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Abstract

Let X be a set of vectors in R™. X is said to be a Hilbert base if every vector
in R™ which can be written both as a linear combination of members of X with
nonnegative coefficients and as a linear combination with integer coefficients can also
be written as a linear combination with nonnegative integer coefficients. Denote by
‘H the collection of the graphs whose family of cuts is a Hilbert base. It is known that
K5 and graphs not contractible to K5 belong to ‘H and that Ks does not belong to K.
We show that every proper subgraph of Kg belongs to H and that every graph from
‘H is not contractible to Kg. We also study how the class H behaves under several

operations.

1 Introduction

Let X be a set of vectors in R™. Set

Ri(X):={> Az:A;>0(z€X)}

z€X
Z(X):= {Z Ae® i Ap €Z (€ X)}
z€X
Zo(X)={D_ Ax: Ay €Zy (v € X)}
z€X

So, R4(X) is the cone generated by X and Z(X)is the lattice generated by X .Clearly,
Z4(X) CRUX)NZ(X). The set Z(X) is sometimes called the integer cone generated
by X. The set X is said to be a Hilbert base if equality holds in the above inclusion,
ie. Zy(X) = Ry(X)NZ(X).

Let G = (V,E) be a graph. For each subset S C V, the cut §(.5) consists of the
edges ¢ with |[S N {:,j}| = 1, for i,j € V. For simplicity, we also denote by 4(.9) the



2 M. LAURENT

incidence vector of the cut determined by S;s0 6(5);; = 1if [SN{¢, 7} = 1 and 6(5);; =0
otherwise, for distinct ¢,7 € V. Let K¢ denote the set of all cuts of GG. For simplicity, we
let Ry(G) := R4(K¢) denote the cone generated by the cuts of G, and Z(G) := Z(Kq)
denote the lattice generated by the cuts of G. We also set Z(G) := Z4(Kg).

Let 'H denote the set of the graphs G whose family of cuts Kg is a Hilbert base.

We suppose here that the graphs are without loops and without multiple edges. This
is no loss of generality since, if a graph G has multiple edges and loops, then G € H if and
only if the graph obtained from G by deleting the loops and replacing the multiple edges
by single edges belongs to H.

In this paper, we show the following results.

THEOREM 1.1 Let G be a subgraph of Kg. Then, G € H if and only if G is distinct from
K.

ProrosiTiON 1.2 If G belongs to 'H, then G is not contractible to Kg.

We also study in Section 2 how the class H behaves under several operations (deletion
and contraction of edges, k-sum of graphs, switching of faces).

So, Kg is the smallest example of a graph which does not belong to H. Indeed, set
z. = 2 for all edges of K¢ except z. = 4 for one edge of K¢. Then, € Ry(K¢) N Z(Ks)
but @ ¢ Z4(Ks) ([2]; see also Example 3). This is the only counterexample known to us
for Kg. In fact, the proof of Proposition 1.2 is based on the fact that this counterexample
for Kg can be extended to a counterexample for any graph containing Kg.

Let us now recall several results that we need for the paper.
The lattice Z(G') can be easily characterized. Namely, given z € YA

x € Z(G) if and only if 2(C') =0 ( mod 2) (1)

for each circuit C' of G. (We set 2(C') := ) @ for each subset ¢ C E.) On the
other hand, in general, characterizing the cone R4 (') or the integer cone Z (') are hard
problems. The next Theorems 1.3 and 1.4 give the characterization of R4 (G) and Z4(G)
for the class of graphs not contractible to K.

Let 2 € Ry (G). Then, z satisfies the following inequalities

z. —x(C—e)<0 (2)

for each e € €' and each circuit C' of G. The inequality (2) is called a cycle inequality.
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THEOREM 1.3 [14] Let G be a graph. Then, Ry (G) consists of the vectors x € Rf salis-
fying the inequalities (2) for all e € C', C circuit of G, if and only if G is not contractible
to K.

THEOREM 1.4 [10] Let G be a graph. Then, Z(G) consists of the vectors x € Zf salis-
fying the inequalities (2) and the condition (4) for all e € C', C circuit of G, if and only
if G is not contractible to Ks.

In other words, FFu and Goddyn showed that every graph not contractible to K5 be-
longs to 7. The proof of this result is based on the following facts:
- graphs not contractible to K5 can be obtained by means of k-sums (k = 1,2, 3) of planar
graphs and copies of the graph Vg (shown in Figure 1)([15])
- planar graphs belong to H ([12])
- Vg belongs to H

- 'H is closed under the k-sum operation (see Proposition 2.6).

In fact, the graph K5, which is excluded in Theorem 1.4, also belongs to H ([5], [7]).
Let Hg denote the graph obtained by splitting evenly a node in K5; Hg is shown in Figure
2. From Seymour’s splitter theorem ([13]), every graph not contractible to Hg can be
obtained by means of k-sums (k = 1, 2) of graphs not contractible to K5 and copies of K.
Hence, from Theorem 1.4 and Proposition 2.6, we deduce that every graph not contractible
to Hg belongs to H. Note that the graph Hg also belongs to H (by Theorem 1.1).

Figure 1 : Vg
Figure 2 : Hg

The proof of Theorem 1.1 relies mainly on the following Theorem 1.5. However, this
result does not imply immediately that every subgraph of Kg belongs to H, since we do
not know whether H is closed under deletion of edges (we have only a partial result; see
Proposition 2.3).
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THEOREM 1.5 The graph Kg\e belongs to 'H.

The full characterization of the class H seems a hard problem. One reason for that is
that we could not prove that H is closed under deletion of edges. Another major difficulty
for showing that a given graph G belongs to H is that the cone R4 (G') is not known in
general (i.e. if G is contractible to K5). For instance, for showing that Kg\e belongs to
H, we need first to find the linear description of the cone R4 (/¢\e) (which we did using
computer).

On the other hand, the dual problem, i.e. the characterization of the graphs whose
family of circuits is a Hilbert base, is completely solved. Namely, the family Cq of circuits
of a graph (G is a Hilbert base if and only if G is not contractible to the Petersen graph
Pio ([1]). Note that the cone Ry(Cq) is “easy”; indeed, for any graph &, the cone R (Cq)
consists of the vectors € R¥ satisfying the inequalities (2) for all e € €' and all cuts
C of G ([12]). Hence, for a graph G not contractible to Pjq, the integer cone Z(Cgq) is
characterized by the inequalities (2) and the parity condition (1), for each e € C and each
cut C' of G.

One may ask the same questions at the more general level of binary matroids. Let M
be a binary matroid on a set F with family of circuits Caq. It is shown in [10] that the
integer cone Z(Ca) consists of the vectors € R¥ satisfying the inequalities (2) and the
parity condition (1), for each e € C' and each cocircuit C' of M, if and only if M does not
have FZ (the dual Fano matroid), Ryo, M*(K’5) (the cographic matroid of A’5), or M(Py)
(the graphic matroid of Pig) as a minor. The proof of this result is based on Seymour’s
decomposition for matroids with no F=, Rio minor, and on the fact that the result holds
for graphic matroids (the above mentioned result of [1]), for cographic matroids (Theorem
1.4) and for the Fano matroid F7. Note that the exclusion of the minors I, Ryp and
M*(K5) ensures that the cone Ri(Caq) is “easy”, i.e. is completely determined by the
inequalities (2), for C' cocircuit of M ([14]). The binary matroids M for which the lattice
Z(Cam) is completely determined by the parity condition (1) are characterized in [11].

