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Abstract. Let Q

6

denote the port of the dual Fano matroid F

�

7

and let Q

7

denote the

clutter consisting of the circuits of the Fano matroid F

7

that contain a given element. Let

L be a binary clutter on E and let d � 2 be an integer. We prove that all the vertices

of the polytope fx 2 R

E

: x(C) � 1 for C 2 Lg \ fx : a � x � bg are

1

d

-integral, for any

1

d

-integral a; b, if and only if L does not have Q

6

or Q

7

as a minor. Applications to graphs

are presented, extending a result from [7].

1 The main result

Let L be a collection of subsets of a set E. L is called a clutter if, for all A;B 2 L, A = B

whenever A � B. Given an integer d � 1 and a vector x, x is said to be

1

d

-integral if dx

is integral, i.e. all the components of x belong to

1

d

Z:= f

i

d

: i 2Zg.

Definition 1.1 Let L be a clutter on E. We say that L is box

1

d

-integral if L = f;g or,

for all a; b 2 (

1

d

Z)

E

, each vertex of the polyhedron

Q(L; a; b) := fx 2 R

E

+

: x(C) � 1 for C 2 L; a

e

� x

e

� b

e

for e 2 Eg

is

1

d

-integral. Equivalently, L is box

1

d

-integral if, for all subsets I � E and all a 2 (

1

d

Z)

I

,

each vertex of the polyhedron

Q(L; a) := fx 2 R

E

+

: x(C) � 1 for C 2 L; x

e

= a

e

for e 2 Ig

is

1

d

-integral.

We shall mostly use the second de�nition for box

1

d

-integral clutters.
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Given a clutter L on E and a subset Z of E, set LnZ = fA 2 L : A \ Z = ;g and let

L=Z consist of the minimal members of fA�Z : A 2 Lg; both LnZ and L=Z are clutters.

The operations are called, respectively, deletion and contraction of Z. A minor of L is

obtained from L by a sequence of deletions and contractions.

LetM be a matroid on a groundset E [ f`g, where ` is a distinguished element of the

groundset, and let C denote the family of circuits of M. The family fC : C [ flg 2 Cg is

a clutter, called the `-port of M. A clutter is said to be binary if it is the port of some

binary matroid.

The binary clutters Q

6

and Q

7

are de�ned, respectively, on six and seven elements.

Q

6

is the clutter on the set f1; 2; 3; 4; 5; 6g consisting of the sets f1; 3; 5g, f1; 2; 6g, f2; 3; 4g

and f4; 5; 6g. Q

7

is the clutter on the set f1; 2; 3; 4; 5; 6; 7g consisting of the sets f1; 4; 7g,

f2; 5; 7g, f3; 6; 7g, f1; 2; 6; 7g, f1; 3; 5; 7g, f2; 3; 4; 7g and f4; 5; 6; 7g.

The following result is the main result of the paper. Applications to graphs are given

in Section 5.

Theorem 1.2 Let L be a binary clutter on a set E, L 6= f;g. The following assertions

are equivalent:

(i) L does not contain Q

6

or Q

7

as a minor,

(ii) L is box

1

d

-integral for each integer d � 1,

(iii) L is box

1

d

-integral for some integer d � 2.

Observe that, for d = 1, L is box

1

d

-integral if and only if L has the following weak max-


ow-min-cut property (since the weak max-
ow-min-cut property is closed under minors

[10]): L = f;g or, for each w 2Z

E

+

, the program

min w

T

x

subject to x(C) � 1 for all C 2 L

x

e

� 0 for all e 2 E

has an integer optimizing vector.

The clutter L is said to be mengerian if L = f;g, or both the above program and its dual

max 1

T

y

subject to

P

e2C

y

C

� w

e

for e 2 E

y

C

� 0 for C 2 L

have integer optimizing vectors for all w 2Z

E

+

. Seymour [10] showed that a clutter L 6= f;g

which is a matroid port is mengerian if and only if L is binary and does not have any

Q

6

minor. Therefore, from Theorem 1.2, the class of the binary clutters which are box

1

d

-integral for some integer d � 2 is strictly contained in the class of mengerian binary

clutters.
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The characterization of the clutters with the weak max-
ow-min-cut property is a hard

and unsolved problem, even within the class of matroid ports (see [10], [4]).

We mention yet another equivalent de�nition for box

1

d

-integral clutters. Let L be a

clutter on E and let F be a k-dimensional face (k � 0) of the polyhedron

Q(L) := fx 2 R

E

+

: x(C) � 1 for all C 2 Lg:

A subset J � E is said to be basic for the face F if there exist jEj�k equations x(C

i

) = 1,

with C

i

2 L for 1 � i � jEj � k, de�ning F and whose projections on R

J

are linearly

independent. Then, it is easy to check that L is box

1

d

-integral if and only if, for each

k-dimensional face F of Q(L) (k � 0), for each basic set J � E for F and for each x 2 F ,

x

e

2

1

d

Zfor all e 2 J whenever x

e

2

1

d

Zfor all e 2 E � J . This de�nition corresponds

to the \F -property" considered (in blocking terms and in a slightly more general setting)

by Nobili and Sassano ([8]). It expresses the fact that, not only all the vertices of L are

1

d

-integral, but also each face of Q(L) contains, in the way mentioned above, a

1

d

-integral

vector.

Let U

2

4

denote the matroid on four elements whose circuits are the sets f1; 2; 3g,

f1; 2; 4g, f1; 3; 4g and f2; 3; 4g. Then, its 4-port is the clutter C

3

consisting of the sets

f1; 2g, f1; 3g and f2; 3g. It is easy to check that C

3

is box

1

d

-integral if and only if d is

even.

Proposition 1.3 Let d be an odd integer and let L be a matroid port. If L is box

1

d

-

integral, then L is a binary clutter.

Proof. Let L be the `-port of a matroid M. We can suppose that M is connected.

