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Abstract. Let ()¢ denote the port of the dual Fano matroid F* and let ()7 denote the
clutter consisting of the circuits of the Fano matroid F; that contain a given element. Let
L be a binary clutter on ¥ and let d > 2 be an integer. We prove that all the vertices
of the polytope {x € R¥ : 2(C) > 1for C € LIN{z:a < 2 < b} are %—integral, for any
%—integral a, b, if and only if £ does not have (Jg or ()7 as a minor. Applications to graphs
are presented, extending a result from [7].

1 The main result

Let £ be a collection of subsets of a set F. L is called a clutter if, for all A,Be€ L, A= B
whenever A C B. Given an integer d > 1 and a vector z, z is said to be %-z’ntegml if dx
is integral, i.e. all the components of 2 belong to %Z ={7:1€Z}.

DErINITION 1.1 Let L be a clutter on E. We say that L is box %—integral if L =40} or,
for all a,b € (%Z)E, each vertex of the polyhedron

Q(L,a,b):= {xERf:x(C)Z 1forCecL, a. <z, <b. foree £}

18 %-z’ntegml. Fquivalently, L is box %-z’ntegml if, for all subsets I C F and all a € (%Z)I,

each vertex of the polyhedron
Q(L,a):={x € Rf:x(C) >1 forCeL, vc.=a. forecl}
18 %-z’ntegml.

We shall mostly use the second definition for box %—integral clutters.
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Given a clutter £ on F and a subset Z of E,set L\Z ={A € L:ANZ =0} and let
L/ 7 consist of the minimal members of {A—7: A € L}; both £\Z and £/Z are clutters.
The operations are called, respectively, deletion and contraction of Z. A minor of L is
obtained from £ by a sequence of deletions and contractions.

Let M be a matroid on a groundset £ U{(}, where { is a distinguished element of the
groundset, and let C denote the family of circuits of M. The family {C' : C U{l} € C} is
a clutter, called the £-port of M. A clutter is said to be binary if it is the port of some
binary matroid.

The binary clutters ()¢ and ()7 are defined, respectively, on six and seven elements.
()¢ is the clutter on the set {1,2,3,4,5,6} consisting of the sets {1,3,5}, {1,2,6}, {2,3,4}
and {4,5,6}. Q7 is the clutter on the set {1,2,3,4,5,6,7} consisting of the sets {1,4, 7},
(2,5,7},{3,6,7}, {1,2,6,7}, {1,3,5,7}, {2,3,4,7} and {4,5,6,7).

The following result is the main result of the paper. Applications to graphs are given
in Section 5.

THEOREM 1.2 Let L be a binary clutter on a set E, L # {0}. The following assertions
are equivalent:

(i) L does not contain Qg or Q7 as a minor,

(ii) L is box %-z’ntegml for each integer d > 1,

(iii) L is box %-z’ntegml for some integer d > 2.

Observe that, ford = 1, £ is box %—integral if and only if £ has the following weak maz-
flow-min-cut property (since the weak max-flow-min-cut property is closed under minors
[10]): £ = {0} or, for each w € Z¥, the program

min wa

subject to z(C)>1 forall C €L
Ze > 0 for all e € F

has an integer optimizing vector.
The clutter £ is said to be mengerian if £L = {(}, or both the above program and its dual

max 1Ty
subject to Y . coyc <w. forec B
yc 20 forC e L

have integer optimizing vectors for all w € Z¥. Seymour [10] showed that a clutter £ # {0}
which is a matroid port is mengerian if and only if £ is binary and does not have any
()¢ minor. Therefore, from Theorem 1.2, the class of the binary clutters which are box
%—integral for some integer d > 2 is strictly contained in the class of mengerian binary

clutters.
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The characterization of the clutters with the weak max-flow-min-cut property is a hard
and unsolved problem, even within the class of matroid ports (see [10], [4]).

We mention yet another equivalent definition for box %—integral clutters. Let £ be a
clutter on F and let F be a k-dimensional face (k > 0) of the polyhedron

QL) ={reRY:a(C)>1forall C € L}.

A subset J C F is said to be basic for the face F if there exist |E|—Fk equations z(C;) = 1,
with C; € £ for 1 < i < |E| -k, defining F and whose projections on R” are linearly
independent. Then, it is easy to check that £ is box %—integral if and only if, for each
k-dimensional face F' of (L) (k > 0), for each basic set J C E for F' and for each 2 € F,
Te € %Z for all e € J whenever z, € %Z for all e € EF — J. This definition corresponds
to the “F-property” considered (in blocking terms and in a slightly more general setting)
by Nobili and Sassano ([8]). It expresses the fact that, not only all the vertices of £ are
%—integral, but also each face of Q(L) contains, in the way mentioned above, a %—integral

vector.

Let U? denote the matroid on four elements whose circuits are the sets {1,2,3},
{1,2,4}, {1,3,4} and {2,3,4}. Then, its 4-port is the clutter C3 consisting of the sets
{1,2}, {1,3} and {2,3}. It is easy to check that C'3 is box I-integral if and only if d is
even.

ProprosiTIiON 1.3 Let d be an odd integer and let L be a matroid port. If L is box %-
integral, then L is a binary clutter.