The paper is organized as follows. In Section 2, we study how the class ‘H behaves
under several operations, namely, under contraction and deletion of edges, under the k-
sum operation, and with respect to switching. In Section 3, we give the proof of Theorem
1.5, i.e. we show that the cuts of Kg\e form a Hilbert base; Section 3.1 contains the
description of the cone R (Kg\e). In Section 4.1, we present the description of the cones
Ry(Hg) and Ry(Hg + €); in Section 4.2, we give the proof of Theorem 1.1 and, in Section
4.3, we prove Proposition 1.2.
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2 Operations

In this section, we group several results showing that the class H is closed under some
operations, namely, under contraction of an edge, under deletion of an edge with some
additional conditions, and under the 1-, 2-; 3-sum operations. We also give a result on H
related to the switching operation; see Proposition 2.7.

Let G'/e (resp. G'\e) denote the graph obtained from G by contracting (resp. deleting)
the edge e.

ProrosiTiON 2.1 If G € H, then G/e € H for each edge e of G.

Proovr. Let e be the edge uv where u,v € V. Let N, denote the set of nodes of GG distinct
from v that are adjacent to u. N, is defined similarly. Then, GG/e has node set V — {v}
and edge set £ — {vw:vw € E}U{uw:w € N, — N, }.

Let y € Ry(G/e)NZ(G/e). We show that y € Z,(G/e). Since y € Ri(G/e),
Y= 35cv—{up) A50(5) where Ag > 0 for all § €V —{u,v}. Set @ = 3 gcy_ 0} As6(5)
where the cuts are now taken in the graph G. Hence, by construction, z € R4 (G) with
. = 0 and Zyy = Tyw = Yuw for all w € N,. In fact, 2 € Z(G). This follows from the
fact that y € Z(G//e) and from the fact that, if w is a node adjacent to u and v in G, then
Tuy + Tuw + Tow = 2Yuw 18 an even integer. By assumption, G € H; hence, 2 € Z(G)
which implies easily that y € Z(G/e). O

In fact, the proof of Proposition 2.1 shows the following result.

PROPOSITION 2.2 Assume that G /e € H for some edge e of G. If & € Ry (G)NZ(G) and
e =0, then z € Z4(G).

We now turn to the case of deletion minors. We can prove an analogue of Proposi-
tion 2.1 only if we make some additional assumptions on the graph G.
Consider the following properties

ve{0,1,-1}F (3)

v16(8) €22 for all cuts 6(5) of & (4)

for each inequality vT2 < 0 defining a facet of R (G).
Fach cycle inequality (2) clearly satisfies the properties (3) and (4).

PROPOSITION 2.3 Let G be a graph satisfying (3) and (4) for each inequality v'z < 0
defining a facet of Ry (G). If G € H, then G\e € H for each edge e of .
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Proor. Let y € Ri(G\e)NZ(G\e). We show that y € Z,(G\e). Set x5 = y; for each
edge f of G distinct from e; we define z, below.
Clearly, z € Ry(G) if and only if (@) #mer < e < Tpin, Where

Tymar = max( —vTy Ly, < 0,972 < 0 defining a facet of R (G)) and

Ve
Tpnin = min( _iy :ve > 0,072 < 0 defining a facet of R4(G)).
Moreover, z € Z((G) if and only if (b) 2. has the same parity as y(C' — ¢€), where C' is an
arbitrary circuit of G containing e.

By (3), min>Tmar € Z. Hence, if 205 < Tpmin, then @4, + 1 < 24, and we
can choose z. satisfying the above conditions (a) and (b). If @, = Tpas, then we set
Te = Timas = Tmin. We verify that 2. has indeed the correct parity. For instance, z. = v7y,
where vT2 < 0 defines a facet of R (G) and v, = —1. Define 2’ € R” by setting o’y = yy
if fis an edge of ¢ distinct from e, and 2, = 0 (resp. 2, = 1) if y(C — e) is even (resp.
odd). Clearly, 2’ € Z(G). Therefore, using (4), we deduce that v7a’ is an even integer,
implying that . has the same parity as 2., i.e. as y(C — e).

So, we can choose z. in such a way that + € R4(G)NZ(G). Since G € H, we have
that ¢ € Z4(G), implying that y € Z(G\e). ]

Note that the following weaker form of Proposition 2.3 holds. Suppose that, for each
inequality 72 < 0 defining a facet of Ry(G) with v. # 0, v, € {1,—1} and v7¢(5) € 27Z
for all cuts 6(.9) of . Then, G'\e € H whenever G € H.

The following result is an easy consequence of Theorem 1.3 and Propositions 2.1 and
2.3.

COROLLARY 2.4 Suppose that G is not contractible to K5. If G € 'H, then every minor
of G belongs to 'H.

Example 1. Every graph on at most 5 nodes belongs to H.

Indeed, K5 € H ([5], [7]). Moreover, K5 satisfies the properties (3) and (4) since its facets

are defined by the triangle inequalities z;; — 24 — 25 < 0, for 7, j,k € V(K5), and the

pentagonal inequality @124 @23 + @13 + 45 — =122 2;; < 0 for any labeling of the nodes
3=4,5

of K5 as 1,2,3,4,5 ([5], [7])-

Let Gy = (Vi, Ey) be a graph, for ¢t = 1,2. When the subgraph induced by V; N V3 is a
complete graph on k = |V} N V5| nodes, the k-sum of Gy and G5 is defined as the graph
G = (V,E) with V = V1UV2 and F = E1 UEQ.

ProprosITION 2.5 [3] Let G be the k-sum (k = 1,2,3) of two graphs Gy and G3. Then, a
system of linear inequalities sufficient to describe the cone R {(G') is obtained by jurtaposing
the inequalities that define the cones Ri(G1) and Ri(Gy) and identifying the variables
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associated with the common edges to Gy and G.
In particular, G satisfies the property (3) (resp. (4)) if and only if Gy and Gy satisfy the
property (3) (resp. (4)).

ProPOSITION 2.6 Let G be the k-sum (k = 1,2,3) of two graphs Gy and Gy. Then,
G € H if and only if G4 € H and G5 € 'H.

Proor. We give the proof in the case k = 3; the cases k = 1,2 are similar but easier. Set
VinVy = {u,v,w}. We first suppose that Gy, Gy € H and we show that G € H. Let
z € Ry(G)NZ(G). The projection z; of = on R¥* belongs to R (G{)NZ(G,), for t = 1,2.
Since Gy € H, then x; € Z(Gy), for t = 1,2. Say, 21 = Y 4c40(A), 22 = Y gesd(B),
where A is a multiset of cuts of (G, i.e. repetition is allowed in A, and B is a multiset
of cuts of Go. We can suppose that w ¢ A, B for all A € A, B € B. Let Ay (resp. Ay,
Az, As) denote the multiset consisting of all members §( A) of A such that u,v & A (resp.
(ue A,v g A), (ug A,v € B), (u,v € A)). Define similarly By, B, Bz and Bs. Hence,
2(uv) = 21(u0) = 22(u0) = | A1| + [ Aol = |Br] + [Bal,

2(uw) = 1(uw) = 2a(uw) = | + | As] = |Bi] + [Bol,

2(0w) = 21(vw) = 22(vw) = 3] + | As] = |Bal + [Bo),

vielding that [A{] = |B1] = (z(uwv) + z(uvw) — z(vw))/2, |As] = |Bs] = (z(uv) + z(vw) —
z(uw))/2 and |As| = |Bs| = (2(uw) 4+ z(vw) — z(uv))/2. Since |Ag| = |Bg|, we can order
the members of Ay as Ay,..., Aj4,|, and those of By, as By,..., Bjy4,|, for each k = 1,2,3.