Assume that L is box

1

d

-integral. Then, by Proposition 3.2, L does not have C

3

as a

minor. Therefore,M does not have a minor U

2

4

using the element `. This implies [3] that

M does not have any minor U

2

4

. Therefore, M is a binary matroid [15]. Hence, L is a

binary clutter.

In order to prove Theorem 1.2, it su�ces to show the implications (iii) =) (i) and

(i) =) (ii). The implication (iii) =) (i) is implied by the following facts:

� box

1

d

-integrality is preserved under minors, see Proposition 3.2.

� Q

6

is not box

1

d

-integral, for each integer d � 2, see Proposition 3.3.

� Q

7

is not box

1

d

-integral, for each integer d � 2, see Proposition 3.4.

The most di�cult part is to show the implication (i) =) (ii). For this, we use as main
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tool a decomposition result for matroids without minor F

�

7

using a given element ` (Tseng

and Truemper [14], Truemper [12]), stated in Theorem 2.3.

The proof of Theorem 1.2 is presented in Sections 3 and 4. In Section 2, we recall

some results about matroids and the decomposition result that we need here. We present

in Section 5 some applications of our main result.

We use the following notation. Given a set A and elements a 2 A, b 62 A, A� a, A+ b

denote, respectively, A�fag and A[fbg. If x; y are two binary vectors, then x�y denotes

the binary vector obtained by taking the componentwise sum of x and y modulo 2.

2 Preliminaries on matroids

We refer to [17], [13] for an introduction to matroids.

Representation matrix

Let M be a binary matroid on a set E, i.e. there exists a binary matrix M whose

columns are indexed by E such that a subset of E is independent in M if and only if the

corresponding subset of columns of M is linearly independent over the �eld GF (2). Such

a matrix M is called a representation matrix of M.

Let X be a base ofM and set Y = E �X . For y 2 Y , let C

y

denote the fundamental

circuit of y in the base X , i.e. C

y

is the unique circuit of M such that y 2 C

y

and

C

y

� X + y. Let B denote the jX j � jY j matrix whose columns are the incidence vectors

of the sets C

y

� y for y 2 Y . Then, the matrix [I jB] is a representation matrix ofM and

B is then called a partial representation matrix ofM.

For x 2 X , let �

x

denote the fundamental cocircuit of x in the base X , i.e. �

x

is the

unique cocircuit of M such that x 2 � and � � Y + x. Then, the row of B indexed by x

is the incidence vector of the set �

x

� x.

For y 2 Y and x 2 C

y

, the set X

0

= X � x + y is also a base of M. The partial

representation matrix B

0

of M in the base X

0

is easily obtained from B by pivoting with

respect to the (x; y)-entry of B. Let R

x

0

, x

0

2 X , denote the rows of B, they are vectors

in f0; 1g

Y

. Pivoting with respect to the (x; y)-entry of B amounts to replacing R

x

0

by

R

x

0

�R

x

� (1; 0; : : : ; 0) (where 1 is the y-position) for each x

0

2 C

y

, x

0

6= x; y.

Let C denote the family of circuits ofM. A set C � E is called a cycle ofM if C = ;

or C is a disjoint union of circuits of M. Equivalently, if M is a representation matrix of

M, the cycles are the subsets whose incidence vectors u satisfy Mu � 0 (mod 2).

Minors

Let Z be a subset of E. The matroidMnZ, obtained by deletion of Z, is the matroid

on E�Z whose family of circuits is CnZ. The matroidM=Z, obtained by contraction of
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Z, is the matroid on E � Z whose circuits are the nonempty sets of C=Z. A minor of M

is obtained by a sequence of deletions and contractions. Every minor ofM is of the form

MnZ=Z

0

for some disjoint subsets Z; Z

0

of E. Given e 2 E, the minor MnZ=Z

0

uses the

element e if e 62 Z [ Z

0

, i.e. e belongs to the groundset of MnZ=Z

0

.

Minors can be easily visualized on the partial representation matrix. Let B be the

partial representation matrix of M corresponding to the base X . If Z � X , then the

matrix obtained from B by deleting its rows indexed by Z is a partial representation

matrix of M=Z and, if Z � Y , then the matrix obtained from B by deleting its columns

indexed by Z is a partial representation matrix ofMnZ.

k-sum

Let M

i

be a binary matroid on E

i

, for i = 1; 2. We de�ne the binary matroid M on

E = E

1

4E

2

whose cycles are the subsets of E of the form C

1

4C

2

, where C

i

is a cycle of

M

i

for i = 1; 2. We consider the cases:

� E

1

\ E

2

= ;, then M is called the 1-sum of M

1

and M

2

� jE

1

j; jE

2

j � 2, E

1

\ E

2

= fe

0

g and e

0

is not a loop or a coloop of M

1

or M

2

, then M

is the 2-sum of M

1

and M

2

.

k-separation

Let r(:) denote the rank function of the matroidM on E. Let k � 1 be an integer. A

k-separation of M is a partition (E

1

; E

2

) of the groudset E satisfying

(

jE

1

j; jE

2

j � k

r(E

1

) + r(E

2

) � r(E) + k � 1

When equality r(E

1

) + r(E

2

) = r(E) + k � 1 holds, the separation is called strict. The

matroid M is said to be k-connected if it has no j-separation for j � k � 1. Throughout

the paper, 2-connected will be abbreviated as connected.

If M has a strict k-separation (E

1

; E

2

), then it admits a partial representation matrix

with a special form. Indeed, letX

2

be a maximal independent subset of E

2

and letX

1

� E

1

such that X = X

1

[X

2

is a base of M, so jX

1

j = r(E

1

)� k + 1 and jX

2

j = r(E

2

). The

partial representation matrix B of M in the base X has the form shown in Figure 1.

Figure 1
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The rank of the matrix D is equal to k � 1.

In the case k = 1 of a strict 1-separation, the matrix D is identically zero. Then, M

is the 1-sum of M

1

and M

2

.

