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Abstract.

A �nite semimetric d on a set X is hypermetric if it satis�es the inequality

P

i;j2X

b

i

b

j

d

ij

� 0 for all b 2Z

X

with

P

i2X

b

i

= 1.

Hypermetricity turns out to be the appropriate notion for describing the

metric structure of holes in lattices.

We survey hypermetrics, their connections with lattices and applications.
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1 Introduction

The central concept studied in this paper is hypermetricity. This is a natural strenghtening

of the notion of metric, which has many applications and connections. The main topics

to which hypermetrics relate include `

1

- and `

2

-metrics in analysis, the cut cone and

the cut polytope in combinatorial optimization, graphs with high regularity, and, most

importantly for our treatment, quadratic forms, Delaunay polytopes and holes in lattices.

The notion of hypermetrics sheds a new light and gives a more ordered view on some

well studied questions; for example, on equiangular sets of lines, on graphs with minimum

eigenvalue -2, on the metric properties of regular graphs. For instance, the parameter

characterizing the three layers composing the famous list of 187 graphs with minimum

eigenvalue -2 from [20] has now a more clear meaning: it comes from the radius of the

L-polytope associated with the graph metrics in each layer (see Section 6.2).

Our central objects are hypermetric inequalities and hypermetric spaces. Given b 2Z

n

with

P

1�i�n

b

i

= 1, the inequality

X

1�i<j�n

b

i

b

j

x

ij

� 0 (1)

is called a hypermetric inequality. When b = (1; 1;�1; 0; : : : ; 0), the inequality (1) is

simply the metric condition or triangle inequality. A distance space (X; d) is said to be

hypermetric if d satis�es all hypermetric inequalities. The hypermetric cone HYP

n

is the cone de�ned by the inequalities (1) for all b 2Z

n

with

P

1�i�n

b

i

= 1.

Many important metrics are hypermetric. In particular, all `

1

-metrics are hypermetric.

More precisely, given a distance d, we have the following chain of implications:

d is isometrically `

2

-embeddable

=) d is isometrically `

1

-embeddable

=) d is hypermetric

=)

p

d is isometrically `

2

-embeddable
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Moreover, if d is hypermetric, then

p

d has an `

2

-embedding on a sphere and, as we see

below, this sphere corresponds to a hole in a lattice.

The last property in the above chain of implications is well characterized. Namely,

p

d is isometrically `

2

-embeddable if and only if d satis�es the inequalities (1) for all

b 2 Z

n

with

P

1�i�n

b

i

= 0 (see Proposition 2.3) or, equivalently, if and only if the

image �

0

(d) of d under a linear bijective mapping �

0

(the covariance mapping, de�ned in

relation (9)) corresponds to a positive semide�nite quadratic form. Therefore, our object,

the hypermetric cone, is (via the covariance mapping) contained in the cone of positive

semide�nite quadratic forms. On the other hand, the polar of the image of the hypermetric

cone under �

0

contains the cone of nonpositive quadratic forms and is contained in the

cone of the quadratic forms that are nonpositive on binary variables.

A distance that plays a fundamental role in our treatment is the square of the euclidian

distance, namely the distance d

(2)

de�ned by d

(2)

(x; y) = (x� y)

T

(x� y) for x; y 2 R

n

.

In fact, the study of hypermetrics amouts to the study of holes in lattices.

Let L be a lattice. Blow up a sphere S in one of the interstices of L until it is held

rigidly by lattices points. Then, there are no lattice points in the interior and su�ciently

many lie on the boundary of the sphere so that their convex hull is a full dimensional

polytope P . The sphere S is called an empty sphere in L, its center is called a hole of

L and the polytope P is called a Delaunay polytope, or L-polytope. So the vertices

of P are the lattices points lying on the boundary of the empty sphere S. Let V (P )

denote the set of vertices of P . Then, the distance space (V (P ); d

(2)

) (with the square of

the euclidian distance between vertices) is called an L-polytope space; such spaces are

fundamental in our treatment.

Usually, empty spheres in lattices are studied from the point of view of their centers

(i.e. the holes of L). But, hypermetrics provide a new way of studying empty spheres,

namely from the point of view of the lattice points lying on their boundary, i.e. from the

point of view of L-polytope spaces.

Indeed, L-polytopes have the remarkable property (discovered in [6]) that their L-

polytope spaces are hypermetric and, conversely, every hypermetric space can be realized

as a subspace of an L-polytope space (see Theorem 3.3). To each hypermetric space

(X; d) corresponds an, essentially unique, L-polytope P

d

whose dimension is less or equal

to jX j � 1.

Using this connection and Voronoi's result stating that the number of distinct (up to

a�ne equivalence) L-polytopes in �xed dimension is �nite, we showed that the hypermetric

cone is polyhedral ([32]).

So we have a connection between the hypermetric cone HYP

n

and L-polytopes of

dimension k � n � 1. These two objects (hypermetric cone and L-polytopes) have been
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studied for their own sake. For instance, the hypermetric cone HYP

n

was mostly studied

from a polyhedral point of view, in particular, in connection with `

1

-metrics and the

cut cone for which it forms a linear relaxation. On the other hand, L-polytopes were

studied from the classical point of view of geometry of numbers: holes, L-decomposition

of the space, dual tiling by Voronoi polytopes, etc. Our new approach is to study the

metric structure of their sets of vertices. Moreover, taking advantage of the interplay with

hypermetrics, we can transport and exploit some of the notions de�ned for the hypermetric

cone to L-polytopes and vice-versa.

For instance, there is a natural notion of rank for hypermetrics (namely, the dimension

of the smallest face of the hypermetric cone that contains a given hypermetric distance).

We introduce the cooresponding notion of rank for L-polytopes. This notion of rank

permits, in particular, to shed a new light on a classical notion studied by Voronoi, namely,

the repartitioning polytopes which, indeed, correspond to facets of the hypermetric cone.

The other extreme case for the rank, namely the case of rank 1 for the extreme rays of

the hypermetric cone, corresponds to the class of extreme L-polytopes. An L-polytope

P is extreme if and only if the only a�ne transformations T for which T (P ) is still an

L-polytope are the homotheties. We present several examples of extreme L-polytopes: in

root lattices, in sections of the Leech lattice �

24

and of the Barnes-Wall lattice �

16

. We

also touch some other topics as perfect lattices and perfect quadratic forms (see Section

5.5).

Historically, L-polytopes and the corresponding L-partitions of the space were intro-

duced by Voronoi at the beginning of this century. They have been studied extensively

mainly by the Russian school, especially by B.N. Delaunay, E.P. Baranovskii, S.S. Ryshkov,

also by R.M. Erdahl from Canada. In dimension 2 and 3, L-decompositions are used in

computational geometry, under the name of Delaunay triangulation; actually, non lattice

triangulations are also studied there. L-polytopes have been also used for the study of

coverings in lattices (see [23], [56]); for instance, the covering radius of a lattice L is the

maximum radius of an empty sphere in L, i.e. a deep hole in L. There is the following

connection between Voronoi polytopes and L-polytopes: The vertices of the Voronoi poly-

tope at a lattice point u are the centers of the L-polytopes that contain u as a vertex.

Moreover, the two partitions of the space by L-polytopes and by Voronoi polytopes are in

combinatorial duality.

Within the list of references, the more relevant and fundamental ones are Voronoi's

Deuxi�eme m�emoire [66], the survey [58] and the collection [23] of surveys on lattices and

applications.

Our treatment uses mainly technics from linear algebra, polyhedral theory and euclid-

ian geometry.
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We now briey describe the main results presented in the paper. Actually, a good

overview of the topics treated in the paper is provided by the list of Contents.

Section 2 contains all preliminaries on distance spaces, lattices and L-polytopes. Sec-

tion 2.3 gives a short proof of Voronoi's result stating the �niteness of the number (up to

a�ne equivalence) of L-polytopes in �xed dimension.

We present in Section 3 the basic connection existing between hypermetric spaces and

L-polytopes; namely, every L-polytope space is hypermetric and to each hypermetric space

(X; d) is associated an L-polytope P

d

(see Theorem 3.3). In Section 3.1, this connection

is described together with some �rst results showing how the polytope P

d

inherits some

of the properties of the hypermetric space (X; d), in particular, about subspaces (see

Corollary 3.6) and `

1

-embeddability (see Proposition 3.7). In Section 3.2, we prove that

the hypermetric cone is polyhedral.

Section 3.3 describes all the L-polytopes arising in root lattices; see, in particular,

Figure 1 which shows the L-polytopes in the irreducible root lattices together with their

1-skeleton and radius. If P is an L-polytope in a root lattice, then its edges are the pairs

of vertices at squared distance 2, i.e. its 1-skeleton is determined by the metric structure

of its L-polytope space (see Proposition 3.9). As application, we give a characterization of

the connected strongly even distance spaces that are hypermetric or `

1

-embeddable (see

Theorems 3.12 and 3.13).

In Section 3.4, we group several results dealing with the radius of the sphere circum-

scribing L-polytopes. We consider, in particular, the spherical t-extension operation which

consists of adding a new element to a distance space at distance t from the other elements.

The notion of rank for L-polytopes is considered in detail in Section 4. If (X; d) is

a hypermetric space with jX j = n, then d 2 HYP

n

and the rank of (X; d) is de�ned

as the dimension of the smallest (by inclusion) face of HYP

n

that contains d. If P is

an L-polytope, then the L-polytope space (V (P ); d

(2)

) is hypermetric and the rank of

P is de�ned as the rank of the space (V (P ); d

(2)

). P is said to be extreme if its rank

is equal to 1. In Section 4.1, we consider several properties for this notion of rank, in

particular, its invariance (see Theorem 4.5) and its additivity (see Proposition 4.6). We

describe in Section 4.2 how faces of the hypermetric cone relate to L-polytopes; see, in

particular, Figure 2. In particular, hypermetrics lying on the interior of the same face of

the hypermetric cone correspond to a�nely equivalent L-polytopes (see Corollary 4.8), a

geometric characterization for extreme L-polytopes is given in Corollary 4.9, L-polytopes

associated with facets of the hypermetric cone are described in Proposition 4.10, and an

upper bound on the number of facets of the hypermetric cone is derived (see Theorem

4.11).

We present in Section 4.3 some bounds on the number of vertices of an L-polytope

which is basic, i.e. whose set of vertices contains a base of the lattice it spans (see
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Proposition 4.15).

Section 5 is devoted to the study of extreme L-polytopes, which correspond to extreme

rays of the hypermetric cone. The extreme L-polytopes in root lattices are characterized

in Theorem 5.1. In Section 5.1, we derive bounds on the number of vertices of an extreme

basic L-polytope which turn out to be closely related with known bounds on the cardinality

of equiangular sets of lines. We also present a general construction for equiangular sets

of lines from integral lattices (see Proposition 5.3). In the next Sections 5.2, 5.3 and 5.4,

we describe examples of extreme L-polytopes arising in sections of the root lattice E

8

, the

Leech lattice �

24

and the Barnes-Wall lattice �

16

. In Section 5.5, we present results on

the construction of perfect lattices from extreme L-polytopes.

Section 6 applies the notion of hypermetricity to graphs. Given a graph G, we consider

two distances: its path metric d

G

or its truncated distance d

�

G

(with distance 1 on an edge

and distance 2 on a nonedge). G is called hypermetric if its path metric is hypermetric. In

Section 6.1, a characterization of the hypermetric graphs and of the `

1

-graphs is given in

Theorem 6.1; see also Theorems 6.7 and 6.8 for a re�ned result for the class of suspension

graphs.

In Section 6.2, we study the connected regular graphs whose truncated distance is

hypermetric; see Proposition 6.10 for several equivalent characterizations, one of them

is that their minimum eigenvalue is greater or equal to -2. The graphs with minimum

eigenvalue -2 are well studied. Those that are not line graphs or cocktail-party graphs

belong to the well known list of 187 graphs from [20]. This list is partitioned into three

layers, each of them being characterized by a parameter which is directly related to the

radius of the L-polytopes associated with the graphs in the layer.

We consider in Section 6.3 extreme hypermetric graphs, i.e. the graphs whose path

metric lies on an extreme ray of the hypermetric cone. In fact, all of them are isometric

subgraphs of the Gosset graph or of the Schl�ai graph (which are the 1-skeletons of the

Gosset polytope 3

21

and of the Schl�ai polytope 2

21

, respectively). See Proposition 6.18

for their characterization.

In the last Section 7, we consider hypermetric inequalities. They are valid for the cut

cone and, in fact, this was the initial motivation for introducing them ([28]). We describe

in Section 7.1 some classes of hypermetric inequalities that de�ne facets of the cut cone.

We consider in Section 7.2 some analogues of hypermetric inequalities that are valid for

other cut families as even T -cuts, t-ary cuts, multicuts. We consider in Section 7.3 a non

homogeneous version of hypermetric inequalities, obtained by switching and valid for the

cut polytope.
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2 Preliminaries

2.1 Distance spaces

Metric notions

A distance space (X; d) consists of a �nite set X and a symmetric function d :

X �X 7! R

+

with d(i; i) = 0 for all i 2 X . Let d

min

denote the minimum non zero value

taken by d.

(X; d) is said to be connected if the graph with vertex set X and whose edges are

the pairs (i; j) with d(i; j) = d

min

, is connected. (X; d) is said to be strongly even if d is

integer valued with even values and d

min

= 2.

A representation of (X; d) is a mapping i 2 X 7! v

i

2 R

n

(n � 1) such that

d(i; j) = (v

i

� v

j

)

2

for i; j 2 X (2)

or, equivalently,

2v

T

i

v

j

= v

2

i

+ v

2

j

� d(i; j) for i; j 2 X: (3)

Clearly, every translation of a representation of (X; d) is again a representation of

(X; d). The representation is said to be spherical if all v

i

's lie on a sphere.

For x; y 2 R

n

, x

T

y =

P

1�i�n

x

i

y

i

denotes their scalar product and k x k

2

=

p

x

T

x is

the euclidian norm of x. Given x; y 2 R

n

, we let d

`

1

(x; y) =k x�y k

1

=

P

1�i�n

jx

i

�y

i

j and

d

`

2

(x; y) =k x � y k

2

=

q

P

1�i�n

(x

i

� y

i

)

2

denote, respectively, the distance associated

with the `

1

-norm and with the `

2

-norm on R

n

. We also set d

(2)

(x; y) = (d

`

2

(x; y))

2

=

(x� y)

T

(x� y); so d

(2)

is the square of the euclidian distance d

`

2

. This distance will play

a fundamental role in the paper.

Given two distance spaces (X; d) and (X

0

; d

0

), we say that (X; d) is an isometric sub-

space of (X

0

; d

0

) if there exists a mapping f : X �! X

0

such that d(i; j) = d

0

(f(i); f(j))

for all i; j 2 X .

A distance space (X; d) is said to be isometrically `

1

-embeddable (resp. hyper-

cube embeddable, `

2

-embeddable) if it is an isometric subspace of an `

1

-space (R

n

; d

`

1

)

(resp. of a Hamming space (f0; 1g

n

; d

`

1

), of an `

2

-space (R

n

; d

`

2

)). Therefore, (X; d) has

a representation if and only if (X;

p

d) is isometrically `

2

-embeddable, i.e. (X; d) is an

isometric subspace of a space (R

n

; d

(2)

).

A graphic space (V (G); d

G

) is a distance space where V (G) is the set of vertices of a

graph G and d

G

is its path metric. A graph G is said to be an hypermetric graph (resp.
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an `

1

-graph) if its path metric d

G

is hypermetric (resp. isometrically `

1

-embeddable). We

will use extensively the following graphs: the complete graph K

n

, the cocktail-party graph

K

n�2

(i.e. K

2n

with a perfect matching deleted), the hypercube H(n; 2) (i.e. the graph

whose nodes are the vectors x 2 f0; 1g

n

with two nodes x; y adjacent if d

`

1

(x; y) = 1),

the half-cube graph

1

2

H(n; 2) (i.e. the graph whose nodes are the vectors x 2 R

n

with

P

1�i�n

x

i

even and two nodes x; y are adjacent if d

`

1

(x; y) = 2).

Given a graph G, its suspension rG is the graph obtained from G by adding a new

node adjacent to all nodes of G.

Let (X; d) be a distance space. (X; d) is a semimetric space if d satis�es the triangle

inequality d(i; j) � d(i; k) + d(j; k) for all i; j; k 2 X , and (X; d) is a metric space if,

moreover, d(i; j) = 0 only if i = j. The set of all semimetrics on X is the cone MET(X),

or MET

n

if jX j = n.

(X; d) is a hypermetric space if d satis�es the inequality

X

i;j2X

b

i

b

j

d(i; j)� 0 (4)

for all b 2Z

X

with

P

i2X

b

i

= 1. (X; d) is of negative type if d satis�es the inequality (4)

for all b 2 Z

X

with

P

i2X

b

i

= 0. The inequality (4) is called m-gonal if

P

i2X

jb

i

j = m;

when

P

i2X

b

i

= 1 (resp. = 0), the inequality (4) is called hypermetric (resp. of

negative type). Note that the 3-gonal inequality (4), obtained for b

i

= b

j

= 1, b

k

= �1

and b

h

= 0 otherwise, coincides with the triangle inequality. Note also that the 2m + 2-

gonal inequalities are implied by the 2m + 1-gonal inequalities ([28]). But, for instance,

the path metric of K

2;3

is not 5-gonal (i.e. does not satisfy the 5-gonal inequalities) and

the path metric of K

7

� C

4

is 5-gonal but not 7-gonal.

Let X = f0; 1; : : : ; ng, jX j = n + 1. The hypermetric cone HYP

n+1

, or HYP(X),

(resp. the negative type cone NEG

n+1

; or NEG(X)) is the cone in R

(

n+1

2

)

consisting of

the vectors d = (d

ij

)

0�i<j�n

satisfying all hypermetric inequalities (resp. all negative type

inequalities). Note that, for a symmetric function d on X with zero value on the diagonal

pairs, we can alternatively view d as a vector indexed by the pairs (i; j), i < j, of X .

We denote by PSD

n

the set of all p = (p

ij

)

1�i�j�n

for which the symmetric matrix

(p

ij

)

1�i;j�n

(setting p

ji

= p

ij

) is positive semide�nite, i.e. satis�es

P

1�i;j�n

p

ij

x

i

x

j

� 0

for all x 2 R

n

. So, PSD

n

is the cone of the positive semide�nite quadratic forms on n

variables. For p 2 PSD

n

, if

P

1�i;j�n

p

ij

x

i

x

j

= 0 holds only for x = 0, then p is said to be

positive de�nite.

Given a subset S ofX , the cut semimetric �(S) is de�ned by �(S)

ij

= 1 if jS\fi; jgj=

1 and �(S)

ij

= 0 otherwise, for 0 � i < j � n. There are 2

jX j�1

distinct cut semimetrics
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on X , since �(S) = �(X�S). The cut cone CUT

n+1

, or CUT(X), is the cone generated

by the cut semimetrics �(S) for S � X .

Operations on distance spaces

We consider the following operations on distance spaces: direct product, 1-sum, spher-

ical t-extension and 0-lifting.

Let (X

1

; d

1

) and (X

2

; d

2

) be two distance spaces. Their direct product is the distance

space (X

1

�X

2

; d) where d is de�ned by

d((i

1

; i

2

); (j

1

; j

2

)) = d

1

(i

1

; j

1

) + d

2

(i

2

; j

2

) for i

1

; j

1

2 X

1

; i

2

; j

2

2 X

2

: (5)

Let (X

1

; d

1

) and (X

2

; d

2

) be two distance spaces with jX

1

\X

2

j = 1, X

1

\X

2

= fi

0

g.

Their 1-sum is the distance space (X

1

[X

2

; d) where d is de�ned by

(

d(i; j) = d

h

(i; j) for i; j 2 X

h

; h = 1; 2

d(i; j) = d(i; i

0

) + d(j; i

0

) for i 2 X

1

; j 2 X

2

:

(6)

Let (X; d) be a distance space, let i

0

be an element that does not belong to X and let

t 2 R

+

. The spherical t-extension of (X; d) is the distance space (X [ fi

0

g; d

0

) where

d

0

is de�ned by

(

d

0

(i; j) = d(i; j) for i; j 2 X

d

0

(i; i

0

) = t for i 2 X:

(7)

We denote the spherical t-extension d

0

of d as sph

t

(d) and we set sph

m

t

(d) = sph

t

(sph

m�1

t

(d))

for any integer m � 2 (so sph

1

t

(d) = sph

t

(d)).

Let (X; d) be a distance space and let i

0

2 X , j

0

62 X . Its 0-lifting is the space

(X [ fj

0

g; d

0

) de�ned by

(

d

0

(i; j) = d(i; j) for i; j 2 X

d

0

(i; j

0

) = d(i

0

; i) for i 2 X:

(8)

In particular, d(i

0

; j

0

) = 0. So, every semimetric space is the 0-lifting of a metric subspace.

The direct product, the 1-sum and the 0-lifting operations preserve metricity, `

1

-,

hypercube embeddability, hypermetricity and the properties of having a spherical repre-

sentation or of being of negative type. See Lemma 3.17 and Proposition 3.18 for some
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conditions on t ensuring that the spherical t-extension operation also preserves these metric

notions.

Note that, for graphic spaces, the direct product and the 1-sum operations on the

path metric correspond, respectively, to the cartesian product and the 1-sum operations

on graphs. For t = 1, the spherical 1-extension of the path metric of a graph G with

diameter 2 is the path metric of the suspension rG of G.

The tensor product operation was considered in [3].

Preliminary results on distance spaces

We now group several preliminary results on distance spaces, linking the notions in-

troduced above.

Proposition 2.1 ([4], [10]) Let (X; d) be a distance space. Then, (X; d) is isomet-

rically `

1

-embeddable (resp. hypercube embeddable) if and only if d 2 CUT(X), i.e.

d =

P

S�X

�

S

�(S) for some scalars �

S

� 0 (resp. d 2 Z

+

(X), i.e. d =

P

S

�

S

�(S)

for some integers �

S

� 0).

As an immediate consequense, we have the following result.

Proposition 2.2 [9] Let (X; d) be a distance space with rational values. Then, (X; d)

is isometrically `

1

-embeddable if and only if �d is isometrically hypercube embeddable for

some scalar �. The smallest such � is called the scale of d.

Proposition 2.3 [59] Let (X; d) be a distance space. Then, (X; d) is of negative type

if and only if (X; d) has a representation, i.e. (X;

p

d) is isometrically `

2

-embeddable.

Moreover, the representation is unique, up to translation and orthogonal transformation.

We give a proof of Proposition 2.3 which relies on the following Lemma 2.4 and on a

fundamental tool, namely, the covariance mapping.

The covariance mapping �

0

is the mapping on R

(

n+1

2

)

de�ned by p = �

0

(d), for

d = (d

ij

)

0�i<j�n

, p = (p

ij

)

1�i�j�n

, with

(

p

ii

= d

0i

for 1 � i � n

p

ij

=

d

0i

+d

0j

�d

ij

2

for 1 � i < j � n:

(9)

It is easy to verify that

d 2 HYP

n+1

if and only if p = �

0

(d) satis�es the inequalities

P

1�i;j�n

b

i

b

j

p

ij

�

P

1�i�n

b

i

p

ii

� 0

for all b 2Z

n

(10)
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d 2 NEG

n+1

if and only if p = �

0

(d) satis�es the inequalities

P

1�i;j�n

b

i

b

j

p

ij

� 0

for all b 2Z

n

(11)

Therefore, p 2 �

0

(NEG

n+1

) if and only if the symmetric matrix (p

ij

)

1�i;j�n

(setting p

ji

=

p

ij

) is positive semide�nite. In other words,

�

0

(NEG

n+1

) = PSD

n

: (12)

It follows immediately from relations (10) and (11) that every hypermetric space is of

negative type, i.e. HYP

n+1

� NEG

n+1

. Therefore,

�

0

(HYP

n+1

) � PSD

n

: (13)

Note that �

0

(CUT

n+1

) is the cone generated by the vectors (x

i

x

j

)

1�i�j�n

, for x 2

f0; 1g

n

. Hence, its polar consists of the quadratic forms that are nonpositive on binary

variables.

It is easy to see that the polar (PSD

n

)

�

consists of the nonpositive quadratic forms,

i.e. (PSD

n

)

�

= �PSD

n

. So the following chain of inclusions

�

0

(CUT

n+1

) � �

0

(HYP

n+1

) � PSD

n

= �(PSD

n

)

�

� �(�

0

(HYP

n+1

))

�

� �(�

0

(CUT

n+1

))

�

shows that our central object, namely the hypermetric cone, is (up to polar and minus

sign) a subcone of the cone of quadratic forms that are nonnegative on binary variables

and contains all quadratic forms that are nonnegative on integer (or real) variables.

Lemma 2.4 Let A = (a

ij

)

1�i;j�n

be a symmetric matrix which is positive semide�nite

and let k � n be its rank. There exist vectors v

1

; : : : ; v

n

2 R

k

such that a

ij

= v

T

i

v

j

for

1 � i; j � n. Moreover, if v

0

1

; : : : ; v

0

n

are other vectors of R

k

such that a

ij

= v

0T

i

v

0

j

for

1 � i; j � n, then v

0

i

= T (v

i

), 1 � i � n, for some orthogonal transformation T of R

k

.

The system (v

1

; : : : ; v

n

) has rank k.

Proof. By assumption, A has k non zero eigenvalues which are positive. Hence, there

exists an n � n matrix Q

0

such that A = Q

0

DQ

T

0

, where D is an n � n matrix whose

entries are all zero except k diagonal entries, say with indices (1; 1); : : : ; (k; k), equal to 1.

Denote by Q the n� k submatrix of Q

0

consisting of its �rst k columns. Then, A = QQ

T

holds, i.e. a

ij

= v

T

i

v

j

for 1 � i; j � n, where v

1

; : : : ; v

n

denote the rows of Q. It is easy to

see that (v

1

; : : : ; v

n

) has the same rank k as A.
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Let Q

0

be another n � k matrix such that A = Q

0

Q

0T

. Both matrices Q;Q

0

have rank

k, hence there exists a k � k non singular matrix B such that Q

0

= QB. Let Q

1

be a

non singular k � k submatrix of Q formed, say, by its �rst k rows, and let Q

0

1

denote the

k � k submatrix of Q

0

formed by its �rst k rows. Then, Q

0

1

= Q

1

B. From the equality

Q

1

Q

T

1

= Q

0

1

(Q

0

1

)

T

, we obtain that BB

T

is the identity matrix, i.e. B is an orthogonal

transformation of R

k

. 2

Proposition 2.3 now follows easily from relation (11), Lemma 2.4 and the following

observation: If p = �

0

(d), then p

ij

= v

T

i

v

j

holds for 1 � i � j � n if and only if

d

ij

= (v

i

� v

j

)

2

holds for 0 � i < j � n, after setting v

0

= 0.

Proposition 2.5 Let (X; d) be a distance space. Consider the assertions:

(i) (X; d) is isometrically hypercube embeddable.

(ii) (X; d) is isometrically `

1

-embeddable.

(iii) (X; d) is hypermetric.

(iv) (X; d) has a spherical representation.

(v) (X; d) is of negative type.

(vi) The distance matrix (d

ij

)

i;j2X

has exactly one positive eigenvalue.

The implications (i) =) (ii) =) (iii) =) (iv) =) (v) =) (vi) hold.

Proof. (i) =) (ii) is obvious.

(ii) =) (iii) Using Proposition 2.1, it su�ces to check that each cut semimetric �(S) sat-

is�es all hypermetric inequalities. Indeed, if b 2Z

X

with

P

i2X

b

i

= 1, then

P

b

i

b

j

�(S)

ij

=

P

i2S;j 62S

b

i

b

j

= (

P

i2S

b

i

)(1�

P

i2S

b

i

) � 0.

(iii) =) (iv) will be shown in Proposition 3.2.

(iv) =) (v) Let (v

i

; i 2 X) be a spherical representation of (X; d), on a sphere of radius

r and center c. We can suppose that c is in the origin (up to translation). Hence, v

2

i

= r

2

for all i 2 X and d(i; j) = (v

i

� v

j

)

2

for i; j 2 X . Take b 2 Z

X

with

P

i2X

b

i

= 0. Then,

P

i;j2X

b

i

b

j

d(i; j) =

P

i;j2X

b

i

b

j

(2r

2

� 2v

T

i

v

j

) = �2(

P

i2X

b

i

v

i

)

2

� 0:

(v) =) (vi) If d is of negative type, then there exist some vectors v

i

(i 2 X) such that

d

ij

= (v

i

� v

j

)

2

for all i; j 2 X . Therefore, the quadratic form

P

i;j2X

d

ij

x

i

x

j

can be

expressed as 2

P

i;j2X

v

2

i

x

i

x

j

� (

P

i2X

x

i

v

i

)

2

. The �rst term is a quadratic form whose

eigenvalues are 0 (with multiplicity jX j � 1) and

P

i2X

v

2

i

. Therefore,

P

i;j2X

d

ij

x

i

x

j

can

be decomposed as a sum and di�erence of squares involving only one positive square. This

implies that the distance matrix (d

ij

)

i;j2X

has at most one positive eigenvalue and, thus,

it has exactly one since its diagonal terms are all zero. 2

Two partial converses to the implications (iv) =) (v) and (iii) =) (iv) will be given

later in Propositions 3.14 and 3.16, respectively. There are many examples of distance
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spaces for which (ii) and (iii) are equivalent; see, in particular, Section 6. For instance,

for a graphic space (V (G); d

G

), if G is bipartite, then all (i) � (vi) are equivalent; see

Proposition 6.3.

2.2 Lattices and L-polytopes

Lattices

A subset L of R

k

is called a lattice (or point lattice) if L is a discrete subgroup of

R

k

, i.e. there exists a ball of radius � > 0 centered at each lattice point which contains

no other lattice point. A subset V = fv

1

; : : : ; v

m

g of L is said to be generating (resp.

a base) for L if, for every v 2 L; there exist some integers (resp. a unique system of

integers) b

1

; : : : ; b

m

such that v =

P

1�i�m

b

i

v

i

: The dimension of L is the cardinality of

a base.

Any two bases B

1

, B

2

are integral unimodular equivalent, i.e. M

B

1

= AM

B

2

,

where A is an integer matrix with determinant jdet(A)j = 1 and M

B

1

(resp. M

B

2

) is the

k � k matrix whose rows are the members of B

1

(resp. B

2

) and k is the dimension of

L. The common value jdet(B)j for any base B of L is called the determinant of L and

denoted as det(L).

Given a 2 R

k

, the translate L

0

= L+a = fv+a : v 2 Lg of a lattice L is called an a�ne

lattice. A subset V

0

= fv

0

; v

1

; : : : ; v

m

g of L

0

is called an a�ne generating set for L

0

(resp. an a�ne base of L

0

) if, for every v 2 L

0

; there exist some integers (resp. a unique

system of integers) b

0

; b

1

; : : : ; b

m

such that v =

P

0�i�m

b

i

v

i

and

P

0�i�m

b

i

= 1. Clearly,

V

0

is an a�ne generating set (resp. a�ne base) of L

0

if and only if V = fv

1

�v

0

; : : : ; v

m

�v

0

g

is a (linear) generating set (resp. base) of the lattice L.