Then, & = ¥ c4, 8(A) + X pes, 6(B) + Cimr 28 (Srciciay 6(A: U B;)) . This shows that
r € Z4(G). Hence, G € H.

Conversely, let us assume that G € H. We show that Gy € H. Let y € Ry (G1)NZ(GY).
So, y = >_gAs6(5) for some scalars Ag > 0, where the cuts §(.9) are taken in Gy with
w5, Set & =3 gAs56(9) where the cuts §(5) are now taken in the graph . Hence,
Tiw = 0, Tiy = Yow, Tiu = Yuw for each node ¢ € Vo — V;, and 2;; = 0 for all nodes
i,7 € Vo — V3. This observation permits to check that z(C') € 2Z for each circuit of G,
i.e. x € Z(G). Therefore, 2 € Z(G) since G € H. This implies that y € Z,(G). Hence,
G1 €H. O

Example 2. As application of Proposition 2.6, we deduce that the graph K¢ — Ps (i.e.
K with a path on three nodes deleted) belongs to H (since it is the 3-sum of K4 and K).
As application of Propositions 2.3 and 2.5, the graph obtained by deleting an edge from
K¢ — Ps still belongs to H. In particular, the graph Hg + e (i.e. Hg with one more edge
among its nodes) belongs to H. (Hg is shown in Figure 2 and Hg + e in Figure 7.) Then,
Hg too belongs to H since all the inequalities defining facets of Hg 4 e atisfy (3) and (4)
(see Section 4.1).

We conclude this section with a result related to the switching operation.
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Given a cut 6(A) in G and v € R, define v*(4) € RE by (v9)), = —v, if §(A). =1
and (?J‘S(A))6 = ve if 6(A). = 0, for all edges e € I. Then, the mapping rs(4) R — RF
defined by rs4)(v) = p?(A) 4 6(A), for all v € R¥, is called switching mapping. It is
well known that switching preserves the cut polytope ([4]) and the cone Ry(G) ([5]).

Namely, if the inequality vT2 < 0 is valid for R(G) and if v76(A) = 0, then the
inequality (v*))Tz < 0, obtained by switching w?z < 0 by the cut §(A), is valid for
R4 (G); moreover, (024 T < 0 defines a facet of Ry (G) if and only if vT2 < 0 defines a
facet of R4(G).

In other words, if F is a face of R4(G) with R = {6(Ay),...,6(As)} denoting the
set of nonzero cuts lying on F, then the set F&A1) = {N18( A1) + geicr MO(A;AAL)
A, A2, .., Ap > 0} is also a face of Ry (G), obtained by switching the face F by the cut
6(Aq).

We now give a result which will be very useful for showing that some given graph G
belongs to H.
Given z € Ry(G), we define its minimum R -size s(z) by

s(z) := min( Z ag:x = Z asé(9) with all ag > 0)
SCV SCV
and, given z € Z4(G), we define its minimum Z-size h(z) by
h(z) := min( Z ag:x = Z agé(S) with all ag € Zy).
SCV SCV
As above, let F be a face of Ry(G) and let R = {6(A44),...,6(A;)} denote the set of

nonzero cuts lying on F. We consider the following two properties (5) and (6).

If 2 e Ri(G)NZ(G)and € F, then x € Z(G) (5)

For each € F,s(z) € Z and Y 1c;c; Ai = s() (6)
for each decomposition ¢ = Zlgﬁ N6(A;) with Ay > 0for 1 <i <t

PROPOSITION 2.7 Assume that the face F has the property (5) and that both faces F and
FSM) have the property (6). Then, the face FOM) has the property (5).

ProoF. Let 2 € Ry(G) N Z(G) such that 2 € F*A1). We show that » € Z(G). By
assumption, we have that = = A\16( A1)+ ZQSiSt Aid(AANAq) for some scalars Ay, ..., Ay >
0. Since F4(41) has the property (6), we have that Licict A = 8(2) € L.
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Set y = > i Ai0(A;). Hence, y € F. Since F has the property (6), we deduce that
Dacict Ni = s(y) € Z. Note also that y = r5(4,)(2) +6(A1)(s(z) — 1). Moreover, y € Z(G);
indeed, z € Z(G) which implies obviously that rs(4,)(2) € Z(G).

Therefore, from the property (5) applied to F, we deduce that y € Z, (G), i.e.
Y =D q<ict 0i0(A;) for some nonnegative integers a;. Moreover, 3, .., & = s(y). Then,
from z = ;5(A1)(y)+6(A1)(5(2)—1), we obtain that 2 = 37, ., @;6(A;)F6(A)(s(2)—s(y)).
This shows that z € Z(G), since s(2) — s(y) = A\ € Z4. 0

3 The cuts of Kg\e form a Hilbert base

In this section, we show that the cuts of Kg\e form a Hilbert base.

Let Gg denote the graph on the nodes 1,2,3,4,5.6 whose edges are all pairs except the
pair (5,6),i.e. Gg = Kg\e for e = 56. We present the description of the facets of the cone
R4(Ge) in Section 3.1 and we show that Gg € H in Section 3.2.

3.1 Description of the cone R (Gg)
The facets of R (G) are grouped into three classes.

e The first class is composed of 48 triangle facets; they are induced by the cycle inequali-
ties (2), where C'is one of the 16 triangles of Gg, namely, C' = (7, j, k) for 1 <i < j < k <4,
C = (t,7,5)and C = (1,7,6) for 1 <17 < j < 4. There are 23 nonzero cuts lying on each
triangle facet.

e The second class consists of 20 pentagonal facets. They are induced by the inequalities

Q(b1,b3,b3,b4,b5,b6)(2) := > bibjui; <0
1<i<j<6

where b = (by,...,bs) is one of the sequences (b; = b; = —1, by, = 1 for k € {1,2,3,4,5} —
{i,j},bs =0)for1 <i< j<b,or(b;=0b;=—-1,b,=1for ke {1,2,3,4,6}—{7,j}, bs =
0) for i < 7,4,7 € {1,2,3,4,6}. There are 19 nonzero cuts lying on each pentagonal facet.

For instance, the pentagonal inequality Q(1,1,1,—1,—1,0)(z) < 0 is shown in Figure
3. We use the following notation: a plain edge 7j represents a coefficient +1 for the variable
z;; and a dotted edge represents a coefficient -1, while no edge means a coefficient 0.
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Figure 3 : Q(1,1,1,-1,-1,0)

e The third class consists of 56 facets, which are grouped into 4 switching classes. Set

T.._
Wi T = e+ Tae + Tas — X15 + Tz — E Tije
1=2,3
j=4,5,6

The vector wy is shown in Figure 4. The inequality w{z < 0 is valid for the cone R (Gs).
There are exactly 13 nonzero cuts satisfying the equality w] 2 = 0, namely, the cuts of the
set

Ay = {6(A): A=1,4,6,14,15,24,26,34,36, 124,125,134, 135}.