In the case k = 2 of a strict 2-separation, the matrix D has rank 1 and, thus, has the

form shown in Figure 2.

Figure 2

So, the set

~

Y

1

consists of the elements y 2 Y

1

such that X

1

+ y is an independent set ofM

and, for y 2

~

Y

1

, the fundamental circuit of y in the base X is of the form

~

X

2

[ A

y

[ fyg

with A

y

� X

1

.

Given two elements e

1

2

~

X

2

and e

2

2

~

Y

1

, we consider the matroids M

1

= M =

( X

2

� e

1

) n Y

2

and M

2

= M=X

1

n(Y

1

� e

2

) de�ned, respectively, on E

1

[ fe

1

; `g and

E

2

[ fe

2

; `g. It follows from the next Proposition 2.1 thatM is the 2-sum ofM

1

andM

2

(after renaming e

1

as e

0

in M

1

and e

2

as e

0

in M

2

). A set C � E is said to be crossing

if C \E

1

6= ; and C \E

2

6= ;.

Proposition 2.1 (i) Let C be a circuit of M. Then,

� either C � E

i

and C is a circuit of M

i

, for some i 2 f1; 2g,

� or C is crossing and (C \ E

i

) + e

i

is a circuit of M

i

, for i = 1 and 2. Moreover,

(C \E

1

) [

~

X

2

and (C \E

2

)4

~

X

2

are circuits of M.

Every circuit of M

i

arises in one of the two ways indicated above.

(ii) Let C;C

0

be two crossing circuits of M, then (C \E

i

)4(C

0

\E

j

) is a cycle of M for

any i; j 2 f1; 2g.

Proof. (ii) follows directly from (i) and (i) is easy to check after observing that, for a

circuit C ofM, C is crossing if and only if jC \

~

Y

1

j is odd.

In the case k = 3 of a strict 3-separation, the matrix D has rank 2. Moreover, if

jE

1

j; jE

2

j � 4 andM is 3-connected, it can be shown thatM has a partial representation

matrix B of the form shown in Figure 3, with D

12

= D

2

D

1

(see [12]).
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Figure 3

Proposition 2.2 Suppose M has a strict 3-separation (E

1

; E

2

) with jE

1

j; jE

2

j � 4 and

consider the partial representation matrix of M from Figure 3. If fy; z; `g is a circuit of

the matroid Mn(X

1

� x)=(Y

1

� fy; zg), then the partition (E

1

; E

2

� `) of E � ` is a strict

2-separation of the matroid M=`.

Proof. Let a; b denote the rows ofD

1

indexed, respectively, by e; f and let u; v denote the

columns of D

2

indexed, respectively, by y; z. So, a; b are vectors indexed by the elements

y

0

2 Y

1

� fy; zg and u; v are indexed by the elements x

0

2 X

2

� fe; fg. Let w denote the

vector whose components are the (x

0

; `)-entries, for x

0

2 X

2

�fe; fg, of the �rst column of

B

2

. Since the set fy; z; `) is a circuit of the matroidMn(X

1

�x)=(Y

1

�fy; zg), we deduce

that w = u� v.

The (e; `)-entry of B is equal to 1, hence the set X

0

= X � e + ` is again a base of

M. Let B

0

denote the partial representation matrix of M in the base X

0

. So B

0

can

be obtained from B by pivoting with respect to its (e; `)-entry. Pivoting will a�ect only

the rows of B indexed by X

2

� e. Let D

0

denote the submatrix of B

0

with row index set

X

2

� e + ` and with column index set Y

1

. It is not di�cult to check that the row of D

0

indexed by f is the vector (a � b; 1; 1) and that each other row of D

0

indexed by some

element of X

2

� fe; fg is one of the two vectors (a� b; 1; 1) or (0; : : : ; 0; 0; 0). Therefore,

the submatrix of D

0

with row index set X

2

� e has rank 1. This shows that the partition

(E

1

; E

2

� `) of E � ` is a strict 2-separation of the matroid M=`.
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Fano matroid

The Fano matroid F

7

is the matroid on f1; 2; 3; 4; 5; 6; 7g whose circuits are the seven

sets f1; 2; 3g, f1; 4; 7g, f1; 5; 6g, f2; 4; 6g, f2; 5; 7g, f3; 4; 5g and f3; 6; 7g (the lines of the

Fano plane) together with their complements. The dual Fano matroid F

�

7

is the dual of

F

7

, its circuits are f4; 5; 6; 7g, f2; 3; 5; 6g, f2; 3; 4; 7g, f1; 3; 5; 7g, f1; 3; 4; 6g, f1; 2; 6; 7g and

f1; 2; 4; 5g (the complements of the lines of the Fano plane).

By symmetry, there is only one port for F

�

7

. The 7-port of F

�

7

is the clutter Q

6

, already

de�ned earlier, consisting of the sets f4; 5; 6g, f2; 3; 4g, f1; 3; 5g and f1; 2; 6g.

Observe that every one-element contraction of F

7

has a 2-separation. For example, the

sets f1; 4g and f2; 3; 5; 6g form a strict 2-separation of F

7

=7.

We also consider the series-extension F

+

7

of the Fano matroid F

7

, obtained by adding

a new element \8" in series with, say, the element \7", i.e. f7; 8g is a cocircuit of F

+

7

.

Hence, F

+

7

is the matroid de�ned on f1; 2; 3; 4; 5; 6; 7; 8g whose circuits are the sets C for

which C is a circuit of F

7

with 7 62 C, and the sets C [ f8g for which C is a circuit of F

7

with 7 2 C. Up to symmetry, there are two distinct `-ports of F

+

7

, depending whether

` is one of the two series elements 7; 8, or not. We denote by Q

7

the `-port of F

+

7

when

` is a series element of F

+

7

. Then, for ` = 8, Q

7

consists of the sets f1; 4; 7g, f2; 5; 7g,

f3; 6; 7g, f1; 2; 6; 7g, f1; 3; 5; 7g, f2; 3; 4; 7g and f4; 5; 6; 7g, i.e. Q

7

consists of the circuits

of F

7

containing the point 7.

