

45

= 5 and y

16

2 f0; 2; 4; 6g. This implies that y 2Z

+

(G

6

). Indeed,

- if y

16

= 0, then y = �(156)+ �(24) + �(25) + �(34) + �(35)

- if y

16

= 2, then y = �(6) + �(15) + �(24) + �(25) + �(34) + �(35)

- if y

16

= 4, then y = �(156)+ �(135)+ �(134)+ �(125)+ �(124)

- if y

16

= 6, then y = �(6) + �(15) + �(135)+ �(134)+ �(125)+ �(124):

2

Corollary 3.6 y does not lie on any pentagonal facet.

Proof. There are, up to symmetry, two pentagonal facets to consider, namely, those

de�ned by the inequalities Q(1; 1; 1;�1;�1; 0)(x) � 0 and Q(1; 1;�1; 1;�1; 0)(x) � 0.

Note that the second one arises by switching the �rst one by the cut �(34).

Suppose �rst that Q(1; 1; 1;�1;�1; 0)(y) = 0. Then, y =

P

�(A)2R

�

A

�(A) for some

scalars 0 � �

A

< 1, where R � R

G

[ f�(16); �(26); �(36)g (recall that �(1); �(2); �(3) 62 R

by Corollary 3.3). From y(i[45]) 2 2Z, for i = 1; 2; 3, we obtain that �

i6

2 Zand, thus,

�

i6

= 0, for i = 1; 2; 3. Hence, y lies on the face G, contradicting Claim 3.5.

Suppose now that Q(1; 1;�1; 1;�1; 0)(y) = 0. Then, y =

P

�(A)2R

�

A

�(A) for some

scalars 0 � �

A

< 1, where R � R

G

�(34)

[ f�(16); �(26); �(46)g and R

G

�(34)

= f�(A) : A =
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6; 13; 136; 15; 156; 23; 145; 25; 134; 34; 125; 45; 123g denotes the set of nonzero cuts lying on

the switching G

�(34)

of G by �(34). Again, from y(i[35]) 2 2Z, for i = 1; 2; 4, we obtain that

�

i6

= 0, for i = 1; 2; 4. Hence, y lies on the face G

�(34)

. But the proof of Claim 3.5 shows

that the face G has the property (5). On the other hand, both faces G and G

�(34)

have the

property (6); indeed, s(x) = (x

45

+ x

46

+ x

56

)=2 if x 2 G and s(x) = (x

35

+ x

36

+ x

56

)=2 if

x 2 G

�(34)

. Therefore, by Proposition 2.7, the face G

�(34)

also has the property (5). Hence,

y 2Z

+

(G

6

), contradicting (7). 2

From now on, we assume that y does not lie on any pentagonal or special facet, i.e.

the set V of the facets of R

+

(G

6

) that contain y consists only of triangle facets.

In the following Claims 3.7, 3.8, 3.9 and 3.10, we show that R � f�(A) : A =

12; 13; 14; 23; 24; 34g. Then, y = �

12

�(12) + �

13

�(13) + �

14

�(14) + �

23

�(23) + �

24

�(24) +

�

34

�(34) with nonnegative �'s. From the fact that y([ij]k) 2 2Zfor 1 � i < j � 3 and

k = 4; 5, we obtain that the �'s are all integers, contradicting (7).

Claim 3.7 The cuts �(5); �(6); �(56) do not belong to R.

Proof. Suppose that �(5) 2 R. By Claim 3.2, there exists an inequality u

T

x � 0

de�ning a facet of R

+

(G

6

) such that u

T

�(5) 2 f�4;�6g and u

T

y > u

T

�(5). There are four

possibilities for u, namely, u = w

�(4)

1

, w

�(15)

2

, w

�(2)

3

and w

�(3)

4

, for which u

T

�(5) = �4. By

symmetry, it su�ces to consider the case u = w

�(4)

1

. Hence, we have that (w

�(4)

1

)

T

y = �2.

On the other hand, we know from Corollary 3.3 that �(1) 62 R. Hence, there exists v 2 V

such that v

T

�(1) < 0; it is necessarly a triangle inequality and there are, up to symmetry,

the following three triangle inequalities x(1[23]) � 0, x(1[25])� 0, x(1[26]) � 0 to consider.