They are linearly independent. Hence, the inequality w2z < 0 defines a simplicial facet
of R1(Gg). Observe that the inequality wfa < 0 arises as the sum of the pentagonal
inequality Q(0,—1,—1,1,1,1)(z) < 0 and of the triangle inequality z16 — 215 — 256 < 0,
which define both facets of the cone R (/K).

For each 6(A) € Aj, the inequality (wf(A))Tx < 0, obtained by switching the inequality
wlz <0 by the cut §(A), defines a (simplicial) facet of R4 (Gg). We show in Figure 5 the
5(4)

vector wy
of the switchings of wy.

. In fact, Figures 4 and 5 show the two possible patterns for the coefficients
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5(4)

Figure 4 : wy Figure 5 : wy

By permuting cyclically the nodes of (1,2,3,4), we obtain three more inequalities
wlz < 0, wdz <0, wlz <0, defined by

T.._
Wy & 1= Tog + T1e + X15 — Ta5 + T34 — E Tij
i=3,4
J=1,5,6

T.._
W3 & 1= T3g + T2 + X25 — T35 + T14 — § Tij
1=1,4
j=2,5,6

T.._
Wy & 1= Tye + T3 + T35 — Tus + T12 — E Tije
1=1,2
j=3,5,6

Fach of them yields, via switching, 14 other facets of R(Gg). We show in Figure 6 the
vectors wq, w3 and wy. Let A; denote the set of nonzero cuts satisfying the equality
wZTx = 0, for i = 2,3, 4; they are easily obtained from A;.

We refer to the facets of R4 (Gp) induced by the inequalities w2 < 0 and their
switchings (wf(A))Tx <0, for A€ A, i=1,2,3,4, as the special facets of R (Gg). We
call the facet induced by w{z < 0 the main special facet of R (Gj).
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Figure 6 : wq, w3, wy

We checked, using computer, that the above triangle facets, pentagonal facets and
special facets are all the facets of R4 (Gg). Hence, Ry(Gg) has 48 + 20 + 56 = 124 facets
in total.

We conclude with an observation.

REMARK 3.1 (i) If vTa < 0 defines a triangle facet, then v16(A) € {0, -2} for all cuts.
(ii) If vI& < 0 defines a pentagonal facet, then v16(S) € {0,—2} for all cuts except
two cuts for which v18(5) = —6. Namely, v16(ij) = v é6(hkl) = —6 for the pentagonal
inequality Q(b)(z) < 0 with b; = b; = —1 and by, = by = by = 1.

(iii) If vTa < 0 defines a special facet, then v1§(S) € {0, =2} for all cuts except four cuts
for which vT§(5) = —4,—6. Namely, for the main special facet, wi§(45) = wi§(146) =
—4 and wi§(23) = wlé(123) = —6. (One deduces easily for which cuts every other
special facet takes value -4 or -6 using permutation and switching; for instance, w2T(5(15) =
wl6(126) = —4 and wlé(34) = wlé(234) = —6.)

3.2 The Proof of Theorem 1.5

We show in this section that Gg belongs to H. Observe that, in order to show that Gg
belongs to H, it suffices to show that, for each y € Ry (G6) NZ(Ge) with y # 0, there exits
a cut 6(A) of Gg such that y — 6(A) € Ry(Gs). Indeed, we then deduce that y € Z(Gs),
by applying induction on )~ g ¥e.

Let y € R4(Gs) N Z(Gg), y # 0. We suppose, for contradiction, that y satisfies

y—06(A) € Ri(Ge) for all cuts 6(A). (7)

We show that no such y exists. Clearly, y. > 1 for all edges e of Gg (since every
contraction minor of G belongs to H).
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Let F denote the smallest face of R4(Gg) that contains y, let R denote the set of
nonzero cuts lying on F and let V denote the set of vectors v for which the inequality
vT2 < 0 defines a facet of R (Gg) such that o7y = 0.

The next Claim 3.2 follows from (7).

Craiv 3.2 For each cut 6(A) € R, there exists an inequality v'x < 0 defining a facet of
R (Gg) such that (vIy = —2,0T6(A) € {—4,-6}) or (vTy = —4,0vT6(A) = —6).

COROLLARY 3.3 Every cut of R is of the form 6(A) where A belongs to the set

{5,6) {12, 13, 14,23, 24, 34} U{15, 16, 25, 26, 35, 36,45, 46} {56} U{123, 124, 134, 156
U{125, 126, 135,136,145,146}. (We have grouped together the sets according to the sym-
metries of Gg.)

Proor. By Claim 3.2, (i) ¢ R since no pentagonal or special facet satisfies v7¢(i) =
—4,—6, for i = 1,2,3,4 (see Remark 3.1). O

CraiMm 3.4 y does not lie on any of the special facets.

Proor. Let us first suppose that y lies on the main special facet, i.e. wiy = 0. So,
Y= Ys(a)ea, @a6(A), for some scalars aq > 0. Using the condition (1), we show that all
a4’s are integers. (We use again the following notation: y([12]3) := y12 — y13 — ¥23.)

e Since y([16]2) = —2ay4 € 27Z, we deduce that agy € Z. Similarly, asy, ay24 € Z, from

(116]3),y([12)5) € 22.
e From y([16]4) € 2Z, aq + 24 + @34 € Z, implying that ay € Z.

e From y([12]3) — y([12]4) € 2Z, az6 + 124 — @4 € Z and, thus, ass € Z.

o From y(2[36]) € 2Z, a4 + aze + 124 + @125 € Z, implying that aqz5 € Z.

e From y([12]6) € 2Z, ag + ass + @124 + 125 € Z, implying that ag € Z.

e From y(1[23]) — y(1 [ 4]) € 2Z, 014 — aizq — 025 € Z, implying that a4 € Z.
e From y(1[35]) € 2Z, a1+a14+a124€Z ie. a; € 7Z.

o From y([14]2) — y(1[25]) € 2Z, a6 — ay € Z, i.e. g € L.

o From y(1[34]) € 2Z, ay + a15 4 @sq + a125 € Z,i.e. ay5 € Z.

e From y(2[1 ]) €27, a14+ a6 + 134 € L, ie. 34 € T

e Finally, y(1[24]) € QZ,i.e. a1 + as + agg + 35 € Z, le. agzs € Z.

So, we have just shown that the face G of R (Gg), defined by the inequality wiz < 0, has
the property (5). Note that G has the property (6); indeed, s(2) = (214 + 216 + Z46)/2
for any z € G (since the triangle (1,4,6) cuts all the cuts of Ay). It is easy to see that
every switching G*®) of G by a cut 0(B) € Ay also has the property (6). Therefore, by
Proposition 2.7, the face G*(B) has the property (5). Hence, if y lies on a switching of the
main special facet, then y € Z;(Gs), contradicting (7). By symmetry, y cannot lie on any
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switching of the facets defined by the inequalities w!z < 0, for i = 2,3, 4. a

Let G denote the face of R(G) which is defined by the pentagonal inequality
Q(1,1,1,-1,-1,0)(z) < 0 and the triangle inequalities 2(1[45]) < 0, 2(2[45]) < 0 and
2(3[45]) < 0. The set of nonzero cuts lying on G is

Rg :=H{6(A): A=6,14,146,15,156,24,135,25,134, 34, 125,35, 124}.