We use the following facts about regular matroids ([13], [15], [17]). A matroid is regular

if it does not have any F

7

, F

�

7

, or U

2

4

minor. LetM be a regular matroid and letM = [I jB]

be a binary matrix representingM over GF (2). Then the 1's of B can be replaced by �1's

so that the resulting matrix

~

B is totally unimodular, i.e. each square submatrix of

~

B has

determinant 0;�1. Moreover,

~

M = [I j

~

B] represents M over R and every binary vector x

such that Mx � 0 ( mod 2) corresponds to some 0;�1-vector y such that

~

My = 0, where

y is obtained from x by replacing its 1's by �1's.

Decomposition result

The following decomposition result was proved by Tseng and Truemper ([14], Theorem

4.3); see also ([12], Theorem 1.3) and [13] for a detailed exposition.

Theorem 2.3 Let M be a matroid on the set E [ f`g. Assume that M does not have

any minor F

�

7

using the element `. Then, one of the following assertions holds.

(i) M has a 1-separation.

(ii) M is 2-connected and has a 2-separation.

(iii) M is a regular matroid.

(iv) M is the Fano matroid F

7

.

(v) M is 3-connected and has a 3-separation (E

1

; E

2

[ f`g) such that (E

1

; E

2

) is a strict

2-separation of M=`.



A characterization of box

1

d

-integral binary clutters 9

Remark 2.4 Theorem 2.3 di�ers from Theorem 1.3 from [12] in the statement (v). How-

ever, the above formulation of (v) follows from Theorems 1.3 and 2.1 from [12] (the latter

theorem states that the triple fy; z; `g forms a circuit of Mn(X

1

� x)=(Y

1

� fy; zg)) and

from the above Proposition 2.2.

We will use this decomposition result in the following form.

Theorem 2.5 Let M be a binary matroid on the set E [ f`g. Assume that M does not

have any minor F

�

7

using the element ` and that M does not have any minor F

+

7

using

the element ` as a series element. Assume also that ` is not a coloop of M. Then, one of

the following assertions holds.

(a) M=` has a 1-separation.

(b) M=` has a strict 2-separation.

(c) M is regular.

Proof. We apply Theorem 2.3. The statement (iii) coincides with (c). (b) applies in the

cases (iv) and (v). In the case (i), if (E

1

; E

2

[ f`g) is a 1-separation of M, then (E

1

; E

2

)

is a 1-separation of M=` since ` is not a coloop of M; hence, (a) applies. We suppose

�nally that we are in the case (ii), i.e. (E

1

; E

2

[ f`g) is a strict 2-separation of M. If

r

M

(E

1

) = r

M=`

(E

1

) + 1, then (E

1

; E

2

) is a 1-separation of M=` and, thus, (a) applies.

Otherwise, r

M

(E

1

) = r

M=`

(E

1

), implying that r

M=`

(E

1

) + r

M=`

(E

2

) = r

M=`

(E) + 1;

hence, in order to show that (b) applies, we need only to check that jE

2

j � 2. Suppose,

for contradiction, that jE

2

j = 1, i.e. E

2

= f`

0

g. We deduce that f`; `

0

g is a cocircuit of

M. Therefore, M can be seen as the series-extension of M=` obtained by adding ` in

series with `

0

. If M=` is regular, then M is regular too and, thus, (c) applies. Hence, we

can suppose that M=` is 2-connected and not regular. It follows from [9] that M=` has

a minor F

7

or F

�

7

using `

0

. It is easy to see that, if M=` has a minor F

�

7

using `

0

, then

M has a minor F

�

7

using ` and, if M=` has a minor F

7

using `

0

, then M has a minor F

+

7

using ` as a series element. We obtain a contradiction in both cases.

Remark 2.6 One can check that, under the conditions of Theorem 2.5 (i.e. M has no

minor F

�

7

using `, no minor F

+

7

using ` as a series element and ` is not a coloop of M),

M=` is regular, or M has a 1-separation.

Signed circuits

LetM be a binary matroid on E[f`g and let L denote the `-port ofM. A convenient

way to refer to the members of L is in terms of odd circuits ofM=` with respect to some

signing. Given a set � � E + `, a subset A � E is called �-even (resp. �-odd) if jA \ �j

is even (resp. odd). It is immediate to check that
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Proposition 2.7 Let � be a cocircuit of M such that ` 2 � and let C be a subset of E.

Then, C 2 L if and only if C is a �-odd circuit of M=`.

3 Q

6

, Q

7

and regular case

In this Section, we show the following results.

� It is su�cient to work with fully fractional vertices, see Proposition 3.1.

� Box

1

d

-integrality is preserved under minors, see Proposition 3.2.

� Q

6

, the port of F

�

7

, is not box

1

d

-integral for any integer d � 2, see Proposition 3.3.

� Q

7

, the port of the series-extension of F

7

with respect to a series element, is not box

1

d

-integral for any integer d � 2, see Proposition 3.4.

� Any port of a regular matroid is box

1

d

-integral for each integer d � 1, see Theorem 3.5.

The following result is easy to check.

Proposition 3.1 Let f 2 E, I � E � f , a 2 (

1

d

Z)

I

and x 2 R

E�f

. Then,

(i) x belongs to (resp. is a vertex of ) Q(L=`; a) if and only if (x; 0) belongs to (resp. is a

vertex of) Q(L; (a; 0)).

(ii) x belongs to (resp. is a vertex of ) Q(Ln`; a) if and only if (x; 1) belongs to (resp. is

a vertex of) Q(L; (a; 1)).

As an immediate consequense, we have that

Proposition 3.2 Every minor of a box

1

d

-integral clutter is box

1

d

-integral.

Proposition 3.3 The clutter Q

6

is not box

1

d

-integral, for any integer d � 2.