Proor. Let £ be the {-port of a matroid M. We can suppose that M is connected.
Assume that £ is box %—integral. Then, by Proposition 3.2, £ does not have (s as a
minor. Therefore, M does not have a minor U7 using the element (. This implies [3] that
M does not have any minor U?. Therefore, M is a binary matroid [15]. Hence, £ is a
binary clutter. |

In order to prove Theorem 1.2, it suffices to show the implications (¢i7) = (i) and

(1) = (4¢). The implication (i7i) = (7) is implied by the following facts:

e box %—integrahty is preserved under minors, see Proposition 3.2.

¢ ()s is not box %—integral, for each integer d > 2, see Proposition 3.3.

e ()7 is not box %—integral, for each integer d > 2, see Proposition 3.4.

The most difficult part is to show the implication (¢) = (4¢). For this, we use as main
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tool a decomposition result for matroids without minor F using a given element ( (Tseng
and Truemper [14], Truemper [12]), stated in Theorem 2.3.

The proof of Theorem 1.2 is presented in Sections 3 and 4. In Section 2, we recall
some results about matroids and the decomposition result that we need here. We present
in Section 5 some applications of our main result.

We use the following notation. Given a set A and elements a € A, b A, A—a, A+Db
denote, respectively, A—{a} and AU{b}. If 2,y are two binary vectors, then x @y denotes
the binary vector obtained by taking the componentwise sum of z and y modulo 2.

2 Preliminaries on matroids

We refer to [17], [13] for an introduction to matroids.

Representation matrix

Let M be a binary matroid on a set F, i.e. there exists a binary matrix M whose
columns are indexed by F such that a subset of £ is independent in M if and only if the
corresponding subset of columns of M is linearly independent over the field GF(2). Such
a matrix M is called a representation matriz of M.

Let X be a base of M and set Y = F — X. Fory € Y, let (', denote the fundamental
circuit of y in the base X, i.e. () is the unique circuit of M such that y € C, and
Cy € X +y. Let B denote the |X| X |Y| matrix whose columns are the incidence vectors
of the sets Cy — y for y € Y. Then, the matrix [/|B] is a representation matrix of M and
B is then called a partial representation matriz of M.

For z € X, let Y, denote the fundamental cocircuit of z in the base X, i.e. X, is the
unique cocircuit of M such that z € 3 and ¥ C Y 4 &. Then, the row of B indexed by z
is the incidence vector of the set X, — x.

For y € Y and ¢ € Cy, the set X’ = X — 2 + y is also a base of M. The partial
representation matrix B’ of M in the base X' is easily obtained from B by pivoting with
respect to the (z,y)-entry of B. Let R,/, 2’ € X, denote the rows of B, they are vectors
in {0,1}Y. Pivoting with respect to the (x,y)-entry of B amounts to replacing R,/ by
Ry & Ry & (1,0,...,0) (where 1 is the y-position) for each 2’ € C, 2’ # 2, y.

Let C denote the family of circuits of M. A set C' C F is called a cycle of M if ' =
or (' is a disjoint union of circuits of M. Equivalently, if M is a representation matrix of
M., the cycles are the subsets whose incidence vectors u satisfy Mu =0 (mod 2).

Minors
Let Z be a subset of F. The matroid M\Z, obtained by deletion of Z, is the matroid
on E — Z whose family of circuits is C\Z. The matroid M/Z, obtained by contraction of
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7, is the matroid on £ — Z whose circuits are the nonempty sets of C/Z. A minor of M
is obtained by a sequence of deletions and contractions. Every minor of M is of the form
M\Z/Z" for some disjoint subsets Z,Z’ of E. Given e € F, the minor M\Z/Z' uses the
element e if e ¢ Z U 7', i.e. e belongs to the groundset of M\ Z/Z’.

Minors can be easily visualized on the partial representation matrix. Let B be the
partial representation matrix of M corresponding to the base X. If Z C X, then the
matrix obtained from B by deleting its rows indexed by Z is a partial representation
matrix of M/Z and, if Z C Y, then the matrix obtained from B by deleting its columns
indexed by Z is a partial representation matrix of M\ Z.

k-sum

Let M; be a binary matroid on F;, for ¢ = 1,2. We define the binary matroid M on
E = F1AFy whose cycles are the subsets of £ of the form C7AC,, where C; is a cycle of
M, for ¢ = 1,2. We consider the cases:
o F1N Fy =0, then M is called the 1-sum of M; and M,
o |Fy|,|Es] > 2, Fy N Fy = {eg} and ¢q is not a loop or a coloop of My or My, then M
is the 2-sum of My and M.

k-separation

Let 7(.) denote the rank function of the matroid M on E. Let k > 1 be an integer. A

k-separation of M is a partition (£, F3) of the groudset E satisfying
|Enl, | Eof > k

{ r(Fy)+r(FEy) <r(E)+ k-1
When equality 7(E£y) + 7(E3) = 7(£) 4+ k — 1 holds, the separation is called strict. The
matroid M is said to be k-connected if it has no j-separation for 7 < k — 1. Throughout
the paper, 2-connected will be abbreviated as connected.