Note that the only cuts lying on the pentagonal facet defined by Q(1,1,1,—1,-1,0)(z) <0
but not on G are §(A) for A € {1,2,3,16,26,36}.

CramMm 3.5 y does not lie on the face G.

ProoOF. Suppose, for contradiction, that ¥y € G. Then, y = Zé(A)eRg as6(A) for some
scalars a4 > 0. We can assume that 0 < ay < 1 for all §(A) € Rg. Else, if aq > 1 for
some A € R, then y — §(A) would still belong to the cone R4 (Gg), contradicting (7).

e From y(4[ij]), y(5[ij]) € 2Z, for 1 < i < j < 3, we obtain that
(@) ona + @146, 015 + 56, 24 + 35, Q25 + 134, X34 + 25, Q35 + 24 € {0, 1},

Note that there is a pairing of the a4’s; namely, a4 and aq46 are paired together, aqs
and ay56 are paired together, etc. (It comes from the fact that the projection of y on the
subgraph K5 induced by the nodes 1,2,3,4.5 lies again on a pentagonal facet which is now
simplicial for the cone R(K5).)

e From y(6[ij]) € 2Z, for 1 < i< j < 3, we obtain that
ag + ajgq + s €%
(b)S as+oi3a+aizs €Z
ag + ajge + 156 € 7%

o I'rom y(i[46]) € 2Z, for 1 < i < 3, we obtain that
ays + aizs + s €%
() ags+ arg6+ 125 €Z
ass + ajge + izs €%

e From y(6[i4]) € 2Z, for 1 < i < 3, we obtain that
ag + g+ agzq + ajoa € Z
(d) ag + gy + ays6 + 1oa €7
ag + azq + ay34 + iz € Z
In fact, the parity condition (1) applied to the other triangles of Gig yields no new
condition on the as’s. We now distinguish two cases depending whether some paired sum
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from (a) is equal to 0 or not. In both cases, we find that y must be one of a small number
of instances for which we can check directly that they belong to Z,(Gs), contradicting

(7).

Case A: All paired sums in (@) are equal to 1.

Then, ajyg = 1 — @14,..., 124 = 1 — azs. This permits to compute explicitely the
components of y. In fact, the components of y indexed by the pairs of 1,2,3,4.5 do not
depend on the as’s. Namely, y12 = 413 = y23 = 4, Y14 = Y15 = Y24 = Y25 = Y34 = Y35 = 3,
Y45 = 6. Moreover,

Y16 = 4+ ag + agq + a5 — a4 — a5 — azq — ass,

Y26 = 4+ ag — agq — a15 + @24 + Qg5 — @34 — ass,

Yze = 4+ ag — agq — a5 — Qg4 — Qg5 + Q34 + ass,

Yag = 3 + ag + agq — a5 + Q4 — Q25 + @34 — a3s.

Using (b), we deduce that a4 + a5, a4 + a5, a34 + ass € {as, a6 + 1}. This gives the
following four possibilities.

Case Al: ajgq + aj5 = agq + g5 = azg + azs = ag. Then, y16 = 426 = Y36 = 4 and
yae € {3,5,7}. In fact, y € Ry(Ge) in all three cases. Indeed,

- if Y46 = 3, then y = 6(146) + 8(156) + 8(135) + 8(134) + §(125) + 5(124)

- if yag = 5, then y = 6(14) 4+ 6(15) 4 6(24) + 6(25) + 6(34) + 6(35) + 26(6)

~if yge = 7, then y = 86(14) + 6(156) + 8(24) + 6(134) + 6(34) + 6(124) + 6(6).

Case A2: ajstay5 = ag+1 and asg+ags = ass+azs = ag. Then, y16 = 5, yos = Y36 = 3
and yas € {2,4,6}. Again, y € Z(Gs). Indeed,

- if yg6 = 2, then y = 6(146) + 6(15) + 6(135) + §(134) + 8(125) + 8(124)
- if yag = 4, then y = 6(14) + 6(156) + §(135) + 6(134) + §(125) + 6(124)
Cif yye = 6, then y = 8(14) + 6(15) + 6(24) + 8(134) + 6(34) + 6(124) + 8(6).

Case A3: ajs+ a5 = agy + azs = ag + 1 and asy + aszs = ag. Then, yi16 = y26 = 4,
yse = 2 and yas € {1,3,5}. Again, y € Z4(Gs). Indeed,

S yye = 1, then y = 8(146) + 6(15) + 8(135) + 6(25) + 6(125) + 8(124)

- if y46 = 3, then y = 6(14) 4 6(156) 4+ 6(135) + 6(25) + 6(124) + 6(125)

Cif yae = 5, then y = 8(14) + 6(156) + 6(24) + 8(134) + 6(125) + 8(124).

Case A4: ajy + a5 = a9y + a5 = azg + azs = ag + 1. Then, y16 = y26 = y36 = 3 and
yae € {0,2,4,6}. Again, y € Z(Gs). Indeed,

~if yag = 0, then y = §(146) + 6(15) + 6(135) + 6(25) + 6(125) + 8(35)

~if yug = 2, then y = 8(14) + 6(156) + 8(135) + 8(25) + 6(125) + 6(35)
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- if yse = 4, then y = 6(14) + 6(156) + 6(24) + 6(134) + 6(125) 4 6(35)
~if yig = 6, then y = §(14) + 6(156) + 6(24) + 6(134) + 6(34) + 6(124).

Case B: Some paired sum in (a) is equal to 0. For instance, a14 = o146 = 0. We deduce
from (b) that ag + ay56 € {0,1}.

Case B1: Suppose that ag = ai56 = 0. Then, a;5 = 0 and, reading from (b), (¢), (d), we
deduce that the quantities a4+ @125, @134+ @135, A135+ 125, Qg5 + 125, @35+ 135, Q134+
(124, Q24 + Q124,034 + @34 all belong to {0,1}. If one of them is equal to 0, then all
ay’s are equal to 0. Else, we obtain that ass = asq4 = ajoq = ay3s =: «. Hence,
y = o(6(34)4+6(124)46(25)+6(135))+(1—a)(6(24)+6(125)+6(134)+6(35)). So, y;; = 2 for
all edges except yo3 = ya5 = 4. Then, y € Z(Ge) since y = 6(34)+6(124)+6(25)46(135).