Proof. Consider the vector u 2 R

6

de�ned by u

1

= 1�

1

d

, u

2

= u

6

=

1

d

, u

3

= u

5

=

1

2d

,

u

4

= 1 �

3

2d

. Set a

1

= 1 �

1

d

, a

2

= a

6

=

1

d

. Then, u belongs to the polyhedron Q(Q

6

; a)

and u is a vertex of it, since it satis�es the following six linearly independent equalities

u

1

+ u

3

+ u

5

= 1, u

2

+ u

3

+ u

4

= 1, u

4

+ u

5

+ u

6

= 1, u

1

= a

1

, u

2

= a

2

and u

6

= a

6

.

Proposition 3.4 The clutter Q

7

is not box

1

d

-integral, for any integer d � 2.

Proof. Consider the vector u 2 R

7

de�ned by u

1

= u

3

= u

5

=

1

2d

, u

2

= u

4

= u

6

=

1

d

,

and u

7

= 1 �

3

2d

. Set a

2

= a

4

= a

6

=

1

d

. Then, u belongs to the polyhedron Q(Q

7

; a)

and u is a vertex of it, since it satis�es the following seven linearly independent equalities

u

1

+ u

4

+ u

7

= 1, u

2

+ u

5

+ u

7

= 1, u

3

+ u

6

+ u

7

= 1, u

1

+ u

3

+ u

5

+ u

7

= 1, u

2

= a

2

,
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u

4

= a

4

and u

6

= a

6

.

Theorem 3.5 Let L be the port of a regular matroid. Then, L is box

1

d

-integral, for any

integer d � 1.

Proof. Let M be a regular matroid on E [ f`g and let L be its `-port. Since M is

regular, we can �nd a totally unimodular matrix M which representsM over R and is of

the form shown in Figure 4. We can suppose that the matrix A has full rank.

Figure 4

Moreover, each set C 2 L corresponds to a vector y

C

2 f0; 1;�1g

E

such that

(

r

T

y

C

= 1

Ay

C

= 0:

Each such y

C

can be written as y

C

= y

1

C

� y

2

C

, where y

1

C

; y

2

C

2 f0; 1g

E

and their supports

fe 2 E : (y

1

C

)

e

= 1g, fe 2 E : (y

2

C

)

e

= 1g partition the set C.

We de�ne the polyhedron K consisting of the vectors (y

1

; y

2

) 2 R

E

�R

E

satisfying

8

>

<

>

:

r

T

y

1

� r

T

y

2

= 1

Ay

1

�Ay

2

= 0

y

1

; y

2

� 0:

Clearly, (y

1

C

; y

2

C

) 2 K for each C 2 L.

We state a preliminary result.

Claim 3.6 Let u 2 R

E

+

. Then, the following assertions hold.

(i) min(u(C) : C 2 L) = min(u

T

y

1

+ u

T

y

2

: (y

1

; y

2

) 2 K).

(ii) If the system

(

r

T

+ �

T

A � u

T

�r

T

� �

T

A � u

T

(in the variable �) is feasible, then u(C) � 1

holds for each C 2 L.
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Proof. (i) The �rst minimum is greater or equal to the second one since each C 2 L

corresponds to a pair (y

1

C

; y

2

C

) 2 K such that u(C) = u

T

y

1

C

+ u

T

y

2

C

. Let (y

1

; y

2

) be a

vertex of K at which the second minimum is attained. Clearly, the supports of y

1

, y

2

are

disjoint. Since the matrix M is totally unimodular, we deduce that y

1

; y

2

2 f0; 1g

E

. Set

C = fe 2 E : (y

1

)

e

= 1 or (y

2

)

e

= 1g. Then, C 2 L and C corresponds to the vector

y

C

= y

1

� y

2

with u

T

y

1

+ u

T

y

2

= u(C). This shows that the second minimum is greater

or equal to the �rst one.

(ii) If the system

(

r

T

+ �

T

A � u

T

�r

T

� �

T

A � u

T

is feasible, then we have that

1 � max(� : �r

T

+�

T

A � u

T

; ��r

T

��

T

A � u

T

): Using linear programming duality, this

implies that min(u

T

y

1

+ u

T

y

2

: (y

1

; y

2

) 2 K) � 1 and, therefore, by (i), u(C) � 1 for all

C 2 L.

Let I be a subset of E and let a 2 (

1

d

Z)

I

. Let

~

Q(L; a) denote the polyhedron consisting

of the vectors (�; u) 2 R

m

�R

E

(m denoting the number of rows of the matrix A) satisfying

8

>

<

>

:

�

T

A �u

T

� �r

T

��

T

A �u

T

� r

T

u

e

= a

e

for e 2 I:

By Claim 3.6, Q(L; a) is the projection of

~

Q(L; a) on the subspace R

E

. Let u be a vertex

of Q(L; a). Hence, u is the projection of a vertex (�; u) of

~

Q(L; a). By Proposition 3.1, we

can suppose that u

e

> 0 for all e 2 E. Since

~

Q(L; a) is invariant under the multiplication

of some columns of the matrix

h

r

T

A

i

by �1, we may assume that �

T

A+ r

T

� 0. Therefore,

(�; u) is a vertex of the polyhedron f(�; u) : �

T

A� u

T

� �r

T

; u

e

= a

e

for e 2 Ig. As the

matrix de�ning it is totally unimodular, we deduce that (�; u) is

1

d

-integral and, thus, u

is

1

d

-integral. (Note that the constraint matrix for

~

Q(L; a) is not totally unimodular.)

4 Proof of the main result

Let M be a binary matroid on E [ f`g and let L be the `-port of M, i.e. L = fC � E :

C + ` is a circuit of Mg. Let d � 1 be an integer. We assume that L does not have Q

6

or

Q

7

as a minor. Hence, M does not have F

�

7

as a minor using ` and M does not have F

+

7

as a minor using ` as a series element.

Our goal is to show that L is box

1

d

-integral. The proof is by induction on jEj � 0 and

the main tool we use is Theorem 2.5.