If M has a strict k-separation (£, E3), then it admits a partial representation matrix
with a special form. Indeed, let X5 be a maximal independent subset of Fs and let X1 C F4
such that X = X; U Xy is a base of M, so |X1| = 7(F1) — k + 1 and | X3| = 7(F3). The
partial representation matrix B of M in the base X has the form shown in Figure 1.

Figure 1
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The rank of the matrix D is equal to k£ — 1.

In the case k& = 1 of a strict 1-separation, the matrix D is identically zero. Then, M

is the 1-sum of M, and M.

In the case k = 2 of a strict 2-separation, the matrix D has rank 1 and, thus, has the
form shown in Figure 2.

Figure 2

So, the set Y7 consists of the elements y € Y; such that X; + v is an independent set of M
and, for y € Y7, the fundamental circuit of y in the base X is of the form X, U Ay U {y}
with Ay Q Xl.

Given two elements e; € X, and ey € 171, we consider the matroids My = M /
( Xz — e1 )\ Yz and My = M/ X 1\(Y1 — e2) defined, respectively, on Fq U {ey,{} and
FEyU{ey, (}. Tt follows from the next Proposition 2.1 that M is the 2-sum of My and M,
(after renaming e1 as eg in My and ey as eg in M3z). A set C' C F is said to be crossing

1fCﬂE17£(Z)andCﬂE27£(Z)

ProrosiTION 2.1 (i) Let C' be a circuit of M. Then,

e cither C C F; and C is a circuit of M;, for some i € {1,2},

e or C is crossing and (C' N E;) + ¢; is a circuit of My, for i = 1 and 2. Moreover,
(CNE)U Xy and (C N Eo)AXy are circuits of M.

FPvery circuit of M; arises in one of the two ways indicated above.

(ii) Let C',C" be two crossing circuits of M, then (C N E;)A(C'N E;) is a cycle of M for
any t,j € {1,2}.

Proor. (i7) follows directly from (¢) and (¢) is easy to check after observing that, for a
circuit C' of M, C'is crossing if and only if |C' N Y;] is odd. |

In the case k£ = 3 of a strict 3-separation, the matrix D has rank 2. Moreover, if
|E1|, | F2] > 4 and M is 3-connected, it can be shown that M has a partial representation
matrix B of the form shown in Figure 3, with D13 = D3 D4 (see [12]).
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Figure 3

PROPOSITION 2.2 Suppose M has a strict 3-separation (Eq, Fy) with |Eq|, |E2| > 4 and
consider the partial representation matriz of M from Figure 3. If {y, z,(} is a circuit of
the matroid M\(Xq1 — 2)/(Y1 —A{y, z}), then the partition (£, By — ) of E — ( is a strict
2-separation of the matroid M /L.

ProOOF. Let a,b denote the rows of Dy indexed, respectively, by e, f and let u, v denote the
columns of Dy indexed, respectively, by y, z. So, a,b are vectors indexed by the elements
vy €Yy —{y,z} and u,v are indexed by the elements 2’ € Xy — {e, f}. Let w denote the
vector whose components are the (2', ()-entries, for 2’ € X3 —{e, f}, of the first column of
Bs. Since the set {y, z, () is a circuit of the matroid M\(X1—2)/(Y1 —{y, 2}), we deduce
that w = u P v.

The (e,()-entry of B is equal to 1, hence the set X’ = X — e 4 ( is again a base of
M. Let B’ denote the partial representation matrix of M in the base X’. So B’ can
be obtained from B by pivoting with respect to its (e, {)-entry. Pivoting will affect only
the rows of B indexed by X3 — e. Let D’ denote the submatrix of B’ with row index set
X5 — e+ ¢ and with column index set Y;. It is not difficult to check that the row of D’
indexed by f is the vector (@ @ b,1,1) and that each other row of D’ indexed by some
element of Xy — {e, f} is one of the two vectors (a ¢ b,1,1) or (0,...,0,0,0). Therefore,
the submatrix of D’ with row index set X3 — e has rank 1. This shows that the partition
(Fy, By — () of £ — (s a strict 2-separation of the matroid M /(. |
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Fano matroid

The Fano matroid Fr is the matroid on {1,2,3,4,5,6,7} whose circuits are the seven
sets {1,2,3}, {1,4,7}, {1,5,6}, {2,4,6},{2,5,7},{3,4,5} and {3,6,7} (the lines of the
Fano plane) together with their complements. The dual Fano matroid F is the dual of
F7, its circuits are {4,5,6,7},{2,3,5,6},{2,3,4,7},{1,3,5,7},{1,3,4,6},{1,2,6,7} and
{1,2,4,5} (the complements of the lines of the Fano plane).

By symmetry, there is only one port for /*. The 7-port of F¥ is the clutter ()4, already
defined earlier, consisting of the sets {4,5,6}, {2,3,4}, {1,3,5} and {1,2,6}.

Observe that every one-element contraction of F; has a 2-separation. For example, the
sets {1,4} and {2,3,5,6} form a strict 2-separation of I /7.