For simplicity, we use the same word "lattice" for denoting both a usual lattice (i.e.

containing 0) and an a�ne lattice (i.e. translate of a lattice). We also often omit to precise

whether we consider linear or a�ne bases or generating sets.

We use the following notation. Given a subset V of R

k

, we de�ne its integer hull

Z(V ) by

Z(V ) = f

X

v2V

b

v

v : b 2Z

V

g

and its a�ne integer hull Z

af

(V ) by

Z

af

(V ) = f

X

v2V

b

v

v : b 2Z

V

and

X

v2V

b

v

= 1g:

The minimum norm t of a lattice L is de�ned as

t = min((u� v)

2

: u; v 2 L; u 6= v):
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This terminology of minimal \norm" is classical in the theory of lattices, although it

actually denotes the square of the euclidian norm. In particular, if 0 2 L, then t =

min(u

2

: u 2 L; u 6= 0). The minimal vectors of L are the vectors v 2 L with v

2

= t.

Their set is denoted as L

min

. Then, the polytope conv(L

min

) is known as the contact

polytope of L. Note that 2t coincides with the packing radius of L (see e.g. [23]).

L is integral if u

T

v 2 Zfor all u; v 2 L. An even lattice is an integral lattice with

u

2

2 2Zfor each lattice vector u. L is a root lattice if L is integral and L is generated

by a set of vectors v with v

2

= 2; then, each v 2 L with v

2

= 2 is called a root of L.

Observe that, in a root lattice L,

u

T

v 2 f0;�1; 1g for u; v roots of L; u 6= �v: (14)

This follows from the fact that (u � v)

2

= 4 � 2u

T

v > 0 and (u + v)

2

= 4 + 2u

T

v > 0.

The dual L

�

of L is de�ned as L

�

= fx 2 R

k

: x

T

u 2Zfor all u 2 Lg. If L is an integral

lattice, then L � L

�

holds. L is called self-dual if L = L

�

holds. L is called unimodular

if det(L) = 1. Hence, an integral unimodular lattice is self-dual. For example, the root

lattice E

8

, the Leech lattice �

24

are even and unimodular.

The direct sum of two lattices L

1

and L

2

is de�ned if L

1

and L

2

are orthogonal, i.e.

u

T

1

u

2

= 0 for all u

1

2 L

1

, u

2

2 L

2

, as

L

1

� L

2

= fu

1

+ u

2

: u

1

2 L

1

; u

2

2 L

2

g:

L is called irreducible if L = L

1

� L

2

implies L

1

= f0g or L

2

= f0g and reducible

otherwise. A well known result by Witt states that the only irreducible root lattices are

A

n

(n � 0), D

n

(n � 4), E

n

(n = 6; 7; 8); we describe them in Section 3.3.

L-polytopes

Let L � R

k

be a k-dimensional lattice and let S = S(c; r) be a sphere with center c

and radius r in R

k

. Then, S is called an empty sphere (in Russian literature) in L if

the following two conditions hold:

� (v � c)

2

� r for all v 2 L,

� S \ L has a�ne rank k + 1.

Then, the center of S is called a hole (in English literature).

Then, the polytope P de�ned as the convex hull of S \ L is called an L-polytope, or

Delaunay polytope. Equivalently, a k-dimensional polytope P in R

k

with set of vertices

V (P ) is an L-polytope if the following conditions hold:

� P is inscribed on a sphere S(c; r), i.e. (v � c)

2

= r

2

for all v 2 V (P ),

� L(P ) =Z

af

(V (P )) = f

P

v2V (P )

b

v

v : b 2Z

V (P )

and

P

v2V (P )

b

v

= 1g is a lattice,
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� (v � c)

2

� r

2

for all v 2 L(P ).

If P is an L-polytope, then the distance space (V (P ); d

(2)

) is called an L-polytope space.

Let P be an L-polytope in a lattice L. P is said to be generating in L if V (P )

generates L, i.e. L = L(P ). There are examples of lattices for which none of their L-

polytopes is generating; this is the case for the root lattice E

8

, the Leech lattice �

24

and,

more generally, for all even unimodular lattices (see Lemma 2.6). However, when we say

that P is an L-polytope in L, we always assume that P is generating, i.e. we suppose that

L = L(P ).

A subset B � V (P ) is said to be basic if it is an a�ne base of L. P is called basic

if V (P ) contains a basic set. Actually, we do not know any example of a non basic

L-polytope.

Two L-polytopes have the same type if they are a�nely equivalent, i.e. P

0

= T (P )

for some a�ne bijection T .

Given a lattice point v 2 L, the set of all the L-polytopes in L that admit v as a vertex

is called the star of L at v. Clearly, the stars at distinct lattice points are identical (up to

translation). The lattice L is called general if all the L-polytopes of its star are simplices

(which, in general, cannot be obtained from one another by translation or orthogonal

transformation), and L is called special otherwise.

Two k-dimensional lattices L, L

0

are said to be z-equivalent if there exits an a�ne

bijection T such that L

0

= T (L) and T brings the star of L on the star of L

0

; one also says

that L and L

0

have the same type.

L-polytopes and Voronoi polytopes

Let us recall the connection between L-polytopes and Voronoi polytopes ([66]).

If L is a lattice in R

k

and u

0

2 L; theVoronoi polytope at u

0

is the set P

v

(u

0

) consisting

of all points x 2 R

k

that are at least as close to u

0

than to any other lattice point, i.e.

P

v

(u

0

) = fx 2 R

k

:k x � u

0

k�k x � u k for all u 2 Lg. The vertices of the Voronoi

polytope P

v

(u

0

) are precisely the centers of the L-polytopes in L that contain u

0

as a

vertex, i.e. of the L-polytopes of the star of L at v

0

.

The Voronoi polytopes P

v

(u), u 2 L, form a normal (i.e. face-to-face) tiling of the

space R

k

; this tiling is sometimes called the Voronoi-Dirichlet tiling. Another normal

tiling is provided by the elementary cells fu +

P

1�i�k

b

i

v

i

for 0 � b

i

� 1; 1 � i � kg for

u 2 L, where (v

1

; : : : ; v

k

) is a base of L. Hence, the Voronoi polytopes and the elementary

cells have the same volume, equal to det(L). Another normal partition of the space, called

L-decomposition, is provided by the L-polytopes in L. However, di�erent types of L-

polytopes may occur in this partition; in particular, if L is special, then some of them

are not simplices. For instance, if L is a general lattice of dimension 2, then the normal

partition of R

2

by the L-polytopes in L is a Delaunay triangulation of the plane. For the

use of L-decompositions in computational geometry, see, for instance, Chapter 13 in [41].
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Given a k-dimensional lattice L, the two normal partitions of the space by the Voronoi

polytopes and by the L-polytopes in L are in combinatorial duality. Namely, there is a

one-to-one correspondence F 7! F

�

between the faces F of one partition and the faces F

�

of the other partition in such a way that:

� F and F

�

are orthogonal,

� if F has dimension h, then F

�

has dimension k � h and

� if F

1

� F

2

, then F

�

2

� F

�

1

.

Lattices and positive quadratic forms

Let p 2 PSD

n

be a positive semide�nite quadratic form. Then, by Lemma 2.4, there

exist n vectors v

1

; : : : ; v

n

2 R

k

(1 � k � n) such that p

ij

= v

T

i

v

j

for all i; j = 1; : : : ; n

where k is the rank of the system (v

1

; : : : ; v

n

) and of the matrix (p

ij

)

1�i;j�n

. So, k = n if p

is positive de�nite, i.e. p lies in the interior of PSD

n

, and k < n otherwise, i.e. if p lies on

the boundary of PSD

n

. Set L =Z(v

1

; : : : ; v

n

). Sometimes, L is a lattice. This is the case,

in particular, if p is positive de�nite. Recall from relation (13) that �

0

(HYP

n+1

) � PSD

n

.

In fact, if p 2 �

0

(HYP

n+1

), then L is also a lattice. Actually, for p 2 PSD

n

, we have that

p 2 �

0

(HYP

n+1

) if and only if L is a lattice and v

1

; : : : ; v

n

are all vertices of the same

L-polytope in the star of L at the origin (see Section 3.1).

There is a many-to-one correspondence between the positive de�nite quadratic forms

p of PSD

n

and the lattices in R

n

. Indeed, the action on p of the group GL(n;Z) of integral

unimodular transformations produces distinct bases of the same lattice L. Voronoi ([66];

we follow [46] for the exposition) showed that the action of GL(n;Z) induces a partition of

the cone PSD

n

into disjoint relatively open convex subcones, called the L-type domains,

of dimension 1; 2; : : : ;

�

n+1

2

�

, such that:

� On each of these subcones the a�ne structure of the L-decompositions of corresponding

lattices is constant, i.e. the lattices corresponding to the points of a given subcone are all

z-equivalent.

� Subcones of dimension

�

n+1

2

�

correspond to general lattices, i.e. having simplicial L-

decompositions. These L-type domains are polyhedral.

� A subcone of dimension less than

�

n+1

2

�

is a relatively open face of two or more L-type

domains. If such a cone makes contact with the boundary of an L-type domain, then it is

necessarly a face of that domain. The lattice corresponding to a quadratic form on such

a face is special, i.e. it has among its L-polytopes some that are not simplices.

Voronoi ([66]) showed that the number of distinct, up to z-equivalence, lattices in any

dimension k is �nite. Therefore, many of the L-type domains correspond to z-equivalent

lattices.

Note that, if p 2 �

0

(HYP

n+1

), then the whole L-type domain containing p is also

contained in �

0

(HYP

n+1

). Therefore, �

0

(HYP

n+1

) is a union of L-type domains. In fact,

this union is in�nite; however, we know that �

0

(HYP

n+1

) is a polyhedral cone (see Section
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3.2).

L-polytopes and empty ellipsoids

As we will see in Section 3.1, the study of the hypermetric spaces on n points amounts

to the study of the L-polytopes of dimension k � n. We would like to mention another

connection between L-polytopes and the quadratic functions that are nonnegative on

integer variables.

There is a sequence of papers ([42], [43], [44], [45], [46]) studying the set of integer

solutions of equations of the form

f(x) = a

0

+

X

1�i�n

a

i

x

i

+

X

1�i;j�n

a

ij

x

i

x

j

(15)

where a

0

; a

1

; : : : ; a

n

2 R, a

ij

= a

ji

2 R, and f satis�es the condition

f(x) � 0 for all x 2Z

n

: (16)

The set of integer solutions of f(x) = 0 is called the root �gure of f and is denoted

by R

f

. From relation (16), the matrix a

f

= (a

ij

)

1�i;j�n

is positive semide�nite and the

region fx 2 R

n

: f(x) < 0g is free of integral points.

Suppose that a

f

is positive de�nite. Then, the surface de�ned by the equation f(x) = 0

is an ellipsoid E

f

whose interior is free of integral points; E

f

is said to be an empty

ellipsoid. The root �gure R

f

consists of the integral points lying on E

f

and, thus, is

�nite. In fact, the root �gure R

f

is a�nely equivalent to the set of vertices V of an L-

polytope, with dim(V ) = dim(R

f

) � n. Moreover, every �nite root �gure arises in this

way. (See [45].)

On the other hand, if a

f

is not positive de�nite, then the root �gure R

f

may be in�nite.

However, every in�nite root �gure arises from the �nite ones by a simple construction

(essentially, every in�nite root �gure is of the form R + � where R is a �nite root �gure

and � is a sublattice of Z

n

). (See Theorem 2.1 in [45].)

Therefore, the study of the root �gures amounts to the classi�cation of the L-polytopes

of dimension k � n.

Consider the cone Q

+

(Z

n

) de�ned by

Q

+

(Z

n

) = fa = (a

0

; a

1

; : : : ; a

n

; a

ij

; 1 � i � j � n) :

a

0

+

P

1�i�n

a

i

x

i

+

P

1�i;j�n

a

ij

x

i

x

j

� 0 for all x 2Z

n

g;

i.e. each member a 2 Q

+

(Z

n

) corresponds to a function f

a

satisfying (15) and (16). Erdahl

[44] shows that every a 2 Q

+

(Z

n

) lying on an extreme ray of Q

+

(Z

n

) satis�es one of the

following:
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� f

a

is constant (i.e. a

1

= : : : = a

n

= a

ij

= 0),

� f

a

(x) = (

P

1�i�n

�

i

x

i

+ �)

2

where (�

1

; : : : ; �

n

) is not proportional to an integer vector,

� f

a

is perfect, i.e. the dimension of the set fb 2 Q

+

(Z

n

) : R

f

a

� R

f

b

g is equal to 1.

We note the following connection between the hypermetric cone HYP

n+1

and the cone

Q

+

(Z

n

) (it follows from (10)):

�

0

(HYP

n+1

) = fa 2 Q

+

(Z

n

) : a

0

= 0 and a

i

= �a

ii

for i = 1; : : : ; ng:

Therefore, HYP

n+1

is, via the covariance mapping, a section of the cone Q

+

(Z

n

). Note

that the notion of root �gure corresponds to that of annullator that we use in Section

4.1. Moreover, there is the following link between the perfect elements of Q

+

(Z

n

) and the

extreme rays of HYP

n+1

. For d 2 HYP

n+1

, d lies on an extreme ray of HYP

n+1

if and

only if �

0

(d) is a perfect element of Q

+

(Z

n

).

Basic facts on L-polytopes

We group several basic properties on the symmetry, the number of vertices, the volume

of L-polytopes.

We start with an observation on generating L-polytopes in even lattices.

Lemma 2.6 [44] Let P be a generating L-polytope in an even lattice L. Then, the center of

the sphere circumscribing P belongs to the dual lattice L

�

. Therefore, an even unimodular

lattice contains no generating L-polytope.

Proof. We can suppose that the origin is a vertex of P . Let c denote the center of

the sphere S circumscribing P . Since L is generated by the set of vertices V (P ) of P , it

su�ces to check that c

T

v 2Zfor each v 2 V (P ), for showing that c 2 L

�

. For v 2 V (P ),

we have that (c� v)

2

= c

2

, i.e. 2c

T

v = v

2

, implying that c

T

v 2Zsince v

2

is even. If L is

even unimodular, then c 2 L

�

= L, contradicting the fact that S is an empty sphere in L. 2

Let S be a sphere with center c. For x 2 S, its antipode on S is the point x

�

= 2c�x.

It is immediate to see that:

Lemma 2.7 Every L-polytope P is

- either centrally symmetric, i.e. v

�

2 V (P ) for all v 2 V (P ),

- or asymmetric, i.e. v

�

62 V (P ) for all v 2 V (P ).

Proposition 2.8 Let P be an L-polytope in R

k

. Then, P has at most 2

k

vertices.

Proof. Without loss of generality, we can suppose that the origin is a vertex of P . Let

fv

1

; : : : ; v

k

g be a base of L. We consider the following equivalence relation on L: u � v
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if u + v 2 2L for u; v 2 L. Clearly, every vertex of P is in relation by � with one of

the elements

P

i2I

v

i

for I � f1; : : : ; kg. On the other hand, no two vertices of P are in

relation by �. Indeed, if, for u; v 2 V (P ), u � v, then

u+v

2

2 L, contradicting the fact that

the sphere circumscribing P is empty in L. This shows that P has at most 2

k

vertices. 2

Let u; v; w be vertices of an L-polytope P . One can check directly that the following

inequality holds:

(u� w)

2

� (u� v)

2

+ (v � w)

2

:

This is the triangle inequality expressing the fact that the L-polytope space (V (P ); d

(2)

)

is a metric space. Actually, we will see in Proposition 3.2 that every L-polytope space

is hypermetric, which is a much stronger property. The above relation means that any

three vertices of an L-polytope form a triangle with no obtuse angles. In fact, the latter

property is already su�cient for proving the upper bound 2

k

on the number of vertices

([26], see also [32]).

The upper bounds from Proposition 2.9 below are shown in [13] as a re�nement of the

upper bound vol(P ) � 2

k

det(L) given in [32].

Proposition 2.9 Let P be an L-polytope in a lattice L � R

k

with N vertices and let

vol(P ) denote its volume. Then, vol(P ) �

2

k

det(L)

N

if P is centrally symmetric and

vol(P ) �

2

k

det(L)

2N

if P is asymmetric.

Proof. Let P

v

(0) denote the Voronoi polytope at the origin. We can assume without

loss of generality that the origin is a vertex of P . Let h

0

denote the

1

2

-fold homothety with

center 0, i.e. h

0

(x) =

x

2

. We show that h

0

(P ) � P

v

(0).

Take a vertex v of P and suppose for contradiction that

v

2

62 P

v

(0). Take a hyperplane

H supporting a facet of P

v

(0) which separates P

v

(0) and

v

2

; H is the hyperplane going

through

w

2

and orthogonal to the segment [0; w] for some w 2 L. Let R(0; w) denote the

region comprised between the two hyperplanes perpendicular to the segment [0; w] and

going, respectively, through the points 0 and w. Clearly, v 62 R(0; w), which implies that

v

T

w > w

2

. Moreover, w is not a vertex of P , since there is an obtuse angle in the triangle

(0; v; w). Therefore, k w�c k>k c k (where c is the center of the sphere circumscribing P )

and, thus, w

2

> 2w

T

c. On the other hand, k v � c k=k c k, i.e. v

2

= 2v

T

c. We now show

that k v � w� c k<k c k, which contradicts the fact that v � w is a lattice point. Indeed,

(v � w � c)

2

� c

2

= (v � w)

2

� 2c

T

(v � w) = v

2

+ w

2

� 2v

T

w � 2c

T

(v � w)

= w

2

� 2v

T

w + 2c

T

w < 2(w

2

� v

T

w) < 0:

Consider the star of the L-polytopes in L with the origin as a vertex and let P

star

denote their union. Hence, P is contained in P

star

as well as any translate P � v of P ,
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for v vertex of P , and any translate of the symmetric �P of P with respect to the ori-

gin. Note that the translates of �P coincide with those of P if P is centrally symmetric.

Therefore, P

star

contains �N copies of P , with � = 1 if P is centrally symmetric and

� = 2 if P is asymmetric. We deduce that �N vol(P ) � vol(P

star

). We have shown above

that h

0

(P

star

) � P

v

(0). This implies that

1

2

k

vol(P

star

) � vol(P

v

(0)) = det(L). Therefore,

vol(P ) �

2

k

det(L)

�N

. 2

Construction of L-polytopes

We now present some methods for constructing L-polytopes: by taking suitable sec-

tions of the sphere of minimal vectors in a lattice, by direct product and by pyramid or

bipyramid extension. Note that every face of an L-polytope is again an L-polytope.

Construction by sectioning the sphere of minimal vectors in a lattice

Let L be a lattice in R

k

and let V be the set of minimal vectors (i.e. of minimum

norm) of L: Given non collinear vectors a; b 2 R

k

and some non zero scalars �; �; we set

V

a

= fv 2 V : v

T

a = �g and V

b

= fv 2 V : v

T

b = �g:

Lemma 2.10 If the sets V

a

and V

a

\ V

b

are not empty, then the polytopes P = conv(V

a

)

and P

0

= conv(V

a

\ V

b

) are L�polytopes.

Note that this is precisely how the Schl�ai polytope 2

21

and the Gosset polytope 3

21

are

constructed from the root lattice E

8

; and how the polytopes P

22

and P

23

are constructed

from the Leech lattice �

24

(see Sections 5.2 and 5.3).

Direct product

Let L

i

be a lattice in R

k

i

, let P

i

be an L-polytope in L

i

whose circumscribed sphere has

radius r

i

and is centered in the origin, for i = 1; 2. Then, L = L

1

� L

2

= f(v

1

; v

2

) : v

1

2

L

1

; v

2

2 L

2

g is a lattice in R

k

, k = k

1

+ k

2

and P = P

1

� P

2

is an L-polytope in L whose

circumscribed sphere is centered in the origin and has radius r =

q

r

2

1

+ r

2

2

. Therefore,

the direct product of two L-polytopes is an L-polytope. The direct product of P and a

segment �

1

is called the prism with base P .

Call an L-polytope reducible if it is the direct product of two other non trivial L-

polytopes (i.e. not reduced to a point) and irreducible otherwise. Note that irreducible

L-polytopes arise in irreducible lattices. Indeed, if L is a reducible lattice, i.e. L is the

direct sum L

1

� L

2

of two orthogonal lattices L

1

and L

2

and if P is an L-polytope in L,

then the projection P

i

of P on the subspace spanned by L

i

is an L-polytope in L

i

, for

i = 1; 2, and P = P

1

� P

2

(up to a�ne equivalence).

Pyramid and bipyramid



22 M. Deza, V.P. Grishukhin and M. Laurent

If P is a polytope and v is a point that does not lie in the a�ne space spanned by P ,

then Pyr

v

(P ) = conv(P [fvg) is called the pyramid with base P and apex v. Under

some conditions, the pyramid of an L-polytope is still an L-polytope.

Namely, let P be an L-polytope with radius r and suppose v is at squared distance t

from all vertices of P with t > 2r

2

. Then, the pyramid Pyr

v

(P ) is an L-polytope with

radius R =

t

2

p

t�r

2

(see Proposition 3.18).

Moreover, if P is centrally symmetric and if t = 2r

2

, then the bipyramid Bipyr

v

(P ) =

conv(P [ fv; v

�

g) is an L-polytope with radius r, where v

�

is the antipode of v on the

sphere circumscribing Pyr

v

(P ) (see Proposition 3.18).

The layerwise construction

The following layerwise construction for L-polytopes is described in [64]. Actually,

rather than a construction, it is a way of visualizing a given k-dimensional L-polytope in

a lattice L as the convex hull of its sections by the k� 1-dimensional layers composing L.

Let L be a k-dimensional lattice and let (v

1

; : : : ; v

k

) be a base of L. Then, L

0

=

Z(v

1

; : : : ; v

k�1

) is a k� 1-dimensional sublattice of L and L =

S

a2Z

(L

0

+av

k

). The layers

L

0

+ av

k

(a 2Z) are a�ne translates of L

0

lying in parallel hyperplanes.

Let P be a k-dimensional L-polytope, let L denote the lattice generated by V (P )

and let S be the sphere circumscribing P . Let F be a facet of P and let H denote

the hyperplane spanned by F . Then, L

0

= L \ H is a k � 1-dimensional sublattice of

L and L is composed by the layers L

0

+ av (a 2 Z) for some v 2 L � L

0

. Therefore,

P = conv(

S

a2Z

(S \ (L

0

+ av))), where S \ L

0

is the set of vertices of F and, for a 2 Z,

S \ (L

0

+ av) is empty or is the set of vertices of a face of an L-polytope in L

0

. So, we

have the following result:

Proposition 2.11 [64] For each k-dimensional L-polytope P , there exists a k�1-dimensional

lattice L

0

, an integer p � 1, and a sequence F

0

; F

1

; : : : ; F

p

of polytopes that are faces

of L-polytopes in L

0

(where dim(F

0

) = k � 1, but F

1

; : : : ; F

p

may be empty) such that

P = conv(

S

0�a�p

(F

a

+ av)), where v is a vector not lying in the space spanned by L

0

.

For instance, the pyramid construction can be viewed as the above layerwise construc-

tion with p = 1, a facet on the layer L

0

and a single point on the layer L

0

+ v.

Let p(k) denote the smallest number p of polytopes F

1

; : : : ; F

p

in Proposition 2.11

needed for constructing any k-dimensional L-polytope.

Given a lattice L, if P is an L-polytope in L which is a simplex, then its volume is

an integer multiple of

det(L)

k!

(this can be checked by induction on the dimension). This

integer is called the relative volume of the simplex P . The maximum relative volume

of all simplices that are L-polytopes in any k-dimensional lattice is denoted by p

0

(k).

It is shown in [64] that p(k) = p

0

(k) holds. In particular, p(2) = p(3) = p(4) = 1,

p(5) = 2 and b

k�1

2

c � p(k) � k!.
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There is an L-polytope of dimension 6, namely the Schl�ai polytope 2

21

, for which the

integer p (from Proposition 2.11) satis�es p > 1. In fact, for 2

21

, p = 2, i.e. three layers are

needed to obtain 2

21

from its 5-dimensional sections. We mention two ways of visualizing

2

21

via the layerwise construction. In the �rst construction, L

0

is the root lattice D

5

and

the layers L

0

, L

0

+ v, L

0

+ 2v carry, respectively, F

0

= �

5

, F

1

= h

5

and F

2

which is a

single point. In the second construction, L

0

is the root lattice A

5

and the layers carry,

respectively, F

0

= �

5

, F

1

= J(6; 2) and F

3

= �

5

. We refer to [25] for a description of all

faces of 2

21

.

L-polytopes in dimension k � 4

Examples of L-polytopes include the k-dimensional simplex �

k

, cross-polytope �

k

and

hypercube 

k

. Note that �

k

= Pyr(�

k�1

), �

k

= Bipyr(�

k�1

) and 

k

= 

k�1

� 

1

for

k � 2. We remind that every k-dimensional simplex with no obtuse angles is an L-

polytope which is a�nely equivalent to �

k

; similarly, every k-dimensional parallepiped

(with square angles) is an L-polytope which is a�nely equivalent to 

k

.

All types of L-polytopes in dimension k � 4 are classi�ed in [45].

� There is only one type of L-polytope of dimension k = 1, namely, the segment �

1

=

�

1

= 

1

.

� There are two types of L-polytopes of dimension k = 2, namely, the triangle (with no

obtuse angles) �

2

and the rectangle �

2

= 

2

.

� There are �ve types of L-polytopes of dimension k = 3. They are the tetrahedron �

3

,

the octahedron �

3

, the cube 

3

, the prism with triangular base (i.e. �

2

� �

1

) and the

pyramid with square base (i.e. Pyr(

2

)).

� There are 19 types of L-polytopes of dimension k = 4. They are described in Tables V

and VII from [45]. Among them, 13 can be obtained from the L-polytopes of dimension

1, 2 or 3 by applying the direct product, pyramid and bipyramid constructions.

- Using the pyramid construction, we obtain the pyramids with base �

3

(this gives �

4

),

with base �

3

, with base 

3

, with base the triangular prism and with base the squared base

pyramid.

- Using the bipyramid construction, we obtain the bipyramids with base �

3

(this gives �

4

)

and with base 

3

.

- By taking the direct product of the 3-dimensional L-polytopes with �

1

, we obtain the

prisms with base �

3

, with base �

3

, with base 

3

(this gives 

4

), with base the triangular

prism and with base the squared base pyramid.

- By taking the direct product of two 2-dimensional L-polytopes, we obtain �

2

��

2

(indeed,

�

2

� 

2

and 

2

� 

2

have already been mentioned).

We have also the repartitioning polytope P

0

2;2

(associated with the pentagonal facet; see

Section 4.2) which is one more L-polytope of dimension 4; it is the polytope A in the

Table VI from [45]. The remaining 5 L-polytopes are those numbered 4, 5, 6, 9 and 13 in
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Table V from [45].

2.3 Finiteness of the number of types of L-polytopes in given dimension

Recall that two lattices L, L

0

are called z-equivalent if there exist an a�ne bijection T

such that L

0

= T (L) and T brings the star of L on the star of L

0

. (Note that any k-

dimensional lattice is a�nely equivalent toZ

k

.) Voronoi ([66]) proved that the number of

distinct, up to z-equivalence, k-dimensional lattices is �nite. This implies that the number

of distinct, up to a�ne equivalence, k-dimensional L-polytopes is �nite. Recall that two

L-polytopes are said to have the same type if they are a�nely equivalent.

We give here a direct proof of the �niteness of the number of types of L-polytopes in

R

k

since Voronoi's original proof is very involved; it is taken from [32].

We �rst observe that:

Fact 2.12 Every type  of L-polytopes is characterized by some integer matrix Y



(once

a representative base for the type has been �xed).

Indeed, let P be an L-polytope of type . Say, P � R

k

has dimension k and P has N

vertices. Let L be a lattice in R

k

containing the set of vertices V (P ) of P , but L may be

larger than the lattice L(P ) generated by V (P ). Let B = fb

1

; : : : ; b

k

g be a base of L.

For each v 2 V (P ), let y

v

2 Z

k

such that v =

P

1�i�k

(y

v

)

i

b

i

holds. Denote by Q

P

the N � k matrix whose rows are the vectors v 2 V (P ), by M

B

the k � k matrix whose

rows are the members of B and by Y

P;B

the N � k matrix whose rows are the vectors

y

v

; v 2 V (P ). Then, the following relation holds:

Q

P

= Y

P;B

M

B

(17)

Clearly, if B

0

is another base of L, then Y

P;B

0

is unimodular equivalent to Y

P;B

. On

the other hand, let P

0

be another L-polytope of the same type  as P , i.e. P

0

= T (P )

for some a�ne bijective transformation T . Then, T (L) is a lattice containing the set of

vertices V (P

0

) = T (V (P )) of P

0

, T (B) is a base of T (L) and, thus, Y

P

0

;T (B)

= Y

P;B

holds.

Therefore, the matrix Y



= Y

P;B

characterizes the type  of L-polytopes. It is uniquely

determined once the starting base B, called representative base of , has been �xed.

Proposition 2.13 Let  be a type of L-polytopes of dimension k. One can choose the

representative base B in such a way that the matrix Y



satis�es the following conditions:

(i) There exists a k � k submatrix D = (�

ij

)

1�i;j�n

of Y



which is lower triangular and

satis�es: 0 � �

ij

< �

ii

for all 1 � j < i � k.
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(ii) p = jdet(D)j is the maximum possible value of the absolute value of the determinant

of any k � k submatrix of Y



.

(iii) p � k!2

k

.

For the proof, we need the following classical result about lattices.

Proposition 2.14 [21] Let L; L

0

be two k-dimensional lattices in R

k

such that L

0

� L.

For every base fa

1

; : : : ; a

k

g of L

0

, there exists a base fb

1

; : : : ; b

k

g of L such that

(i) a

i

= �

i1

b

1

+ : : :+ �

ii

b

i

, for i = 1; : : : ; k, where (�

ij

)

1�i;j�k

are integers satisfying

(ii) 0 � �

ij

< �

ii

, for all 1 � j < i � k.

Proof of Proposition 2.13. Let P be an L-polytope of type  with N vertices and let

L be a lattice in R

k

containing the set of vertices V (P ) of P . Let V

0

be a subset V (P ) of

size k and let Q

0

denote the k � k submatrix of Q

P

whose rows are the members of V

0

.