The result holds for jEj = 0. Indeed, then ` is either a loop, yielding L = f;g, or a
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coloop, yielding L = ;. In both cases, L is box

1

d

-integral.

We assume that the result holds for every groundset with less than jEj elements, i.e.

that every binary clutter without Q

6

or Q

7

minor on a set with less than jEj elements is

box

1

d

-integral.

We can suppose that ` is not a loop, nor a coloop of M, i.e. that L 6= f;g; ;.

We know from Theorem 3.5 that L is box

1

d

-integral if M is regular. >From Theorem

2.5, we can assume that M has a 1-separation, or a strict 2-separation.

Proposition 4.1 If M=` has a 1-separation, then L is box

1

d

-integral.

Proof. Let (E

1

; E

2

) be a 1-separation of M=`. Let L

1

(resp. L

2

) denote the `-port of

the matroidMnE

2

(resp. MnE

1

). Clearly, L

1

[L

2

� L; in fact, L = L

1

[L

2

is a partition

of L. By the induction assumption, L

1

and L

2

are box

1

d

-integral.

Given a 2 (

1

d

Z)

I

where I is a subset of E, set a

i

= (a

e

)

e2I\E

i

, for i = 1; 2. Then,

Q(L; a) is the cartesian product of Q(L

1

; a

1

) and Q(L

2

; a

2

), implying that all its vertices

are

1

d

-integral.

>From now on, we assume that M=` is 2-connected and admits a 2-separation (E

1

,

E

2

).

Let I be a subset of E, let a 2 (

1

d

Z)

I

and let u be a vertex of Q(L; a). Our goal is

to show that u is

1

d

-integral. From Proposition 3.1 and the induction hypothesis, we can

suppose that u

e

6= 0; 1 for all e 2 E. Call an inequality tight for u if it is satis�ed at

equality by u.

The inequalities de�ning Q(L; a) are of three types:

Type I: x

e

= a

e

for e 2 I .

Type II: x(C) � 1, for C 2 L noncrossing (i.e. C � E

i

for i 2 f1; 2g).

Type III: x(C) � 1, for C 2 L crossing.

The case when no inequality of type III is tight for u is easy; the proof of the following

result is analogous to that of Proposition 4.1.

Proposition 4.2 Assume that, for each crossing C 2 L, u(C) > 1 holds. Then, u is

1

d

-integral.

We now suppose that there exists some crossing C 2 L for which u(C) = 1 holds.

Definition 4.3 We call path every set of the form C \ E

i

, for i 2 f1; 2g, where C 2 L

is crossing.
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Let � be a cocircuit of M which contains `. Set

u

o

= min(u(P ) : P is a path with jP \ �j odd)

u

e

= min(u(P ) : P is a path with jP \ �j even):

Both u

o

; u

e

are well de�ned.

Proposition 4.4 u

o

+ u

e

= 1 holds. Moreover, for each tight crossing C 2 L with, say,

C \E

1

�-odd and C \E

2

�-even, then u(C \E

1

) = u

o

and u(C \E

2

) = u

e

holds.

Proof. Take C 2 L crossing and tight. Then, 1 = u(C) = u(C\E

1

)+u(C\E

2

) � u

o

+u

e

holds. Conversely, suppose that u

o

= u(C \ E

i

) and u

e

= u(C

0

\ E

j

), where C;C

0

2 L

are crossing with C \ E

i

�-odd, C

0

\E

j

�-even and i; j 2 f1; 2g. >From Proposition 2.1,

C

00

= (C \ E

i

)4(C

0

\ E

j

) is a cycle of M=`. Hence, C

00

= [

h

C

h

, where C

h

are pairwise

disjoint circuits ofM=`. Since C

00

is �-odd, at least one of the C

h

's is �-odd, i.e. belongs

to L. This implies that u(C

00

) =

P

h

u(C

h

) � 1. Therefore, u

o

+ u

e

� 1 holds. Hence, we

have the equality u

o

+ u

e

= 1. The last part of the Proposition follows immediately.

Let B be a base of equalities for u, i.e. B is a maximal set of linearly independent

inequalities chosen among the inequalities de�ning Q(L; a) that are satis�ed at equality

by u. Let B

i

denote the subset of B consisting of the inequalities which are supported by

E

i

, for i = 1; 2. Hence, B

1

[ B

2

consists of inequalities of Type I or II and B � B

1

[ B

2

of inequalities of Type III. We can partition B � B

1

[ B

2

as B

3

[ B

4

, where B

3

consists of

inequalities x(C) � 1 for C 2 L crossing with C \ E

1

�-odd, C \ E

2

�-even, and B

4

of

such inequalities with C 2 L crossing, C \E

1

�-even and C \ E

2

�-odd.

Proposition 4.5 There exists a base B of equalities for u for which B

3

= ; or B

4

= ;.

Proof. Let B be a base of equalities for u for which jB

1

[ B

2

j is maximum. Suppose, for

contradiction, that B

3

6= ; and B

4

6= ;. Let C;C

0

2 L be crossing and yielding equalities

of B with C \ E

1

, C

0

\ E

2

�-even and C \ E

2

, C

0

\ E

1

�-odd. By Proposition 2.1 (ii),

D

i

:= (C \ E

i

)4(C

0

\ E

i

) is a cycle of M=`, and D

i

is �-odd by construction. Hence,

D

i

=

P

h

C

h

where the C

h

's are circuits ofM=` and at least one of them is �-odd. Using

Proposition 4.4, we obtain that 1 = u

e

+ u

o

� u(D

i

) � 1 which implies that D

i

is a

(noncrossing) circuit of M=` yielding a tight equality for u, for i = 1; 2, and C \ C

0

= ;.