We also consider the series-extension F7+ of the Fano matroid F%, obtained by adding
a new element “8” in series with, say, the element “7”, i.e. {7,8} is a cocircuit of F.
Hence, F7+ is the matroid defined on {1,2,3,4,5,6,7,8} whose circuits are the sets C' for
which C'is a circuit of F7 with 7 ¢ C, and the sets C' U {8} for which C' is a circuit of Fx
with 7 € C'. Up to symmetry, there are two distinct {-ports of F7+, depending whether
£ is one of the two series elements 7,8, or not. We denote by ()7 the {-port of F7+ when
( is a series element of Fif. Then, for { = 8, ()7 consists of the sets {1,4,7}, {2,5,7},
{3,6,7},{1,2,6,7}, {1,3,5,7}, {2,3,4,7} and {4,5,6,7}, i.e. Q7 consists of the circuits
of F7 containing the point 7.

We use the following facts about regular matroids ([13], [15], [17]). A matroid is regular
if it does not have any Fr, F¥, or U} minor. Let M be a regular matroid and let M = [I|B]
be a binary matrix representing M over G F(2). Then the 1’s of B can be replaced by £1’s
so that the resulting matrix B is totally unimodular, i.e. each square submatrix of B has
determinant 0, +1. Moreover, M = [I|B] represents M over R and every binary vector
such that M2 =0 ( mod 2) corresponds to some 0, +1-vector y such that My =0, where
y is obtained from & by replacing its 1’s by +1’s.

Decomposition result
The following decomposition result was proved by Tseng and Truemper ([14], Theorem
4.3); see also ([12], Theorem 1.3) and [13] for a detailed exposition.

THEOREM 2.3 Let M be a matroid on the set E U {l}. Assume that M does not have
any minor F¥ using the element {. Then, one of the following assertions holds.

(i) M has a 1-separation.

(11) M is 2-connected and has a 2-separation.

(711) M is a regular matroid.

(iv) M is the Fano matroid Fr.

(v) M is 3-connected and has a 3-separation (L4, Ey U {l}) such that (Eq, Ey) is a strict
2-separation of M /L.
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REMARK 2.4 Theorem 2.3 differs from Theorem 1.3 from [12] in the statement (v). How-
ever, the above formulation of (v) follows from Theorems 1.3 and 2.1 from [12] (the latter
theorem states that the triple {y,z,(} forms a circuit of M\(X1 — 2)/(Y1 — {y,2})) and
from the above Proposition 2.2.

We will use this decomposition result in the following form.

THEOREM 2.5 Let M be a binary matroid on the set 2 U{l}. Assume that M does not
have any minor I using the element { and that M does not have any minor Fif using
the element { as a series element. Assume also that { is not a coloop of M. Then, one of
the following assertions holds.

(a) M/L has a 1-separation.

(b) M/l has a strict 2-separation.

(¢c) M is regular.

Proor. We apply Theorem 2.3. The statement (7¢7) coincides with (¢). (b) applies in the
cases (iv) and (v). In the case (2), if (Ey, Fy U {(}) is a 1-separation of M, then (Fy, Fs)
is a l-separation of M /{ since ( is not a coloop of M; hence, (a) applies. We suppose
finally that we are in the case (i¢), i.e. (Eq, Ey U {(}) is a strict 2-separation of M. If
Tm(E1) = raq(E1) + 1, then (Ey, Ey) is a l-separation of M/{ and, thus, (a) applies.
Otherwise, rpm(FE1) = maqye(E1), implying that 7ae0(E1) + ragpe(Fe) = 7agp(E) 4 1
hence, in order to show that (b) applies, we need only to check that |F3| > 2. Suppose,
for contradiction, that |F2| = 1, i.e. Ey = {{'}. We deduce that {(,{'} is a cocircuit of
M. Therefore, M can be seen as the series-extension of M /{ obtained by adding ¢ in
series with ¢'. If M/{ is regular, then M is regular too and, thus, (¢) applies. Hence, we
can suppose that M/{ is 2-connected and not regular. It follows from [9] that M /{ has
a minor F7 or F7 using ('. Tt is easy to see that, if M /¢ has a minor F¥ using (', then
M has a minor F using { and, if M /{ has a minor F- using ', then M has a minor Fi
using { as a series element. We obtain a contradiction in both cases. |

REMARK 2.6 One can check that, under the conditions of Theorem 2.5 (i.e. M has no
minor FZ using {, no minor F7+ using { as a series element and { is not a coloop of M),
M/ is regular, or M has a 1-separation.

Signed circuits

Let M be a binary matroid on FU{{} and let £ denote the {-port of M. A convenient
way to refer to the members of £ is in terms of odd circuits of M /{ with respect to some
signing. Given a set ¥ C I/ + (, a subset A C E is called X-even (resp. X-odd) if |A N X
is even (resp. odd). It is immediate to check that
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ProprosiTION 2.7 Let 3 be a cocircuit of M such that { € 3 and let C' be a subset of F.
Then, C € L if and only if C' is a X-odd circuit of M /L.

3 (s, Q7 and regular case

In this Section, we show the following results.

o It is sufficient to work with fully fractional vertices, see Proposition 3.1.

e Box %—integrahty is preserved under minors, see Proposition 3.2.

e (Jg, the port of F~, is not box %—integral for any integer d > 2, see Proposition 3.3.

e ()7, the port of the series-extension of F7 with respect to a series element, is not box
%—integral for any integer d > 2, see Proposition 3.4.

¢ Any port of a regular matroid is box %—integral for each integer d > 1, see Theorem 3.5.