(i) Suppose that the inequality x(1[23]) � 0 belongs to V , i.e. y(1[23]) = 0. After

rearranging the terms, we obtain that y(1[23]) + (w

�(4)

1

)

T

y = Q(�1; 1; 1; 1; 0;�1)(y) +

y(5[14]) + y(5[23]). But, Q(�1; 1; 1; 1; 0;�1)(y) � 0, y(5[14]) � �2 and y(5[23]) � �2;

indeed, the inequalities x(5[14]) � 0 and x(5[23]) � 0 do not belong to V since they are

not satis�ed at equality by �(5). Hence, y(1[23])+ (w

�(4)

1

)

T

y � �4, contradicting the fact

that y(1[23]) = 0 and (w

�(4)

1

)

T

y = �2.

(ii) Suppose that y(1[25]) = 0. Then, y(1[25]) + (w

�(4)

1

)

T

y = Q(�1; 1; 1; 1; 0;�1)(y) +

y(5[13]) + y(5[14])� �4, yielding again a contradiction.

(iii) Suppose that y(1[26]) = 0. Then, y(1[26]) + (w

�(4)

1

)

T

y = y(6[34]) + y(5[24]) +

y(1[23]5)� �4, yielding a contradiction.

So, we have shown that �(5) 62 R. Similarly, �(6) 62 R, implying that �(56) 62 R.

2
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Claim 3.8 The cuts �(123); �(124); �(134); �(156) do not belong to R.

Proof. Suppose, for instance, that �(123) 2 R. By Claim 3.2, there exists u

T

x � 0

de�ning a facet of R

+

(G

6

) such that u

T

�(123) 2 f�4;�6g and u

T

y > u

T

�(123). The pos-

sibilities for u are two pentagonal facets and four switchings for each special facet w

i

, i =

1; 2; 3; 4. By symmetry, it su�ces to consider the cases (i) u

T

x = Q(1; 1; 1;�1;�1; 0)(x)�

0, (ii) u = w

1

, (iii) u = w

�(1)

1

, for which u

T

�(123) = �6, and (iv) u = w

�(15)

1

, (v) u = w

�(6)

1

,

for which u

T

�(123) = �4.

(i) Suppose that Q(1; 1; 1;�1;�1; 0)(y) = 0. Since �(5) 62 R (by Claim 3.7), let v 2 V

such that v

T

�(5) < 0; it is the triangle inequality x(5[i4])� 0, for i = 1; 2; 3. Suppose, for

instance, that y(5[14]) = 0. Then, y(5[14])+Q(1; 1; 1;�1;�1; 0)(y) = y(4[23])+y(5[13])+

y(5[12])� �6, yielding a contradiction.

(ii) Suppose that w

T

1

y 2 f�2;�4g. Since �(6) 62 R, there exists v 2 V such that v

T

�(6) <

0; it is one of the triangle inequalities x(6[14]) � 0, x(6[24]) � 0 (or x(6[34]) � 0). But,

y(6[14]) + w

T

1

y = y(6[23]) + y(2[45]) + y([14]35) � �6 and y(6[24]) + w

T

1

y = y(6[23]) +

y(3[45]) + y([61]52)� �6, yielding a contradiction.

(iii) The case when (w

�(1)

1

)

T

y 2 f�2;�4g is identical to the case (ii), exchanging the

nodes 5 and 6.

(iv) Suppose that (w

�(15)

1

)

T

y = �2. As in (ii), we can suppose that y(6[14]) = 0 or

y(6[24]) = 0. But, y(6[14])+(w

�(15)

1

)

T

y = Q(�1; 1; 1;�1; 1; 0)(y)+y(6[12])+y(6[13])� �4

and y(6[24])+ (w

�(15)

1

)

T

y = y(4[35])+ y([23]6)+ y(1[52]6)� �4, yielding a contradiction.