We choose V

0

in such a way that jdet(Q

0

)j is largest possible. We can suppose that Q

0

is

the submatrix of Q

P

formed by its �rst k rows. The lattice L

0

= Z(V

0

) is a sublattice of

L and admits V

0

as a base. Applying Proposition 2.14, we deduce the existence of a base

B of L such that

Q

0

= DM

B

where D is a lower triangular integer matrix satisfying Proposition 2.14 (ii). Since Q

P

=

(Q

P

M

�1

B

)M

B

, by comparing with relation (17), we obtain that Q

P

M

�1

B

is the integer

matrix Y

P;B

. Set Y = Y

P;B

; it is an N � k matrix whose �rst k rows form the matrix D.

Note that p = jdet(D)j =

jdet(Q

0

)j

jdet(M

B

)j

=

jdet(Q

0

)j

det(L)

. Hence, by the choice of Q

0

, the absolute

value of the determinant of any k � k submatrix of Y is less or equal to p. Therefore, if

B is chosen as representative matrix of the type , then Y



= Y satis�es the conditions

(i),(ii) of Proposition 2.13.

Finally, we check (iii). Let � denote the simplex whose vertices are the members of

V

0

, i.e. the rows or Q

0

. Then, � is contained in P and, thus, vol(�) � vol(P ). But,

vol(�) =

jdet(Q

0

)j

k!

=

p det(L)

k!

and vol(P ) � 2

k

det(L) from Proposition 2.9. Therefore, we

obtain that p � k!2

k

. 2

We can now show the �niteness of the number of types of L-polytopes in R

k

.

Theorem 2.15 [32] The number of types of L-polytopes in R

k

is �nite.

Proof. Every type  of L-polytopes in R

k

with N vertices is characterized by an N � k

integer matrix Y



satisfying Proposition 2.13 (i)-(iii). It su�ces now to show that there is

only a �nite number of such matrices. For this, we show that, for �xed p, there is only a

�nite number of matrices satisfying Proposition 2.13 (i)-(ii).
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Let Y be an N � k integer matrix satisfying (i),(ii). Suppose that D is the upper

k � k submatrix of Y . Then, the upper k � k submatrix of Y D

�1

is the identity matrix.

Let r

ih

be a non zero entry of Y D

�1

, where k + 1 � i � N and 1 � h � k. Let C

denote the matrix obtained from D by replacing its h-th row by the i-th row of Y . By

Proposition 2.13 (ii), jdet(C)j � p. On the other hand, jdet(CD

�1

)j = jr

ih

j, implying

that jr

ih

j =

jdet(C)j

p

belongs to f0;

1

p

; : : : ;

p�1

p

; 1g. Since Y D

�1

is an N � k matrix with

N � 2

k

(from Proposition 2.8), we deduce that, for �xed p and k, there is only a �nite

number of such matrices Y D

�1

. Now, D is a k�k integer matrix with p = �

11

: : :�

kk

and

satisfying Proposition 2.13 (i); therefore, there is only a �nite number of such matrices D.

Consequently, there is a �nite number of possibilities for Y . 2

3 Hypermetrics and L-polytopes

3.1 The connection between hypermetrics and L-polytopes

In this section, we establish the fundamental connection existing between hypermetrics

spaces and L-polytopes.

The following Lemmas 3.1 and 3.2 are crucial for Theorem 3.3, which establishes this

connection.

Lemma 3.1 [6] Let c; v

0

= 0; v

1

; : : : ; v

n

2 R

k

be vectors satisfying

(i) k v

i

� c k=k c k, for 1 � i � n,

(ii) k

P

1�i�n

b

i

v

i

� c k�k c k for all b 2Z

n

.

Then, L =Z(v

1

; : : : ; v

n

) is a lattice.

Proof. For b 2 Z

n

, set v(b) =

P

1�i�n

b

i

v

i

; then, v(b) � v

i

2 L. Hence, (ii) yields

(v

i

� v(b)� c)

2

� c

2

, i.e. (v

i

� c)

2

+ (v(b))

2

� 2(v

i

� c)

T

v(b) � c

2

and, using (i), we obtain

that:

(�) (v(b))

2

� 2j(v

i

� c)

T

v(b)j for 1 � i � n:

Consider the units vectors e

i

=

v

i

�c

kck

for i = 0; 1; : : : ; n and e(b) =

v(b)

kv(b)k

. Set � =

minfmax(e

T

i

u : 1 � i � n) : u 2 R

k

; k u k= 1g. In order to conclude the proof, it is

enough to show that � 6= 0, since we obtain from (*) that k v(b) k� 2� k c k for all b 2Z

n

such that v(b) 6= 0. Suppose, for contradiction, that � = 0. Then, we can �nd a sequence

(u

p

)

p�1

of unit vectors of R

k

such that je

T

i

u

p

j �

1

p

for any 1 � i � n; p � 1. By compacity

of the unit sphere, we can suppose that the sequence (u

p

)

p�1

admits a limit u when p goes

to in�nity (else, replace (u

p

)

p�1

by a subsequence). Therefore, k u k= 1, while e

T

i

u = 0
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for i = 1; : : : ; n, implying that u = 0 since the vectors v

1

; : : : ; v

n

span R

k

. We have a

contradiction. 2

Lemma 3.2 [6] Let (X; d) be a distance space, X = f0; 1; : : : ; ng. The following assertions

are equivalent.

(i) (X; d) is hypermetric,

(ii) (X; d) has a representation i 2 X 7! v

i

2 R

k

(k � n) on a sphere S, and S is empty

in L

af

(X; d) = f

P

i2X

b

i

v

i

: b 2 Z

X

and

P

i2X

b

i

= 1g, i.e. k

P

i2X

b

i

v

i

� c k� r for all

b 2Z

X

with

P

i2X

b

i

= 1, where c and r denote the center and radius of S.

Proof. (i) =) (ii) Since (X; d) is of negative type, (X; d) has a representation v

0

; v

1

; : : : ; v

n

2

R

k

, the system (v

0

; : : : ; v

k

) has rank k and we can suppose without loss of generality that

v

0

= 0. We �rst show that the vectors v

0

; v

1

; : : : ; v

n

lie on a sphere S, i.e. that there exists

c 2 R

k

such that

(�) 2c

T

v

i

= v

2

i

for 1 � i � n:

If k = n, i.e. the vectors v

1

; : : : ; v

n

are linearly independent, then the above equation (*)

admits a unique solution c. Let k � n � 1. Let M denote the n � k matrix whose rows

are the vectors v

1

; : : : ; v

n

, let U denote the subspace of R

n

spanned by the columns of M

and set f = (v

2

1

; : : : ; v

2

n

): The above equation (*) has a solution if and only if f 2 U , or

equivalently, f

T

g = 0 for each g 2 U

?

(the orthogonal complement of U in R

k

). Take

g 2 U

?

, let b 2 Z

n

such that jg

i

� b

i

j < 1 for i = 1; : : : ; n and set � = g � b; so � belongs

to the unit cube.

Consider p = �

0

(d); then, p

ij

= v

T

i

v

j

for 1 � i < j � n. Using relation (10), we deduce

that p satis�es the inequality

P

1�i;j�n

b

i

b

j

p

ij

�

P

1�i�n

b

i

p

ii

� 0, i.e.

(��) (

X

1�i�n

b

i

v

i

)

2

�

X

1�i�n

b

i

v

2

i

� 0:

Hence, from relation (**), f

T

b =

P

1�i�n

b

i

v

2

i

� (b

T

M)

2

= (g

T

M � �

T

M)

2

= (�

T

M)

2

,

since g 2 U

?

. Therefore, f

T

b � (�

T

M)

2

, implying that f

T

g � f

T

� + (�

T

M)

2

. This

implies that f

T

g = 0; otherwise, the left hand side of the latter inequality could be made

arbitrarily large while its right hand side is bounded. Note that the solution c to the

equation (*) is unique since (v

1

; : : : ; v

n

) has full rank k.

The fact that S is empty in L

af

(X; d) follows from relations (*) and (**).

(ii) =) (i). Let b 2Z

X

with

P

i2X

b

i

= 1. Then,

P

i;j2X

b

i

b

j

d(i; j) =

P

i;j2X

b

i

b

j

(v

i

� v

j

)

2

=

P

i;j2X

b

i

b

j

(v

i

� c+ c� v

j

)

2

=

P

i;j2X

b

i

b

j

(2r

2

� 2(v

i

� c)

T

(v

j

� c))

= 2r

2

� 2(

P

i2X

b

i

(v

i

� c))

2

= 2(r

2

� (

P

i2X

b

i

v

i

� c)

2

) � 0



28 M. Deza, V.P. Grishukhin and M. Laurent

since the sphere S is empty in L

af

(X; d). Hence d satis�es the hypermetric inequalities.

2

In particular, every L-polytope space (V (P ); d

(2)

) is hypermetric, where V (P ) is the set

of vertices of an L-polytope P . Conversely, from Lemmas 3.1 and 3.2, every hypermetric

space can be realized as isometric subspace of an L-polytope space. We summarize in the

next theorem this fundamental connection.

Theorem 3.3 [6] Let (X; d) be a hypermetric space, jX j = n + 1. There exist a k-

dimensional L-polytope P

d

in R

k

, for some k � n, and a mapping f

d

: i 2 X 7! v

i

2 V (P

d

)

which is generating, i.e. fv

i

; i 2 Xg generates the set of vertices V (P

d

) of P

d

, and such

that

d(i; j) = (v

i

� v

j

)

2

for i; j 2 X:

Moreover, the pair (P

d

; f

d

) is unique, up to translation and orthogonal transformation.

We refer to P

d

as the L-polytope associated with the hypermetric space (X; d),

the lattice Z

af

(V (P

d

)) = f

P

v2V (P

d

)

b

v

v : b 2 Z

V (P

d

)

and

P

v2V (P

d

)

b

v

= 1g is denoted as

L

d

and the sphere circumscribing P

d

as S

d

.

Note that, if (X

0

= X [ fj

0

g; d

0

) is a 0-lifting of the hypermetric space (X; d) with

d(i

0

; j

0

) = 0 for i

0

2 X , as in relation (8), then both (X; d) and (X

0

; d

0

) have the same

associated L-polytope P

d

(simply representing j

0

by the same vertex of P

d

as i

0

).

We would also like to emphasize the following fact, since it will be very useful in the

sequel.

Proposition 3.4 Let (X; d) be a hypermetric space with representation (v

i

; i 2 X) in the

set of vertices of its associated L-polytope P

d

. For b 2 Z

X

with

P

i2X

b

i

= 1, the equality

P

i;j2X

b

i

b

j

d(i; j) = 0 holds if and only if the vector

P

i2X

b

i

v

i

is a vertex of P

d

.

Proof. It follows from the equality

P

i;j2X

b

i

b

j

d(i; j) = 2(r

2

� (

P

i2X

b

i

v

i

� c)

2

), stated

in the proof of Lemma 3.2 (ii) =) (i). 2

We give two examples illustrating this connection between hypermetric spaces and

L-polytopes.

Example 1. Consider the cut semimetric d = �(S) for some subset S � X . It is obviously

hypermetric. Its associated L-polytope is the segment �

1

= [0; 1] and the representation

of the hypermetric space (X; �(S)) is i 2 S 7! v

i

= 1, i 2 X � S 7! v

i

= 0.

Example 2. Let (X; d) be a semimetric space. Then, d lies in the interior of the

hypermetric cone HYP(X) if and only if its associated L-polytope is the simplex �

jX j�1

of
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dimension jX j�1 (since, by Proposition 3.4, d satis�es no nontrivial hypermetric equality

if and only if jV (P

d

)j = dim(P

d

)� 1).

We conclude this section with two additional properties concerning the connection

between hypermetrics and L-polytopes.

A �rst observation is that, if (Y; d) is a subspace of the hypermetric space (X; d), then

its associated L-polytope is embedded in the L-polytope associated to (X; d).

Lemma 3.5 Let P be an L-polytope with set of vertices V (P ) and let X be a subset of

V (P ): Let P

X

denote the L-polytope associated with the hypermetric space (X; d

(2)

): Then,

V (P

X

) � V (P ) with equality if and only if X is a generating subset of V (P ):

Proof. Let L

X

denote the sublattice of L generated by X and let A

X

denote the a�ne

space generated by X: Let S be the circumscribed sphere to P; so S is an empty sphere

in L. The sphere S

X

= S \ A

X

is empty in L

X

. Hence, P

X

= conv(S

X

\ L

X

) is

an L-polytope and it is the L-polytope associated with the hypermetric space (X; d

(2)

):

Therefore, V (P

X

) = S

X

\ L

X

is indeed contained in V (P ) = S \ L: It is easy to see that

V (P

X

) = V (P ) if and only if X generates the lattice L: 2

In particular, every face of an L-polytope is an L�polytope. For instance, every 2-

dimensional face of an L-polytope is a rectangle or a triangle with no obtuse angles.

Corollary 3.6 Let (X; d) be a hypermetric space and (Y; d) be a subspace of (X; d); i.e.

Y � X: Let P

X

; P

Y

denote the L-polytopes associated, respectively, with (X; d); (Y; d):

Then, V (P

Y

) � V (P

X

) holds.

There are some properties of the hypermetric space (X; d) which are inherited by its

associated L-polytope. This is the case for hypercube or `

1

-embeddability as shown in the

next result. Another such property is the notion of rank and extremality as we will see

later in Section 4.1.

Proposition 3.7 (i) [5] Let (X; d) be a hypermetric space and let P

d

be its associated

L-polytope with set of vertices V (P

d

). Then, (X; d) is isometrically `

1

-embeddable if and

only if P

d

is embedded in a parallepiped, i.e. (V (P

d

); d

(2)

) is isometrically `

1

-embeddable.

(ii) [31] Moreover, if d is rational valued, then (X; d) is `

1

-embeddable if and only if P

d

is

embedded in a hypercube with side length �; the smallest such � is the scale of both spaces

(X; d) and (V (P

d

); d

(2)

).

Proof. (i) From Proposition 2.1, d is `

1

-embeddable if and only if d =

P

1�h�m

�

h

�(S

h

)

for some scalars �

h

> 0, where the S

h

's are subsets of X , for 1 � h � m.
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Set e

0

h

=

p

�

h

e

h

, where e

h

is the h-th unit vector in R

m

, for 1 � h � m. Let L denote

the lattice in R

m

generated by the system of orthogonal vectors (e

0

1

; : : : ; e

0

m

). It is easy

to check that the sphere S with center c =

1

2

P

1�h�m

e

0

h

and radius k c k is empty in

L. For i = 1; : : : ; n, set I

i

= fh 2 f1; : : : ; mg : i 2 S

h

g. So, h 2 I

i

if and only if

i 2 S

h

. Therefore, d(i; j) =

P

1�h�m; jS

h

\fi;jgj=1

�

h

=

P

1�h�m; h2I

i

4I

j

�

h

. From this,

we deduce that the mapping i 2 X 7! v

i

=

P

h2I

i

e

0

h

2 R

m

is a representation of (X; d).

Indeed, d

(2)

(v

i

; v

j

) = (

P

h2I

i

4I

j

e

0

h

)

2

=

P

h2I

i

4I

j

�

h

= d(i; j) holds. This shows that the

L-polytope P

d

associated with (X; d) is embedded in the parallepiped spanned by e

0

h

,

1 � h � m.

(ii) is based on Corollary 2.2. Indeed, if d is rational valued, then, (X; d) is `

1

-embeddable

if and only if (X; �d) is hypercube embeddable for some scalar �. Let � denote the

scale of (X; d), i.e. the smallest such scalar. Let i 2 X 7! w

i

2 f0; 1g

n

be an isomet-

ric embedding of �d into the hypercube, i.e. �d(i; j) = d

1

(w

i

; w

j

) for i; j 2 X . But

d

1

(w

i

; w

j

) = d

(2)

(w

i

; w

j

) because the w

i

's are binary. Hence, they lie on the sphere

S circumscribing the hypercube [0; 1]

n

and S is empty in Z

n

. Therefore, (w

i

; i 2 X)

is also the hypermetric representation of �d, i.e. the L-polytope P

�d

associated with

(X; �d) is embedded in the hypercube [0; 1]

n

. Hence,

1

�

P

�d

is clearly the L-polytope

P

d

associated with (X; d) and, thus, v 2 V (P

d

) 7!

p

�v 2 V (P

�d

) � f0; 1g

n

is an h-

embedding of (V (P

d

); �d

(2)

). � is clearly the scale of (V (P

d

); d

(2)

) since every h-embedding

of (V (P

d

); �d

(2)

) yields an h-embedding of (X;�d). 2

3.2 Polyhedrality of the hypermetric cone

An important application of the connection between hypermetric spaces and L-polytopes

is for proving that the hypermetric cone is polyhedral. Indeed, the hypermetric cone

HYP

n+1

is de�ned by in�nitely many inequalities and it is therefore natural to ask whether

a �nite subset of them su�ces for describing HYP

n+1

. The answer is yes, as shown in the

next Theorem 3.8. Based on the fact that facets of HYP

n+1

correspond to a very special

class of L-polytopes (the repartitioning L-polytopes, see Section 4.2), an upper bound on

the coe�cients of the hypermetric inequalities that de�ne facets of HYP

n+1

is given in

Theorem 4.11.

Theorem 3.8 [32] For any n � 2, the hypermetric cone HYP

n+1

is polyhedral.

Proof. Set X = f0; 1; : : : ; ng and let d be a distance on X . Recall, from relation (10),

that, for b

0

; b

1

; : : : ; b

n

2 Zwith

P

0�i�n

b

i

= 1, d satis�es

P

0�i<j�n+1

b

i

b

j

d(i; j) � 0

(resp. = 0) if and only if its image p = �

0

(d) under the covariance mapping �

0

satis�es

P

1�i;j�n

b

i

b

j

p

ij

�

P

1�i�n

b

i

p

ii

� 0 (resp. = 0).



Hypermetrics in Geometry of Numbers 31

Since the mapping �

0

is bijective linear, the cone HYP

n+1

is polyhedral if and only if

the cone �

0

(HYP

n+1

) polyhedral.

For p 2 �

0

(HYP

n+1

), we de�ne its annullator Ann(p) by

Ann(p) = fb 2Z

n

: b 6= 0; e

1

; : : : ; e

n

and

X

1�i;j�n

b

i

b

j

p

ij

�

X

1�i�n

b

i

p

ii

= 0g

where e

1

; : : : ; e

n

denote the unit vectors in R

n

. Let F (p) denote the smallest face of

�

0

(HYP

n+1

) containing p, i.e.

F (p) = �

0

(HYP

n+1

) \

\

b2Ann(p)

H

b

where H

b

denotes the hyperplane in R

(

n+1

2

)

de�ned by the equation

P

1�i;j�n

b

i

b

j

p

ij

�

P

1�i�n

b

i

p

ii

= 0. Clearly, showing that �

0

(HYP

n+1

) is polyhedral amounts to showing

that the number of its distinct faces is �nite or, equivalently, that the number of distinct

annullators Ann(p), for p 2 �

0

(HYP

n+1

), is �nite.

Let P

d

denote the L-polytope associated with d, let L

d

be the associated lattice and

let i 2 X 7! v

i

2 V (P

d

) be the representation of (X; d) on the sphere S

d

with center c

circumscribing P

d

. We can assume that v

0

= 0; then, L

d

=Z(v

1

; : : : ; v

n

). For v 2 L

d

, set

Z(v) = fb 2Z

n

: v =

X

1�i�n

b

i

v

i

g:

Then, from Proposition 3.4, we obtain that

(�) Ann(p) [ f0; e

1

; : : : ; e

n

g =

[

v2V (P

d

)

Z(v):

Suppose that the polytope P

d

is of type  and let Y



be the integer matrix characterizing

the type , as in Proposition 2.13. From Fact 2.12, there exists a base B in R

k

such that,

if Q

P

d

denotes the matrix whose rows are the vectors v 2 V (P

d

) and if M

B

denotes the

matrix whose rows are the vectors of B, then relation (17) reads

Q

P

d

= Y



M

B

:

Let Q denote the n� k matrix whose rows are the vectors v

i

, 1 � i � n. So, Q may have

repeated rows and every row of Q is a row of Q

P

d

. We have Q = YM

B

; for some integer

matrix Y . If we denote by y

v

, v 2 V (P

d

), the rows of Y



, then the rows of Y are the vectors

y

v

i

for 1 � i � n. Note that the equality v =

P

1�i�n

b

i

v

i

is equivalent to the equality

y

v

=

P

1�i�n

b

i

y

v

i

. Therefore, Z(v) = fb 2 Z

n

: y

v

=

P

1�i�n

b

i

y

v

i

g for each v 2 V (P

d

).

Hence, for v 2 V (P

d

), Z(v) depends only on (y

v

; y

v

1

; : : : ; y

v

n

). Using (*), we deduce that
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Ann(p) is entirely determined by the matrix Y



and the subsystem (y

v

1

; : : : ; y

v

n

) of its

rows. In other words, for each d 2 HYP

n+1

, the annullator Ann(�

0

(d)) is completely

determined by a pair (; �) where  is a type of L-polytopes in R

k

with k � n, and �

is a mapping from f1; : : : ; ng to the set of rows of Y



. Therefore, since the number of

such mappings � is obviously �nite and since the number of types of L-polytopes in given

dimension is �nite (from Theorem 3.8), we deduce that the number of distinct annullators

Ann(�

0

(d)), for d 2 HYP

n+1

, is �nite. 2

3.3 L-polytopes in root lattices

In this section, we group several results on L-polytopes in root lattices.

First, we recall the description of the irreducible root lattices and of their L-polytopes.

We also show that, if P is an L-polytope in a root lattice, then its 1-skeleton is completely

determined by the metric structure of P ; namely, two vertices form an edge of P if and

only if their squared euclidian distance is equal to 2 (see Proposition 3.9).

Then, we see that L-polytopes in root lattices arise in a natural way from hypermetric

spaces that are connected and strongly even (see Proposition 3.10). As a consequense, we

obtain a characterization of the connected strongly even distance spaces that are hyper-

metric, or isometrically `

1

-embeddable (see Theorems 3.12 and 3.13).

Let P be an L-polytope which is generating in a root lattice L. If L is reducible, then

L = L

1

� L

2

where L

1

and L

2

are root lattices. Hence, P = P

1

� P

2

where P

i

is an

L-polytope in L

i

, for i = 1; 2. Therefore, it su�ces to describe the L-polytopes that are

generating in some irreducible root lattice.

The irreducible root lattices have been classi�ed by Witt (see, for instance, [19]). They

are A

n

(n � 0), D

n

(n � 4), and E

n

(n = 6; 7; 8). We recall their description below; we

will consider in more detail the lattices E

6

; E

7

and E

8

in Section 5.2.

For each of the lattices A

n

, D

n

and E

n

, we present some information about its roots

(i.e. its minimal vectors) and about its empty spheres (i.e. its holes). For details, we refer,

for instance, to [19], [23] or [24].

Case of A

n

, n � 0

� A

n

= fx 2Z

n+1

:

P

0�i�n

x

i

= 0g.

� The roots of A

n

are the n(n+1) vectors e

i

� e

j

, 0 � i 6= j � n, where e

i

denote the i-th

unit vector in R

n+1

.

� There are b

n+1

2

c types of empty spheres in A

n

. Their centers are

c

a

= (

a

n+ 1

; : : : ;

a

n+ 1

;�

n+ 1� a

n + 1

; : : : ;�

n+ 1� a

n+ 1

);
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where

a

n+1

is repeated n+1�a times and �

n+1�a

n+1

is repeated a times, with corresponding

radius r

a

=

q

a(n+1�a)

n+1

, for 1 � a � b

n+1

2

c. The case a = b

n+1

2

c corresponds to a deep

hole, i.e. a hole with maximum radius.

� The L-polytope circumscribed by the empty sphere with center c

a

and radius r

a

has for

vertices the following

�

n+1�a

b

�

+

�

a

b

�

vectors (1

b

; 0

n+1�a�b

; 1

b

; 0

a�b

) for 1 � b � a, where

the �rst b ones are chosen among the n+ 1� a positions of the entries

a

n+1

of c

a

and the

last b ones are chosen among the a positions of the entries �

n+1�a

n+1

of c

a

.

Its 1-skeleton is the Johnson graph J(n + 1; a).

Case of D

n

, n � 4

� D

n

= fx 2Z

n

:

P

1�i�n

x

i

2 2Zg.

� The roots of D

n

are the 2n(n� 1) vectors �e

i

� e

j

for 1 � i 6= j � n.

� There are two types of empty spheres in D

n

, namely, an empty sphere S

1

with center

c

1

= (0; : : : ; 0; 1) and radius r

1

= 1, and an empty sphere S

2

with center c

2

= (

1

2

; : : : ;

1

2

)

and radius r

2

=

p

n

2

.

� The L-polytope circumscribed by the sphere S

1

has for vertices the 2n vectors (0; : : : ; 0),

(0; : : : ; 0; 2) and (0; : : : ; 0;�1; 0; : : : ; 0; 1) where the �1 is in one of the �rst n�1 positions.

This is the cross-polytope �

n

whose 1-skeleton is the cocktail-party graph K

n�2

.

� The L-polytope circumscribed by the second sphere S

2

has for vertices the 2

n�1

vectors

x 2 f0; 1g

n

with

P

1�i�n

x

i

2 2Z. This is the half-cube h

n

whose 1-skeleton is the

half-cube graph

1

2

H(n; 2). It corresponds to a deep hole in D

n

.

Note that, for n = 4, �

4

and h

4

are a�nely equivalent.

Case of E

8

� E

8

= fx 2 R

8

: x 2 Z

8

; or x 2 (

1

2

+Z)

8

and

P

1�i�8

x

i

2 2Zg, i.e. E

8

is the lattice

generated by D

8

and

1

2

P

1�i�8

e

i

. E

8

is unimodular, so E

�

8

= E

8

.

� The roots of E

8

are the 240 vectors �e

i

� e

j

and

1

2

(�e

1

� : : :� e

n

), where there is an

even number of minus signs in a root of the second kind.

� There are two types of empty spheres in E

8

, namely, the sphere S

1

with center c

1

= (1; 0

7

)

and radius r

1

= 1, and the sphere S

2

with center c

2

= (

5

6

;

1

6

7

) and radius r

2

=

q

8

9

.

� The L-polytope circumscribed by the sphere S

1

has for vertices the following 16 vectors

(0

8

), (2; 0

7

), (1; 0; : : : ; 0;�1; 0; : : : ; 0), where �1 is in one of the last seven positions. This

is the cross-polytope �

8

whose 1-skeleton is K

8�2

. It corresponds to a deep hole in E

8

.
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� The L-polytope circumscribed by the sphere S

2

has for vertices the following 9 vectors

(0

8

), (

1

2

; : : : ;

1

2

) and (1; 0; : : : ; 0; 1; 0; : : : ; 0), where the second 1 is in one of the last seven

positions. This is the simplex �

8

with 1-skeleton K

9

.

Case of E

7

� The root lattice E

7

consists of the vectors of E

8

that are orthogonal to a given minimal

vector v

0

of E

8

. If we choose v

0

= (

1

2

; : : : ;

1

2

), then E

7

= fx 2 E

8

:

P

1�i�8

x

i

= 0g.

Another choice for v

0

could be v

0

= (1; 1; 0

6

); we will work with this de�nition of E

7

in

Section 5.2 (actually, we shall use there for E

7

the following a�ne translate fx 2 E

8

:

x

T

v

0

= x

1

+ x

2

= 1g).

� There are two types of empty spheres in E

7

, namely, the sphere S

1

with center c

1

=

(

3

4

2

;�

1

4

6

) and radius r

1

=

q

3

2

, and the sphere S

2

with center c

2

= (

7

8

;�

1

8

7

) and radius

r

2

=

q

7

8

.

� The L-polytope circumscribed by the sphere S

1

has for vertices the 56 vectors c

1

�

(

3

4

2

;�

1

4

6

). This is the Gosset polytope 3

21

whose 1-skeleton is the Gosset graph G

56

. It

corresponds to a deep hole in E

7

.

� The L-polytope circumscribed by the sphere S

2

has for vertices the 8 following vectors

(0

8

) and (1; 0; : : : ; 0;�1; 0; : : : ; 0), where -1 is in one of the last seven positions. This is

the 7-dimensional simplex �

7

with 1-skeleton K

8

.

Case of E

6

� The root lattice E

6

consists of the vectors of E

7

that are orthogonal to two nonorthogonal

given minimal vectors v

0

and w

0

of E

8

. If we choose v

0

= (1; 1; 0

6

) and w

0

= (�

1

2

8

), then

E

6

= fx 2 E

8

: x

1

+ x

2

= x

3

+ : : :+ x

8

= 0g. (In Section 5.2, we select di�erently v

0

and

w

0

and we consider an a�ne translate as E

6

.)

� There is only one type of empty sphere in E

6

. Its radius is

q

4

3

and it circumscribes

the L-polytope whose vertices are the following 27 vectors (

1

2

;�

1

2

;

5

6

;�

1

6

5

), (�

1

2

;

1

2

;

5

6

;�

1

6

5

)

where

5

6

is in one of the last six positions, and (0; 0;�

2

3

2

;

1

3

4

) where the two �

2

3

's are in

the last six positions. This is the Schl�ai polytope 2

21

whose 1-skeleton is the Schl�ai

graph G

27

. So the star of E

6

contains only copies of 2

21

and of its image under central

symmetry.

We summarize in Figure 1 below some information about the L-polytopes P arising

in the irreducible root lattices. For each of them, we indicate the square r

2

of its radius

and its 1-skeleton, denoted by H(P ) and called an L-polytope graph.
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lattice L L-polytope P L-polytope graph H(P ) squared radius r

2

A

n

(n � 0) J(n+ 1; t)

t(n+1�t)

n+1

for 1 � t � b

n+1

2

c

D

n

(n � 4) �

n

K

n�2

1

h

n

1

2

H(n; 2) n=4

E

8

�

8

K

9

8=9

�

8

K

8�2

1

E

7

�

7

K

8

7=8

3

21

G

56

3=2

E

6

2

21

G

27

4=3

Figure 1

We group several observations about the graphs J(n; t),

1

2

H(n; 2), K

n�2

, K

n

, the

Schl�ai graph G

27

and the Gosset graph G

56

occurring in Figure 1.

� There are some isomorphisms among them, namely, J(n; 1) = K

n

,

1

2

H(2; 2) = K

2

,

1

2

H(3; 2) = K

4

, K

3�2

= J(4; 2), K

4�2

=

1

2

H(4; 2). Note that J(n; 2) is the line graph

L(K

n

) of K

n

and J(n; 2) is also called the triangular graph denoted by T (n). The half-

cube graph

1

2

H(5; 2) is also called the Clebsch graph.

� J(n; t) is an isometric subgraph of

1

2

H(n; 2) and of J(n+ 1; t),

1

2

H(n; 2) is an isometric

subgraph of

1

2

H(n+ 1; 2), K

n�2

is an isometric subgraph of K

(n+1)�2

. Also, r

1

2

H(5; 2) is

an isometric subgraph of G

27

;

1

2

H(6; 2), K

6�2

, J(8; 2) and rG

27

are isometric subgraphs

of G

56

. In fact, J(5; 2) (resp.