Case B2: Suppose that ajse = 1 — ag; then, a5 = ag > 0. From (¢) and (d),
Q54 Qy25, 35+ 35, Qg+ @24, azg+aq34 belong to {0, 1}. If one of them is equal to 0, say,
95 = aqg5 — 0, then asy = ajzq4 = 0, from which we deduce that yo4 = 0 and, thus, y €
Z4(Gs). Else, agy = azs and ags = azq and, thus, y = ag(6(6)+6(15)) + (1 — ag)6(156) +
a24(6(24)+6(35))+(1—a24)(6(135)+6(124) )+ az5(6(25)4+6(34))+(1—az5)(6(134)+6(125)).
Therefore, y12 = Y13 = Y1a = Y25 = Y35 = Y26 = Y36 = Ya6 = 3, Y15 = Y24 = Y34 = 2,
Yoz = 4, yas = 5 and y16 € {0,2,4,6}. This implies that y € Z(Gs). Indeed,

- if y16 = 0, then y = 6(156) + 6(24) + 6(25) + 6(34) 4 6(35)

- if y16 = 2, then y = 6(6) + 6(15) + 6(24) + 6(25) + 6(34) + 6(35)

~if yyg = 4, then y = 8(156) + 8(135) + 8(134) + 6(125) + &(124)

~if y16 = 6, then y = 8(6) + 6(15) + 6(135) + 6(134) + 6(125) + 6(124).

COROLLARY 3.6 y does not lie on any pentagonal facet.

Proor. There are, up to symmetry, two pentagonal facets to consider, namely, those
defined by the inequalities Q(1,1,1,—-1,—-1,0)(z) < 0 and Q(1,1,—-1,1,—-1,0)(x) < 0.
Note that the second one arises by switching the first one by the cut §(34).

Suppose first that Q(1,1,1,—1,-1,0)(y) = 0. Then, y = 2os5(A)eR as6(A) for some
scalars 0 < aq < 1, where R C Rg U {6(16),6(26),6(36)} (recall that 6(1),6(2),6(3)¢ R
by Corollary 3.3). From y(i[45]) € 2Z, for i = 1,2, 3, we obtain that a;s € Z and, thus,
a6 = 0, for ¢ = 1,2, 3. Hence, y lies on the face ¢, contradicting Claim 3.5.

Suppose now that Q(1,1,—-1,1,—-1,0)(y) = 0. Then, y = 2os5(A)eR as6(A) for some
scalars 0 < ay < 1, where R C Rgsa) U {6(16),6(26),0(46)} and Rgsasy = {0(A) : A =
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6,13,136, 15, 156,23, 145,25, 134, 34, 125,45, 123} denotes the set of nonzero cuts lying on
the switching G*©Y of G by 6(34). Again, from y(i[35]) € 2Z, for i = 1,2, 4, we obtain that
aig = 0, for i = 1,2,4. Hence, y lies on the face G*G%. But the proof of Claim 3.5 shows
that the face G has the property (5). On the other hand, both faces G and G4 have the
property (6); indeed, s(z) = (245 + 246 + @56)/2 if # € G and s(x) = (w35 + @36 + ¥56)/2 if
x € G*G3Y_ Therefore, by Proposition 2.7, the face G*®% also has the property (5). Hence,
y € Z4(Gg), contradicting (7). O

From now on, we assume that y does not lie on any pentagonal or special facet, i.e.
the set V of the facets of R4 (() that contain y consists only of triangle facets.

In the following Claims 3.7, 3.8, 3.9 and 3.10, we show that R C {6(A4) : A =
12, 13, 14, 23, 24, 34} Then, Yy = 0412(5(12) + 0413(5(13) + 0414(5(14) + 0423(5(23) + 0424(5(24) +
a346(34) with nonnegative a’s. From the fact that y([ij]k) € 2Z for 1 < i < j < 3 and
k = 4,5, we obtain that the a’s are all integers, contradicting (7).

CramM 3.7 The cuts 6(5),6(6),6(56) do not belong to R.

ProOF. Suppose that §(5) € R. By Claim 3.2, there exists an inequality u’z < 0
defining a facet of R (Gs) such that u”§(5) € {—4, -6} and uly > u?§(5). There are four

possibilities for u, namely, v = wf(4), wg(15)7 wg(z) and wi(?’), for which u?6(5) = —4. By
symmetry, it suffices to consider the case u = wf(4). Hence, we have that (wf(4))Ty = -2

On the other hand, we know from Corollary 3.3 that (1) ¢ R. Hence, there exists v € V
such that vT(S(l) < 05 it is necessarly a triangle inequality and there are, up to symmetry,
the following three triangle inequalities 2(1[23]) < 0, 2(1[25]) < 0, 2(1[26]) < 0 to consider.

(7) Suppose that the inequality 2(1[23]) < 0 belongs to V, i.e. y(1[23]) = 0. After
rearranging the terms, we obtain that y(1[23]) + (wf(4))Ty = Q(-1,1,1,1,0,-1)(y) +
y(5[14]) + y(5[23]). But, Q(—1,1,1,1,0,—-1)(y) < 0, y(5[14]) < =2 and y(5[23]) < —2;
indeed, the inequalities 2(5[14]) < 0 and z(5[23]) < 0 do not belong to V since they are
not satisfied at equality by §(5). Hence, y(1[23]) + (wf(4))Ty < —4, contradicting the fact
that y(1[23]) = 0 and (wf(4))Ty =-2.

(i¢) Suppose that y(1[25]) = 0. Then, y(1[25]) + (wf(4))Ty = Q(-1,1,1,1,0,-1)(y) +
y(5[13]) + y(5[14]) < —4, yielding again a contradiction.

(iii) Suppose that y(1[26]) = 0. Then, y(1[26]) + (i HTy = y(6[34]) + y(5[24]) +
y(1[23]5) < —4, yielding a contradiction.

So, we have shown that §(5) ¢ R. Similarly, 6(6) € R, implying that 6(56) ¢ R.
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CramM 3.8 The cuts §(123),6(124),6(134),6(156) do not belong to R.

PRrOOF. Suppose, for instance, that 6(123) € R. By Claim 3.2, there exists u’z < 0
defining a facet of R (G) such that uT6(123) € {—4, -6} and uly > u?6(123). The pos-
sibilities for u are two pentagonal facets and four switchings for each special facet w;, ¢ =
1,2,3,4. By symmetry, it suffices to consider the cases (i) ulz = Q(1,1,1,—1,—-1,0)(z) <
0, (24) u = wy, (i04) u = wl( ) for which ul'§(123) = —6, and (iv) u = wf(ls), (v)u= wf(G),
for which «76(123) =

(i) Suppose that Q(1,1,1,—1,—1,0)(y) = 0. Since 6(5) ¢ R (by Claim 3.7), let v € V
such that v7¢(5) < 0; it is the triangle inequality z(5[i4]) < 0, for ¢ = 1,2, 3. Suppose, for
instance, that y(5[14]) = 0. Then, y(5[14])+Q(1,1,1,-1,-1,0)(y) = y(4[23]) + y(5[13]) +
y(5[12]) < —6, yielding a contradiction.

(ii) Suppose that wiy € {~2,—4}. Since §(6) ¢ R, there exists v € V such that v76(6) <
0; it is one of the triangle inequalities 2(6[14]) < 0, 2(6[24]) < 0 (or x(6[34]) < 0). But,

y(6[14]) + wi'y = y(6[23]) + y(2[45]) + y([14]35) < —6 and y(6[24]) + wiy = y(6[23]) +
y(3[45]) + y([61]52) < —6, yielding a contradiction.

(i7i) The case when (wf(l))Ty € {—2,—4} is identical to the case (i), exchanging the

nodes 5 and 6.