The following result is easy to check.

ProOPOSITION 3.1 Let f € E, I CE— f, a € (3Z)! and v € RE~I. Then,

(i) x belongs to (resp. is a vertex of ) Q(L/L,a) if and only if (z,0) belongs to (resp. is a
vertex of ) Q(L,(a,0)).

(ii) & belongs to (resp. is a vertex of ) Q(L\L, a) if and only if (x,1) belongs to (resp. is
a vertex of ) Q(L,(a,1)).

As an immediate consequense, we have that
ProproSITION 3.2 Ewvery minor of a box %-z’ntegml clutter is box %-z’ntegml.
ProrosiTiON 3.3 The clutter (g is not box %-z’ntegml, for any integer d > 2.

Proor. Consider the vector u € R defined by u; = 1 — %, Uy = Ug = %, U3 = Us = 21_d7
g =1 — %. Set ag = 1 — %, as = ag = %. Then, u belongs to the polyhedron Q(Qs,a)
and u is a vertex of it, since it satisfies the following six linearly independent equalities
up +us+us =1, ug +uzs+ug =1, ug +us + ug = 1, w1 = aq, up = ay and ug = ag. |

ProprosiTION 3.4 The clutter ()7 is not box %-z’ntegml, for any integer d > 2.

ProoF. Consider the vector u € R7 defined by u; = us = us = 21_d7 Uy = Uy = Ug = %,
and ur = 1 — 3. Set az = as4 = ag = +. Then, u belongs to the polyhedron Q(Q7,a)
and u is a vertex of it, since it satisfies the following seven linearly independent equalities

up +ug+ur =1, ug +us +ur =1, ug + ug +ur = 1, ug + uz + us + ur = 1, ug = ag,
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Uy = a4 and ug = ag. |

THEOREM 3.5 Let L be the port of a reqular matroid. Then, L is box %-z’ntegml, for any
integer d > 1.

Proor. Let M be a regular matroid on F U {¢} and let £ be its {-port. Since M is
regular, we can find a totally unimodular matrix M which represents M over R and is of
the form shown in Figure 4. We can suppose that the matrix A has full rank.

Figure 4

Moreover, each set C' € £ corresponds to a vector yo € {0,1, —1}F such that

Tye =1

Ayc = 0.
Each such yo can be written as yo = yb — y2, where y}, y2 € {0, 1}¥ and their supports
{e€ E:(yt). =1}, {e € E:(y?). = 1} partition the set C.

We define the polyhedron K consisting of the vectors (y1,y2) € RF x R satisfying

rlyy =Ty, =1
Ay — Ay =0
y1,y2 = 0.

Clearly, (yt,y%) € K for each C' € L.

We state a preliminary result.

CramMm 3.6 Letu € Rf. Then, the following assertions hold.
(i) min(u(C): C € £) = min(ulyy +ulyy : (y1,92) € K).
T T T
(ii) If the system { iT:—FI_iT 7:T1A E ZT (in the variable ) is feasible, then u(C') > 1

holds for each C € L.
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Proor. (i) The first minimum is greater or equal to the second one since each C' € L
corresponds to a pair (y4,y%) € K such that w(C) = ulyl + ulyd. Let (y1,52) be a
vertex of K at which the second minimum is attained. Clearly, the supports of yy, yo are
disjoint. Since the matrix M is totally unimodular, we deduce that y;,y; € {0,1}7. Set
C={{ee E:(y) =1lor(y2)e = 1}. Then, € € £ and C corresponds to the vector
yo = y1 — yo with ulyy + ulyy = u(C'). This shows that the second minimum is greater
or equal to the first one.

T+ 7T A <ot
T —7TA <o
1 <max(p:pri+77A <ul, —prT —7T A < uT). Using linear programming duality, this
implies that min(u”y; + u"ye : (y1,92) € K) > 1 and, therefore, by (i), u(C) > 1 for all
Cel. |

(i7) If the system is feasible, then we have that

Let I be a subset of E and let a € (3Z)!. Let Q(L, a) denote the polyhedron consisting
of the vectors (7, u) € R™xR¥ (m denoting the number of rows of the matrix A) satisfying

T A —ul < T
—xlA ul <ot
Ue —a. foreecl.

By Claim 3.6, Q(L, a) is the projection of @(,C, a) on the subspace R¥. Let u be a vertex
of Q(L,a). Hence, u is the projection of a vertex (7, u) of Q(L,a). By Proposition 3.1, we
can suppose that u, > 0 for all e € I. Since @(,C, a) is invariant under the multiplication
of some columns of the matrix [%] by —1, we may assume that 77 A+ 7 > 0. Therefore,
(7, u) is a vertex of the polyhedron {(7,u): 77A —u” < —¢T, u, = a, for e € I'}. As the
matrix defining it is totally unimodular, we deduce that (7, u) is %—integral and, thus, u

is Lintegral. (Note that the constraint matrix for Q(L,a) is not totally unimodular.) |

4 Proof of the main result

Let M be a binary matroid on F U {(} and let £ be the {-port of M,ie. L={C C F:
C' + ( is a circuit of M}. Let d > 1 be an integer. We assume that £ does not have Qg or
Q7 as a minor. Hence, M does not have F¥ as a minor using £ and M does not have Fi
as a minor using ¢ as a series element.