1

2

H(5; 2), G

27

) is the subgraph of

1

2

H(5; 2) (resp. of G

27

,

G

56

) induced by the neighbourhood of one of its nodes.

� J(n; t), K

n�2

(n � 2),

1

2

H(n; 2) are `

1

-graphs, but G

27

, G

56

are not `

1

-graphs.

We consider in the next result an interesting property for an L-polytope P in a root
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lattice. Namely, a geometric feature of P is entirely determined by the metric structure

of P : its 1-skeleton consists of the pairs of vertices at squared distance 2.

Proposition 3.9 [31] Let P be a generating L-polytope in a root lattice. Let G(P ) denote

the graph with set of vertices V (P ) and with edges the pairs (u; v) for which d

(2)

(u; v) = 2,

for u; v 2 V (P ), and let d

G(P )

denote its path metric. Then, d

(2)

(u; v) = 2d

G(P )

(u; v)

holds for all u; v 2 V (P ), i.e. the L-polytope space (V (P ); d

(2)

) coincides with the space

(V (P ); 2d

G(P )

). Moreover, G(P ) coincides with the 1-skeleton H(P ) of P , i.e. two vertices

u; v form an edge of P if and only if d

(2)

(u; v) = 2.

Proof. Let u; v 2 V (P ) such that d

G(P )

(u; v) = 2. Let (u; u

1

; v) be a path in G(P ) from

u to v, i.e. (u� u

1

)

2

= (u

1

� v)

2

= 2 and (u� v)

2

> 2. Observe that

(�) (u

1

� u)

T

(u

1

� v) = 0:

Indeed, (u

1

� u)

T

(u

1

� v) � 0 since any three vertices of P form a triangle with no

obtuse angles. Using relation (14), we obtain that (u

1

� u)

T

(u

1

� v) = 0; 1. Moreover,

(u � v)

2

= 4 � 2(u

1

� u)

T

(u

1

� v) > 2, implying that (u

1

� u)

T

(u

1

� v) = 0 and, thus,

(u� v)

2

= 4.

Consider now u; v 2 V (P ) such that d

G(P )

(u; v) = k � 2. Let (u

0

= u; u

1

; : : : ; u

k

= v)

be a shortest path from u to v in G(P ). Then, u � v =

P

1�i�k

r

i

, where r

i

= u

i

� u

i�1

is a root, i.e. r

2

i

= 2, for 1 � i � k. So this path corresponds to the sequence of roots

(r

1

; : : : ; r

k

). Consider the subpath (u

i�1

; u

i

; u

i+1

). Applying relation (*), we deduce that

r

T

i

r

i+1

= 0 holds. So, any two consecutive roots are orthogonal.

Note that w = u

i�1

+ u

i+1

� u

i

is also a vertex of P since w 2 L and w also lies on

the sphere. Hence, (u

0

; u

1

; : : : ; u

i�1

; w; u

i+1

; : : : ; u

k

) is another shortest path from u to v;

it corresponds to the sequence of roots (r

1

; : : : ; r

i�1

; r

i+1

; r

i

; r

i+2

; : : : ; r

k

). By the above

argument, r

T

i

r

i+2

= (r

i�1

)

T

r

i+1

= 0. After iteration, we obtain that any two roots r

i

,

r

j

, i 6= j, are orthogonal. Therefore, (u � v)

2

=

P

1�i�k

r

2

i

= 2k = 2d

G(P )

(u; v) holds.

Moreover, u� v is the diagonal of the k-cube spanned by r

1

; : : : ; r

k

, whose vertices all are

vertices of P . Therefore, u; v do not form an edge of P .

It is easy to see that, conversely, any two vertices u; v of P with (u� v)

2

= 2 form an

edge of P . 2

We now see that L-polytopes in root lattices arise in a natural way from connected

strongly even hypermetric spaces.

Proposition 3.10 Let (X; d) be a connected distance space with minimum distance d

min

=

2. The following assertions are equivalent.
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(i) (X; d) is of negative type and d takes only even values.

(ii) (X; d) has a representation i 7! v

i

2 R

m

(m � 1) and L = f

P

i2X

b

i

v

i

: b 2

Z

X

and

P

i2X

b

i

= 0g is a root lattice.

Proof. For (i) =) (ii), observe that, since (X; d) is connected, then L is generated by

the set fv

i

� v

j

: i; j 2 X with d(i; j) = d

min

g. Hence, L is generated by a set of vectors v

with v

2

= 2, implying that L is a root lattice.

(ii) =) (i) is obvious. 2

Corollary 3.11 Let (X; d) be a connected strongly even distance space. If (X; d) is

hypermetric with associated L-polytope P

d

generating the lattice L

d

, then L

d

is a root

lattice.

As an application, we have the following two Theorems 3.12 and 3.13 which give a

characterization of the connected strongly even distance spaces which are hypermetric, or

`

1

-embeddable. The application to graphs is formulated in Section 6.1.

Theorem 3.12 [65] Let (X; d) be a connected strongly even distance space. The following

assertions are equivalent.

(i) (X; d) is hypermetric

(ii) (X;

1

2

d) is an isometric subspace of a direct product of half-cube graphs

1

2

H(n; 2) (n �

7), cocktail-party graphs K

n�2

(n � 7), and copies of the Gosset graph G

56

.

Proof. (i) =) (ii) From Corollary 3.11, the L-polytope P

d

associated with (X; d)

is generating in a root lattice. Therefore, from Proposition 3.9, The L-polytope space

(V (P

d

);

d

(2)

2

) coincides with the graphic space (V (P

d

); d

G(P

d

)

) which, using Figure 1, is a

direct product of Johnson graphs, cocktail-party graphs, half-cube graphs, copies of G

27

and G

56

. The result now follows using the remarks formulated after Figure 1.

The converse implication is obvious. 2

Theorem 3.13 ([31]) Let (X; d) be a connected strongly even distance space. The follow-

ing assertions are equivalent.

(i) (X; d) is an `

1

-space

(ii) (X;

1

2

d) is an isometric subspace of a product of half-cube graphs and cocktail-party

graphs.

The proof given in [31] is identical to that of Theorem 3.12, using Proposition 3.7 and

the fact that the graphs G

27

and G

56

are not `

1

-graphs.

In the (main) subcase of graphic spaces, another proof was given earlier in [61]; it is

elementary (it does not use L-polytopes), but longer.
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3.4 On the radius of L-polytopes

We now present several results which give, in some cases, a more precise information on

the radius of L-polytopes.

The �rst result is a partial converse to the implication (iv) =) (v) from Proposition

2.5; it gives explicitely the value of the radius of the spherical representation of a distance

space (X; d) of negative type when

P

i2X

d(i; j) is a constant.

Proposition 3.14 Assume that (X; d) is of negative type and that the sum

P

i2X

d(i; j)

does not depend on j. Then, (X; d) has a spherical representation, on a sphere whose

center is the center of mass of the representation and whose radius r is given by the

following relation

r

2

=

1

2jX j

X

j2X

d(i; j) (18)

Proof. By Proposition 2.3, (X; d) has a representation i 2 X 7! v

i

2 R

n

and, up to

translation, we can suppose that

P

i2X

v

i

= 0. Then, using relation (3), we obtain that

0 = 2v

T

j

(

P

i2X

v

i

) =

P

i2X

(v

2

i

+ v

2

j

� d(i; j))

=

P

i2X

v

2

i

+ jX jv

2

j

�

P

i2X

d(i; j)

which implies that v

2

i

is a constant r

2

determined by r

2

=

1

2jX j

P

i2X

d(i; j). 2

Note that (18) can be reformulated as r

2

=

P

i;j2X

d

ij

2jX j

2

, i.e.

p

2r is the quadratic mean

of the jX j

2

values

p

d

ij

for i; j 2 X .

An example of distance space with constant sum

P

i2X

d(i; j) is (V (G); d

G

), where d

G

is the path metric of a distance regular graph G or of a regular graph G of diameter 2.

The next result is a speci�cation of Proposition 3.14 to hypermetric spaces.

Proposition 3.15 [31] Let (X; d) be a hypermetric space, let P

d

be its associated L-

polytope and let r denote the radius of its circumscribed sphere S

d

. If

P

i2X

d(i; j) does

not depend on j, then the radius r is given by relation (18), namely r

2

=

1

2jX j

P

i2X

d(i; j).

Proof. From Proposition 3.14, we can suppose that X lies on a sphere S with center the

center of mass of X and with radius r given by (18). On the other hand, S

d

is a minimal

dimension sphere containing X . Hence, S

d

� S holds. The a�ne space spanned by S

d

contains X and, thus, its center of mass, i.e. the center of S. Therefore, S and S

d

have

the same radius. 2

The following result is a partial converse to the implication (iii) =) (iv) from Propo-

sition 2.5.
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Proposition 3.16 [31] Let (X; d) be a connected strongly even distance space. Suppose

that (X; d) has a representation on a sphere with radius r such that r

2

< 2. Then, (X; d)

is hypermetric.

Proof. Let (v

i

; i 2 X) be a representation of (X; d) on a sphere S. Up to trans-

lation, we can suppose that v

i

= 0 for some index i 2 X . From Proposition 3.10,

L(X; d) = Z(v

i

; i 2 X) is a root lattice. We show that the sphere S is empty in

L(X; d) which, by Proposition 3.2, implies that (X; d) is hypermetric. Let H be the

a�ne space spanned by fv

i

: i 2 Xg. We can suppose that S lies in H (else replace

S by S \ H). Let ` be the line in R

n+1

orthogonal to H going through the center

of S, and let q be a point on ` such that (q � v

i

)

2

= 2 for all i 2 X . Note that

(q � v)

2

< 2 for each point v lying in the interior of the ball delimited by S. Note

also that (q � v

i

)

T

(q � v

j

) 2 f0;�1; 1g for all i 6= j 2 X . Indeed, (v

i

� v

j

)

2

is even since

(X; d) is strongly even and (v

i

� v

j

)

2

= 4 � 2(q � v

i

)

T

(q � v

j

) � 4r

2

< 8, implying that

(v

i

� v

j

)

2

2 f2; 4; 6g. Therefore, L

0

=Z(q� v

i

: i 2 X) is a root lattice and, in particular,

a

2

� 2 for each a 2 L

0

, a 6= 0. Suppose now that some point v 2 L(X; d) lies in the interior

of the ball delimited by S. Then, (v� q)

2

< 2, yielding a contradiction with the fact that

v � q 2 L

0

. 2

We present now some results on spherical t-extensions of hypermetric spaces. Recall

from relation (7) that (X

0

= X [ fi

0

g; d

0

) is the spherical t-extension of (X; d) if d

0

(i; j) =

d(i; j) for i; j 2 X and d

0

(i; i

0

) = t for i 2 X . Denote d

0

by sph

t

(d) and the iterated

spherical t-extensions of d by sph

m

t

(d).

Lemma 3.17 [48] Let (X; d) be a distance space. Then, sph

t

(d) 2 NEG

n+1

if and only if

(X; d) has a spherical representation with radius r and r

2

� t. Moreover,

(i) If r

2

< t, then sph

t

(d) has a spherical representation with radius R =

t

2

p

t�r

2

.

(ii) If t = r

2

, then sph

t

(d) has no spherical representation.

Proof. If sph

t

(d) 2 NEG

n+1

, then sph

t

(d) has a representation i 2 X

0

7! v

i

with

(v

i

� v

i

0

)

2

= t; hence, the v

i

's (i 2 X) lie on a sphere S

0

with center v

i

0

and radius

p

t.

Let H denote the a�ne space spanned by (v

i

; i 2 X). Therefore, the v

i

's (i 2 X) lie on

the sphere S

d

= S

0

\H whose radius r is less or equal to

p

t.

Conversely, consider a representation (v

i

; i 2 X) of (X; d) on a sphere S

d

with radius

r, r

2

� t. Choose a point v

i

0

on the line orthogonal to the a�ne space H spanned by

(v

i

; i 2 X) and going through the center of S

d

such that v

i

0

is at squared distance t � r

2

from H . Then, (v

i

; i 2 X

0

) is a representation of sph

t

(d), i.e. sph

t

(d) 2 NEG

n+1

.

If r

2

< t, then let S denote the sphere of dimension one higher than that of S

d

, which

contains S

d

and v

i

0

. So, S

d

= S \H and the radius R of S is R =

t

2

p

t�r

2

.
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On the other hand, if r

2

= t, then v

i

0

is the center of S

0

= S

d

and the representation of

sph

t

(d) is not spherical. 2

Next, we study the values of t for which the spherical t-extension of a hypermetric

space remains hypermetric.

Proposition 3.18 [48] Let (X; d) be a hypermetric space and let r denote the radius of

the sphere S

d

circumscribing P

d

.

(i) If t � 2r

2

, then sph

t

(d) is hypermetric, its radius is R =

t

2

p

t�r

2

with t � 2R

2

(and

R � r with equality if and only if t = 2r

2

). Therefore, sph

m

t

(d) is hypermetric for any

integer m � 1.

Moreover, the L-polytope P associated with sph

t

(d) is a pyramid with base P

d

if t > 2r

2

,

or if t = 2r

2

and P

d

is asymmetric, and P is a bipyramid with base P

d

if P

d

is centrally

symmetric.

(ii) If r

2

< t < 2r

2

and if P

d

is centrally symmetric, then sph

t

(d) is not hypermetric.

Proof. We use the notation from the proof of Lemma 3.17.

(i) Let L

d

be the lattice spanned by V (P

d

) and let L denote the lattice generated by L

d

and v

i

0

. So, L consists of layers which are translates of L

d

, the distance between consec-

utive layers being h =

p

t� r

2

. By assumption, t � 2r

2

, implying that h � R =

t

2

p

t�r

2

.

This shows that the sphere S is empty in L. Therefore, sph

t

(d) is hypermetric and its

associated L-polytope P has radius R. If t > 2r

2

, then P is the pyramid with base P

d

and apex v

i

0

. If t = 2r

2

, then one checks easily that the antipode v

�

i

0

of v

i

0

on the sphere

S belongs to L if and only if P

d

is centrally symmetric. Therefore, if P

d

is centrally sym-

metric, then P is the bipyramid with base P

d

and apex v

i

0

and, if P

d

is asymmetric, then

P is the pyramid with base P

d

and apex v

i

0

. Note that t > 2R

2

follows from R =

t

2h

and

h > R.

(ii) Let v 2 V (P

d

) and let v

�

be its antipode on the sphere S

d

. Then, w = v + v

�

� v

i

0

belongs to L and we show that w lies inside S, which implies that sph

t

(d) is not hyper-

metric. We have that (v � v

�

)

2

= 4r

2

, (v � v

i

0

)

2

= (v

�

� v

i

0

)

2

= t, (v � c)

2

= (v

�

� c)

2

=

(v

i

0

� c)

2

= R

2

, from which we deduce that (w � c)

2

= R

2

+ 2t� 4r

2

< R

2

. 2

We present some examples of applications (see [14], [47]).

Example 3. Consider the complete bipartite graph K

1;n

. Its path metric is sph

1

(d),

where d = 2d(K

n

) takes value 2 on all pairs of f1; : : : ; ng. So, d is hypermetric with radius

r =

q

n�1

n

, since it can be represented by the n� 1-simplex with side length 2. Therefore,

by Lemma 3.17, d(K

n;1

) has a spherical representation with radius R =

1

2

p

1�r

2

=

q

n

4

. If

n = 2; 3, then rK

n;1

has a spherical representation; if n = 4, rK

4;1

is of negative type

but not spherical.
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Example 4. Consider the graph K

n

� P

3

, for n � 4. Let d denote the distance on

3 points with two values equal to 2 and one equal to 1. Clearly, d(K

4

� P

3

) = sph

1

(d)

and K

n+1

� P

3

= r(K

n

� P

3

), yielding that d(K

n

� P

3

) = sph

n�3

1

(d). One checks easily

that d is hypermetric with radius r

3

, r

2

3

=

4

7

, and with associated L-polytope �

2

. Set

(r

n+1

)

2

=

1

4(1�r

2

n

)

for n � 3. Then, r

2

4

=

7

12

, r

2

5

=

3

5

, r

2

6

=

5

8

, r

2

7

=

2

3

, r

2

8

=

3

4

, r

2

9

= 1.

From Lemma 3.17, K

n

� P

3

is spherical with radius r

2

n

, for n � 9, but not for n = 10.

From Proposition 3.16 applied to 2d(K

n

� P

3

), we obtain that K

n

� P

3

is hypermetric

for n � 8. It is known that the L-polytope associated with 2d(K

7

� P

3

) is the Schl�ai

polytope 2

21

and that the L-poytope associated with 2d(K

8

� P

3

) is the Gosset polytope

3

21

(see Section 5.2). From Proposition 3.18 (ii), K

9

� P

3

is not hypermetric since 3

21

is

centrally symmetric and r

2

8

< t = 1 < 2r

2

8

. Note that K

n

� P

3

for n � 6 is an `

1

-graph.

We conclude this section with an additional observation on the spherical t-extension

operation. Let (X; d) be a distance space with jX j = n and consider the spherical t-

extension sph

t

(d) of d. Proposition 3.18 (i) can be rephrased as follows.

(i) Suppose d 2 HYP

n

. Then, sph

m

t

(d) 2 HYP

n+m

for all m � 1 if t �

1

2

(diam(P

d

))

2

,

where diam(P

d

) denotes the diameter of the sphere circumscribing the L-polytope P

d

associated with d; moreover, we have an \if and only if" statement if P

d

is centrally

symmetric.

Compare (i) above with the following two assertions (ii) and (iii) that deal, respec-

tively, with the case when the spherical t-extension is a semimetric, or is isometrically

`

1

-embeddable.

(ii) Suppose d 2 MET

n

. Then, sph

m

t

(d) 2 MET

n+m

for all m � 1 if and only if t �

1

2

max(d

ij

: i; j 2 X).

(iii) Suppose d 2 CUT

n

. Then, sph

m

t

(d) 2 CUT

n+m

if t �

1

2

s(d), where s(d) denotes the

minimum size

P

S

�

S

of a realization of d as d =

P

S

�

S

�(S) with �

S

� 0.

Indeed, if d =

P

S

�

S

�(S) with

P

S

�

S

= s(d) � 2t, then sph

t

(d) =

1

2

(

P

S

�

S

�(S) +

P

S

�

S

�(S [ fi

0

g) + (2t � s(d))�(fi

0

g)) has a realization of size t +

s(d)

2

(i

0

denoting the

extension point).

Observe also that, in (i), the limit value when m goes to in�nity of (diam(P

sph

m

t

(d)

))

2

is equal to 2t. Similarly, in (iii), the limit value when m goes to in�nity of s(sph

m

t

(d)) is

equal to 2t.

Example 5. Let d = d(K

n

), i.e. d

ij

= 1 for all distinct i; j; d is hypermetric with radius

q

n�1

2n

(see Example 3). Then, sph

t

(d) 2 NEG

n+1

if and only if t �

n�1

2n

(by Lemma 3.17

(i)) and it is easy to see that sph

t

(d) 2 MET

n+1

(or CUT

n+1

, or HYP

n+1

) if and only if

t �

1

2

.
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Example 6. Let d = d(K

n�2

). Since K

n�2

is the 1-skeleton of the cross-polytope �

n

, d is

hypermetric with radius

1

p

2

(see Figure 1 and Proposition 3.9), i.e. the squared diameter

of the L-polytope P

d

is equal to 2. The minimum size s(d) of a realization of d in CUT

2n

is also equal to 2. It is easy to see that, for each integer m � 1, sph

m

t

(d) 2 MET

n+m

(or

CUT

n+m

, or HYP

n+m

) if and only if t � 1.

4 L-polytopes: rank and hypermetric faces

There is a natural notion of rank for hypermetric spaces. Namely, if (X; d) is a hypermetric

space, then its rank rk(X; d) is the dimension of the smallest face of the cone HYP(X)

that contains d. The extremal cases when the rank is equal to 1, or the corank is equal to

1, correspond, respectively, to extreme rays and facets of the hypermetric cone.

Correspondingly, we de�ne the rank rk(P ) of an L-polytope P as the rank of its L-

polytope space (V (P ); d

(2)

). L-polytopes of rank 1 are called extreme; they are associated

to hypermetrics lying on an extreme ray of the hypermetric cone.

Extreme L-polytopes have a highly rigid geometric structure; indeed, their only a�ne

transforms which are still L-polytopes are their homothetic transforms (see Corollary 4.9).

The �rst example of an extreme L-polytope is the segment �

1

, associated with the cut

semimetrics. Other examples are known, as the Schl�ai polytope 2

21

, the Gosset polytope

3

21

constructed from the root lattice E

8

and some others constructed from the Leech

lattice �

24

and the Barnes-Wall lattice �

16

; they are described in the next Section 5.

L-polytopes of corank 1, which correspond to facets of the hypermetric cone, are well

understood; they are the repartitioning polytopes considered by Voronoi, described in

Section 4.2. Based on this connection, an upper bound on the coe�cients of hypermetric

facets is given in Theorem 4.11.

We study several properties for the notion of rank of an L-polytope, in particular, in

Section 4.1, including

� its invariance; namely, for each generating subset V of the set of vertices of P , the rank

of the space (V; d

(2)

) is equal to the rank of P (see Theorem 4.5),

� its additivity; namely, the rank of the direct product of two L-polytopes is equal to the

sum of their ranks (see Proposition 4.6).

We present in Section 4.3 some bounds for the rank of an L-polytope in terms of its

number of vertices (see Proposition 4.15). We also investigate in detail in Section 4.2 the

links between faces of the hypermetric cone and their associated L-polytopes.



Hypermetrics in Geometry of Numbers 43

4.1 Rank of an L-polytope

Let (X; d) be a hypermetric space, i.e. d 2 HYP(X). We de�ne its annullator Ann(X; d)

by

Ann(X; d) = fb 2Z

X

: b 6= e

i

; i 2 X;

X

i2X

b

i

= 1;

X

i;j2X

b

i

b

j

d(i; j) = 0g:

(This notion was already used in the proof of Theorem 3.8.) The system S(X; d) consists

of the equations

P

i;j2X

b

i

b

j

x(i; j) = 0 for b 2 Ann(X; d), i.e. S(X; d) consists of the

hypermetric equalities satis�ed by d. Let F (X; d) (or F (d)) denote the smallest (by

inclusion) face of the hypermetric cone HYP(X) that contains d. Hence,

F (X; d) = HYP(X)\

\

b2Ann(X;d)

H

b

;

where H

b

denotes the hyperplane in R

(

jXj

2

)

de�ned by the equation

P

i;j2X

b

i

b

j

d(i; j) = 0.

The dimension of F (X; d) is equal to the rank of the solution set to the system S(X; d).

Definition 4.1 (i)The rank rk(X; d) of a hypermetric space (X; d) is de�ned as the

dimension of the smallest face F (X; d) of HYP(X) that contains d. Its corank is de�ned

as

�

jX j

2

�

� rk(X; d).

(ii) The rank rk(P ) of an L-polytope P is de�ned as the rank of the L-polytope space

(V (P ); d

(2)

), i.e. rk(P ) = rk(V (P ); d

(2)

). An L-polytope of rank 1 is called extreme.

Hence, rk(X; d) = 1 if d lies on an extreme ray of the hypermetric cone; rk(X; d) =

�

jX j

2

�

if d lies in the interior of HYP(X), i.e. F (X; d) = HYP(X), and rk(X; d) =

�

jX j

2

�

� 1 if

F (X; d) is a facet of HYP(X).

In fact, the rank of a hypermetric space is an invariant of its associated L-polytope,

namely, rk(X; d) = rk(P

d

) holds.

We �rst observe that a hypermatric space and any 0-lifting of it have the same rank.

This means that we may consider only metrics rather than semimetrics.

Lemma 4.2 Let (X

0

; d

0

) be a 0-lifting of the hypermetric space (X; d). Then,

rk(X

0

; d

0

) = rk(X; d).

Proof. We take the notation of relation (8). We have to show that the solution sets

of the systems S(X; d) and S(X

0

; d

0

) have the same rank. Since S(X; d) is a subsystem

of S(X

0

; d

0

), it su�ces to check that, in the system S(X

0

; d

0

), each additional variable

x(i; j

0

), for i 2 X , can be expressed in terms of the variables x(i; j), for i; j 2 X . In-

deed, since d(i

0

; j

0

) = 0, the triangle equalities x(i

0

; i) � x(j

0

; i) � x(i

0

; j

0

) = 0 and
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x(j

0

; i) � x(i

0

; i) � x(i

0

; j

0

) = 0 belong to S(X

0

; d

0

). This implies that the equality

x(j

0

; i) = x(i

0

; i), for i 2 X , follows from S(X

0

; d

0

). 2

An immediate consequence of Lemma 4.2 is that rk(X; d) = rk(V

X

; d) holds, if V

X

is

the set of vertices of P

d

representing (X; d). In fact, rk(V; d

(2)

) = rk(P ) holds for each

generating subset V of V (P ), as shown in Theorem 4.5, implying that rk(X; d) = rk(P

d

).

Let P � R

k

be a k-dimensional L-polytope with set of vertices V (P ) and let V � V (P )

be a generating subset of V (P ).

For w 2 V (P ), every a 2 Z

V

such that w =

P

v2V

a

v

v and

P

v2V

a

v

= 1 is called an

a�ne realization of w in the set V .

From Proposition 3.4, we have that, for b 2Z

V

with

P

v2V

b

v

= 1,

b 2 Ann(V; d

(2)

) if and only if

X

v2V

b

v

v 2 V (P ):

In other words, there is a one-to-one correspondence between

- the equations of S(V; d

(2)

) and

- the a�ne realizations of the vertices of P in the set V .

In particular, if B is a basic set in V (P ), then each vertex has a unique a�ne realization

in the set B and, therefore, S(B; d

(2)

) is a system of jV (P )�Bj = jV (P )j�k�1 equations

in

�

k+1

2

�

variables. We deduce that

 

k + 2

2

!

� jV (P )j � rk(B; d

(2)

) �

 

k + 1

2

!

: (19)

Lemma 4.3 Let V be a generating subset of V (P ) and let c 2 Z

V

such that

P

v2V

c

v

= 0

and

P

v2V

c

v

v = 0. then, the folllowing equations

X

v2V

c

v

x(u; v) = 0 for u 2 V (20)

X

u;v2V

c

u

c

v

x(u; v) = 0 (21)

are implied by the system S(V; d

(2)

).

Proof. Take u 2 V . Set c

0

u

= c

u

+ 1, c

0

v

= c

v

for v 2 V , v 6= u. Then, c

0

is an

a�ne realization of u in V , implying that the equation

P

v;w2V

c

0

u

c

0

w

x(v; w) = 0 belongs

to S(V; d

(2)

). It can be rewritten as

(�)

X

v;w2V

c

v

c

w

x(v; w) + 2

X

v2V

c

v

x(u; v) = 0:
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By multiplying (*) by c

u

and summing over u 2 V , we obtain the equation from (21).

Then, (20) follows. 2

Let S

0

(V; d

(2)

) denote the system consisting of the equations (20) and (21) together

with the hypermetric equations

P

u;v2V

a

w

u

a

w

v

x(u; v) = 0 where, for w 2 V (P ), a

w

is a

given a�ne realization of w in the set V .

Lemma 4.4 The systems S(V; d

(2)

) and S

0

(V; d

(2)

) have the same solutions.

Proof. It remains only to show that each equation of S(V; d

(2)

) follows from the system

S

0

(V; d

(2)

). For w 2 V (P ), let b be another a�ne realization of w in V . Then, we can

apply (21) to a

w

� b, yielding that

P

u;v2V

(a

w

u

� b

u

)(a

w

v

� b

v

)x(u; v) = 0, i.e.

(�)

X

u;v2V

a

w

u

a

w

v

x(u; v)� 2

X

u;v2V

a

w

u

b

v

x(u; v) +

X

u;v2V

b

u

b

v

x(u; v) = 0:

The �rst term is equal to 0 since it is corresponds to an equation of S

0

(V; d

(2)

). From (20),

we have that, for u 2 V ,

P

v2V

a

w

v

x(u; v) =

P

v2V

b

v

x(u; v) and, thus, the second term of

(*) is equal to �2

P

u;v2V

a

w

u

a

w

v

x(u; v) = 0. Hence, the equation

P

u;v2V

b

u

b

v

x(u; v) = 0

follows from S

0

(V; d

(2)

). 2

Theorem 4.5 [33] Let V be a generating subset of V (P ). Then, rk(V; d

(2)

) = rk(V (P ); d

(2)

)

holds.

Proof. We show that the solution sets to the systems S(V; d

(2)

) and S(V (P ); d

(2)

) have

the same rank. Since S(V; d

(2)

) is a subsystem of S(V (P ); d

(2)

), it su�ces to check that

each variable x(u; w), for u 2 V; w 2 V (P ) � V , or u; w 2 V (P )� V , can be expressed in

terms of the variables x(u; v), for u; v 2 V .

Let w;w

0

2 V (P )�V and let a; a

0

denote a�ne realizations of w;w

0

in V , respectively.

We show that the following equations (22) and (23) are implied by S(V (P ); d

(2)

).

x(w; u) =

X

v2V

a

v

x(u; v) for u 2 V (22)

x(w;w

0

) =

X

u;v2V

a

u

a

0

v

x(u; v) (23)

For this, set b

w

= �1, b

v

= a

v

for v 2 V and b

v

= 0 for v 2 V (P )� (V [ fwg), b

0

w

0

= �1,

b

0

v

= a

0

v

for v 2 V and b

0

v

= 0 for v 2 V (P )� (V [ fw

0

g). We can apply Lemma 4.3. From
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(20), we obtain that, for u 2 V ,

P

v2V (P )

b

v

x(u; v) = 0, i.e.

�x(u; w) +

P

v2V

a

v

x(u; v) = 0, thus stating (22). We now apply (21) for b; b

0

and b+ b

0

.

We obtain that

P

u;v2V (P )

b

u

b

v

x(u; v) = 0,

P

u;v2V (P )

b

0

u

b

0

v

x(u; v) = 0 and

P

u;v2V (P )

(b

u

+b

0

u

)(b

v

+b

0

v

)x(u; v) = 0, from which we deduce that

P

u;v2V (P )

b

u

b

0

v

x(u; v) =

0. Expressing b

0

in terms of a

0

, we obtain that

�

P

u2V (P )

b

u

x(u; w) +

P

u2V (P ); v2V

b

u

a

0

v

x(u; v) = 0, where the �rst term is 0 by (20).

Then, expressing b in terms of a, we obtain that �

P

v2V

a

0

v

x(w; v)+

P

u;v2V

a

u

a

0

v

x(u; v) =

0, where the �rst term is equal to x(w;w

0

) by (20). This concludes the proof. 2

We conclude this section with an additivity property of the rank of an L-polytope.