(v) The case when (w

�(6)

1

)

T

y = �2 is identical to the case (iv), exchanging the nodes 5

and 6. 2

Claim 3.9 The cuts �(125); �(126); �(135); �(136); �(145); �(146) do not belong to R.

Proof. Suppose, for instance, that �(146) 2 R. By Claim 3.2, let u

T

x � 0 de�ne a

facet of R

+

(G

6

) such that u

T

�(146) 2 f�4;�6g and u

T

y > u

T

�(146). So, u

T

x � 0 is the

pentagonal inequality Q(1;�1;�1; 1; 0; 1)(x) � 0, u = w

�(15)

1

, for which u

T

�(146) = �6,

or u = w

1

, for which u

T

�(146) = �4. (The case when u is one of two switchings of w

2

,

w

3

, or w

4

follows by symmetry.)

(i) Suppose that Q(1;�1;�1; 1; 0; 1)(y) 2 f�2;�4g. Since �(6) 62 R, there exists v 2 V

such that v

T

�(6) < 0; we can suppose that it is one of the inequalities x(6[12]) � 0 or

x(6[14]) � 0. But, y(6[12]) +Q(1;�1;�1; 1; 0; 1)(y) = y(2[46]) + y(6[23]) + y(3[14])� �6
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and y(6[14]) + Q(1;�1;�1; 1; 0; 1)(y) = y(6[23]) + y(2[14]) + y(3[14]) � �6, yielding a

contradiction.

(ii) Suppose that (w

�(15)

1

)

T

y 2 f�2;�4g. From the fact that �(5) 62 R, we know that one

of the inequalities x(5[1i]) � 0 (i = 2; 3), x(5[23]) � 0, x(5[i4]) � 0 (i = 2; 3) belongs

to V . But, y(5[12]) + (w

�(15)

1

)

T

y = Q(1; 1; 1;�1; 0;�1)(y) + y(1[35]) + y([14]5) � �6,

y(5[23]) + (w

�(15)

1

)

T

y = y([23]6) + y([23]4) + y(15[46]) � �6 and y(5[24]) + (w

�(15)

1

)

T

y =

y([23]6)+ y([35]4)+ y(15[46])� �6, yielding a contradiction.

(iii) Suppose that w

T

1

y = �2. From the fact that �(6) 62 R, we can assume that

one of the inequalities x(6[12]) � 0, x(6[14]) � 0, x(6[24]) � 0 belongs to V . But,

y(6[12])+w

T

1

y = y(2[46])+y([23]6)+y([12]5)+y(3[45])� �4, y(6[14])+w

T

1

y = y([23]6)+

y(2[45])+y(3[41]5)� �4 and y(6[24])+w

T

1

y = y(3[45])+y([23]6)+y([16]25)� �4, yield-

ing a contradiction. 2

Claim 3.10 The cuts �(15); �(16); �(25); �(26); �(35); �(36); �(45); �(46) do not belong to

R.

Proof. Suppose, for instance, that �(45) 2 R. Then, there exists u

T

x � 0 de�ning a

facet of R

+

(G

6

) such that u

T

�(45) 2 f�4;�6g and u

T

y > u

T

�(45); it is (up to symmetry)

Q(1; 1; 1;�1;�1; 0)(x)� 0, (w

�(6)

1

)

T

x � 0, for which u

T

�(45) = �6, or w

T

1

x � 0, for which

u

T

�(45) = �4.

(i) Suppose that Q(1; 1; 1;�1;�1; 0)(y) 2 f�2;�4g. We can suppose that x([14]5)� 0 be-

longs to V (since �(5) 62 R and using symmetries). But, y([14]5)+Q(1; 1; 1;�1;�1; 0)(y) =

y([12]5)+ y([13]5)+ y([23]5) � �6, yielding a contradiction.

(ii) Suppose that (w

�(6)

1

)

T

y 2 f�2;�4g. We can suppose that x([14]5)� 0 or x([24]5) � 0

belongs to V . But, y([14]5)+(w

�(6)

1

)

T

y = Q(�1; 1; 1;�1; 0; 1)(y)+y([12]5)+y([13]5)� �6

and y([24]5)+ (w

�(6)

1

)

T

y = y(4[36]) + y([23]5)+ y(15[26])� �6, yielding a contradiction.