Our goal is to show that £ is box %—integral. The proof is by induction on |F| > 0 and

the main tool we use is Theorem 2.5.

The result holds for |F| = 0. Indeed, then ¢ is either a loop, yielding £ = {0}, or a
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coloop, yielding £ = 0. In both cases, £ is box %—integral.

We assume that the result holds for every groundset with less than |F| elements, i.e.
that every binary clutter without Qg or )7 minor on a set with less than |F/| elements is

box %—integral.

We can suppose that £ is not a loop, nor a coloop of M, i.e. that £ # {0}, 0.
We know from Theorem 3.5 that £ is box %—integral if M is regular. ;From Theorem

2.5, we can assume that M has a 1-separation, or a strict 2-separation.
ProrosiTIiON 4.1 If M/{ has a 1-separation, then L is box %-z’ntegml.

Proor. Let (F;, Ey) be a 1-separation of M /(. Let £y (resp. L3) denote the {-port of
the matroid M\ Fy (resp. M\ Ey). Clearly, L1 ULy C L; in fact, £ = £ ULy is a partition
of L. By the induction assumption, £1 and L, are box %—integral.

Given a € (%Z)I where [ is a subset of F, set a; = (a.)eecing,, for i = 1,2. Then,
Q(L,a) is the cartesian product of Q(Ly,a1) and Q(L3,az), implying that all its vertices

1 -
are -integral. |

;From now on, we assume that M/ is 2-connected and admits a 2-separation (Fq,
EQ).

Let I be a subset of £, let a € (1Z)! and let u be a vertex of Q(£,a). Our goal is
to show that w is %—integral. From Proposition 3.1 and the induction hypothesis, we can
suppose that u. # 0,1 for all e € F. Call an inequality tight for w if it is satisfied at

equality by u.

The inequalities defining Q(L,a) are of three types:
Type I: 2. = a. for e € 1.
Type II: 2(C') > 1, for C' € £ noncrossing (i.e. C C E; for ¢ € {1,2}).
Type II: 2(C') > 1, for C' € L crossing.

The case when no inequality of type III is tight for u is easy; the proof of the following
result is analogous to that of Proposition 4.1.

PROPOSITION 4.2 Assume that, for each crossing C € L, u(C') > 1 holds. Then, u is
%-z’ntegml.

We now suppose that there exists some crossing C' € £ for which »(C') = 1 holds.

DEFINITION 4.3 We call path every set of the form C N E;, for i € {1,2}, where C € L
1S Crossing.
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Let X be a cocircuit of M which contains ¢. Set
u, = min(u(P) : P is a path with [P N X| odd)

e = min(u(P) : P is a path with [P N X[ even).

Both u,, u. are well defined.

ProposIiTION 4.4 u, + u. = 1 holds. Moreover, for each tight crossing C' € L with, say,
CNEy E-odd and C' N Ey Y-even, then u(C' N FEy) = u, and u(C N Ey) = u. holds.

Proor. Take C' € £ crossing and tight. Then, 1 = w(C') = w(CNE)+u(CNEg) > u,+u.
holds. Conversely, suppose that u, = w(C' N E;) and u, = w(C' N E;), where C,C" € L
are crossing with C'N E; ¥-odd, C' N E; Y-even and 4, j € {1,2}. ;From Proposition 2.1,
C" = (CNnE)AC'N E;) is a cycle of M/({. Hence, C" = U,C},, where ('}, are pairwise
disjoint circuits of M /L. Since C" is ¥-odd, at least one of the C’s is ¥-odd, i.e. belongs
to L. This implies that «(C”) = Y, u(Cp) > 1. Therefore, u, + u. > 1 holds. Hence, we
have the equality u, + u. = 1. The last part of the Proposition follows immediately. |

Let B be a base of equalities for u, i.e. B is a maximal set of linearly independent
inequalities chosen among the inequalities defining Q(L,a) that are satisfied at equality
by u. Let B; denote the subset of B consisting of the inequalities which are supported by
FE;, for « = 1,2. Hence, By U By consists of inequalities of Type [ or Il and B — By U By
of inequalities of Type III. We can partition B — By U By as B3 U B4, where B3 consists of
inequalities 2(C') > 1 for C' € L crossing with C' N £y Y-odd, C' N Fy ¥-even, and By of
such inequalities with C' € L crossing, C' N Fy Y-even and C'N £y Y-odd.

ProOPOSITION 4.5 There exists a base B of equalities for u for which B3 = 0 or By = 0.