(iv) Suppose that (w; o )) y = —2. As in (i), we can suppose that y(6[14]) = 0 or
y(6[24]) = 0. But, @/(6[ 4D+ (Y = Q(=1,1,1,-1,1,0)(y) +y(6[12))+ y(6[13]) < -4

and y(6[24]) + (wf(ls))Ty = y(4]35]) 4+ y([23]6) + y(1[52]6) < —4, yielding a contradiction.

(v) The case when (wf(G))Ty = —2 is identical to the case (iv), exchanging the nodes 5

and 6. ]

5(1
wy

CramM 3.9 The cuts 6(125),6(126),6(135),6(136),6(145),6(146) do not belong to R.

PROOF. Suppose, for instance, that §(146) € R. By Claim 3.2, let ulz < 0 define a
facet of Ry (Ge) such that u?'6(146) € {—4, -6} and uly > u?¢(146). So, ulz < 0 is the
pentagonal inequality Q(1,-1,—-1,1,0,1)(z) < 0, u = wf(ls), for which u”¢(146) = —6,
or u = wy, for which u?'§(146) = —4. (The case when u is one of two switchings of w,
ws, or wy follows by symmetry.)

(i) Suppose that Q(1,—1,—-1,1,0,1)(y) € {—2,—4}. Since 6(6) € R, there exists v € V
such that v78(6) < 0; we can suppose that it is one of the inequalities #(6[12]) < 0 or
#(6[14]) < 0. But, y(6[12]) + @(1, -1, -1,1,0,1)(y) = y(2[46]) + y(6[23]) + y(3[14]) < -6
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and y(6[14]) + Q(1, 1, —1,1,0,1)(y) = y(6[23]) + y(2[14]) + y(3[14]) < —6, yielding a

contradiction.

(i) Suppose that (w; o(15 ) y € {—2,—4}. From the fact that 6(5) € R, we know that one
4]) <

of the inequalities z(5[1¢]) < 0 (i = 2,3), 2(5[23]) < 0, 2(5[#4]) < 0 (¢« = 2,3) belongs
to V. But, y(5[12) + (w WUy = Q(1,1,1,-1,0,-1)(y) + y(1[35]) + y([14]5) < —6,
y(5[23]) + (1" Ty = y([23]6) + y([23]4) + y(15[46)) < —6 and y(5[24)) + (w4"?)Ty =
y([23]6) + y([35]4 )—I— y(15[46]) < —6, yielding a contradiction.

(i77) Suppose that w{y = —2. From the fact that 6(6) ¢ R, we can assume that

one of the inequalities z(6[12]) < 0, z(6[14]) < 0, z(6[24]) < 0 belongs to V. But,
y(6[12)) +wiy = y(2[46]) +y([23]6)+ y([12]5) + y(3[45]) < —4, y(6[14]) + wi'y = y([23]6) +
Y(2[45]) 1 y(3[41]5) < —4 and y(6[24]) + wly = y(3145]) + y([23]6) + y([16]25) < —4. yield-

ing a contradiction. a

CramM 3.10 The cuts 6(15),6(16),6(25),6(26),6(35),6(36),6(45),6(46) do not belong to
R.

ProOOF. Suppose, for instance, that §(45) € R. Then, there exists ulz < 0 defining a
facet of Ry (G) such that «T'6(45) € {—4, -6} and uT'y > uT§(45); it is (up to symmetry)
Q(1,1,1,-1,-1,0)(z) <0, (wf(G))Tx < 0, for which «7'4(45) = —6, or w] < 0, for which
ul'§(45) = —

(7) Suppose that @(1,1,1,—1,—1,0)(y) € {—2,—4}. We can suppose that z([14]5) < 0 be-
longs to V (since 6(5) ¢ R and using symmetries). But, y([14]5)+@Q(1,1,1,—-1,—-1,0)(y) =
y([12]5) 4+ y([13]5) + y([23]5) < —6, yielding a contradiction.

(i) Suppose that (w 5(6)) y € {—2,—4}. We can suppose that 2([14]5) < 0 or 2([24]5) < 0
belongs to V. But y([14] V4 (w (6))Ty =Q(-1,1,1,-1,0,1)(y) +y([12]5) + y([13]5) < —6
and y([2415) + (w}®)Ty = y(4[36]) + ([23]5) + y(15[26]) < —6, vielding a contradiction.

(i77) Suppose that wiy = —2 We can suppose that 2([14]5) < 0 or z([24]5) < 0 be-
longs to V. But y([24]5) + wiy = Q(—1,1,1,—1,0,1)(y) + y([13]5) + y([12]5) < —4 and
y([24]5) + wiy = y([23]5) + y([61]52) + y(3[46]) < —4, yielding a contradiction. 0

4 The role of s in the class 'H

In this section, we give the proof of Theorem 1.1, i.e. we show that every proper subgraph
of K¢ belongs to 'H, and we give the proof of Proposition 1.2, i.e. we show that every
graph belonging to H is not contractible to Kg.
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For the proof of Theorem 1.1, we need to know the explicit description of the facets of
the cone R (Hg+¢€), where Hg+ e is the graph from Figure 7. We present this description
in Section 4.1; we also give there, for information, the description of the cone R4 (Hg). We

give the proof of Theorem 1.1 in Section 4.2 and the proof of Proposition 1.2 in Section
4.3.

4.1 Description of the cones R (Hs) and R, (Hs + €)

We consider the graphs Hg and Hg + e from Figures 2 and 7. So, Hg + € is obtained from
Hg by adding the edge e = 46 and Hg + e = K¢\ {12,13,56}.

We checked, using computer, that the cone Ry(Hg + €) has 49 facets in total. They
are grouped in two classes.

e The first class consists of the 9 x 3 + 2 x 4 = 35 facets that are defined by the cycle
inequalities (2), where C' is one of the 9 triangles (¢,4,7) (1 = 1,2,3; 7 = 5,6), (2,3,1)
(i =4,5,6), or of the circuits (1,5,2,6) and (1,5, 3,6).

o The second class consists of 14 facets that are all switching equivalent. Set

wl'e = 216 — 215 + T3 + Ta5 + Tag — > i=22 %;;. The vector w is shown in Figure 8.
6

J=4,5,

The inequality u’z < 0 defines a facet of R (Hg + ¢). There are exactly 13 nonzero
cuts satisfying the equality v’z = 0; namely, the cuts of the set A, := {§(4) : A =
1,4,6,14,15,24,26,34,36,124,125,134,135}. Hence, for each 6(A) € A,, the inequality
(u! T3 < 0 defines a facet of Ry(Hg + ¢).

Observe that all the inequalities defining facets of R (Hs + €) satisfy both conditions
(3) and (4).

Figure 8 : u

Figure 7: Hg + €
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For information, we also give the description of the facets of R (Hg). The cone R (Hg)
has 46 facets in total. Besides the facet defined by the inequality 216 > 0, they are grouped
in two classes.

e The first class consists of the 6 x 3 + 4 x 4 = 34 facets that are defined by the cycle
inequalities (2), where C'is one of the 6 triangles (i,4,5) (i = 1,2,3),(2,3,7) (1 = 4,5,6),
or one of the circuits (1,2,4,6), (1,5,3,6),(1,6,3,4) and (1,6,2,5).

o The second class consists of 11 facets that are all switching equivalent. Set

wla 1= 216 + 293 + T45 — 226 — T35 — > i=122 ;5. The vector w is shown in Figure 9
3=4,5

(the double edge indicates the coefficient 2 for the variable z16). The inequality wlz <0

defines a simplicial facet of Ri(Hg). There are 10 nonzero cuts satisfying wlz = 0,

namely, the cuts of the set A, := {6(A): A = 1,6,14,15,26,36,125,124,134,135}. For
cach §(A) € A,, the inequality (w®*))Te < 0 defines a facet of R (Hs).