Proposition 4.6 [33] Let P

1

and P

2

be L-polytopes; then, their direct product

P

1

� P

2

is an L-polytope with rank rk(P

1

� P

2

) = rk(P

1

) + rk(P

2

).

Proof. Let V

i

denote the set of vertices of P

i

, i = 1; 2; so, V = V

1

� V

2

is the set of

vertices of P

1

� P

2

. Fix b

1

2 V

1

and b

2

2 V

2

. Let S

1

denote the subsystem of S(V; d

(2)

)

consisting of the equations involving only the variables x((u

1

; b

2

); (v

1

; b

2

)) for u

1

; v

1

2 V

1

.

Similarly, S

2

is the subsystem of S(V; d

(2)

) involving only the variables x((b

1

; u

2

); (b

1

; v

2

))

for u

2

; v

2

2 V

2

. Clearly, the rank of the solution set to the system S

i

is equal to rk(P

i

),

for i = 1; 2. In order to conclude that rk(P ) = rk(P

1

) + rk(P

2

), it su�ces to show that

the variables x((u

1

; u

2

); (v

1

; v

2

)), for (u

1

; u

2

); (v

1

; v

2

) 2 V � ((V

1

� fb

2

g) [ (fb

1

g � V

2

)),

can be expressed in terms of the variables x((b

1

; u

2

); (b

1

; v

2

)) and x((u

1

; b

2

); (v

1

; b

2

)), for

u

1

; v

1

2 V

1

, u

2

; v

2

2 V

2

. We show that the following relation (*) holds.

(�) x((u

1

; u

2

); (v

1

; v

2

)) = x((b

1

; u

2

); (b

1

; v

2

)) + x((u

1

; b

2

); (v

1

; b

2

))

for u

1

; v

1

2 V

1

; u

2

; v

2

2 V

2

.

From the identity (u

1

; u

2

) = (v

1

; v

2

) + (b

1

; u

2

) + (u

1

; b

2

) � (v

1

; b

2

) � (b

1

; v

2

), we have

the following equation of S(V (P ); d

(2)

)

(a) 0 = x((b

1

; v

2

); (v

1

; b

2

)) + x((v

1

; v

2

); (b

1

; u

2

)) + x((v

1

; v

2

); (u

1

; b

2

))

+x((b

1

; u

2

); (u

1

; b

2

))�

X

(s

1

;s

2

)=(v

1

;v

2

);(b

1

;u

2

);(u

1

;b

2

)

(t

1

;t

2

)=(b

1

;v

2

);(v

1

;b

2

)

x((s

1

; s

2

); (t

1

; t

2

)):

Moreover, the a�ne dependency (v

1

; v

2

)+(b

1

; u

2

)+(u

1

; b

2

)�(v

1

; b

2

)�(b

1

; v

2

)�(u

1

; u

2

) = 0

yields the equation

(b) 0 = x((v

1

; v

2

); (b

1

; u

2

)) + x((v

1

; v

2

); (u

1

; b

2

)) + x((b

1

; u

2

); (u

1

; b

2

))

+x((b

1

; v

2

); (v

1

; b

2

)) + x((u

1

; u

2

); (b

1

; v

2

)) + x((u

1

; u

2

); (v

1

; b

2

))

�

X

(s

1

;s

2

)=(v

1

;v

2

);(b

1

;u

2

);(u

1

;b

2

)

(t

1

;t

2

)=(u

1

;u

2

);(b

1

;v

2

);(v

1

;b

2

)

x((s

1

; s

2

); (t

1

; t

2

)):

Substracting (a) from (b) yields
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(c) 0 = x((u

1

; u

2

); (b

1

; v

2

)) + x((u

1

; u

2

); (v

1

; b

2

))� x((u

1

; u

2

); (b

1

; u

2

))

�x((u

1

; u

2

); (u

1

; b

2

))� x((u

1

; u

2

); (v

1

; v

2

)):

The next two hypermetric equations follow, respectively, from the identities: (v

1

; u

2

) =

(u

1

; u

2

) + (v

1

; b

2

)� (u

1

; b

2

) and (u

1

; v

2

) = (u

1

; u

2

) + (b

1

; v

2

)� (b

1

; u

2

):

(d) x((u

1

; u

2

); (u

1

; b

2

)) + x((u

1

; b

2

); (v

1

; b

2

))� x((u

1

; u

2

); (v

1

; b

2

)) = 0

(e) x((u

1

; u

2

); (b

1

; u

2

)) + x((b

1

; v

2

); (b

1

; u

2

))� x((u

1

; u

2

); (b

1

; v

2

)) = 0:

Using (c), (d) and (e), we deduce the relation (*). 2

For instance, rk(

k

) = k since 

k

is the direct product (

1

)

k

and rk(

1

) = 1.

4.2 L-polytopes related to faces

We show that hypermetrics that lie in the interior of the same face of the hypermetric

cone are associated with a�nely equivalent L-polytopes. Therefore, one can speak of the

L-polytope associated with a face of the hypermetric cone.

Let T be an a�ne bijection of R

k

. We set

d

T

(u; v) = (T (u)� T (v))

2

for u; v 2 R

k

:

Proposition 4.7 [33] Let P � R

k

be an L-polytope and let V be a generating subset of

V (P ). Let T be an a�ne bijection of R

k

. Let F denote the smallest face of the hypermetric

cone HYP(V ) that contains (V; d

(2)

).

(i) If T (P ) is an L-polytope, then d

T

lies in the interior of F , i.e. F (d

T

) = F .

(ii) If d lies in the interior of F , then the L-polytope P

d

associated with d is a�nely

equivalent to P .

Proof. (i) Let r denote the radius of the L-polytope T (P ). We suppose that T (P ) is

centered at the origin. We show that d

T

satis�es the system S(V; d

(2)

). Let a 2Z

V

be an

a�ne realization of w 2 V (P ). Then, T (w) =

P

v2V

a

v

T (v) is a vertex of T (P ). Therefore,

P

u;v2V

a

u

a

v

d

T

(u; v) =

P

u;v2V

a

u

a

v

(T (u)� T (v))

2

=

P

u;v2V

a

u

a

v

(2r

2

� 2T (u)

T

T (v)) =

2r

2

� 2(

P

v2V

a

v

T (v))

2

= 0.

(ii) Let P

d

be the L-polytope associated with d and let T : V �! V (P

d

) be a generating

mapping such that d(u; v) = (T (u)� T (v))

2

for u; v 2 V . The mapping T is one-to-one

since d(u; v) 6= 0 for u 6= v 2 V . We show that T can be extended to an a�ne bijective

mapping of the space spanned by V , mapping V (P ) to V (P

d

).

First, we verify that T preserves the a�ne dependencies on V , i.e., for c 2 Z

V

with

P

v2V

c

v

= 0,

P

v2V

c

v

v = 0 holds if and only if

P

v2V

c

v

T (v) = 0 holds. Since the vectors



48 M. Deza, V.P. Grishukhin and M. Laurent

v; v 2 V , lie on a sphere, we have that

(�)

X

u;v2V

c

u

c

v

d

(2)

(u; v) =

X

u;v2V

c

u

c

v

(u� v)

2

= �2

 

X

v2V

c

v

v)

2

!

:

For the same reason,

(��)

X

u;v2V

c

u

c

v

d(u; v) =

X

u;v2V

(T (u)� T (v))

2

= �2

 

X

v2V

c

v

T (v)

!

2

:

By assumption, F (d) = F , i.e. the systems S

0

(V; d) and S

0

(V; d

(2)

) have the same sets

of solutions (using Lemma 4.4). This implies that the quantities in (*) and (**) are

simultaneously equal to zero, i.e.

P

v2V

c

v

v = 0 if and only if

P

v2V

c

v

T (v) = 0.

We now check that, for b 2 Z

V

with

P

v2V

b

v

= 1,

P

v2V

b

v

v is a vertex of P if and

only if

P

v2V

b

v

T (v) is a vertex of P

d

. But, by Proposition 3.4,

P

v2V

b

v

v 2 V (P ) if and

only if d

(2)

satis�es the equation

P

u;v2V

b

u

b

v

x(u; v) = 0 and

P

v2V

b

v

T (v) 2 V (P

d

) if and

only if d satis�es the same equation.

Therefore, we can extend T to the space spanned by V by setting T (

P

v2V

b

v

v) =

P

v2V

b

v

T (v); T is a�ne bijective and maps P on P

d

. 2

Corollary 4.8 Let (X; d) and (X; d

0

) be two hypermetric spaces with associated L-

polytopes P

d

and P

d

0

. Let F (d), F (d

0

) denote the smallest face of HYP(X) that contains

d, d

0

, respectively. Then, F (d) = F (d

0

) if and only if P

d

and P

d

0

are a�nely equivalent.

Corollary 4.9 Let P be an L-polytope in R

k

. Then, P is extreme if and only if the

only a�ne bijective transformations T of R

k

for which T (P ) is an L-polytope are the

homotheties.

Proof. Suppose �rst that rk(P ) = 1, i.e. (V (P ); d

(2)

) lies on an extreme ray of

HYP(V (P )). Assume that T (P ) is an L-polytope. By Proposition 4.7 (i), d

T

= �

2

d

(2)

for

some scalar �. hence, (T (u)� T (v))

2

= �

2

(u � v)

2

for all u; v 2 V (P ). It is not di�cult

to see that, up to translation, �

�1

T is an orthogonal transformation.

(ii) Let d 2 HYP(V (P )) with F (d) = F (d

(2)

). By Proposition 4.7 (ii), the L-polytope P

d

associated to d is of the form �P , where � > 0, implying that d = �

2

d

(2)

. This shows that

(V (P ); d

(2)

) lies on an extreme ray of HYP(V (P )), i.e. rk(P ) = 1. 2

We now describe the L-polytopes which are associated with facets of the hypermetric

cone.
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Let Sim

1

, Sim

2

be two simplices lying in a�ne spaces that intersect in one point which

belongs to Sim

1

and Sim

2

. Then, their convex hull P = conv(Sim

1

[ Sim

2

) is called a

repartitioning polytope. This polytope was studied by Voronoi ([66]). There is only

one a�ne dependency among the vertices of Sim

1

and Sim

2

:

X

v2V

1

b

v

v =

X

v2V

2

b

v

v;

where

P

v2V

1

b

v

=

P

v2V

2

b

v

= 1, b

v

� 0 for v 2 V

1

[ V

2

and V

i

denotes the set of vertices

of Sim

i

, i = 1; 2. Set V

0

= fv 2 V

1

[ V

2

: b

v

= 0g. Then, P

1

= conv(V

1

[ V

2

� V

0

) is also

a repartitioning polytope, with the same a�ne dependency between its vertices as P and

P = �

v2V

0

Pyr

v

(P

1

). We denote the repartitioning polytope P by P

m

p;q

, where m = jV

0

j,

p+ 1 = jV

1

� V

0

j and q +1 = jV

2

�V

0

j. Hence, P

m

p;q

has m+ p+ q+ 2 vertices (if p; q � 1)

and its dimension is m+ p + q. Note that P

m

p;q

does not denote a concrete polytope, but

a class of a�nely equivalent repartitioning polytopes.

We now show that the L-polytope associated with a facet is a repartitioning polytope.

Let d 2 HYP(X) and suppose that d lies in the interior of the facet de�ned by the equation

X

i;j2X

b

i

b

j

x(i; j) = 0; (24)

where b 2Z

X

and

P

i2X

b

i

= 1. Hence, (24) is the only hypermetric equality satis�ed by

d. In particular, d(i; j) > 0 for distinct i; j; else, d would satisfy the 2(jX j � 2) triangle

equalities d(i; k)� d(i; j)� d(j; k) = 0 and d(j; k)� d(i; j)� d(i; k) = 0 for k 2 X � fi; jg.

Proposition 4.10 [33] Let P

d

be the L-polytope associated with d lying in the interior of

the facet de�ned by (24). Then, P

d

is basic and P

d

is a repartitioning polytope P

m

p;q

where

m = jfi : b

i

= 0gj, p+ 1 = jfi : b

i

> 0gj and q = jfi : b

i

< 0gj:

Proof. Let (v

i

; i 2 X) denote the representation of d on V (P

d

). From Proposition 3.4,

the equality (24) is equivalent to the point

v

0

=

X

i2X

b

i

v

i

(25)

being a vertex of P

d

. From Proposition 3.4 and the fact that (24) is the only hypermetric

equality satis�ed by d, we deduce that v

0

62 fv

i

: i 2 Xg, V (P

d

) = fv

i

: i 2 Xg [ fv

0

g

and the set fv

i

: i 2 Xg is a�nely independent. Hence, P

d

has jX j + 1 vertices and

P

v2V (P

d

)

b

v

v = 0 is the only a�ne dependency between the vertices of P

d

, after setting
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b

v

= b

i

if v = v

i

for i 2 X and b

v

= �1 if v = v

0

. Set V

0

= fv 2 V (P

d

) : b

v

= 0g,

V

+

= fv 2 V (P

d

) : b

v

> 0g, V

�

= fv 2 V (P

d

) : b

v

< 0g, m = jV

0

j, p + 1 = jV

+

j

and q + 1 = jV

�

j. Then, P

1

= conv(V

+

[ V

�

) is a repartitioning polytope P

0

p;q

and

P

d

= �

v2V

0

Pyr

v

(P

1

) is a repartitioning polytope P

m

p;q

. 2

As we see in the next Example 7, there exist distinct hypermetric facets for with the

b

i

's have the same numbers of positive and negative components; hence, they correspond

to repartitioning polytopes with the same parameters p and q. For this reason, we denote

the repartitioning polytope associated with the hypermetric facet (24) by P

m

p;q

(b).

Note that the matrix Y



characterizing the type of the repartitioning polytope P

m

p;q

(b)

is of the form

h

I

n

b

1

:::b

n

i

(recall Fact 2.12).

Example 7. Let (24) be a triangle equality, i.e. b

1

= b

2

= 1; b

3

= �1 and b

i

= 0

otherwise. Then (25) reads v

0

= v

1

+ v

2

� v

3

and V

+

= fv

1

; v

2

g, V

�

= fv

3

; v

0

g. Therefore,

the L-polytope associated with a triangle facet is P

0

1;1

or, more precisely, P

0

1;1

(1; 1;�1), a

rectangle whose diagonals are the segments [v

1

; v

2

] and [v

0

; v

3

].

Let (24) be a pentagonal facet, i.e. b

1

= b

2

= b

3

= 1, b

4

= b

5

= �1 and b

i

= 0 otherwise.

Then, (25) reads v

0

= v

1

+ v

2

+ v

3

� v

4

� v

5

. Therefore, the L-polytope associated with

the pentagonal facet is P

0

2;2

or, more precisely, P

0

2;2

(1; 1; 1;�1;�1), the convex hull of two

intersecting triangles.

We give two examples of distinct hypermetric facets for which the associated repartitioning

polytopes have the same parameters p; q. Set b

1

= (2; 2; 2; 1; 1; 1;�2;�2;�2;

�1;�1) and b

2

= (1; 1; 1; 1; 1; 1;�1;�1;�1;�1;�1). Then, (24) de�nes a facet for both

b

1

and b

2

; both are associated with a repartitioning polytope with parameters p = q = 5

(with, of course, distinct a�ne dependency (25) between their vertices).

We can now derive an upper bound for the largest coe�cients of hypermetric facets.

Set

b

n

max

= max

1�i�n

(jb

i

j : b 2Z

n

;

P

1�i�n

b

i

= 1;

P

1�i<j�n

b

i

b

j

x(i; j)� 0 de�nes a facet of HYP

n

):

Theorem 4.11 [13] For n � 4, b

n

max

<

2

n�2

(n�1)!

n+1

.

Proof. Let P denote the L-polytope associated with a hypermetric facet

P

1�i<j�n

b

i

b

j

x(i; j) = 0. Let L denote the lattice generated by V (P ). From Proposition

4.10, P is a repartitioning polytope of dimension n � 1, with n + 1 vertices v

0

; v

1

; : : : ; v

n

where v

0

=

P

1�i�n

b

i

v

i

is the unique a�ne dependency among them.

We consider the (n+1)�n matrixM whose rows are the vectors (1; v

i

) for i = 0; 1; : : : ; n.

Let M

i

denote the n� n matrix obtained from M by deleting its i-th row. We have that
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jdet(M

0

)j = det(L) since (v

1

; : : : ; v

n

) is an a�ne base of L, and jdet(M

i

)j = jb

i

jdet(L) for

i = 1; : : : ; n. Let Sim

i

denote the (n � 1)-simplex whose vertices are (1; v

0

) and (1; v

j

)

for 1 � j � n, j 6= i, and let Q

i

denote the parallepiped spanned by these vectors. Then,

vol(Sim

i

) =

vol(Q

i

)

(n�1)!

. But, vol(Q

i

) = jdet(M

i

)j and vol(Sim

i

) � vol(P ), since Sim

i

is con-

tained in an a�ne translate of P . Therefore,

jb

i

jdet(L)

(n�1)!

� vol(P ) with vol(P ) �

2

n�1

det(L)

2(n+1)

by Proposition 2.9. This implies that jb

i

j �

2

n�2

(n�1)!

n+1

. 2

As a consequence of Theorem 4.11, we obtain that the hypermetric cone HYP

n

has

at most 2

(n�1)

2

�

(n�1)!

n+1

�

n�1

facets ([13]). This shows again that the hypermetric cone is

polyhedral. Actually, the proof of Theorem 4.11 is a re�nement of that of Theorem 3.8. It

takes advantage of the fact that L-polytopes associated with facets, namely repartitioning

polytopes, have a much simpler structure than the L-polytopes of arbitrary faces.

Remark 4.12 [13] As a consequence of Theorem 4.11, we obtain that testing whether a

given distance d is hypermetric is in co-NP. It is not known whether testing hypermetricity

is NP-hard. But the following complexity results are known.

(i) Given an integral distance d and an integer m, does d satisfy all (2m + 1)-gonal hy-

permetric inequalities ? This problem is in co-NP.

(ii) Given an integral distance d. Is d hypermetric ? If not, give the smallest k such that

d violates a (2k + 1)-gonal inequality. This problem is NP-hard.

We conclude this section with an observation on L-polytopes with small corank. We

recall that we do not know any example of a non basic L-polytope. We conjecture that

every L-polytope is basic. This is indeed the case for simplices and repartitioning poly-

topes, i.e. for L-polytopes associated with hypermetrics with corank 0 and 1. We extend

this fact to the case of hypermetrics with corank 2 and 3.

Proposition 4.13 Let P be a k-dimensional L-polytope and let V be a generating subset

of V (P ). If the hypermetric space (V; d

(2)

) has corank

�

jV j

2

�

� rk(V; d

(2)

) � 3, then P is

basic.

Proof. We show that V is a�nely independent, which implies that P is basic. Suppose,

for contradiction, that

P

v2C

b

v

v = 0 is an a�ne dependency with C � V and b

v

6= 0

for v 2 C. By Lemma 4.3, the equations

P

v2C

b

v

x(u; v) = 0, for u 2 V , follow from the

system S(V; d

(2)

). One can check that the matrix of the subsystem

P

v2C

b

v

x(u; v) = 0,

for u 2 C, has full rank jCj. Since the corank of (V; d

(2)

) is equal to the rank of the matrix

of the system S(V; d

(2)

), we deduce that corank(V; d

(2)

) � jCj, implying that jCj � 3.

Hence, C = fv

1

; v

2

; v

3

g and, for instance, v

3

belongs to the segment [v

1

; v

2

]. So we have a
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triangle with an obtuse angle, yielding a contradiction. 2

We summarize in Figure 2 below some of the main facts we know about the connec-

tions between faces of the hypermetric cone and their associated L-polytopes.

hypermetric d associated L-polytope P

d

d is a cut semimetric () P = �

1

F (d) = HYP

n+1

() P

d

= �

n

d 2 CUT

n+1

() V (P ) is contained in the set of

vertices of a parallepiped

F (d) is a facet () P

d

is a repartitioning polytope

F (d) is an extreme ray () P

d

is extreme

F (d) = F (d

0

) () P

d

; P

d

0

are a�nely equivalent

Figure 2

For the �rst two equivalences, see Examples 1 and 2 and, for the last four equivalences,

see, respectively, Propositions 3.7, 4.10, Theorem 4.5 and Corollary 4.8.

4.3 Bounds on the rank of basic L-polytopes

In this section, we present some bounds for the rank of a basic L-polytope. Recall that an

L-polytope P is basic if its set of vertices V (P ) contains a base of the lattice generated

by V (P ).

Lemma 4.14 Let P be a basic k-dimensional L-polytope. Then, the following relations

hold.

rk(P ) �

 

k + 2

2

!

� jV (P )j (26)
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rk(P ) �

 

k + 1

2

!

(27)

Proof. It follows immediately from relation (19) and Theorem 4.5. 2

For centrally symmetric L-polytopes, we can improve the bound (26).

Proposition 4.15 [33] Let P be a centrally symmetric k-dimensional L-polytope. Then,

rk(P ) �

 

k + 1

2

!

�

jV (P )j

2

+ 1: (28)

Proof. Let B be a basic set in V (P ). For each w 2 V (P ), a

w

denotes the a�ne

realization of w in B and h(w) denotes the corresponding hypermetric equality of the

system S(B; d

(2)

), i.e. we set h(w) :=

P

u;v2B

a

w

u

a

w

v

x(u; v). Let v 2 B. Since w

�

=

v+ v

�

�w, the a�ne realization a

w

�

of w

�

in B is given by a

w

�

= e

v

+ a

v

�

� a

w

, where e

v

is the v-th unit vector in R

B

. Hence, we have that

h(w

�

) = h(v

�

) + h(w) + 2

P

u

0

2B

a

v

�

u

0

x(v; u

0

)

�2

P

u

0

2B

a

w

u

0

x(v; u

0

)� 2

P

u;u

0

2B

a

v

�

u

0

a

w

u

x(u; u

0

);

i.e.

(a) h(w

�

) = h(w) +

X

u2B

a

w

u

0

@

h(v

�

)� 2x(v; u) + 2

X

u

0

2B

a

v

�

u

0

(x(v; u

0

)� x(u; u

0

))

1

A

:

If w 2 B, then h(w) is zero and, thus, (a) implies that

(b) h(w

�

) = h(v

�

)� 2x(v; w) + 2

X

u

0

2B

a

v

�

u

0
(x(v; u

0

)� x(w; u

0

)):

Now, we deduce from (a) and (b) that, for each w 2 V (P ),

(c) h(w

�

) = h(w) +

X

u2B

a

w

u

h(u

�

):

Using (c) for w = v

�

, we deduce that

(d) 0 = h(v

�

) +

X

u2B

a

v

�

u

h(u

�

):

We now show that the system S(B; d

(2)

) can be reduced to a system of

jV (P )j

2

� 1

equations, which implies that the rank of its solution set is greater or equal to

�

k+1

2

�

�
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jV (P )j

2

+1. Clearly, the base B contains at most one pair of antipodal points. For a set A,

we set A

�

= fa

�

: a 2 Ag.

Suppose �rst that B contains no pair of antipodal points. Then, V (P ) = B[B

�

[A[A

�

,

for some A � V (P )�B. By (c), each equation h(a

�

) = 0, for a 2 A, follows from the equa-

tions h(a) = 0, for a 2 A[B

�

. From (d), one of the equations h(b

�

) = 0, for b 2 B, follows

from the others. Therefore, the system S(B; d

(2)

) reduces to jAj + jB

�

j � 1 =

jV (P )j

2

� 1

equations.

Suppose now that B contains one antipodal pair, i.e. B = B

0

[ fv; v

�

g with jB

0

j = k � 1.

Then, V (P ) = B [ (B

0

)

�

[A[A

�

for some A � V (P )�B. Hence, S(B) reduces again to

jAj+ j(B

0

)

�

j =

jV (P )

2

� 1 equations. 2

For example, the k-dimensional simplex �

k

has k + 1 vertices; relations (26) and (27)

hold at equality. It is easy to check that the rank of the k-dimensional cross-polytope �

k

is rk(�

k

) =

�

k+1

2

�

� k + 1. Hence, �

k

realizes equality in the bound (28).

The following Lemma 4.16 may be useful for computing the rank of L-polytopes.

Lemma 4.16 [33] Let P be a basic k-dimensional centrally symmetric L-polytope and let

B = fv

0

; v

1

; : : : ; v

k

g be a basic set in V (P ). Let H denote the a�ne space spanned by

B

1

= fv

1

; : : : ; v

n

g and set P

1

= P \ H. If P

1

is an asymmetric L-polytope and if there

exists w 2 V (P ) � H such that w 62 fv

�

1

; : : : ; v

�

k

g and w � v

0

62 H, then rk(P

1

) = rk(P )

holds.

Proof. The set B

1

is basic in V (P

1

) = V (P ) \H . Hence, rk(P

1

) is equal to the rank

of the solution set to the system S(B

1

; d

(2)

). In order to show that rk(P ) = rk(P

1

), it

su�ces to check that each variable x(v

0

; v

i

), for 1 � i � k, can be expressed in terms of

the variables x(v

i

; v

j

), for 1 � i; j � k, in the system S(B; d

(2)

). Let a; b 2 Z

k+1

denote

the a�ne realizations of w; v

�

0

in B. We have a

0

6= 0; 1 since w 62 H and w � v

0

62 H ;

also, b

0

6= �1, else the center

v

0

+v

�

0

2

of P would lie in H contradicting the fact that P

1

is

asymmetric. Using relation (b) from the proof of Proposition 4.15 (applied to v = v

0

and

w = v

i

), we deduce that

h(v

�

i

) = h(v

�

0

)� 2x(v

0

; v

i

) + 2

P

0�j�k

b

j

(x(v

0

; v

j

)� x(v

i

; v

j

)):

Set h

i

= �2

P

1�j�k

b

j

x(v

i

; v

j

) for 1 � i � k. Then,

h(v

�

i

) = h(v

�

0

)� 2x(v

0

; v

i

)(b

0

+ 1) + h

i

+ 2

P

0�j�k

b

j

x(v

0

; v

j

):

Substracting the above relations with indices i and 1, we obtain that the equation

(�) x(v

0

; v

i

) = x(v

0

; v

1

) +

h

i

� h

1

2(b

0

+ 1)

follows from S(B; d

(2)

). Consider now the equation h(w) = 0, i.e.

0 =

P

1�i<j�k

b

i

b

j

x(v

i

; v

j

) +

P

1�i�k

b

i

b

0

x(v

0

; v

i

): Using (*), it can be rewritten as
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0 =

P

1�i<j�k

b

i

b

j

x(v

i

; v

j

) + b

0

(1 � b

0

)x(v

0

; v

1

) +

b

0

2(b

0

+1)

P

1�i�k

b

i

(h

i

� 1): Therefore,

x(v

0

; v

1

) and, thus, each x(v

i

; v

0

), can be expressed in terms of x(v

i

; v

j

), 1 � i < j � k. 2

5 Extreme L-polytopes

In this section, we consider extreme L-polytopes, i.e. L-polytopes with rank 1. If P is an

L-polytope, then P is extreme if and only if the only a�ne bijective mappings T for which

T (P ) is still an L-polytope are the homotheties (see Corollary 4.9). Extreme L-polytopes

are of particular interest since they correspond to the extreme rays of the hypermetric

cone.

More precisely, if d 2 HYP

n

lies on an extreme ray of HYP

n

, then its associated

L-polytope P

d

is an extreme L-polytope of dimension k � n � 1. Conversely, if P is a

k-dimensional extreme L-polytope, then, for each generating subset V of its set of vertices,

the hypermetric space (V; d

(2)

) lies on an extreme ray of the hypermetric cone HYP(V ).

Moreover, by taking 0-liftings of (V; d

(2)

), we obtain extreme rays of the cone HYP

n

, for

any n � jV j. In particular, if P is basic, then each basic subset of V (P ) yields an extreme

ray of the hypermetric cone HYP

k+1

and, thus, of HYP

n

, for n � k+1. Therefore, �nding

all extreme rays of the hypermetric cone HYP

n

yields the question of �nding all extreme

L-polytopes of dimension k � n � 1.

The only basic extreme L-polytope of dimension k � 5 is the segment �

1

, of dimension

1. Indeed, it is known that the only extreme rays of the hypermetric cone HYP

n

, for

n � 6, are the cut semimetrics with associated L-polytope �

1

(see [28] for n � 5 and [15]

for n = 6). Actually, it is announced in [44] that �

1

is the only extreme L-polytope of

dimension k � 5, i.e. the assumption about \basic" can be dropped.

For n � 7, the hypermetric cone has extreme rays which are not generated by cut

semimetrics. Indeed, there exists a basic extreme L-polytope of dimension 6, namely,

the Schl�ai polytope 2

21

; it is asymmetric and has 27 vertices. The Gosset polytope 3

21

is a basic centrally symmetric extreme L-polytope of dimension 7 with 56 vertices. We

describe the polytopes 2

21

and 3

21

in Section 5.2. Other examples of extreme L-polytopes

are presented in Sections 5.3 and 5.4. We refer to [33] for a detailed treatment of the

topics treated in this section.

Actually, �

1

, 2

21

and 3

21

are the only extreme L-polytopes occurring in root lattices.

Theorem 5.1 Let P be a generating L-polytope in a root lattice. Then, P is extreme if

and only if P is �

1

, 2

21

or 3

21

.
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Proof. Let L denote the lattice generated by V (P ). By assumption, L is a root lattice

and, by Proposition 4.6, L is irreducible. Hence, P is one of the L-polytopes from Figure

1. This implies that P is �

1

, 2

21

or 3

21

since the other polytopes give `

1

-spaces. 2

5.1 Extreme L-polytopes and equiangular sets of lines

In this section, we present bounds on the number of vertices of a basic extreme L-polytope

and we compare them with some known bounds for the cardinality of equiangular sets of

lines. We also present some constructions of equiangular sets of lines by taking sections

of the sphere of minimal vectors in a lattice.

As an immediate consequence of Lemma 4.14 and Proposition 4.15, we have the fol-

lowing lower bounds for the number of vertices of an extreme basic L-polytope.

Theorem 5.2 Let P be a k-dimensional basic L-polytope. If P is extreme, then,

jV (P )j �

k(k + 3)

2

if P is asymmetric (29)

jV (P )j � k(k + 1) if P is centrally symmetric. (30)

There is a striking analogy between the lower bounds (29), (30) and the following

known upper bounds (31), (32) for the number N

p

of points in a spherical two-distance

set of dimension k and the number N

`

of lines is an equiangular set of lines of dimension

k (see [53]).

N

p

�

k(k + 3)

2

(31)

N

`

�

k(k + 1)

2

(32)

Recall that equiangular sets of lines and spherical two-distance sets are in one-to-one

correspondence. Namely, let L be a set of equiangular lines of dimension k + 1 and let

`

0

2 L: Choose a unit vector e

0

along `

0

and, for each ` 2 L; ` 6= `

0

; choose a unit vector

e

`

along ` which forms an acute angle with e

0

: Then, the set P = fe

`

: ` 2 L � f`

0

gg is

a spherical two-distance set in dimension k; indeed, if � denotes the common acute angle

between the lines of L, then P lies on the sphere of center (cos�)e

0

; radius sin�; in the

hyperplane x

T

e

0

= cos�: The construction can be reversed. Also, jPj = jLj � 1 and thus

the two bounds (31), (32) can be deduced from one another.