ProovF. Let B be a base of equalities for u for which |By U By| is maximum. Suppose, for
contradiction, that By # 0 and By # (. Let C,C" € L be crossing and yielding equalities
of B with C' N Ey, C'N Ey Y-even and C'N Ey, €' N E; Y-odd. By Proposition 2.1 (1),
D; = (CnE)A(C'N E;) is a cycle of M/(, and D; is ¥-odd by construction. Hence,
D; =3, Cp, where the C}’s are circuits of M/ and at least one of them is ¥-odd. Using
Proposition 4.4, we obtain that 1 = wu. + u, > w(D;) > 1 which implies that D; is a
(noncrossing) circuit of M /( yielding a tight equality for w, for i = 1,2, and C' N C" = (.
But B cannot contain both equations (Dq) = 1 and z(D3) = 1 since CUC’' = Dy U D,. If
B contains (D) = 1 but not 2(D3) = 1, then, by replacing the equation 2(C”) = 1 by the
equation z(D3y) = 1, we obtain a new base B’ with |Bj UB,| > |By U By|, contradicting the
choice of B. Otherwise, B contains none of the equations (D) = 1, 2(D3) = 1. At least
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one of them can be added to B after deleting the equation 2(C’) = 1 and still preserve the
linear independence. Again we obtain a contradiction with the maximality of |B; U Bz|. 1

We can suppose, for instance, that we have a base B of equalities for u with B4 = 0,
Bs # (. (If both B3 and B4 are empty, we can conclude in the same way as in Proposition
4.2.) In matrix form, the system B can be written as Pz = (3, where [ is the vector
consisting of the right hand sides of the inequalities and the matrix P has the form shown
in Figure 5.

Figure 5

Hence, there exists a tight equality u(C™) = 1 where C* € L is crossing, C* N Ey is X-
odd and C*NFyis Y-even. Then, we can find two elements e; € C*NEy, e; € C*NE; with
e1 € ¥ and ey € X (after eventually changing the cocircuit ). (Indeed, let e; € C* N Fy,
€1 € C*N FEy and let X be a base of M containing (C™ — e3) U {¢}. Let ¥’ denote the
fundamental cocircuit of £ in the base X; then, es € ¥/ since C* + £ is the fundamental
circuit of ey in the base X, and ey ¢ Y since e; € X. Hence, it suffices to replace ¥ by
¥

Set Ml = M/((C* N EQ) — 61)\(E2 — C*) and M2 = M/((C* N El) — 62)\(E1 — C*),
defined, respectively, on the sets Fq U {e1,(} and Fq U {e3,(}. (Note that My coincides
with M /(X3 — e1)\Y2 and My coincides with M/X;\(Y1 — e2), where X; = X N £,
Y, = F; — X; for i = 1,2. Also, M/ is the 2-sum of M;/{ and My/{. Recall Section 2.)

Let L; denote the f-port of M;. By the induction assumption, £; is box %—integral,
fori=1,2.

Let u; denote the projection of u on R¥ and set a; = (ae)ecing,, for i = 1,2. We
define u} € RFFei by

ui(e) = w(e) foree E;,i=1,2,
wi(er) =t

u3(ez) = u,.
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ProPoOSITION 4.6 uf € Q(L;,a;), for i =1,2.

Proor. Take C' € L£;. By Proposition 2.1 (7), either C' € £ and, thus, v (C') = u(C) > 1,
or ¢ = C'N E; + e; for some crossing circuit ¢’ of M/{. Say ¢ = 1. Then, C' N Ey is
Y-odd, since €' is Y-odd and ey ¢ X. By Proposition 2.1 (ii), (C' N E})A(C* N Ey) is a
cycle of M /€ and it is ¥-odd since C*N Ey is Y-even. Hence, u(C'NEq) +u(C*NEy) > 1
which, together with w(C* N F3) = u., implies that «(C’' N Ey) > 1 — u. = u,. Therefore,
wi(C) =u(C' N E;) + ue > uo + ue = 1. The case ¢ = 2 is identical. |

We construct the set B of equalities for uf consisting of
o the equalities of B;,
e the equalities z((C'N E;) + e;) = 1, one for each equality z(C') = 1 of Bs.

All equalities of B arise from those defining Q(L;,a;). Indeed, by Proposition 2.1, if
C € L with C C F;, then C € L; and, if C' € L is crossing, then (C' N E;) 4+ ¢; € L;, for
1=1,2.

PROPOSITION 4.7 The set BY) has rank |E;| + 1, for at least one index i € {1,2}.

Proor. We show that one of the two matrices from Figures 6 and 7 below has full rank
|EZ| + 1.

Figure 6 Figure 7

This follows from the fact that the matrix displayed in Figure 8 has full rank |E| + 2;
indeed, it can be obtained by row and column manipulations from the full rank matrix
displayed in Figure 9. |
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Figure 8
Figure 9

Suppose, for example, that B1) has full rank. This implies that uj is a vertex of

Q(L1,a1) and, thus, u} is %—integral, since L4 is box %—integral. In particular, u. is %—

integral, implying that u, = 1 —u, is %—integral. If we introduce the constraint z(e3) = u,,
then u} becomes a vertex of the polytope Q(L3,a2) N {x : z(ez) = u,} and, thus, u} is
%—integral.