Note that the inequality w’z < 0 arises by summing the inequality u’2 < 0 and the
triangle inequality @16 — 214 — 246 < 0, both defining facets of the cone Ry (Hg + €).

Figure 9 : w

Remark that the property (4) is closed under deleting edges (since the facets of
R4(G\e) arise from those of R4(G) by projecting out the variable z.). However, this is
not the case for the property (3). For instance, the facets of Ry (Hg + ¢€), or of Ry(Kg\e),
have the property (3), but not those of Ry (Hs).

4.2 Proof of Theorem 1.1

Let D be a nonempty subset of edges of K¢ and let G = K¢\ D denote the graph obtained
by deleting D from Kg. We show that G' € H. This is the case if |D| = 1 from Theorem
1.5.

o If |D| = 2, then G € H; this follows from Theorem 1.5 since all the facets of Kg\e satisfy
(3) and (4).
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o If |D| = 3, then we are in one of the following cases:

(i) D= Ky3 (e.g. D=1{12,13,14})

(it) D=P,U P3 (e.g. D =1{12,13,56})

(it1) D = Py (e.g. D ={12,23,34})

(iv) D =C3 (e.g. D ={12,23,13})

(?] D= P2 UP2 UP2 (eg D= {12,34,56})

In the cases (i), (iv),(v), G € H since G is not contractible to K5. In the case (1), G € H
since G is the 2-sum of K3 and K5. In the case (ui), G € H since G arises by deleting an
edge from Kg — P53 which is the 3-sum of K, and K.

e Suppose that |D| = 4. If G is a subgraph of K¢ — P, then G € H since G is not
contractible to K. Else, we are in one of the following cases.

(i) D = K14 (e.g. D= {12,13,14,15})

(ii) D = K15U Py (e.g. D = {12,13,14,56})

(ii)) D = Py U P; (e.g D = {12,13,46,56})

In the case (i), G € H since G is the 1-sum of K5 and Ky. In the cases (i¢) and (i),
(G € H since G arises by deleting an edge from the graph Hg + e (see Figure 7) whose
facets all satisfy (3) and (4) (see Section 4.1) and Hg + e belongs to H (see Example 2).

e Suppose that |D| > 5. Then, GG is a subgraph of K5 or of K¢— P4, implying that G' € H.
This concludes the proof of Theorem 1.1.

4.3 Proof of Proposition 1.2

We start by recalling some facts on the antipodal extension operation (see e.g. [9]). Given

x € RG) and a € R, define the antipodal extension y = ant,(z) of z by

Yij = X fl<i<j<n
Yintl =@
Ying1 =oa—x1; if2<i<n

It is easy to see that, if @ € Ry(K,) and v = Y gcq, oy as6(5) with as > 0, then
anty(2) =3 g.1e5 @56(9)+)g1gs 0(SU{n+1})+(a—> g as)é({n+1}) and, conversely, if
anty () € Ry(K41), then every decomposition of ant,(z) as a nonnegative combination
of cuts has the above form. Hence, we have the following result.

ProrosiTiON 4.1 [9] (i) ant,(2) € Ry(K,41) if and only if © € RL(K,), o € Ry and
a < s(z).

(71) anto(2) € Zy(Kpqq) if and only if x € Z(K,), o € Zy and o < h(z).

(11i) anto () € Z(Knq1) if and only if v € Z(K,,) and o € Z.

Note that Proposition 4.1 remains valid if G is a graph with a node 1 adjacent to all
other nodes of &, G is the graph obtained from G by adding a new node n + 1 adjacent
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to all nodes of G, z € R¥() and y = anty(z) € RE(E) is defined similarly by y. = . for
e € E(G) and y; n41 = o — xq; for all nodes 7 of G.

Proposition 4.1 provides a useful tool for constructing counterexamples for the Hilbert
base property. Indeed, if we can find 2 € Ry(K,) N Z(K,,) and a € Z such that s(z) <
a < h(z), then ant,(2) € Ry(Kpq1) N Z(Kpq1) — Zy (K, 41). We now present such an
example.

Example 3. Consider the vector z,, € R(g) defined by (2,,);; = 2forall 1 <7 < j <nand
set a,41 = anty(z,). So, all components of a,41 are equal to 2 except (@y41)1.n41 = 4.

n(n—1)

Clearly, s(z,) = (EaEal since &, can be written as a nonnegative combination of cuts using
only equicuts, i.e. cuts with |5 |[5] edges. Moreover, h(z,) = n since z,, = Y 1;<,, 6(4) is
the only way of writing z,, as an integer nonnegative sum of cuts ([6]). Hence, for n > 5,
s(z,) <4 < h(x,), and we deduce from Proposition 4.1 that a,41 € Z(K,41) "R (K 41)
and an41 € Z4(Kpq1).

One can also show directly that a,41 ¢ Z4(K,4+1) by checking that a,4+1 — 6(A) ¢
R4(K41) for all cuts 6(A). Indeed, a,41 — 6(A) violates either the pentagonal inequality
Q(1,1,1,-1,-1,0,...,0)(z) < 0, or the inequality @(2,1,1,-1,—-1,-1,0,...,0)(z) <0
(for a suitable labeling of the nodes), which define both facets of Ry (K ,41) if n > 5.

Explicit decompositions of z, and a,4q are as follows. Let &, denote the set of
the equicuts of K,. Then, z, = %Zé(s)egn 6(5) and a,41 = %(Zé(s)egmles 6(5) +
s5(8)eenigs 005 U {n+13)) + (4 = s(2,))8({n + 1}), where ¢, = (,j32,) if n is even and

Cp = 2((n715)2/2) if n is odd.

Several other classes of vectors belonging to Ry(K,) N Z(K,) — Z4(K,), for n > 7,
are constructed in [8], in particular, using other extension operations.

Craim 4.2 Let G be a graph which contains Kg as a subgraph. Then, G does not belong
to 'H.

ProoFr. By assumption, the edge set £ of GG contains the edge set EF(Ks) of a K¢ sub-
graph. Define a € R¥ by a. = 2 for all edges e € E except a. = 4 for one edge e € E(Kg).
Then, a € Z(G)NR4(G), but a ¢ Z4(G). Indeed, a € R4(G) since a is the projection
of a,, € Ry(K,) (n is the number of nodes of GG); a ¢ Z,(G) since its projection ag on
RZ(K6) does not belong to Z (Kg). This shows that G' & M. 0

Proposition 1.2 now follows easily. Indeed, suppose G is contractible to Kg,i.e. G\ D /
C = Kg for some disjoint subsets C' and D of the edge set of G. Then, G/C does not
belong to H since it contains K¢ as a subgraph (by Claim 4.2) which implies that G’ ¢ H
(by Proposition 2.1).
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