Hypermetrics in Geometry of Numbers 57

The bound (32) was given by Gerzon who proved, furthermore, that, if equality holds

in (32), then k + 2 = 4; 5 or k + 2 = q

2

for some odd integer q; q � 3 (see [53]). The �rst

case of equality in (32) is N

`

= 28 for q = 3; k = 7; it is well-known that an equiangular

set of 28 lines can be constructed from the Gosset polytope 3

21

(see Section 5.2). Also, the

set of vertices of the Schl�ai polytope 2

21

is a spherical two-distance set in R

6

; realizing

equality in (31). The next case of equality is N

`

= 276 for q = 5; k = 23: Neumaier ([54])

has shown how to construct a set of 276 equiangular lines using the Leech lattice �

24

:

In Section 5.3, we shall see that an extreme centrally symmetric L-polytope of dimension

23 and with 552 vertices can be constructed from this set of lines, also that a suitable

section of it is an extreme asymmetric L-polytope of dimension 22 and with 275 vertices.

The next cases of equality in (32) are N

`

= 1128 for q = 7; k = 47; and N

`

= 3160 for

q = 9; k = 79; but it is not known whether such sets of equiangular lines exist in these two

cases.

On the other hand, we shall see in Section 5.4 some examples of extreme L�polytopes

realizing equality in the bound (29) or (30), but not arising from some spherical 2 -

distance set or from some equiangular set of lines. Also, we shall have examples of extreme

L�polytopes that do not realize equality in the bound (29) or (30).

We now present a general construction for equiangular sets of lines by taking a suitable

section of the sphere of minimal vectors in an integral lattice.

Let L be a lattice with minimal norm t and let L

min

be its set of minimal vectors.

Given a 2 L, a 6= 0, set V = fu 2 L

min

: 2u

T

a = a

2

g. Hence, all u 2 V lie on a sphere

with center

a

2

. By Lemma 2.10, if V 6= ;, then the polytope P = conv(V ) is an L-polytope.

Moreover, P is centrally symmetric.

The following properties can be easily checked: V 6= ; if and only if a = a

1

+ a

2

for

some a

1

; a

2

2 L

min

and, then, a

1

; a

2

2 V . If V 6= ;, then jV j = 1 if and only if a

2

= 4t. If

jV j � 2, then, for all u; v 2 V such that v 6= u; a� u, we have that

a

2

� t

2

� u

T

v �

t

2

: (33)

(This follows from the fact that (u � v)

2

� t and (u + v � a)

2

� t.) This implies that

t � a

2

� 2t if jV j � 3.

Since P is centrally symmetric, we can arrange its vertices into pairs of antipodal

vertices. Each such pair determines a line going through

a

2

and with direction 2u� a, for

u 2 V . Let L denote this set of lines and let V

0

= f

p

2(u�

a

2

) : u 2 V g denote the set of

their directions. Note that u

02

= 2t�

a

2

2

for u

0

2 V

0

, and u

0T

v

0

= 2u

T

v�

a

2

2

for u

0

; v

0

2 V

0

.

Therefore, if L is an integral lattice, then u

02

, u

0T

v

0

are integers with the same parity as
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a

2

2

. Note also that, from relation (33), we have that �(t �

a

2

2

) � u

0T

v

0

� (t �

a

2

2

) for

u

0

; v

0

2 V

0

, v

0

6= u

0

;�u

0

. Using the above observations, we obtain the following result.

Proposition 5.3 [30] Let L denote the set lines determined by the diagonals of the poly-

tope P = conv(V ). The following assertions hold.

(i) If a

2

= 2t, then the lines in L are pairwise orthogonal.

(ii) Suppose a

2

= 2t� 2, t � 2 and L is an integral lattice. Then, L is an equiangular set

of lines with common angle arccos(

1

t+1

) (resp. arccos(0) =

�

2

) if t is even (resp. odd).

(iii) Suppose a

2

= 2t � 4, t � 4 and L is an integral lattice. If t is odd, then L is equian-

gular with common angle arccos(

1

t+2

) and, if t is even, then there are two possible angles

between the lines of L, namely arccos(

2

t+2

) and arccos(0) =

�

2

.

We give an illustration of the above construction in the case (ii) when a

2

= 2t � 2,

t = 2 and L is a root lattice (see [30] for details). For each irreducible root lattice, we

indicate what is the L-polytope P produced by the construction, the number of lines in

the equiangular set L of its diagonals and the dimension in which L occurs.

- for L = A

n�1

, P = �

n�1

, jLj = n � 1, in dimension n� 1,

- for L = D

n

, P = �

1

� �

n�2

, jLj = 2(n� 2), in dimension n � 1,

- for L = E

6

, the 1-skeleton of P is J(6; 3), jLj = 10, in dimension 5,

- for L = E

7

, P =

1

2

H(6; 2), jLj = 16, in dimension 6,

- for L = E

8

, P = 3

21

, jLj = 28, in dimension 7.

Note that, in dimensions 5 and 6, the maximum cardinality of an equiangular set of lines is

equal to 10 and 16, respectively; so the two examples above from E

6

and E

7

are maximum.

5.2 The Schl�ai polytope 2

21

and the Gosset polytope 3

21

are extreme

In this section, we show that the Schl�ai polytope 2

21

and the Gosset polytope 3

21

are

extreme. The proof uses the treatment for the notion of rank developed in Section 4.1.

The main steps of the proof are:

� �nd an a�ne base B; so jBj = 7 for 2

21

and jBj = 8 for 3

21

(therefore, showing that

both 2

21

; 3

21

are basic L�polytopes),

� using the a�ne decomposition of each non basic vertex in B; �nd the explicit description

of the system S(B; d

(2)

) (it consists of 27-7=20 equations for 2

21

and

56

2

� 1 = 27 for 3

21

),

� show that the solution set to the system S(B; d

(2)

) has rank 1.

We need an explicit description of the polytopes 2

21

; 3

21

:We refer, for instance, to [19],

[23], [24] for a detailed account of the facts about E

6

; E

7

; E

8

mentioned below.

The lattice E

8

is de�ned by

E

8

= fx 2 R

8

: x 2Z

8

or x 2 (

1

2

+Z)

8

and

X

1�i�8

x

i

2 2Zg:
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Let V

8

denote the set of minimal vectors of E

8

; V

8

consists of

� the 112 vectors

�

�1

2

; 0

6

�

and

� the 128 vectors

�

�

1

2

8

�

that have an even number of minus signs.

So, jV

8

j = 240 and v

T

v = 2 for v 2 V

8

: The set V

8

lies on the sphere S

8

with center 0 and

radius

p

2:

Let v

0

= (1; 1; 0

6

) be a given minimal vector. One can check that v

T

v

0

= 0;�1 for all

v 2 V

8

; v 6= �v

0

: The lattice E

7

is de�ned by

E

7

= fx 2 E

8

: x

T

v

0

= 1g:

Let H

7

denote the hyperplane de�ned by the equation x

T

v

0

= 1; then, S

7

= S

8

\ H

7

is

the 7-dimensional sphere with center

v

0

2

and radius

q

3

2

: Set

V

7

= fx 2 V

8

: x

T

v

0

= 1g:

Then, V

7

consists of

� the 12 vectors

�

1; 0;�1; 0

5

�

,

� the 12 vectors

�

0; 1;�1; 0

5

�

and

� the 32 vectors

�

1

2

;

1

2

;�

1

2

6

�

with an even number of minus signs.

So, jV

7

j = 56 and V

7

lies on the sphere S

7

: By Lemma 2.10, the polytope conv(V

7

) is an

L-polytope; it is the so-called Gosset polytope 3

21

: Observe that the 56 points of V

7

are

partitioned in 28 pairs of antipodal points (with respect to the sphere S

7

; i.e. the antipode

of v is v

�

= v

0

� v). So, the polytope 3

21

is centrally symmetric.

Let w

0

=

�

1

2

�

8

be a given minimal vector of V

7

; so, w

�

0

=

�

1

2

;

1

2

;�

1

2

6

�

. One can check

that v

T

w

0

= 0; 1 for all v 2 V

7

; v 6= w

0

and v 6= w

�

0

. Then, the lattice E

6

is de�ned by

E

6

= fx 2 E

7

: x

T

w

0

= 1g:

Note that, if v

�

is the antipode of v 2 V

7

; then v

T

w

0

+ (v

�

)

T

w

0

= v

T

0

w

0

= 1 and, thus,

v

T

w

0

= 1 if and only if (v

�

)

T

w

0

= 0: Let H

6

denote the hyperplane de�ned by the equation

x

T

w

0

= 1; then, S

6

= S

7

\ H

6

= S

8

\ H

7

\ H

6

is the 6-dimensional sphere with center

v

0

+w

0

3

and radius

q

4

3

: Set

V

6

= fx 2 V

7

: x

T

w

0

= 1g

and V

�

6

= fv

�

: v 2 V

6

g: Hence, V

7

= V

6

[ V

�

6

[ fw

0

; w

�

0

g: The set V

6

consists of

� the 6 vectors

�

1; 0; 1; 0

5

�

,

� the 6 vectors

�

0; 1; 1; 0

5

�

and

� the 15 vectors

�

1

2

;

1

2

;�

1

2

2

;

1

2

4

�

.
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Hence, jV

6

j = 27 and V

6

lies on the sphere S

6

: The polytope conv(V

6

) is the so-called

Schl�ai polytope 2

21

; from Lemma 2.10, it is indeed an L-polytope and it is clearly asym-

metric.

Remark 5.4 (i) The 28 distinct lines determined by the diagonals of 3

21

form a 7-

dimensional set of equiangular lines with common angle arccos(

1

3

); this can be seen directly

or as an application of Proposition 5.3 (ii).

(ii)For u; v 2 V

6

; v 6= u; u

T

v = 0; 1 and, thus, d

(2)

(u; v) = (u�v)

2

= 4 (if u

T

v = 0) or 2 (if

u

T

v = 1). Therefore, the 27 vertices of 2

21

form a 6-dimensional spherical two-distance

set of points.

(iii)The graph whose nodes are the vertices of 2

21

and with edges the pairs (u; v) of vertices

at the smallest distance d

(2)

(u; v) = 2, is called the Schl�ai graph and is denoted by G

27

.

The graph whose nodes are the vertices of 3

21

and with edges the pairs (u; v) of vertices

with d

(2)

(u; v) = 2 is called the Gosset graph and is denoted by G

56

. From Proposition

3.9, G

27

(resp. G

56

) is the 1-skeleton of 2

21

(resp. of 3

21

).

We now show that the polytopes 2

21

and 3

21

are extreme. This result was proved in

[33]; another proof was given in [44].

Theorem 5.5 The Schl�ai polytope 2

21

and the Gosset polytope 3

21

are basic extreme

L-polytopes.

Proof. We denote the vectors of V

6

by u

i

=

�

1; 0; 1

i

; 0

5

�

; v

i

=

�

0; 1; 1

i

; 0

5

�

; where the

�rst two coordinates are �xed and the second 1 stays in the (2 + i)�th position, for

1 � i � 6; and u

ij

=

�

1

2

;

1

2

;

�

�

1

2

�

i

;

�

�

1

2

�

j

;

1

2

4

�

where the two �

1

2

's stay in the (2+ i)�th

and (2+ j)�th positions for 1 � i < j � 6: One can verify that the distances between the

points of V

6

are as follows, where we set t = 2:

(�)

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

d(u

i

; u

j

) = d(v

i

; v

j

) = t for i 6= j

d(u

i

; v

j

) =

(

t if i = j

2t if i 6= j

d(u

i

; u

kl

) = d(v

i

; u

kl

) =

(

t if i 62 fk; lg

2t if i 2 fk; lg

d(u

ij

; u

kl

) =

(

t if jfi; jg\ fk; lgj= 1

2t if jfi; jg\ fk; lgj= 0

Consider the following subset of V

6

B

6

= fu

12

; u

24

; u

34

; u

35

; u

15

; u

6

; v

6

g:

One can check that B

6

is an a�ne basis of E

6

; i.e. that B

6

generates the set V

6

: The a�ne

decompositions of the non basic points of V

6

� B

6

in B

6

give the following system of 20
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hypermetric equalities in the 21 variables d(i; j) for 1 � i < j � 7 (the indices are modulo

5).

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

d(i; 6)+ d(i+ 1; 6)� d(i; i+ 1) = 0 for 1 � i � 5

d(i; 7)+ d(i+ 1; 7)� d(i; i+ 1) = 0 for 1 � i � 5

d(i; i+ 2) + d(i; i+ 3)� d(i+ 2; i+ 3) = 0 for 1 � i � 5

d(6; 7)+

X

i<j

i;j2fk;k+1;k+2g

d(i; j)�

X

i2fk;k+1;k+2g

(d(i; 6)+ d(i; 7)) = 0 for 1 � k � 5

In fact, the equalities of the �rst, second and fourth lines corrspond to the representa-

tions of v

i

; u

i

and u

k6

; respectively. The equalities of the third line correspond to the

representations of u

45

; u

25

; u

23

; u

13

and u

14

:

For example, the equality d(1; 6)+d(2; 6)�d(1; 2) = 0 comes from the a�ne decomposition

v

5

= u

12

+ u

34

� u

6

of v

5

in B

6

.

One can verify that the solution set to the system S(B

6

; d

0

) described above, is precisely

given by (*) and, thus, has rank 1. Therefore, rk(2

21

) = rk(B

6

; d

0

) = 1; showing that 2

21

is extreme.

We now turn to the case of 3

21

: Consider the set B

7

= B

6

[ fw

0

g. It is clear that B

7

is an a�ne base of E

7

; i.e. that B

7

generates the set V

7

: Indeed, V

7

= V

6

[ V

�

6

[ fw

0

; w

�

0

g,

v

0

= u

12

+ u

34

+ u

56

� w

0

and, for v 2 V

6

; v

�

= v

0

� v = u

12

+ u

34

+ u

56

�w

0

� v is, thus,

a�nely decomposable in B

7

: Since w

T

0

v = 1 for all v 2 B

6

; we have that d

(2)

(w

0

; v) = 2

for v 2 B

6

.

From Lemma 4.16 (applied to P = 3

21

, P

1

= 2

21

, H = H

6

and w = u

�

13

), we deduce

that rk(2

21

) = rk(3

21

), implying that 3

21

is extreme.

Note that the system S(B

7

; d

(2)

) consists of the system S(B

6

; d

(2)

) together with the 7

equations corresponding to the decomposition of v

�

in B

7

, for v 2 B

6

, and shown below.

8

<

:

d(i; 8)+ d(i+ 1; 8)� d(i; i+ 1) = 0 for 1 � i � 5

d(1; 2)+ d(1; 3)+ d(2; 3)+ d(k; 8)�

X

i=1;2;3

(d(i; k) + d(i; 8)) = 0 for k = 6; 7

2

Since 2

21

is extreme and basic, each basic set B � V (2

21

) yields an extreme ray of

the hypermetric cone Hyp

7

. We have constructed in the proof of Theorem 5.5 the basic

set B

6

. It is interesting to know how many distinct (up to permutation) extreme rays of

Hyp

7

arise in this way from 2

21

. Actually, we believe that all the extreme rays of Hyp

7

,

other than those generated by the cut semimetrics, arise from 2

21

.

For each basic subset B � V (2

21

) = V

6

, we de�ne the graph G

27

[B] with set of nodes

B and with edges the pairs of points of B at the smallest distance 2. So, G

27

[B] is the

subgraph of the Schl�ai graph G

27

induced by B; G

27

[B] is called a basic subgraph of

G

27

. For instance, for the basic set B

6

de�ned above, G

27

[B

6

] is K

7

�C

5

(where C

5

is the
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cycle on the nodes (u

12

; u

34

; u

15

; u

24

; u

35

)).

By direct inspection of the 7-vertices subgraphs of the Schl�ai graph, we found that

there are in total 26 distinct basic subsets in 2

21

.

Eight of them are connected with Theorem 6.8; namely, they are the graphsG

i

, 1 � i �

8, where G

1

= rB

9

(so, G

1

= G

27

[B

6

]), G

2

= rH

2

, G

3

= rH

1

, G

4

= rB

8

, G

5

= rB

7

,

G

6

= rH

4

, G

7

= rH

3

and G

8

= rB

5

. The graphs B

i

(1 � i � 8) and H

i

(1 � i � 4) are

shown in Figures 9 and 10, respectively.

We show in Figures 3, 4, 5 and 6 the 26 basic subgraphs of G

27

. Actually, we depict

there the complements

�

G

i

of the graphs G

i

since they appear to be simpler to draw. Hence,

in Figures 3, 4, 5 and 6, an edge means a pair of points at the largest distance 4. The

26 basic graphs G

i

(1 � i � 26) are partitioned in �ve classes indexed by some integer

q; q = 8; 11; 12; 14; 15: In fact, all basic graphs of the same class are switching equivalent

and the invariant q of each switching class is the number of odd tuples, i.e. triples of nodes

carrying an odd number of edges. We refer to [33] for more details about the occurrence

of switching here.

Finally, note that one obtains at least 26 distinct extreme rays for Hyp

8

from the

Gosset polytope 3

21

: Indeed, each basic set of 2

21

can be augmented to a basic set of 3

21

.

We do not know about the classi�cation of all other basic sets of 3

21

.

Figure 3
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Figure 4

Figure 5
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Figure 6

5.3 Extreme L-polytopes in the Leech lattice �

24

In this section, we describe two extreme L-polytopes coming from the Leech lattice �

24

.

They have dimension 22, 23 and they are constructed by taking two consecutive suitable

sections of the sphere of minimal vectors of �

24

, precisely in the same way as the Gosset

polytopes 3

21

; 2

21

were constructed from the lattice E

8

in Section 5.2.

We refer to [23] for a precise description of the Leech lattice �

24

; we only recall some

facts that we need for our treatment.

The Leech lattice �

24

is a 24-dimensional lattice in R

24

. For convenience, the coor-

dinates of the vectors x 2 R

24

are indexed by the elements of I = f1; 0; 1; : : : ; 22g. For

i 2 I , let e

i

denote the i-th unit vector whose coordinates are all equal to zero except the

i-th one equal to 1. For a subset S of I , set e

S

=

P

i2S

e

i

.

Let B

24

denote the family of blocks of the Steiner system S(5; 8; 24) de�ned on the set

I ; hence, jB

24

j = 759. Set B

23

= fB�f1g : B 2 B

24

with 1 2 Bg; so B

23

is the family of

blocks of the Steiner system S(4; 7; 23) de�ned on the set f0; 1; : : : ; 22g and jB

23

j = 253.

In B

23

, there are exactly 176 blocks that do not contain a given point and there are exactly

77 blocks that do contain a given point.

The Leech lattice �

24

is generated by the vectors e

I

� 4e

1

and 2e

B

for all blocks

B 2 B

24

. Let V denote the set of minimal vectors of �

24

; so, x

T

x = 32 for x 2 V . (Note
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that, in the usual de�nition, all vectors are scaled by a factor of

1

p

8

and the minimal norm

is 4; we choose to omit this factor in order to make the notation easier.) The set V consists

of the following vectors:

(I) (�4

2

; 0

22

) (1104 = 2� 24� 23 such vectors),

(II) (�2

8

; 0

16

), where the positions of the nonzero components form a block of B

24

and

there is an even number of minus signs (2

7

� 759 such vectors),

(III) (�3;�1

23

), where the �3 may be in any position, but the lower signs are taken on a

codeword of the Golay code C

24

.

Recall that the codewords of C

24

which have exactly 8 nonzero coordinates are precisely

the blocks of B

23

.

Set c = (5; 1

23

) and a

0

= (4; 4; 0

22

); so c; a

0

2 �

24

, c

T

c = 48 and a

0

2 V . Set

V

23

= fv 2 V : v

T

c = 24g and V

22

= fv 2 V : v

T

c = 24 and v

T

a

0

= 16g:

Then, by Lemma 2.10, the polytopes P

23

= conv(V

23

); P

22

= conv(V

22

) are L-polytopes;

they have dimension 23, 22, respectively.

The center of the sphere circumscribing P

23

is the vector

c

2

. Clearly, a

0

2 V

23

and

its antipode a

�

0

= c � a

0

= (1;�3; 1

22

) also belongs to V

23

; therefore, P

23

is centrally

symmetric. The set V

23

consists of the vectors a

0

; a

�

0

together with the following vectors:

(aI) a

i

:= (4; 0; 0; � � � ; 4

i

; 0; � � � ; 0), where the second 4 is in the i-th position, for 1 � i � 22,

and their antipodes a

�

i

= c � a

i

= (1; 1; 1; � � � ;�3

i

; 1; � � � ; 1) where the -3 is in the i-th

position, for 1 � i � 22,

(aII) b(S) := (2; 2

7

; 0

16

), where the �rst 2 is in the �rst position (1) and the positions of

the seven other 2's form the block S of B

23

,

(aIII) c(T ) := (3;�1

7

; 1

16

), where the 3 is in the �rst position and the positions of the

seven -1's form the block T of B

23

.

Therefore, jV

23

j = 2+2� 22+2� 253 = 552; the polytope P

23

is centrally symmetric and

realizes equality in the bound (30).

The set V

22

consists of the following vectors:

(bI) a

i

for 1 � i � 22,

(bII) b(S) for all blocks S of B

23

containing 0,

(bIII) c(T ) for all blocks T of B

23

not containing 0.

Therefore, jV

22

j = 22+77+176 = 275; the polytope P

22

is asymmetric and realizes equality

in the bound (29). Note that V

23

= V

22

[ V

�

22

[ fa

0

; a

�

0

g, where V

�

22

= fv

�

: v 2 V

22

g.

In fact, both polytopes P

22

; P

23

are basic and extreme. We indicate how to construct

an a�ne base. We �rst recall a property of the Steiner system B

23

: The set f0; 1; : : : ; 22g

can be partitioned into two sets A;B such that 0 2 A, jAj = 11, jBj = 12 and for any

i 2 A, there exist two blocks T

i

; T

0

i

of B

23

satisfying T

i

\ T

0

i

= fig and T

i

[ T

0

i

= B [ fig.
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Namely, we can take A = f0; 1; 3; 4; 5; 8; 10; 11; 12; 17; 21g,

B = f2; 6; 7; 9; 13; 14; 15; 16; 18; 19; 20; 22g and

T

0

= f0; 7; 15; 16; 19; 20; 22g , T

1

= f1; 6; 7; 9; 13; 15; 22g;

T

3

= f2; 3; 9; 14; 15; 16; 22g , T

4

= f2; 4; 6; 9; 19; 20; 22g;

T

5

= f5; 9; 13; 16; 18; 19; 22g , T

8

= f6; 8; 13; 14; 16; 20; 22g;

T

10

= f7; 9; 10; 14; 18; 20; 22g , T

11

= f2; 6; 7; 11; 16; 18; 22g;

T

12

= f2; 12; 13; 15; 18; 20; 22g , T

17

= f2; 7; 13; 14; 17; 19; 22g;

T

21

= f6; 14; 15; 18; 19; 21; 22g and T

0

21

= f2; 7; 9; 13; 16; 20; 21g:

We consider the following set of 23 vectors of V

22

:

B = fc(T

i

) : i 2 A � f0gg [ fa

i

: i 2 B � f22gg [ fa

21

; c(T

0

21

)g:

Then, B is a basic set for the polytope P

22

. One can check (using computer) that the rank

of the solution set to the system S(B; d

(2)

), which consists of 252 = 275� 23 equations in

�

23

2

�

= 253 variables, is equal to 1. Therefore, the polytope P

22

is extreme.

One can extend B to an a�ne basis for P

23

. Namely, the set B [ fb(T

0

)

�

g is an a�ne

basis for P

23

. Indeed, one can check that

a

0

= b(T

0

0

) + c(T

1

) + c(T

0

1

) + a

1

� b(T

0

)� 2b(T

0

)

�

and, thus, a

0

is spanned by B [ fb(T

0

)

�

g. Then, a

�

0

= b(T

0

) + b(T

0

)

�

� a

0

is also spanned

by B [ fb(T

0

)

�

g, as well as any v

�

for v 2 V

22

. Now the extremality of P

23

follows from

that of P

22

, using Lemma 6.5 (taking P

23

for P , P

22

for P

1

and a

0

for v). In conclusion,

we have shown:

Theorem 5.6 (i) The polytope P

23

is a centrally symmetric extreme L-polytope of dimen-

sion 23 with 552 vertices, hence realizing equality in the bound (30).

(ii) The polytope P

22

is an asymmetric extreme L-polytope of dimension 22 with 275 ver-

tices, hence realizing equality in the bound (29).

Observe that the set V

22

is a spherical two-distance set; namely, the distances between

the points of V

22

take the two values 32 or 48. Also, the 276 lines de�ned by the 276 pairs

of antipodal vertices of the polytope P

23

are equiangular (with common angle arccos(

1

5

)).
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5.4 Extreme L-polytopes from the Barnes-Wall lattice �

16

In this section, we describe some more examples of extreme L�polytopes coming from the

Barnes-Wall lattice.

We refer to [23] for a precise description of the Barnes-Wall lattice �

16

.

The Barnes-Wall lattice �

16

is a 16-dimensional lattice in R

16

. Let V denote the set

of minimal vectors of �

16

. Then, V consists of the following vectors:

(I) 480 vectors of the form (�2

2

; 0

14

), where there are two non zero components equal to

2 or �2,

(II) 3840 vectors of the form (�1

8

; 0

8

), where the positions of the �1's form one of the 30

codewords of weight 8 of the �rst order Reed-Muller code and there are an even number

of minus signs.

We show in Figure 7 a list of 15 codewords of weight 8 of the �rst order Reed-Muller

code; the other 15 codewords of weight 8 are obtained by complementation of the code-

words shown in Figure 7.

c

12

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

c

13

0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1

c

14

0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0

c

15

0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 1

c

16

0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0

c

23

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0

c

24

1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1

c

25

1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0

c

26

1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1

c

34

1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0

c

35

1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1

c

36

1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0

c

45

1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0

c

46

1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1

c

56

1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0

Figure 7
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Hence, there are 4320 minimal vectors in �

16

and v

T

v = 8 for every minimal vector.

(Note that in the usual de�nition, the minimal norm is 4 and all vectors should be scaled

by a factor

1

p

2

; we omit this factor in order to make the notation easier.)

Set a = (2

6

; 0

10

) (the six 2's are in the �rst six positions which are precisely the �rst six

positions distinguished in Figure 7). Let S denote the sphere of center

a

2

and radius

p

6;

then, S is an empty sphere in �

16

corresponding to a deep hole (i.e. with maximum ra-

dius). The associated L�polytope P , de�ned by P = fv 2 �

16

: (v�

a

2

)

2

= 6g, has exactly

512 vertices that we now describe. Note �rst that the vectors 0 = (0

16

) and a = (2

6

; 0

10

)

are both vertices of P , since a 2 �

16

and (

a

2

)

2

= 6; they are, in fact, antipodal on the

sphere S. Therefore, P is a centrally symmetric L�polytope. Let v 2 �

16

; v is a vertex

of P if and only if v

T

a = v

2

holds. The remaining vertices of P , apart from 0 and a, can

be partitioned into the following three classes:

(a) First, those lying in the hyperplane H

8

a

de�ned by the equation x

T

a = 8, i.e. those

that are minimal vectors; denote their set by V

8

. There are 135 such vertices and they

are of the form:

(aI) (2

2

; 0

4

; 0

10

), where the two 2's stay in the �rst six positions,

(aII) (1

4

; 0

2

;�1

4

; 0

6

), where the �rst four 1's stay in the �rst six positions, i.e. the posi-

tions of the �1's form one of the 15 codewords shown in Figure 7, and there is an even

number of minus signs.

(b) The antipodes of the vectors of V

8

; denote their set by V

16

, so V

16

= fa� v : v 2 V

8

g

and they all lie in the hyperplane H

16

a

of equation x

T

a = 16. There are also 135 such

vertices and they are of the form:

(bI) (2

4

; 0

2

; 0

10

), where the two 2's stay in the �rst six positions,

(bII) (1

4

; 2

2

;�1

4

; 0

6

), the 1;�1's form one of the 15 codewords shown in Figure 7 and

there is an even number of minus signs.

(c) The remaining vertices lie in the hyperplane H

12

a

of equation x

T

a = 12 and they

are of the form v

1

+ v

2

where v

1

is of type I and v

2

is of type II; denote their set

by V

12

. More precisely, take v

2

of the form (1

4

; 0

2

;�1

4

; 0

6

) (there are 15 � 8 = 120

such vectors) and v

1

of the form (2; 0

5

;�2; 0

9

), where the �rst 2 stays in the two po-

sitions of the �rst two zeros of v

2

and the �2 stays in one of the positions of the

�1

0

s of v

2

and has the opposite sign (there are 8 choices for v

1

). For example, for

v

1

= (0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0), v

2

= (2; 0; 0; 0; 0; 0;�2; 0; 0; 0; 0; 0; 0; 0; 0; 0), we

obtain the vector v = v

1

+ v

2

= (2; 0; 1; 1; 1; 1;�1; 1; 1; 1; 0; 0; 0; 0; 0; 0). Note, however,

that v can be obtained as the sum of three distinct pairs of vectors v

1

, v

2

. Namely,

v = (0; 0; 1; 1; 1; 1;�1;�1; 1; 1; 0

6

) + (2; 0; 0; 0; 0; 0; 0; 2; 0; 0; 0

6

);

v = (0; 0; 1; 1; 1; 1;�1; 1;�1; 1; 0

6

) + (2; 0; 0; 0; 0; 0; 0; 0; 2; 0; 0

6

) and

v = (0; 0; 1; 1; 1; 1;�1; 1; 1;�1; 0

6

) + (2; 0; 0; 0; 0; 0; 0; 0; 0; 2; 0

6

):
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Therefore, in total, there are

120�8

4

= 240 vectors in V

12

and they are of the form

(2; 0; 1

4

;�1

4

; 0

6

), where the positions of the 1;�1's form one of the 15 codewords of Fig-

ure 7, the 2 stays on one of the two remaining places in the �rst six positions and there

is an odd number of minus signs. These 240 vectors are clearly divided in 120 pairs of

antipodal vectors lying respectively in the hyperplanes H

2

b

(of equation x

T

b = 2) and H

�2

b

(of equation x

T

b = �2), where b = (0

6

; 1

10

) (H

2

b

contains the vertices with exactly one

minus sign and H

�2

b

contains the vertices with three minus signs).

In summary, the set V of vertices of P is V = V

8

[ V

12

[ V

16

[ f0; ag, jV j = 512. P

is a centrally symmetric L�polytope of dimension 16 corresponding to a deep hole of �

16

and having 512 vertices.