(iii) Suppose that w

T

1

y = �2. We can suppose that x([14]5) � 0 or x([24]5) � 0 be-

longs to V . But, y([24]5)+ w

T

1

y = Q(�1; 1; 1;�1; 0; 1)(y)+ y([13]5) + y([12]5) � �4 and

y([24]5)+ w

T

1

y = y([23]5)+ y([61]52)+ y(3[46]) � �4, yielding a contradiction. 2

4 The role of K

6

in the class H

In this section, we give the proof of Theorem 1.1, i.e. we show that every proper subgraph

of K

6

belongs to H, and we give the proof of Proposition 1.2, i.e. we show that every

graph belonging to H is not contractible to K

6

.
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For the proof of Theorem 1.1, we need to know the explicit description of the facets of

the cone R

+

(H

6

+e), where H

6

+e is the graph from Figure 7. We present this description

in Section 4.1; we also give there, for information, the description of the cone R

+

(H

6

). We

give the proof of Theorem 1.1 in Section 4.2 and the proof of Proposition 1.2 in Section

4.3.

4.1 Description of the cones R

+

(H

6

) and R

+

(H

6

+ e)

We consider the graphs H

6

and H

6

+ e from Figures 2 and 7. So, H

6

+ e is obtained from

H

6

by adding the edge e = 46 and H

6

+ e = K

6

nf12; 13; 56g.

We checked, using computer, that the cone R

+

(H

6

+ e) has 49 facets in total. They

are grouped in two classes.

� The �rst class consists of the 9 � 3 + 2 � 4 = 35 facets that are de�ned by the cycle

inequalities (2), where C is one of the 9 triangles (i; 4; j) (i = 1; 2; 3; j = 5; 6), (2; 3; i)

(i = 4; 5; 6), or of the circuits (1; 5; 2; 6) and (1; 5; 3; 6).

� The second class consists of 14 facets that are all switching equivalent. Set

u

T

x := x

16

� x

15

+ x

23

+ x

45

+ x

46

�

P

i=2;3

j=4;5;6

x

ij

: The vector u is shown in Figure 8.

The inequality u

T

x � 0 de�nes a facet of R

+

(H

6

+ e). There are exactly 13 nonzero

cuts satisfying the equality u

T

x = 0; namely, the cuts of the set A

u

:= f�(A) : A =

1; 4; 6; 14; 15; 24; 26; 34; 36; 124; 125; 134; 135g: Hence, for each �(A) 2 A

u

, the inequality

(u

�(A)

)

T

x � 0 de�nes a facet of R

+

(H

6

+ e).

Observe that all the inequalities de�ning facets of R

+

(H

6

+ e) satisfy both conditions

(3) and (4).

Figure 7 : H

6

+ e

Figure 8 : u
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For information, we also give the description of the facets ofR

+

(H

6

). The coneR

+

(H

6

)

has 46 facets in total. Besides the facet de�ned by the inequality x

16

� 0, they are grouped

in two classes.

� The �rst class consists of the 6 � 3 + 4 � 4 = 34 facets that are de�ned by the cycle

inequalities (2), where C is one of the 6 triangles (i; 4; 5) (i = 1; 2; 3), (2; 3; i) (i = 4; 5; 6),

or one of the circuits (1; 2; 4; 6), (1; 5; 3; 6), (1; 6; 3; 4) and (1; 6; 2; 5).

� The second class consists of 11 facets that are all switching equivalent. Set

w

T

x := 2x

16

+ x

23

+ x

45

� x

26

� x

36

�

P

i=1;2;3

j=4;5

x

ij

: The vector w is shown in Figure 9

(the double edge indicates the coe�cient 2 for the variable x

16

). The inequality w

T

x � 0

de�nes a simplicial facet of R

+

(H

6

). There are 10 nonzero cuts satisfying w

T

x = 0,

namely, the cuts of the set A

w

:= f�(A) : A = 1; 6; 14; 15; 26; 36; 125; 124; 134; 135g: For

each �(A) 2 A

w

, the inequality (w

�(A)

)

T

x � 0 de�nes a facet of R

+

(H

6

).