But B cannot contain both equations x(D

1

) = 1 and x(D

2

) = 1 since C[C

0

= D

1

[D

2

. If

B contains x(D

1

) = 1 but not x(D

2

) = 1, then, by replacing the equation x(C

0

) = 1 by the

equation x(D

2

) = 1, we obtain a new base B

0

with jB

0

1

[B

0

2

j > jB

1

[B

2

j, contradicting the

choice of B. Otherwise, B contains none of the equations x(D

1

) = 1, x(D

2

) = 1. At least



A characterization of box

1

d

-integral binary clutters 15

one of them can be added to B after deleting the equation x(C

0

) = 1 and still preserve the

linear independence. Again we obtain a contradiction with the maximality of jB

1

[ B

2

j.

We can suppose, for instance, that we have a base B of equalities for u with B

4

= ;,

B

3

6= ;. (If both B

3

and B

4

are empty, we can conclude in the same way as in Proposition

4.2.) In matrix form, the system B can be written as Px = �, where � is the vector

consisting of the right hand sides of the inequalities and the matrix P has the form shown

in Figure 5.

Figure 5

Hence, there exists a tight equality u(C

�

) = 1 where C

�

2 L is crossing, C

�

\E

1

is �-

odd and C

�

\E

2

is �-even. Then, we can �nd two elements e

1

2 C

�

\E

2

, e

2

2 C

�

\E

1

with

e

1

62 � and e

2

2 � (after eventually changing the cocircuit �). (Indeed, let e

2

2 C

�

\ E

1

,

e

1

2 C

�

\ E

2

and let X be a base of M containing (C

�

� e

2

) [ f`g. Let �

0

denote the

fundamental cocircuit of ` in the base X ; then, e

2

2 �

0

since C

�

+ ` is the fundamental

circuit of e

2

in the base X , and e

1

62 �

0

since e

1

2 X . Hence, it su�ces to replace � by

�

0

. )

Set M

1

=M=((C

�

\E

2

)� e

1

)n(E

2

�C

�

) and M

2

=M=((C

�

\E

1

)� e

2

)n(E

1

� C

�

),

de�ned, respectively, on the sets E

1

[ fe

1

; `g and E

2

[ fe

2

; `g. (Note that M

1

coincides

with M=(X

2

� e

1

)nY

2

and M

2

coincides with M=X

1

n(Y

1

� e

2

), where X

i

= X \ E

i

,

Y

i

= E

i

�X

i

for i = 1; 2. Also, M=` is the 2-sum of M

1

=` and M

2

=`. Recall Section 2.)

Let L

i

denote the `-port of M

i

. By the induction assumption, L

i

is box

1

d

-integral,

for i = 1; 2.

Let u

i

denote the projection of u on R

E

i

and set a

i

= (a

e

)

e2I\E

i

, for i = 1; 2. We

de�ne u

�

i

2 R

E

i

+e

i

by

8

>

<

>

:

u

�

i

(e) = u

i

(e) for e 2 E

i

; i = 1; 2;

u

�

1

(e

1

) = u

e

;

u

�

2

(e

2

) = u

o

:
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Proposition 4.6 u

�

i

2 Q(L

i

; a

i

), for i = 1; 2.

Proof. Take C 2 L

i

. By Proposition 2.1 (i), either C 2 L and, thus, u

�

i

(C) = u(C) � 1,

or C = C

0

\ E

i

+ e

i

for some crossing circuit C

0

of M=`. Say i = 1. Then, C

0

\ E

1

is

�-odd, since C is �-odd and e

1

62 �. By Proposition 2.1 (ii), (C

0

\ E

1

)4(C

�

\ E

2

) is a

cycle ofM=` and it is �-odd since C

�

\E

2

is �-even. Hence, u(C

0

\E

1

)+u(C

�

\E

2

) � 1

which, together with u(C

�

\ E

2

) = u

e

, implies that u(C

0

\E

1

) � 1� u

e

= u

o

. Therefore,

u

�

1

(C) = u(C

0

\E

i

) + u

e

� u

o

+ u

e

= 1. The case i = 2 is identical.

We construct the set B

(i)

of equalities for u

�

i

consisting of

� the equalities of B

i

,

� the equalities x((C \ E

i

) + e

i

) = 1, one for each equality x(C) = 1 of B

3

.

All equalities of B

(i)

arise from those de�ning Q(L

i

; a

i

). Indeed, by Proposition 2.1, if

C 2 L with C � E

i

, then C 2 L

i

and, if C 2 L is crossing, then (C \ E

i

) + e

i

2 L

i

, for

i = 1; 2.

Proposition 4.7 The set B

(i)

has rank jE

i

j+ 1, for at least one index i 2 f1; 2g.

Proof. We show that one of the two matrices from Figures 6 and 7 below has full rank

jE

i

j+ 1.

Figure 6 Figure 7

This follows from the fact that the matrix displayed in Figure 8 has full rank jEj + 2;

indeed, it can be obtained by row and column manipulations from the full rank matrix

displayed in Figure 9.
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Figure 8

Figure 9

Suppose, for example, that B

(1)

has full rank. This implies that u

�

1

is a vertex of

Q(L

1

; a

1

) and, thus, u

�

1

is

1

d

-integral, since L

1

is box

1

d

-integral. In particular, u

e

is

1

d

-

integral, implying that u

o

= 1�u

e

is

1

d

-integral. If we introduce the constraint x(e

2

) = u

o

,

then u

�

2

becomes a vertex of the polytope Q(L

2

; a

2

) \ fx : x(e

2

) = u

o

g and, thus, u

�

2

is

1

d

-integral.

This shows that u is

1

d

-integral, concluding the proof.

5 Applications for graphs

A signed graph is a pair (G;�), where G = (V;E) is a graph and � is a subset of the

edge set E of G. The edges in � are called odd and the other edges even. An odd circuit

C in (G;�) is a circuit C of G such that jC \ �j is odd. If �(U) is a cut in G, then

the two signed graphs (G;�) and (G;�4�(U)) have the same collection of odd circuits.