By taking some sections of the empty sphere S by some suitable hyperplanes H

�

a

,

one can construct some more 15-dimensional L�polytopes, including several examples of

extreme ones.

Clearly, the sets �

�

15

= �

16

\ H

�

a

= fx 2 �

16

: x

T

a = �g, for � = 8; 12; 16, are 15-

dimensional lattices and they all identical up to translation; note that they are di�erent

from the laminated lattice �

15

(see [23]). The sphere S

�

= S \H

�

a

is an empty sphere in

the lattice �

�

15

; therefore, the polytope P

�

= conv(V

�

) = conv(S\H

�

a

) is a 15-dimensional

L�polytope in �

�

15

, for any � = 8; 12; 16.

Both P

8

; P

16

are asymmetric L�polytopes with 135 vertices. In fact, P

8

is an a�ne

image of P

16

. The polytope P

12

is centrally symmetric with 240 vertices. Note however

that the set of vertices of P

16

is not a spherical two-distance set (indeed, there are three

possible distances between the vertices of P

16

, namely, 8,12,16); also, the 120 lines de�ned

by the 120 pairs of antipodal vertices of P

12

are not equiangular since there are two

possible angles, namely, arccos(0),arccos(

1

3

)).

Theorem 5.7 [33] (i) The polytope P is a centrally symmetric extreme L�polytope of

dimension 16 with 512 vertices.

(ii) The polytopes P

8

; P

16

are asymmetric extreme L-polytopes of dimension 15, each

having 135 vertices.

(iii)The polytope P

12

is not extreme.

Proof. The set

B = fv

12

; v

13

; v

14

; v

15

; v

16

; v

23

g[

[fc

12

(13); c

13

(24); c

14

(24); c

15

(;); c

23

(24); c

25

(12); c

26

(14); c

34

(34); c

35

(24); c

45

(23)g

is a basic set in V (P

16

), where we use the following notation. v

ij

denotes the vector

(2

4

; 0

2

; 0

10

) of type (bI) with i,j denoting the positions of the �rst two 0's, and c

ij

(xy)

denotes the vector obtained from the codeword c

ij

(see Figure 7) by assigning a minus
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sign to the 1's in the x-th and y-th positions among the last four 1's of c

ij

. For example,

c

12

(13) = (0; 0; 1; 1; 1; 1;�1; 1;�1; 1; 0; 0; 0; 0; 0; 0) and c

15

(;) = c

15

(no minus sign at all).

The system S(B; d

(2)

) consists of 135-16=119 equations in

�

16

2

�

= 120 variables; one

can check (using computer) that its rank is 1, showing that P

16

is extreme.

The vector v

0

= (2; 0; 1; 1; 1; 1;�1; 1; 1; 1; 0; 0; 0; 0; 0; 0) is a vertex of P lying in H

12

a

(having the shape of the codeword c

12

). Then, the set B [ fv

0

g is a basic set in V (P ).

Using Lemma 4.16 (taking P for P , P

16

for P

1

and the vector v

�

0

= a � v

0

for w), we

deduce that P is extreme, since P

16

is extreme.

For (iii), consider the subset X of the vertices of P

12

that lie in the hyperplane H

2

b

;

there are exactly 120 such vertices. The polytope conv(X) is a 14-dimensional asymmet-

ric L�polytope in the lattice �

16

\ H

12

a

\ H

2

b

whose rank is equal to 35. Therefore, the

L�polytope P

12

is not extreme. 2

Note that the hole of the lattice �

16

15

corresponding to the extreme L�polytope P

16

is not a deep hole; indeed, its radius is equal to

4

p

3

, while the radius of the hole of �

12

15

corresponding to the L�polytope P

12

is equal to

p

6 and 6 >

16

3

.

Another extreme L�polytope can be constructed from �

16

as follows. Consider the

polytope Q whose vertices are the vertices of P that satisfy x

T

a = 0; 8; 16 or 24, i.e. they

are the vertices of P

8

, or of P

16

, or they are 0 or a. Hence, Q has 2 � 135 + 2 = 272

vertices, Q is a 16-dimensional polytope and the set B[fag generates all vertices of Q (B

is the set de�ned in the proof of Theorem 5.7). In fact, Q is an L�polytope in the lattice

�

0

16

= �

16

\ fx : x

T

a = 0 (mod 8)g; so, �

0

16

is the sublattice of �

16

having points only in

the layers x

T

a = 0; 8; 16; 24 ,etc...

Theorem 5.8 [33] The polytope Q is a centrally symmetric extreme L�polytope of di-

mension 16 with 272 vertices, hence realizing equality in the bound (30).

Proof. Use Lemma 4.16, taking the polytope Q for P , the polytope P

16

for P

1

and the

vector 0 = a

�

for w. 2

Finally, let us look at some L�polytope obtained by taking a section of the sphere

of minimal vectors by some hyperplane (as in the construction of Lemma 2.10). Namely,

consider the section by the hyperplane H

4

a

of equation x

T

a = 4. In this way, one obtains

the L�polytope Q

0

= conv(x 2 �

16

: x

T

x = 8 and x

T

a = 4). Q

0

is a 15-dimensional

L�polytope and it has 1080 vertices that are of the form:

(i) (2; 0

5

;�2; 0

10

), where the �rst 2 stays in the �rst six positions (120 such vectors),

(ii) (�1

4

; 0

2

;�1

4

; 0

6

), where the positions of the �1's form one of the 15 codewords of

Figure 7, there is exactly one minus sign in the �rst four �1 and there is an odd number
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of minus signs in the last four �1 (480 such vectors),

(iii)(1

2

; 0

4

;�1

6

; 0

4

), where the positions of the 0's form one of the 15 codewords of Figure

7 and there is an even number of minus signs (480 such vectors).

Consider the vertex c = (2; 0; ::; 0; 2) of Q

0

. Then, the distances d

(2)

(c; v) from the other

vertices v to c take the values 8; 12; 16; 20; 24; in fact, value 8 (respectively, 12,16,20,24)

is taken for 119 (respectively, 336, 427,176,21) vertices of Q

0

. Therefore, the set of the

119 vertices that are at distance 8 from c forms a 14-dimensional asymmetric L�polytope

which realizes equality in the bound (29). However, this polytope is not extreme. On the

other hand, the polytope Q

0

is extreme.

We summarize in Figure 8 the results from this section about the L-polytopes con-

structed from the Barnes-Wall lattice �

16

. Recall that a = (2

6

; 0

10

); c = (2; 0

14

; 2); S

denotes the deep hole of �

16

with center

a

2

and H

�

a

denotes the hyperplane x

T

a = �:

L-polytope dimension number of asymmetric equality in extreme

vertices (A) or bound ?

centrally (29) or (30)

symmetric ?

(CS)

P = conv(S \ �

16

) 16 512 CS No Yes

P

8

= conv(S \ �

16

\ H

8

a

) 15 135 A Yes Yes

P

16

= conv(S \ �

16

\H

16

a

) 15 135 A Yes Yes

P

12

= conv(S \ �

16

\H

12

a

) 15 240 CS Yes No

Q = conv(S \ �

16

\ 16 272 CS Yes Yes

fx : x:a = 0; 8; 16; 24g)

conv(x 2 �

16

: x:x = 8; 14 119 A Yes No

a:x = 4; x:c = 8)

Q

0

= conv(x 2 �

16

: 15 1080 A No Yes

x:x = 8; a:x = 4)

Figure 8

5.5 Extreme L-polytopes and perfect lattices

Let L be a k-dimensional lattice (containing the origin) with minimal norm t and set

L

min

= fv 2 L : v

2

= tg.

Let (v

1

; : : : ; v

n

) be a base of L and, for each v 2 L

min

, let v =

P

1�i�k

b

v

i

v

i

denote its

decomposition in the base, with b

v

2 Z

k

. We consider the system S

L

composed by the

following equations
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X

1�i�j�k

b

v

i

b

v

j

x

ij

= t for v 2 L

min

in

�

k+1

2

�

variables. The lattice L is said to be perfect if the system S

L

has full rank

�

k+1

2

�

,

i.e. if it has a unique solution, namely, x

ij

= 2v

T

i

v

j

for 1 � i < j � k, x

ii

= v

2

i

for

1 � i � k. Perfect lattices are important since they include the lattices with the locally

densiest packings (see, for instance, [58]).

If L is an a�ne lattice, i.e. L is the translate of a lattice L

0

, then we say that L is

perfect if L

0

is perfect.

The notion of perfect lattice is closely related to the notion of extreme L-polytope as

the following Propositions 5.9, 5.10 and 5.11 show.

Proposition 5.9 [48] Let P be an L-polytope with radius r, let L

0

denote the lattice

generated by the set of vertices V (P ) of P and let t denote its minimal norm. Suppose

that P is a basic extreme L-polytope, that there exist u; v 2 V (P ) with (u � v)

2

= t and

that t �

4

3

r

2

. Then, there exists w not lying on the hyperplane spanned by P such that

(w � v)

2

= t for all v 2 V (P ) and the lattice L generated by L

0

[ fwg is perfect.

Proof. We can suppose without loss of generality that the origin is a vertex of P . By

Lemma 3.17, the spherical t-extension of the space (V (P ); d

(2)

) has a spherical representa-

tion. Let w denote the vector representating the extension point. So, (w � v)

2

� t for all

v 2 L

0

with equality if v 2 V (P ). Let L denote the lattice generated by L

0

[ fwg. Then,

L =

S

a2Z

L

a

, where L

a

= (L

0

+ aw) are the layers composing L. The distance between

two consecutive layers is h =

p

t � r

2

.

We check that L has minimal norm t, i.e. v

2

� t for all v 2 L, v 6= 0. This is obvious if

v lies in L

0

. If v lies in a layer L

a

which is not consecutive to the layer L

0

, then k v k� 2h,

i.e. v

2

� 4h

2

= 4(t � r

2

) � t since t �

4

3

r

2

. If v lies in a layer consecutive to L

0

, say

v = u� w where u 2 L

0

, then v

2

� t.

Since P is basic, we can �nd a base (v

1

; : : : ; v

k

) of L

0

composed of vertices of P .

Then, (w; v

1

; : : : ; v

k

) is a base of L. So, the system S

L

is composed by the equations

P

0�i�j�k

b

i

b

j

x

ij

= t where (b

0

w+

P

1�i�k

b

i

v

i

)

2

= t with b 2Z

k+1

. We show that S

L

has

full rank. Let x denote a solution of S

L

. Since w;w � v

1

; : : : ; w � v

k

2 L

min

, we deduce

that the equations x

00

= t, x

00

+x

ii

�x

0i

= t (1 � i � k) belong to S

L

. Therefore, x

00

= t

and x

ii

= x

0i

for i = 1; : : : ; k.

Let v 2 V (P ), v =

P

1�i�k

b

v

i

v

i

with b

v

2 Z

k

. Then, v � w 2 L

min

, implying the

equation x

00

�

P

1�i�k

b

v

i

x

0i

+

P

1�i�j�k

b

v

i

b

v

j

x

ij

= t of S

L

. Hence, x satis�es

(�)

X

1�i�k

((b

v

i

)

2

� b

v

i

)x

ii

+

X

1�i<j�k

b

v

i

b

v

j

x

ij

= 0
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for each v 2 V (P ).

By assumption, P is an extreme L-polytope, i.e. the system S(V (P ); d

(2)

), composed

by the equations

(��)

X

1�i�k

(1�

X

1�j�k

b

v

j

)b

v

i

d

0i

+

X

1�i<j�k

b

v

i

b

v

j

d

ij

= 0

for all v 2 V (P ), has rank

�

k+1

2

�

� 1.

Set d

0i

= x

ii

for 1 � i � k and d

ij

= x

ii

+ x

jj

� 2x

ij

for 1 � i < j � k, where x is a

solution of S

L

. Then, since x satis�es (*), we deduce that d satis�es (**). Therefore, d

and, thus, x, is uniquely determined up to multiple. The fact that there exist u; v 2 V (P )

with u � v 2 L

min

permits to �x the multiple. Hence, S

L

has a unique solution x, i.e. L

is perfect. 2

Note that Proposition 5.9 still holds if we replace the assumption t �

4

3

r

2

by the

assumption t � r

2

and t is the minimal norm of L.

As we saw in Lemma 2.10, every section of the contact polytope by a hyperplane not

containing the origin is an L-polytope. Hence, Proposition 5.9 can be reformulated as

follows.

Proposition 5.10 [48] Let L be a k-dimensional lattice with minimal norm t and let P

be an L-polytope obtained by taking a section of the contact polytope of L by a hyperplane

not containing the origin. If P is basic extreme and if P contains two vertices u; v with

(u� v)

2

= t, then L is perfect.

For example, the root lattice E

8

and the Leech lattice �

24

are perfect. This can be

seen by applying Proposition 5.10; for E

8

, take t = 2, P = 3

21

with squared radius

3

2

and

for �

24

, take t = 32, P = P

23

with squared radius 20 (see Sections 5.2 and 5.3). Another

example of perfect lattice is the lattice �

0

16

(de�ned as �

16

\fx : x

T

a = 0 mod (8)g where

�

16

is the Barnes-Wall lattice and a is a minimal vector); apply Proposition 5.10 with the

polytope P

16

(see Section 5.4).

The following result can also be checked.

Proposition 5.11 [48] Let P be an extreme basic L-polytope with radius r and let L

0

denote the lattice generated by the set of vertices of P and the center of P (L

0

is known

as the centered lattice). If L

0

has minimal norm r

2

, then L

0

is perfect.

Note that the Schl�ai polytope 2

21

is an extreme basic L-polytope in E

6

. The lattice

generated by V (2

21

) and its center is the dual lattice E

�

6

which is indeed perfect.
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We conclude this section with some remarks on perfect forms. The quadratic form

Q(x) =

P

1�i;j�n

a

ij

x

i

x

j

is said to be perfect if the symmetric matrix (a

ij

)

1�i;j�n

is the

Gram matrix of the base of a perfect lattice. Voronoi ([66]) introduced this notion and

proved that the number of distinct, up to equivalence, perfect forms in any given dimension

n is �nite. (Two quadratic forms are equivalent if they coincide up to positive multiple

and integral unimodular transformation.) In dimension n = 2; 3; 4; 5; 6; 7, the number of

nonequivalent perfect forms is 1,1,2,3,7,33, respectively. For details on perfect forms, see,

for instance, [58] (the complete enumeration in the case n = 7 was done recently by Jaquet

[50]).

We mention briey some of the known perfect forms, in our terminology. If (a

ij

)

1�i;j�n

is a symmetric matrix, then p = (a

ij

)

1�i�j�n

belongs to �

0

(NEG

n+1

) and its image d =

�

�1

0

(p) under the inverse of the covariance map belongs to NEG

n+1

. It turns out that

several perfect forms correspond, in this way, to distances d that are related to easy

graphs.

We use the following notation: K

A

denotes the complete graph with set of nodes A

and K

a

1

;:::;a

t

denote the complete t-multipartite graph with a

1

nodes in the �rst part, ...,

a

t

nodes in the t-th part.

� The quadratic form Q

n

0

(x) =

P

1�i�j�n

x

i

x

j

is perfect for any n � 2. Its symmetric

matrix is a

ii

= 1 for 1 � i � n and a

ij

=

1

2

for 1 � i 6= j � n; the corresponding distance d

is the path metric of the complete graph K

n+1

. This is the only perfect form for n = 2; 3.

� The form Q

n

1

(x) =

P

1�i�j�n

x

i

x

j

� x

1

x

2

is perfect for n � 4; Q

4

0

and Q

4

1

are the only

perfect forms for n = 4. The corresponding distance is d = d(K

n+1

�P

2

) (where P

2

is the

path on (1; 2)).

The two forms Q

n

0

and Q

n

1

are known as the �rst and second principal forms, in terms of

Voronoi; they are equivalent to the forms A

n

, D

n

(corresponding to the root lattices A

n

,

D

n

), in terms of Coxeter.

� The last perfect form for n = 5, that we denote by Q

5

2

, corresponds to the distance

d =

1

2

(d(K

6

) + d(K

1;2;3

)) (which is an `

1

-metric).

� The perfect form Q

n

3

(x) = 2(b

n�1

2

cQ

n

1

(x) + x

1

x

2

�

P

3�i<j�n

x

i

x

j

), for n � 3, was

discovered by Anzin ([2]); its corresponding distance is d = 2b

n�3

2

cd(K

n+1

� K

f1;2g

) +

2d(K

n+1

�K

f3;4;:::;ng

). (Note that Q

3

3

= 2Q

3

0

, Q

4

3

' Q

4

1

and Q

5

3

= 4Q

5

2

.)

� The 7 perfect forms for n = 6 have as corresponding distances d(K

7

), d(K

7

� P

2

),

d(K

7

�P

3

) (which is an extreme hypermetric),

1

2

(d(K

7

)+d(K

1;2;2;2

)),

1

2

(d(K

7

)+d(K

1;2;4

)),

1

2

(d(K

7

) + d(K

1;1;2;3

)) and

1

2

(d(K

7

� P

(2;1;6;5)

) + d(K

7

� P

(3;1;2;5;6;4)

)).

� Among the 33 perfect forms for n = 7, six of them correspond to the distances d(K

8

),

d(K

8

� P

2

), d(K

8

� P

3

) (which is an extreme hypermetric),

1

2

(d(K

8

) + d(G)) where G is

K

1;2;2;3

, K

2;2;2;2

or K

1;1;1;2;3

. There is also Anzin's form Q

7

3

(x).
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� The irredicible root lattices A

n

(n � 0), D

n

(n � 4) and E

n

(n = 6; 7; 8) can be

represented by their Coxeter-Dynkin diagrams, that are very special trees. It turns out that

�

0

(d(K

n+1

) + sph

0

(d(

�

G))) is the symmetric matrix for the quadratic form corresponding

to the irreducible root lattice whose Coxeter-Dynkin diagram is G.

6 Hypermetric graphs

We group in this section several results concerning hypermetricity of distance spaces arising

from graphs.

There are esssentially two ways of constructing a distance space from a graph. The

most classical construction of a distance space from a connected graph G is by consid-

ering the graphic space (V (G); d

G

), where d

G

is the path metric of G. If (V (G); d

G

) is

hypermetric (resp. isometrically `

1

-embeddable, of negative type), we say that G is a

hypermetric graph (resp. an `

1

-graph, a graph of negative type).

Another distance space which can be constructed from a graphG is the space (V (G); d

�

G

),

where d

�

G

is the truncated distance of G de�ned by

8

>

<

>

:

d

�

G

(i; j) = 1 if ij 2 E(G); i 6= j;

d

�

G

(i; j) = 2 if ij 62 E(G); i 6= j;

d

�

G

(i; i) = 0 for all i 2 V (G):

Observe that, if G has diameter � 2, then the two notions of path metric and truncated

distance coincide. We shall, in particular, consider the class of suspension graphs, which

have diameter 2.

6.1 A characterization of hypermetric and `

1

-graphs

We �rst present a characterization of the graphs whose path metric is hypermetric, or

isometrically `

1

-embeddable.

Theorem 6.1 Let G be a connected graph. Then,

(i) ([65]) G is hypermetric if and only if G is an isometric subgraph of a product of half-

cube graphs, cocktail-party graphs and copies of the Gosset graph G

56

.

(ii)([31], [61]) G is an `

1

-graph if and only if G is an isometric subgraph of a product of

half-cube graphs and cocktail-party graphs.

Proof. This is an immediate consequense of Theorems 3.12 and 3.13 applied to the

connected strongly even distance space (V (G); 2d

G

). 2

For the sake of completeness, we recall the following result which characterizes the

isometric subgraphs of a hypercube, i.e. the graphs whose path metric is isometrically
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hypercube embeddable. The equivalence (i) () (ii) is from [40] and the equivalence

(i)() (iii) from [11].

Theorem 6.2 Let G be a connected graph. The following assertions are equivalent.

(i) G is an isometric subgraph of a hypercube.

(ii) G is bipartite and, for all nodes i; j 2 V (G), the set G(i; j) = fk 2 V (G) : d

G

(i; k) <

d

G

(j; k)g is closed under taking shortest paths.

(iii) G is bipartite and d

G

is 5-gonal.

We recall that, for a bipartite graph G, the hierarchy of metric properties from Propo-

sition 2.5 collapses. Namely,

Proposition 6.3 [57] Let G be a connected bipartite graph. Then, the following asser-

tions are equivalent.

(i) G is an isometric subgraph of a hypercube.

(ii) G is an `

1

-graph.

(iii) G is hypermetric.

(iv) G is of negative type.

(v) the distance matrix (d

G

(i; j))

i;j2V(G)

has exactly one positive eigenvalue.

Moreover, G has then an essentially unique `

1

-embedding.

The characterization from Theorem 6.2 is a \good" characterization, in the sense that

it permits to recognize in polynomial time whether a graph is an isometric subgraph of a

hypercube. The result from Theorem 6.1 (ii) does not yield, a priori, a good character-

ization of `

1

-graphs. However, the proof method developped by Shpectorov [61] permits

to recognize `

1

-graphs in polynomial time. No good characterization is known yet for

hypermetric graphs (recall Remark 4.12).

If we restrict our attention to the class of suspension graphs, then we have some re�ned

characterizations for hypermetricity and `

1

-embeddability. Note that, for a graph G, its

suspension rG is hypermetric (resp. an `

1

-graph) if and only if rH is hypermetric (resp.

an `

1

-graph) for each connected component H of G. Indeed, the path metric of rG arises

as the 1-sum of the path metrics of rH

1

, : : : , rH

m

, if H

1

; : : : ; H

m

are the connected

components of G.

We start with a characterization of the suspension graphs that are of negative type.

Given a graph G on n nodes, its adjacency matrix A

G

is the n� n symmetric matrix

with zero diagonal entries and whose (i; j)-entry is equal to 1 if i; j are adjacent in G and

to 0 otherwise, for distinct i; j 2 V (G). Let �

min

(A

G

) denote the smallest eigenvalue of

A

G

.
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Figure 9

Proposition 6.4 [7] Let G be a graph. Then, its suspension rG is of negative type if

and only if �

min

(A

G

) � �2 holds.

Proof. We use Proposition 2.3, so we show that �

min

(A

G

) � �2 if and only if the space

(V (rG); d

rG

) has a representation. Let i

0

denote the suspension node of rG and suppose

G has n nodes. If �

min

(A

G

) � �2, then the matrix A

G

+2I is positive semide�nite. Hence,

there exist n vectors u

1

; : : : ; u

n

2 R

m

for some m such that A

G

+2I is their Gram matrix,

i.e.

8

>

<

>

:

(u

i

)

2

= 2 for i = 1; : : : ; n;

u

T

i

u

j

= 1 if ij 2 E(G);

u

T

i

u

j

= 0 otherwise:

Then, the mapping i 2 V (G) 7! u

i

, i

0

7! u

0

= 0, provides a representation of (V (rG); 2d

rG

).

Indeed, (u

i

� u

j

)

2

= 2 if ij 2 E(rG) and (u

i

� u

j

)

2

= 4 otherwise. All the above argu-

ments can be reversed, stating the converse implication: If rG is of negative type, then

�

min

(A

G

) � �2. 2

Given a graph H , its line graph is the graph L(H) whose nodes are the edges of H

with two edges adjacent in L(H) if they share a common node. It is easy to see that the
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suspension rL(H) of any line graph is an `

1

-graph. Indeed, if we label the suspension

node by 0 and each edge e 2 E(H), e = ij, by the vector

e

i

+e

j

2

(e

i

denoting the i-th unit

vector in the space R

V (H)

), then we obtain an `

1

-embedding of rL(H). Line graphs have

been characterized by Beineke [17] by means of excluded subgraphs.

Theorem 6.5 [17] A graph G is a line graph if and only if G does not contain as an

induced subgraph any of the nine graphs B

i

, 1 � i � 9, shown in Figure 9.

Remark 6.6 One can verify that

� rB

i

is not an `

1

-graph for all 1 � i � 9 except i = 3; in fact, rB

1

, B

2

are not 5-gonal

and rB

4

, rB

6

are not 7-gonal.

� For each of the graphs H

i

, 1 � i � 4, shown in Figure 10, rH

i

is not an `

1

-graph.

Figure 10

Let G be a connected graph and suppose that its suspension rG is hypermetric. Let

H denote the 1-skeleton of the L-polytope associated with the space (V (rG); d

rG

). Then,

H is one of the L-polytope graphs shown in Figure 1. Therefore, if rG is an `

1

-graph,

then, by Proposition 3.7, H 6= G

27

; G

56

and H is one of J(m; t),

1

2

H(M; 2) and K

m�2

.

More precisely, we have the following result.
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Theorem 6.7 ([7], [8]) Let G be a connected graph. Then, the following assertions are

equivalent.

(i) rG is an `

1

-graph.

(ii) G does not contain as an induced subgraph any of the graphs from the family F =

fB

1

; B

2

; B

4

; B

5

; B

6

; B

7

; B

8

; B

9

; H

1

; H

2

; H

3

; H

4

g.

(iii) G is a line graph or G is an induced subgraph of a cocktail-party graph.

Proof. The implication (i) =) (ii) follows from the fact that the suspensions of the

graphs from F are not `

1

-graphs. The implication (iii) =) (i) is clear. We show that

(ii) =) (iii) holds. Let G be a connected graph that does not contain any member of F

as an induced subgraph. If G does not contain B

3

as an induced subgraph, then G is a

line graph by Theorem 6.5. Hence, we suppose that B

3

is an induced subgraph of G; say,

B

3

= G[Y ] is the subgraph of G induced by the subset of nodes Y , jY j = 5. We show

that G is an induced subgraph of a cocktail-party graph. For this, consider the following

property (P).

(P) For each subset Z � V (G) such that Y � Z and for each i 2 V (G) � Z, if G[Z]

is an induced subgraph of a cocktail-party graph and G[Z [ fig] is connected, then

G[Z [ fig] is also an induced subgraph of a cocktail-party graph.

We show that (P) holds, by induction on jZj � 5.

(a) We show that (P) holds for Z = Y . Let i 2 V (G)�Y such that G[Y [fig] is connected.

So, G[Y [ fig] is a connected graph on six nodes containing B

3

= K

5

� P

2

as an induced

subgraph. By direct inspection, one can check that there are eleven connected graphs on

six nodes containing B

3

as an induced subgraph. Among them, we �nd H

1

; H

2

; H

3

; H

4

;

we also �nd two graphs containing B

2

and three graphs containing B

1

; these cases are

excluded since G does not contain any member of F . The remaining two graphs areK

6

�P

2

and rrK

2�2

which are, respectively, induced subgraphs of K

5�2

and K

4�2

. Hence, the

property (P) holds for Z = Y .

Consider now Z such that Y � Z � V (G), jZj � 6 and G[Z] is an induced subgraph

of a cocktail-party graph, and consider i 2 V (G)� Z such that G[Z [ fig] is connected.

Set Y = fy

1

; y

2

; y

3

; y

4

; y

5

g where, for instance, y

1

and y

2

are not adjacent in G and, thus,

every other pair of nodes of Y is adjacent in G.

(b) Let s; t 2 Z such that s and t are not adjacent in G. We show that i is adjacent to

both s and t. Since G[Z] is contained in a cocktail-party graph, every other node of Z is

adjacent to both s and t. Let u 2 Z be a node which is adjacent to i. Then, i is adjacent to

at least one of s or t (else, G[fu; s; t; ig] would be a B

1

induced subgraph of G). Hence, for

U = fs; t; y

3

; y

4

; y

5

g, G[U ] is B

3

and G[U [ fig] is connected. By the argument from case
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(a) above, we deduce that G[U [ fig] is an induced subgraph of a cocktail-party graph,

which implies that i is adjacent to both s and t.

(c) Let s; t 2 Z such that s and t are adjacent in G. We show that i is adjacent to at

least one of s or t. If there exists r 2 Z which is not adjacent to s, then, by the argument

of case (b) above, i is adjacent to both r and s. Similarly, if there exists r 2 Z which is

not adjacent to t, then i is adjacent to t. Else, each r 2 Z is adjacent to both s and t.

Let r 2 Z which is adjacent to i. We can �nd a set U such that jU j = 5, r; s; t 2 U and

G[U ] = B

3

. Therefore, G[U [fig] is an induced subgraph of a cocktail-party graph, which

implies that i is adjacent to at least one of s or t.

We deduce from (b) and (c) that G[Z [fig] is an induced subgraph of a cocktail-party

graph. So, we have shown that (P) holds. 2

Theorem 6.8 ( [7], [8]) Let G be a connected graph. Then, the following assertions are

equivalent.

(i) rG is a hypermetric graph, but not an `

1

-graph.

(ii) G is an induced subgraph of the Schl�ai graph G

27

and G contains as an induced sub-

graph one of the graphs of the family F

0

= F�fB

1

; B

2

; B

4

; B

6

g = fB

5

; B

7

; B

8

; B

9

; H

1

; H

2

; H

3

; H

4

g.

Proof. (i) =) (ii) By Theorem 6.7, if rG is not an `

1

-graph, then G contains as an

induced subgraph one of the members of F and, in fact, of F

0

since rB

1

, rB

2

, rB

4

, rB

6

are not hypermetric (recall Remark 6.6). Let P denote the L-polytope associated with

the hypermetric space (V (rG); 2d

rG

) and let H denote its 1-skeleton. By Corollary 3.11,

P is a generating L-polytope in a root lattice. Thus, P is a direct product of L-polytopes

from Figure 1 and H is a direct product of L-polytopes graphs from Figure 1. In fact,

since the graph G is connected, H is not a direct product, i.e. H is one of the L-polytope

graphs from Figure 1. Now, H is G

27

or G

56

since all the other L-polytope graphs are

`

1

-graphs. Therefore, rG is an isometric subgraph of G

56

and, thus, G is an isometric

subgraph of G

27

.

(ii) =) (i) is clear. 2

Corollary 6.9 [7] Let G be a connected graph on n nodes.

(i) If n � 37, then rG is an `

1

-graph if and only if rG is 5-gonal and of negative type.

(ii) If n � 28, then rG is an `

1

-graph if and only if rG is hypermetric.

Assouad and Delorme ([7], [8]) have studied, more generally, the graphs G whose

truncated distance d

�

G

is `

1

-embeddable. We mention their results.
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Let G be a bipartite graph. Then, d

�

G

is isometrically `

1

-embeddable if and only if d

�

G

is 31-gonal, i.e. it su�ces to check all induced sugraphs on at most 31 nodes.

On the other hand, arbitrary graphs whose truncated distance is isometrically `

1

-

embeddable cannot be characterized by a �nite list of forbidden subgraphs. Indeed, for

each n � 2, there exists a graph on 2n+ 1 nodes for which d

�

G

is not 2n+ 1-gonal but, for

all its proper induced subgraphs, their truncated distance is isometrically `

1

-embeddable.