Note that the inequality w

T

x � 0 arises by summing the inequality u

T

x � 0 and the

triangle inequality x

16

� x

14

� x

46

� 0, both de�ning facets of the cone R

+

(H

6

+ e).

Figure 9 : w

Remark that the property (4) is closed under deleting edges (since the facets of

R

+

(Gne) arise from those of R

+

(G) by projecting out the variable x

e

). However, this is

not the case for the property (3). For instance, the facets of R

+

(H

6

+ e), or of R

+

(K

6

ne),

have the property (3), but not those of R

+

(H

6

).

4.2 Proof of Theorem 1.1

Let D be a nonempty subset of edges of K

6

and let G = K

6

nD denote the graph obtained

by deleting D from K

6

. We show that G 2 H. This is the case if jDj = 1 from Theorem

1.5.

� If jDj = 2, then G 2 H; this follows from Theorem 1.5 since all the facets of K

6

ne satisfy

(3) and (4).



22 M. Laurent

� If jDj = 3, then we are in one of the following cases:

(i) D = K

1;3

(e.g. D = f12; 13; 14g)

(ii) D = P

2

[ P

3

(e.g. D = f12; 13; 56g)

(iii) D = P

4

(e.g. D = f12; 23; 34g)

(iv) D = C

3

(e.g. D = f12; 23; 13g)

(v) D = P

2

[ P

2

[ P

2

(e.g. D = f12; 34; 56g)

In the cases (iii); (iv); (v),G 2 H since G is not contractible to K

5

. In the case (i), G 2 H

since G is the 2-sum of K

3

and K

5

. In the case (ii), G 2 H since G arises by deleting an

edge from K

6

� P

3

which is the 3-sum of K

4

and K

5

.

� Suppose that jDj = 4. If G is a subgraph of K

6

� P

4

, then G 2 H since G is not

contractible to K

5

. Else, we are in one of the following cases.

(i) D = K

1;4

(e.g. D = f12; 13; 14; 15g)

(ii) D = K

1;3

[ P

2

(e.g. D = f12; 13; 14; 56g)

(iii) D = P

3

[ P

3

(e.g D = f12; 13; 46; 56g)

In the case (i), G 2 H since G is the 1-sum of K

5

and K

2

. In the cases (ii) and (iii),

G 2 H since G arises by deleting an edge from the graph H

6

+ e (see Figure 7) whose

facets all satisfy (3) and (4) (see Section 4.1) and H

6

+ e belongs to H (see Example 2).

� Suppose that jDj � 5. Then, G is a subgraph of K

5

or of K

6

�P

4

, implying that G 2 H.

This concludes the proof of Theorem 1.1.

4.3 Proof of Proposition 1.2

We start by recalling some facts on the antipodal extension operation (see e.g. [9]). Given

x 2 R

(

n

2

)

and � 2 R, de�ne the antipodal extension y = ant

�

(x) of x by

8

>

<

>

:

y

ij

= x

ij

if 1 � i < j � n

y

1;n+1

= �

y

i;n+1

= �� x

1i

if 2 � i � n

It is easy to see that, if x 2 R

+

(K

n

) and x =

P

S�f1;:::;ng

�

S

�(S) with �

S

� 0, then

ant

�

(x) =

P

S:12S

�

S

�(S)+

P

S:162S

�(S[fn+1g)+(��

P

S

�

S

)�(fn+1g) and, conversely, if

ant

�

(x) 2 R

+

(K

n+1

), then every decomposition of ant

�

(x) as a nonnegative combination

of cuts has the above form. Hence, we have the following result.

Proposition 4.1 [9] (i) ant

�

(x) 2 R

+

(K

n+1

) if and only if x 2 R

+

(K

n

), � 2 R

+

and

� � s(x).

(ii) ant

�

(x) 2Z

+

(K

n+1

) if and only if x 2Z

+

(K

n

), � 2Z

+

and � � h(x).

(iii) ant

�

(x) 2Z(K

n+1

) if and only if x 2Z(K

n

) and � 2Z.