This shows that w is %—integral, concluding the proof. |

5 Applications for graphs

A signed graph is a pair (G,Y), where G = (V, F) is a graph and ¥ is a subset of the
edge set I/ of G. The edges in ¥ are called odd and the other edges even. An odd circuit
C in (G,Y) is a circuit C' of G such that |[C' N Y| is odd. If §(U) is a cut in G, then
the two signed graphs (G,Y) and (G, XA6(U)) have the same collection of odd circuits.
The operation ¥ — YAH(U) is called resigning (by the cut 6(U)). We say that (G, X)
reduces to (G',Y) if (G',Y') can be obtained from (G, X) by a sequence of the following
operations:

o deleting an edge of (¢ (and X),

e contracting an even edge of G,

e resigning.
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The collection of odd circuits of a signed graph is a binary clutter. Indeed, given a
signed graph (G,Y), let S(G,X) denote the binary matroid on {{} U F represented over
G'F(2) by the matrix [ﬁ], where M is the node-edge incidence matrix of G and o is
the incidence vector of the set ¥. Clearly, the (-port of S(G, X)) coincides with the family
of odd circuits of (G, X). In particular, the collection of odd circuits of the signed graph
(K4, E(Ky)), i.e. K4 with all edges odd, is the clutter Qg, i.e. S(K4, F(K4))is F7. One
can check that (G, Y) does not reduce to (N4, (I 4)) if and only if S(G, ¥) does not have
an F¥ minor using the element (. Moreover, S((,Y.) does not have any minor F7 using ¢
as a series element, else F; would be a minor of the graphic matroid M(G) = S(G,X)/L.

(See [5] for details.)

The following result is an immediate application of Theorem 1.2.

THEOREM 5.1 Let (G,X) be a signed graph and let L denote its collection of odd circuits.
The following assertions are equivalent.
(1) (G,X) does not reduce to (K4, E(Ky)).

1

(ii) L is box -integral for any integer d > 1.

(iii) L is box %-z’ntegml for some integer d > 2.

Given a graph G = (V, F'), we consider the polytope
S(G)={z eRY: 2(F)—2(C—F)<|F|—1 (C circuit of G, F C C,|F| odd),
0<z. <1 (e € B)}.

The polytope S(G) is a relaxation of the cut polytope P((G') (defined as the convex hull of
the incidence vectors of the cuts of ). In general, S(G') has fractional vertices. In fact,
the 0, 1-vertices of S(G) are the incidence vectors of the cuts of G, and S(G) has only
integral vertices, i.e. S(G) = P(G), if and only if ¢ is not contractible to K5 [2]. The
fractional vertices of S(G') have been studied in [6], [7].

The case d = 3 of the following Theorem 5.2 was proved in [7]. We will show how
Theorem 5.2 follows from Theorem 5.1.

THEOREM 5.2 Let G = (V, F) be a graph. The following assertions are equivalent.

(1) G is series parallel, i.e. G is not contractible to K.

(ii) For each I C E and a € (3Z)!, all the vertices of the polytope S(G) N {z : v, =
a. fore € I} are %-z’ntegml, for any integer d > 1.

(iii) For each I C E and a € (3Z)!, all the vertices of the polytope S(G)N {z : 2. =

a. fore € I} are %-z’ntegml, for some integer d > 2.

Proor. Let G/ = (V, F'U E’) denote the graph obtained from G by adding an edge ¢’ in
parallel with each edge e of . We consider the signed graph (G’, E’), where the edges of
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F are even and those of E’ are odd. It is easy to see that G is series parallel if and only
if (G, E") does not reduce to (K4, F(Ky)). Let L' denote the collection of odd circuits of
(G, E'). From Theorem 5.1, £ is box %—integral if G is series parallel.

For z € RE, define 2’ € RE by al, =1— . for e € I and, for a € ($Z)! with I C E,
set al, =1—a, for e I.
Observe that S(G)N{z :z. = a. fore € I} ={z : (z,2") € Q(L',(a,d’))}. As{e, '} € L'
for each e € K, Q(L/,(a,a’)) N {(z,y) € REXRY : yo = 1 -z fore € E} is a face
of Q(L,(a,a’)). Therefore, S(G)N{z : . = a. for e € I} is the projection of a face
of Q(L',(a,a’)). Hence, all its vertices are %—integral if G is series parallel. This proves
It is easy to check that (i¢7) is closed under graph minors. Moreover, K4 does not have
the property (7i7). Indeed, consider K4 with its edges labeled 1,2,3,4,5,6 in such a way
that the triangles of K4 are {1,2,6}, {1,3,5},4{2,3,4},{4,5,6} (i.e. the members of Qg).
Set 19 = x4 = 25 = % and ©; = a3 = a5 = %. Then, z is a vertex of the polytope
S(K4)N{x:2; =L for i =2,4,6} which is not J-integral. This shows (i17) = (¢). |

More generally, given a binary matroid M on a set F, consider the polytope S(M)
in R defined by the inequalities 0 < #, < 1 for e € E, and 2(F) — 2(C — F) < |F| -1
for ' C C' with |F| odd and C circuit of M. Hence, S(M) coincides with S(G) when M
is the graphic matroid M(G) of G. The 0, 1-vertices of S(M) are the incidence vectors
of the cocycles of M. The matroids M for which all vertices of S(M) are integral have
been characterized in [1] using a result of [11]. A natural question to ask is what are the
matroids M for which §(M) is box L-integral. Actually, this class is not larger than in
the graphic case.

To see this, observe that F7/{ = M(K4) and that FF/{ = F; has an M(K,) minor.
On the other hand, a binary matroid M has no M(K4) minor if and only if M is the
graphic matroid of a series parallel graph. The latter follows easily from Tutte’s forbidden
minor characterization of graphic matroids ([16]).
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