The operation � �! �4�(U) is called resigning (by the cut �(U)). We say that (G;�)

reduces to (G

0

;�

0

) if (G

0

;�

0

) can be obtained from (G;�) by a sequence of the following

operations:

� deleting an edge of G (and �),

� contracting an even edge of G,

� resigning.
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The collection of odd circuits of a signed graph is a binary clutter. Indeed, given a

signed graph (G;�), let S(G;�) denote the binary matroid on f`g [ E represented over

GF (2) by the matrix [

1 j �

0 j M

G

], whereM

G

is the node-edge incidence matrix of G and � is

the incidence vector of the set �. Clearly, the `-port of S(G;�) coincides with the family

of odd circuits of (G;�). In particular, the collection of odd circuits of the signed graph

(K

4

; E(K

4

)), i.e. K

4

with all edges odd, is the clutter Q

6

, i.e. S(K

4

; E(K

4

)) is F

�

7

. One

can check that (G;�) does not reduce to (K

4

; E(K

4

)) if and only if S(G;�) does not have

an F

�

7

minor using the element `. Moreover, S(G;�) does not have any minor F

+

7

using `

as a series element, else F

7

would be a minor of the graphic matroid M(G) = S(G;�)=`.

(See [5] for details.)

The following result is an immediate application of Theorem 1.2.

Theorem 5.1 Let (G;�) be a signed graph and let L denote its collection of odd circuits.

The following assertions are equivalent.

(i) (G;�) does not reduce to (K

4

; E(K

4

)).

(ii) L is box

1

d

-integral for any integer d � 1.

(iii) L is box

1

d

-integral for some integer d � 2.

Given a graph G = (V;E), we consider the polytope

S(G) = fx 2 R

E

: x(F )� x(C � F ) � jF j � 1 (C circuit of G;F � C; jF j odd);

0 � x

e

� 1 (e 2 E)g:

The polytope S(G) is a relaxation of the cut polytope P (G) (de�ned as the convex hull of

the incidence vectors of the cuts of G). In general, S(G) has fractional vertices. In fact,

the 0; 1-vertices of S(G) are the incidence vectors of the cuts of G, and S(G) has only

integral vertices, i.e. S(G) = P (G), if and only if G is not contractible to K

5

[2]. The

fractional vertices of S(G) have been studied in [6], [7].

The case d = 3 of the following Theorem 5.2 was proved in [7]. We will show how

Theorem 5.2 follows from Theorem 5.1.

Theorem 5.2 Let G = (V;E) be a graph. The following assertions are equivalent.

(i) G is series parallel, i.e. G is not contractible to K

4

.

(ii) For each I � E and a 2 (

1

d

Z)

I

, all the vertices of the polytope S(G) \ fx : x

e

=

a

e

for e 2 Ig are

1

d

-integral, for any integer d � 1.

(iii) For each I � E and a 2 (

1

d

Z)

I

, all the vertices of the polytope S(G) \ fx : x

e

=

a

e

for e 2 Ig are

1

d

-integral, for some integer d � 2.

Proof. Let G

0

= (V;E [ E

0

) denote the graph obtained from G by adding an edge e

0

in

parallel with each edge e of G. We consider the signed graph (G

0

; E

0

), where the edges of
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E are even and those of E

0

are odd. It is easy to see that G is series parallel if and only

if (G

0

; E

0

) does not reduce to (K

4

; E(K

4

)). Let L

0

denote the collection of odd circuits of

(G

0

; E

0

). From Theorem 5.1, L

0

is box

1

d

-integral if G is series parallel.

For x 2 R

E

, de�ne x

0

2 R

E

0

by x

0

e

0

= 1� x

e

for e 2 E and, for a 2 (

1

d

Z)

I

with I � E,

set a

0

e

0

= 1� a

e

for e 2 I .

Observe that S(G)\fx : x

e

= a

e

for e 2 Ig = fx : (x; x

0

) 2 Q(L

0

; (a; a

0

))g. As fe; e

0

g 2 L

0

for each e 2 E, Q(L

0

; (a; a

0

)) \ f(x; y) 2 R

E

� R

E

0

: y

e

0

= 1 � x

e

for e 2 Eg is a face

of Q(L

0

; (a; a

0

)). Therefore, S(G) \ fx : x

e

= a

e

for e 2 Ig is the projection of a face

of Q(L

0

; (a; a

0

)). Hence, all its vertices are

1

d

-integral if G is series parallel. This proves

(i) =) (ii).

It is easy to check that (iii) is closed under graph minors. Moreover, K

4

does not have

the property (iii). Indeed, consider K

4

with its edges labeled 1; 2; 3; 4; 5; 6 in such a way

that the triangles of K

4

are f1; 2; 6g, f1; 3; 5g, f2; 3; 4g, f4; 5; 6g (i.e. the members of Q

6

).

Set x

2

= x

4

= x

6

=

1

d

and x

1

= x

3

= x

5

=

1

2d

. Then, x is a vertex of the polytope

S(K

4

) \ fx : x

i

=

1

d

for i = 2; 4; 6g which is not

1

d

-integral. This shows (iii) =) (i).

More generally, given a binary matroid M on a set E, consider the polytope S(M)

in R

E

de�ned by the inequalities 0 � x

e

� 1 for e 2 E, and x(F ) � x(C � F ) � jF j � 1

for F � C with jF j odd and C circuit ofM. Hence, S(M) coincides with S(G) when M

is the graphic matroid M(G) of G. The 0; 1-vertices of S(M) are the incidence vectors

of the cocycles of M. The matroids M for which all vertices of S(M) are integral have

been characterized in [1] using a result of [11]. A natural question to ask is what are the

matroids M for which S(M) is box

1

d

-integral. Actually, this class is not larger than in

the graphic case.

To see this, observe that F

�

7

=` = M(K

4

) and that F

+

7

=` = F

7

has an M(K

4

) minor.

On the other hand, a binary matroid M has no M(K

4

) minor if and only if M is the

graphic matroid of a series parallel graph. The latter follows easily from Tutte's forbidden

minor characterization of graphic matroids ([16]).
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