Note that Proposition 4.1 remains valid if G is a graph with a node 1 adjacent to all

other nodes of G, G

0

is the graph obtained from G by adding a new node n + 1 adjacent
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to all nodes of G, x 2 R

E(G)

and y = ant

�

(x) 2 R

E(G

0

)

is de�ned similarly by y

e

= x

e

for

e 2 E(G) and y

i;n+1

= �� x

1i

for all nodes i of G.

Proposition 4.1 provides a useful tool for constructing counterexamples for the Hilbert

base property. Indeed, if we can �nd x 2 R

+

(K

n

) \Z(K

n

) and � 2 Zsuch that s(x) �

� < h(x), then ant

�

(x) 2 R

+

(K

n+1

) \Z(K

n+1

) �Z

+

(K

n+1

). We now present such an

example.

Example 3. Consider the vector x

n

2 R

(

n

2

)

de�ned by (x

n

)

ij

= 2 for all 1 � i < j � n and

set a

n+1

= ant

4

(x

n

). So, all components of a

n+1

are equal to 2 except (a

n+1

)

1;n+1

= 4.

Clearly, s(x

n

) =

n(n�1)

b

n

2

cd

n

2

e

since x

n

can be written as a nonnegative combination of cuts using

only equicuts, i.e. cuts with b

n

2

cd

n

2

e edges. Moreover, h(x

n

) = n since x

n

=

P

1�i�n

�(i) is

the only way of writing x

n

as an integer nonnegative sum of cuts ([6]). Hence, for n � 5,

s(x

n

) � 4 < h(x

n

), and we deduce from Proposition 4.1 that a

n+1

2Z(K

n+1

)\R

+

(K

n+1

)

and a

n+1

62Z

+

(K

n+1

).

One can also show directly that a

n+1

62 Z

+

(K

n+1

) by checking that a

n+1

� �(A) 62

R

+

(K

n+1

) for all cuts �(A). Indeed, a

n+1

� �(A) violates either the pentagonal inequality

Q(1; 1; 1;�1;�1; 0; : : : ; 0)(x) � 0, or the inequality Q(2; 1; 1;�1;�1;�1; 0; : : : ; 0)(x) � 0

(for a suitable labeling of the nodes), which de�ne both facets of R

+

(K

n+1

) if n � 5.

Explicit decompositions of x

n

and a

n+1

are as follows. Let E

n

denote the set of

the equicuts of K

n

. Then, x

n

=

2

c

n

P

�(S)2E

n

�(S) and a

n+1

=

2

c

n

(

P

�(S)2E

n

;12S

�(S) +

P

�(S)2E

n

;162S

�(S [ fn+ 1g)) + (4� s(x

n

))�(fn+ 1g), where c

n

=

�

n�2

n=2�1

�

if n is even and

c

n

= 2

�

n�2

(n�3)=2

�

if n is odd.

Several other classes of vectors belonging to R

+

(K

n

) \Z(K

n

) �Z

+

(K

n

), for n � 7,

are constructed in [8], in particular, using other extension operations.

Claim 4.2 Let G be a graph which contains K

6

as a subgraph. Then, G does not belong

to H.

Proof. By assumption, the edge set E of G contains the edge set E(K

6

) of a K

6

sub-

graph. De�ne a 2 R

E

by a

e

= 2 for all edges e 2 E except a

e

= 4 for one edge e 2 E(K

6

).

Then, a 2 Z(G) \ R

+

(G), but a 62 Z

+

(G). Indeed, a 2 R

+

(G) since a is the projection

of a

n

2 R

+

(K

n

) (n is the number of nodes of G); a 62 Z

+

(G) since its projection a

6

on

R

E(K

6

)

does not belong to Z

+

(K

6

). This shows that G 62 H. 2

Proposition 1.2 now follows easily. Indeed, suppose G is contractible toK

6

, i.e. G nD =

C = K

6

for some disjoint subsets C and D of the edge set of G. Then, G=C does not

belong to H since it contains K

6

as a subgraph (by Claim 4.2) which implies that G 62 H

(by Proposition 2.1).
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