Let � be an integer, � � 1. Then, the graphs for which d

�

G

is isometrically `

1

-

embeddable with scale �, i.e. �d

�

G

is isometrically hypercube embeddable, can be charac-

terized by �nitely many forbidden subgraphs. Namely, there exists an integer n(�) such

that, for any graph G, d

�

G

is isometrically `

1

-embeddable with scale � if and only if the

same holds for all induced subgraphs of G on at most n(�) nodes. For instance, n(2) � 120,

n(�) = 5 for � odd.

6.2 Hypermetric regular graphs

We group here several results on the hypermetricity of the truncated distance space of a

regular graph. They will apply, in particular, to the usual path metric of strongly regular

graphs, i.e. distance-regular graphs of diameter 2.

Given a graph G on n nodes, we denote by D

�

G

the symmetric n � n matrix whose

(i; j)-entry is equal to d

�

G

(i; j), for all i; j 2 V (G).

The �rst result gives several equivalent characterizations for the truncated distance of

a regular graph to be hypermetric.

Proposition 6.10 [31] Let G be a connected regular graph on n nodes with valency k.

Then, the following assertions are equivalent.

(i) d

�

G

is of negative type.

(ii) the distance space (V (G); 2d

�

G

) has a spherical representation with radius r satisfying

r

2

< 2.

(iii) d

�

G

is hypermetric.

(iv) rG is of negative type.

(v) �

min

(A

G

) � �2.

(vi) D

�

G

has exactly one positive eigenvalue.

Moreover, if d

�

G

is hypermetric, then the radius r of the L-polytope associated with the

space (V (G); 2d

�

G

) is given by

r

2

= 2�

k + 2

n

: (34)
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Proof. (i) =) (ii) Note that

P

i2V (G)

2d

�

G

(i; j) = 2(2n� 2� k) is a constant. Hence, by

Proposition 3.14, (V (G); 2d

�

G

) has a spherical representation whose radius r is given by

relation (18), i.e. r

2

= 2�

k+2

n

and, thus, r

2

< 2.

(ii) =) (iii) follows from Proposition 3.16.

(iii) =) (iv) By Proposition 3.15, the radius of the L-polytope associated with (V (G); 2d

�

G

)

is given by (34). Since (V (rG); 2d

rG

) is the spherical 2-extension of the space (V (G); 2d

�

G

),

we deduce by Lemma 3.17 that (V (rG); d

rG

) is of negative type.

The equivalence (iv)() (v) follows from Proposition 6.4.

(v) =) (vi) Let �

1

= k � �

2

� : : : � �

n

� �2 denote the eigenvalues of the adjacency

matrix A

G

of G. Note that D

�

G

= J � (A

G

+ 2I), where J is the n � n matrix of all

ones. The vector of all ones is a common eigenvector of A

G

and D

�

G

for the eigenvalues

k and 2n � 2 � k, respectively. One checks easily that the other eigenvalues of D

�

G

are

��

2

� 2; : : : ;��

n

� 2 with ��

2

� 2 � : : : � ��

n

� 2 � 0. Hence, 2n � 2 � k is the only

positive eigenvalue of D

�

G

.

(vi) =) (v) follows by reversing the arguments of (v) =) (vi).

Using the obvious implication (iv) =) (i), we obtain the equivalence of (i)� (vi). 2

Proposition 6.10 applies, in particular, to regular graphs of diameter 2; then, d

G

and

d

�

G

coincide. However, without the regularity assumption, the equivalence of (i) � (vi)

does not hold. For instance, K

9

� P

3

and K

10

� P

3

have diameter 2 (are not regular),

satisfy (v) but not (iii) (recall Example 2).

Let G be a connected regular graph with �

min

(A

G

) � �2. Hence, its truncated distance

d

�

G

is hypermetric. Let P

�

G

denote the L-polytope associated with the space (V (G); 2d

�

G

)

and let H

�

G

denote its 1-skeleton. By Proposition 3.9, (V (G); d

�

G

) is an isometric subspace

of the graphic space (V (H

�

G

); d

H

�

G

). By Corollary 3.11, P

�

G

is an L-polytope in a root lattice

and, thus, H

�

G

is a direct product of some of the L-polytope graphs shown in Figure 1.

We show in the next result that, if H

�

G

is a non trivial direct product, then it can only be

the direct product of two complete graphs.

A bipartite graphB with bipartition V

1

[V

2

of its set of nodes is said to be semiregular

if all nodes in V

1

(resp. V

2

) have the same degree.

Lemma 6.11 [31] Let G be a connected regular graph on n nodes with valency k. Suppose

that �

min

(A

G

) � �2 and let H

�

G

denote the 1-skeleton of the L-polytope P

�

G

associated

with (V (G); 2d

�

G

). If H

�

G

is a non trivial direct product, then H

�

G

= K

n

1

�K

n

2

for some

n

1

; n

2

� 1, G is the line graph of a bipartite semiregular graph and n =

n

1

+n

2

n

1

n

2

(k + 2).

Proof. Suppose that H is the non trivial direct product H

1

� H

2

. By assumption,

(V (G); d

�

G

) is an isometric subspace of the graphic space (V (H); d

H

). Let f : i 2 V (G) 7!

f(i) = (f

1

(i); f

2

(i)) = (i

1

; i

2

) 2 V (H

1

) � V (H

2

) denote this isometric embedding. For
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i 2 V (G), set V

1

(i) = fj 2 V (G) : f

1

(i) = f

1

(j)g and V

2

(i) = fj 2 V (G) : f

2

(i) =

f

2

(j)g. If i; j are adjacent in G, then j 2 V

1

(i) [ V

2

(i). Conversely, we check that, if

jV

1

(i)j; jV

2

(i)j > 1, then both V

1

(i) and V

2

(i) induce a complete graph in G.

For this, let j 2 V

1

(i) and h 2 V

2

(i) with j 6= i, h 6= i. Then, 2 � d

�

G

(j; h) =

d

H

1

(j

1

; h

1

) + d

H

2

(j

2

; h

2

) = d

H

1

(i

1

; h

1

) + d

H

2

(j

2

; i

2

) (since i

1

= j

1

and i

2

= h

2

) which is

equal to d

�

G

(i; h) + d

�

G

(i; j) � 2. This implies that d

�

G

(i; h) = d

�

G

(i; j) = 1, i.e. both h and

j are adjacent to i. One deduces easily that any two nodes in V

1

, or in V

2

are adjacent.

Therefore, if jV

1

(i)j; jV

2

(i)j > 1, then jV

1

(i)j+ jV

2

(i)j = k + 2. For j 2 V

1

(i), V

1

(i) =

V

1

(j), k+2 � jV

1

(j)j+jV

2

(j)j, implying that jV

2

(i)j � jV

2

(j)j and, thus, jV

1

(j)j; jV

2

(j)j > 1,

yielding k + 2 = jV

1

(j)j + jV

2

(j)j and, thus, jV

2

(j)j = jV

2

(i)j. Therefore, since G is

connected, there exist integers p; q � 1 such that jV

1

(i)j = p, jV

2

(i)j = q for all i 2 V (G).

Let B denote the bipartite graph with node bipartition V

1

[V

2

, where V

1

= f

1

(V (G)) �

V (H

1

) and V

2

= f

2

(V (G)) � V (H

2

), and two nodes i

1

2 V

1

, i

2

2 V

2

are adjacent in B

if (i

1

; i

2

) = f(i) for some node i 2 V (G). So each node of V

1

(resp. of V

2

) has valency p

(resp. q), i.e. B is semiregular. It is immediate to see that G is the line graph of B.

We now check that H

1

and H

2

are complete graphs. Set n

1

= jV

1

j, n

2

= jV

2

j and

n = jV (G). Let r denote the radius of the L-polytope P

�

G

; r is given by relation (34).

So, r

2

= 2 �

k+2

n

=

n

1

�1

n

1

+

n

2

�1

n

2

. Let r

m

denote the radius of the L-polytope whose

1-skeleton is the graph H

m

, for m = 1; 2. Then, r

2

= r

2

1

+ r

2

2

holds. We use the following

observation: For each L-polytope P in a root lattice, its radius r satis�es r

2

�

jV (P )j�1

jV (P )j

with equality if and only if P is a simplex. Therefore, r

2

m

�

jV (H

m

)j�1

jV (H

m

)j

�

n

m

�1

n

m

, since

jV (H

m

)j � n

m

, for m = 1; 2. But, r

2

= r

2

1

+ r

2

2

=

n

1

�1

n

1

+

n

2

�1

n

2

, from which we deduce

that r

2

m

=

n

m

�1

n

m

, jV (H

m

)j = n

m

and, thus, H

m

is the complete graph K

n

m

for m = 1; 2. 2

Corollary 6.12 [31] Let G be a connected regular graph on n nodes with valency k and

such that �

min

(A

G

) � �2. Then, one of the following assertions holds.

(i) G is the line graph of a bipartite semiregular graph and n =

n

1

n

2

n

1

+n

2

(k + 2), for some

n

1

; n

2

� 1.

(ii) G is the line graph of a regular graph and n =

m

4

(k + 2) for some m � 3.

(iii) G = K

m�2

and n = k + 2.

(iv) G is an induced subgraph of the Gosset graph G

56

and n = 2(k + 2).

(v) G is an induced subgraph of the Schl�ai graph G

27

and n =

3

2

(k + 2).

(vi) G is an induced subgraph of the Clebsch graph

1

2

H(5; 2) and n =

3

2

(k + 2).

Proof. Let H

�

G

denote the 1-skeleton of the L-polytope P

�

G

associated with (V (G); 2d

�

G

).

If H

�

G

is a direct product, then we have (i) by Lemma 6.11. So we now suppose that H

�

G
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is one of the L-polytope graphs from Figure 1. We know that the radius r of P

�

G

satis�es

r

2

= 2�

k+2

n

< 2.

� If H

�

G

= J(m; t) for some t � 1, n � 2t, then r

2

=

t(m�t)

m

< 2 implying that t = 1; 2; 3.

If H

�

G

= J(m; 1) = K

m

, then G = H

�

G

= K

m

is the line graph of the bipartite semiregular

graph K

1;m

; hence, m = n and we have (i). If H

�

G

= J(m; 2) = L(K

m

), then G is a line

graph. Since G is regular, one can check that G is the line graph of a regular graph or

a bipartite semiregular graph. Since r

2

=

2(m�2)

m

, we deduce that n =

m

4

(k + 2). So, we

have (i) or (ii). If H

�

G

= J(m; 3), then m = 6; 7; 8. If H

�

G

= J(6; 3), then G is an induced

subgraph of G

56

and r

2

=

3

2

= 2 �

k+2

n

, yielding n = 2(k + 2), i.e. we have (iv). The

cases m = 7; 8 are excluded. Indeed, one can check that every subgraph K of J(m; 3)

(m = 7; 8) such that K is not contained in J(6; 3) or J(n; 2) and no pair of nodes of K

are at distance 3 in J(m; 3) has strictly less than

m(k+2)

9�m

nodes.

� If H

�

G

= K

m�2

, then we have (iii).

� If H

�

G

=

1

2

H(m; 2) for some m � 4, then r

2

=

m

4

< 2, implying that m = 4; 5; 6; 7.

If m = 4, then H

�

G

= K

4�2

and, thus, we have (iii). If m = 5, then r

2

=

5

4

yielding

n =

4

3

(k + 2) and, thus, we have (vi). If m = 6, then r

2

=

3

2

yielding n = 2(k + 2) and,

thus, we have (iv) since

1

2

H(6; 2) is an isometric subgraph of G

56

. The case m = 7 is

excluded (similarly to the exclusion above of the cases J(7; 3) and (J(8; 3); indeed, there

is no k-regular subgraph of

1

2

H(7; 2) on n = 4(k + 2) nodes which is not contained in

1

2

H(6; 2) or J(7; 2) and does not contain a pair of vertices at distance 3).

� If H

�

G

= G

56

, then we have (iv) and, if H

�

G

= G

27

, then we have (v). 2

Remark 6.13 Under the assumptions of Corollary 6.12, the only possibilities for the 1-

skeleton H

�

G

of the L-polytope P

�

G

associated with the hypermetric space (V (G); 2d

�

G

) are

H

�

G

= K

n

1

�K

n

2

, J(m; 1), J(m; 2), J(6; 3), K

m�2

,

1

2

H(5; 2),

1

2

H(6; 2), G

27

and G

56

. In

particular, if G is not a line graph nor a cocktail-party graph, then H

�

G

is one of J(6; 3),

1

2

H(5; 2),

1

2

H(6; 2), G

27

or G

56

. Note that the radius r of the L-polytope P

�

G

satis�es

r

2

=

5

4

for

1

2

H(5; 2), r

2

=

4

3

for G

27

and r

2

=

3

2

for

1

2

H(6; 2), J(6; 3) and G

56

.

The graphs for which �

min

(A

G

) � �2 are well studied. It is easy to check that

�

min

(A

G

) � �2 for every line graph G (indeed, if G = L(H), then 2I + A

G

= N

T

N ,

where N is the node-edge incidence matrix of H); moreover, �

min

(A

G

) = �2 if and only

if G contains an even circuit or two odd circuits (see [20]). If G is a cocktail-party graph,

one computes easily that �

min

(A

G

) = �2.

Let L

BCS

denote the class of graphs which are connected, regular, not line graphs nor

cocktail-party graphs and satisfy �

min

(A

G

) = �2. This class has been extensively studied.
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In fact, it is completely classi�ed; see [20]. L

BCS

consists of 187 graphs, each of them has

n � 28 nodes and valency k � 16. The graphs of L

BCS

are partitioned into three layers

L

1

, L

2

, L

3

depending on the value of the quantity

n

k+2

, where n is the number of nodes

and k the valency of a graph in L

BCS

. The layer L

1

(resp. L

2

, L

3

) consists of the graphs

G 2 L

BCS

for which

n

k+2

= 2 (resp.

n

k+2

=

3

2

,

n

k+2

=

4

3

).

Our approach permits to shed a new light on the parameter

k+2

n

characterizing each

layer of L

BCS

. Namely, the parameter

k+2

n

is nothing but the quantity 2� r

2

, where r is

the radius of the L-polytope associated with the hypermetric space (V (G); 2d

�

G

) for any

graph G 2 L

BCS

. Therefore, each layer in L

BCS

is characterized by a quantity derived

from the hypermetricity of its graphs.

We summarize several facts about the class L

BCS

and its three layers.

� The �rst layer L

1

consists of 163 graphs (the graphs NN1-163 in [20]); it is characterized

by

n

k+2

= 2. For each graph G 2 L

BCS

, the L-polytope P

�

G

associated with the hypermetric

space (V (G); 2d

�

G

) has radius

3

2

and its 1-skeleton is

1

2

H(6; 2), J(6; 3) or G

56

. Hence, each

graph G 2 L

1

is an induced subgraph of G

56

and, thus, has diameter 2 or 3. Therefore,

the graphs of L

1

with diameter 2 are hypermetric with L-polytope graph

1

2

H(6; 2), J(6; 3)

or G

56

.

� The second layer L

2

consists of 21 graphs (the graphs NN164-184 in [20]) including the

Schl�ai graph G

27

(which is N184 in [20]). It is characterized by the value

n

k+2

=

3

2

. For

each G 2 L

2

, the L-polytope P

�

G

is 2

21

with radius r, r

2

=

4

3

. Hence, each G 2 L

2

is an

isometric subgraph of G

27

and, thus, has diameter 2 and is hypermetric.

� The third layer L

3

consists of 3 graphs; they are the Clebsch graph

1

2

H(5; 2) (N187 in

[20]) and two of its regular subgraphs (the graphs NN185,186 in [20]). L

2

is characterized

by the value

n

k+2

=

4

3

. For each graph G 2 L

3

, P

�

G

= h

5

with radius r, r

2

=

5

4

, with

1-skeleton

1

2

H(5; 2). Therefore, each graph of L

3

is an isometric subgraph of

1

2

H(5; 2) and,

thus, has diameter 2 and is an `

1

-graph with L-polytope graph

1

2

H(5; 2).

We conclude this section with some results on hypermetric distance-regular graphs.

A graph G is distance-regular if there exist integers b

m

; c

m

(m > 0) such that for

any two nodes i; j 2 V (G) at distance d

G

(i; j) = m there are exactly c

m

nodes at distance

1 from i and distance m � 1 from j, and there are b

m

nodes at distance 1 from i and

distance m + 1 from j. Hence, G is regular with valency b

0

and there are k

m

nodes at

distance m from any node i 2 V (G), where k

0

= 1, k

1

= 1, k

m+1

=

k

m

b

m

c

m+1

, m � 0.

If G is distance-regular, then

P

i2V (G)

d

G

(i; j) =

P

m�0

mk

m

is a constant. Therefore,

from Proposition 1.6, a distance-regular graph is of negative type if and only if the space

(V (G); d

G

) has a spherical representation.

Let � denote the number of common neighbours of two nodes at distance 2, i.e. � = c

2

.

Koolen [51] has classi�ed the hypermetric distance-regular graphs with � � 2. We recall



86 M. Deza, V.P. Grishukhin and M. Laurent

his result (see [19] or [51] for the description of the graphs not de�ned here).

Theorem 6.14 (Theorem 3.15 in [51]) Let G be a distance-regular graph with � � 2.

Then, G is a hypermetric graph if and only if one of the following holds.

(i) � = 2n � 2 and G is a cocktail-party graph K

n�2

.

(ii) � = 10 and G is the Gosset graph G

56

.

(iii) � = 8 and G is the Schl�ai graph G

27

.

(iv) � = 6 and G is a half-cube graph.

(v) � = 4 and G is a Chang graph.

(vi) � = 4 and G is a Johnson graph.

(vii) � = 2 and G is a Hamming graph.

(viii) � = 2 and G is a Doob graph (including the Schrikhande graph).

(ix) � = 2 and G is the icosahedron graph.

The following distance-regular graphs with � = 1 are hypermetric: the cycle C

n

, the

double-odd graphDO

2n+1

, the dodecahedron graph, the Petersen graph. (In fact, they are

all `

1

-graphs). The distance-regular graphs which are isometric subgraphs of a hypercube

are precisely the double-odd graph DO

2n+1

, the hypercube H(n; 2) and the even cycle

C

2n

([51], [67]).

Proposition 6.15 ([51], [31]) Let G be a strongly regular graph. Then, G is hypermetric

if and only if G is one of the following graphs: K

n

�K

n

, J(n; 2), K

n�2

,

1

2

H(n; 2), G

27

, the

5-cycle C

5

, the Petersen graph, the Schrikhande graph, or one of the three Chang graphs.

6.3 Extreme hypermetric graphs

In this section, we consider extreme hypermetric graphs, i.e. the graphs G whose path

metric d

G

lies on an extreme ray of the hypermetric cone.

Let G be a hypermetric graph. Let P

G

denote the L-polytope associated with the

hypermetric space (V (G); 2d

G

) and let H

G

denote its 1-skeleton. Hence, P

G

is an L-

polytope in a root lattice and G is an isometric subgraph ofH

G

. Moreover,G is an extreme

hypermetric if and only if P is an extreme L-polytope (by Theorem 4.5). By Theorem 5.1,

the only extreme L-polytopes in a root lattice are the segment �

1

, the Schl�ai polytope

2

21

and the Gosset polytope 3

21

. Therefore, if G is an extreme hypermetric graph distinct

from K

2

, then,

� either H

G

= G

56

, i.e. G is an isometric subgraph of G

56

which is generating (i.e. V (G)

viewed as subset of the set of vertices V (3

21

) of 3

21

generates V (3

21

)); we say that G is

an extreme hypergraph of Type I.

� or H

G

= G

27

, i.e. G is an isometric subgraph of G

27

which is generating (i.e. V (G)

generates V (2

21

)); we say that G is an extreme hypermetric graph of Type II.
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A generating subset in G

27

has at least 7 elements. We found that there are 26 distinct

(up to permutation) generating subsets in G

27

with 7 elements (i.e. basic subsets of 2

21

;

see Section 5.2). For B � V (G

27

), let G

27

[B] denote the subgraph of G

27

induced by B.

Note that G

27

[B] is an isometric subgraph of G

27

if and only if G

27

[B] has diameter 2 and,

then, G

27

[B] is a hypermetric graph. Among the 26 basic subsets B of G

27

(whose graphs

G

27

[B] are shown in Figures 3, 4, 5 and 6), the graph G

27

[B] has diameter 2 for twelve of

them, namely for the graphs G

i

for 1 � i � 8, G

16

, G

18

, G

24

and G

26

. Hence, these twelve

graphs are extreme hypermetric graphs on 7 nodes with L-polytope graph G

27

. We recall

that G

1

= rB

9

, G

2

= rH

2

, G

3

= rH

1

, G

4

= rB

8

, G

5

= rB

7

, G

6

= rH

4

, G

7

= rH

3

and G

8

= rB

5

, where the graphs B

i

(1 � i � 8) and H

i

(1 � i � 4) are shown in Figures

9 and 10, respectively. We show in Figure 11 the graphs G

16

, G

18

, G

24

and G

26

(their

complements are shown in Figures 4, 5 and 6).

Figure 11

For each of the above twelve graphs, their suspension rG

i

(for 1 � i � 8, i =

16; 18; 24; 26) is an extreme hypermetric graph on 8 nodes with L-polytope graph G

56

.

Lemma 6.16 [31] Let H be a maximal (by inclusion) L-polytope graph which is a proper

isometric subgraph of G

56

. Then, H is one of the following graphs.

(i) H = J(8; 2).

(ii)H = K

6�2

�K

2

.

(iii) H =

1

2

H(6; 2).

(iv) H = G

27

.

Proof. We know that H is a direct product of the L-polytope graphs from Figure 1. Let

r denote the radius of the L-polytope whose 1-skeleton is H . Then, r

2

�

3

2

, since H is

contained in G

56

.

� If H = J(n; t), then r

2

=

t(n�t)

n

�

3

2

, implying that t = 1; 2; 3. Then, H is not maximal

except for J(8; 2). Indeed, if t = 1, then n � 7 and K

n

�

iso

J(8; 2); if t = 2, then n � 8

and J(n; 2) �

iso

J(8; 2); if t = 3, then n = 6 and J(6; 3) �

iso

1

2

H(6; 2).
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� If H = K

n�2

, then n � 6 and K

n�2

�

iso

K

6�2

�K

2

.

� If H =

1

2

H(n; 2), then r

2

=

n

4

�

3

2

, implying that n � 6 and, thus, H �

iso

1

2

H(6; 2).

Else H = G

27

or H is a direct product. Suppose that H = H

1

�H

2

. Denote by r

1

, r

2

the

radius of the L-polytope whose 1-skeleton is H

1

, H

2

, respectively. Then, r

2

= r

2

1

+r

2

2

�

3

2

.

Looking at the radii of the L-polytopes from Figure 1, it is easy to see that the only

possibility is H

1

= K

6�2

, H

2

= K

2

(r

2

1

= 1, r

2

2

=

1

2

) (for instance, for H

1

= H

2

= K

4

,

r

2

1

= r

2

2

=

3

4

but K

4

�K

4

�

iso

J(8; 2)). 2

Lemma 6.17 [31] Let H be a maximal (by inclusion) L-polytope graph which is a proper

isometric subgraph of G

27

. Then, one of the following holds.

(i) H = J(6; 2).

(ii) H = K

5�2

.

(iii) H =

1

2

H(5; 2).

(iv) H = K

6

.

Proof. The proof is similar to that of Lemma 6.16. We use the fact that the radius r of

the L-polytope whose 1-skeleton is H satis�es r

2

�

4

3

. It is easily seen that H cannot be

a direct product.

� If H = J(n; t), then r

2

=

t(n�t)

n

�

4

3

, implying that t = 1; 2 and n � 6. Hence, we have

(i) or (iv).

� If H = K

n�2

, then n � 5 (because K

6�2

is not contained in G

27

) and, thus,H �

iso

K

5�2

.

� If H =

1

2

H(n; 2), then r

2

=

n

4

�

4

3

, implying that n � 5 and, thus, H �

iso

1

2

H(5; 2). 2

We deduce the following characterization for extreme hypermetric graphs.

Proposition 6.18 [31] Let G be a connected graph distinct from K

2

. Then, G is an

extreme hypermetric graph if and only if one of the following assertions hold.

(i) Type I: G is an isometric subgraph of G

56

and G is not an induced subgraph of J(8; 2),

K

6�2

�K

2

,

1

2

H(6; 2) or G

27

.

(ii) Type II: G is an isometric subgraph of G

27

and G is not an induced subgraph of K

5�2

,

J(6; 2), K

6

or

1

2

H(5; 2).

Observe that all the excluded graphs in Proposition 6.18 are `

1

-graphs. In other words,

every isometric subgraph of G

56

is either an extreme hypermetric graph, or an `

1

-graph.

As an application of Proposition 6.18, we obtain that:

� Every isometric subgraph of G

27

on n � 17 nodes is extreme.

� Every induced subgraph of G

27

on n � 20 nodes is extreme (since deleting 7 nodes from
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G

27

preserves the diameter 2 because �(G

27

) = 8).

� Every isometric subgraph of G

56

on n � 33 nodes is extreme.

� Every induced subgraph of G

56

on n � 47 nodes is extreme (since �(G

56

) = 10).

� IfG is a connected graph of diameter 2, then its suspension rG is an extreme hypermetric

graph of Type I if and only if G is an extreme hypermetric graph of Type II.

We now collect some properties for extreme hypermetrics arising from the graphs

G 2 L

BCS

.

As we saw in Section 6.2, if G is a connected regular graph with �

min

(A

G

) � �2,

then its truncated distance d

�

G

is hypermetric. Let P

�

G

denote the L-polytope associated

with (V (G); 2d

�

G

) and let H

�

G

denote its 1-skeleton.

Suppose that G belongs to the class L

BCS

, i.e. G is connected regular with �

min

(A

G

) =

�2 and G is not a line graph nor a cocktail-party graph. By Remark 6.13, H

�

G

is one of

J(6; 3),

1

2

H(5; 2),

1

2

H(6; 2), G

27

or G

56

. Since (V (G); d

�

G

) is an isometric subspace of

(V (H

�

G

); d

H

�

G

) which, in turn, is an isometric subspace of (V (G

56

); d

G

56

), we deduce that

G does not contain any pair of nodes at distance 3 in G

56

; in particular, if G is an induced

subgraph of

1

2

H(6; 2), then G has at most n � 16 nodes.

This implies the following Proposition 6.19

Proposition 6.19 [31] Let G be a graph of L

BCS

. Then, if G is not an induced subgraph

of

1

2

H(6; 2), then d

�

G

is extreme hypermetric. In particular, if G is on n � 17 nodes, then

d

�

G

is extreme hypermetric.

Proposition 6.20 [31] A graph G 2 L

BCS

is extreme hypermetric if and only if it has

diameter 2 and it is not an induced subgraph of

1

2

H(6; 2).

Every extreme regular hypermetric graph of diameter 2 belongs to L

BCS

.

Let G be an extreme hypermetric graph from L

BCS

; then, G is of Type I (resp. Type II)

if and only if G belongs to the layer L

1

(resp. L

2

).

Every graph from L

BCS

on n � 17 and with valency k � 9 is extreme. They are the 29

graphs in layer L

1

numbered NN135-163 in [20] and the 8 graphs in layer L

2

numbered

NN177-184 in [20].

All the 9 maximal (by inclusion) graphs of L

BCS

are extreme hypermetric graphs; they are

the Schl�ai graph G

27

numbered N184in [20], the three Chang graphs NN161, 162, 163,

and the �ve graphs NN148-152 on 22 nodes.

7 Hypermetric inequalities for the cut cone

Set X = f1; : : : ; ng. We recall that the cut cone CUT

n

is the cone in R

(

n

2

)

generated by

the cut semimetrics �(S) for S � X . In fact, CUT

n

consists of the semimetrics d on X
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for which the distance space (X; d) is isometrically `

1

-embeddable (see Proposition 2.1).

In the context of graph theory and combinatorial optimization, the set of edges ij of the

complete graph K

n

that have an endnode in S and the other endnode in X �S is called a

cut; so the cut semimetric �(S) is its incidence vector. For the sake of simplicity, we call

�(S) a cut semimetric or a cut.

The cone CUT

n

can be alternatively described by a system of linear inequalities, its

valid inequalities. Recall that, for v 2 R

(

n

2

)

, the inequality v

T

x � 0 is said to be valid for

CUT

n

if it is satis�ed by all cut semimetrics �(S), S � X . Moreover, the valid inequality

v

T

x � 0 de�nes a facet of CUT

n

if there exist

�

n

2

�

�1 linearly independent cut semimetrics

satisfying the equality v

T

x = 0. Hence, �nding the valid inequalities for CUT

n

amounts

to characterizing `

1

-embeddable semimetrics by linear inequalities.

We have seen in this paper two important classes of valid inequalities for the cut

cone, namely the hypermetric inequalities and the inequalities of negative type (de�ned in

relation (4); recall Proposition 2.5). In fact, the inequalities of negative type never de�ne

facets of the cut cone since they are implied by the hypermetric inequalities (this is the

implication (iii) =) (v) from Proposition 2.5).

We describe in section 7.1 some classes of hypermetric inequalities that de�ne facets

of the cut cone; we also present some generalizations of hypermetric inequalities yielding

new valid inequalities for the cut cone. In section 7.2, we describe how, by analogy with

hypermetric inequalites, some inequalities can be constructed that are valid for other cut

families, as even T -cuts, t-ary cuts, multicuts or even multicuts. We present in section 7.3

the inequalities that arise by "switching" the hypermetric inequalities; they are valid for

the cut polytope. They are, in fact, part of the much larger class of gap inequalities.

As a curiosity, let us mention an analogue of hypermetric inequalities for a class of non

necessarly symmetric distance functions. Namely, let (
;A; �) be a nonnegative measure

space and let A

x

, x 2 X , be members of A with �nite measure, i.e. �(A

x

) <1. Consider

the function d : X

2

7! R

+

de�ned by d(x; y) = �(A

x

� A

y

) for x; y 2 X . Then, d satis�es

the inequality

P

1�i<j�m

(�1)

i+j

d(x

i

; x

j

) � 0 for all x

1

; : : : ; x

m

2 X , m � 1 ([4]). To

enable the reader to compare this inequality with hypermetric inequalities, we make the

following two observations.

- First, any hypermetric inequality

P

1�i<j�n

b

i

b

j

x

ij

� 0, with

P

1�i�n

b

i

= 1 and b 2Z

n

,

can be viewed as the inequality

P

1�i<j�P

x

ij

+

P

P+1�i<j�N

x

ij

�

P

1�i�P<j�N

x

ij

� 0 if

we set P =

P

i:b

i

>0

b

i

, N =

P

1�i�n

jb

i

j and if we allow repetition of the points.

- Second, a semimetric d on X is isometrically `

1

-embeddable if and only if there exist a

nonnegative measure space (
;A; �) and sets A

x

2 A, x 2 X , of �nite measure such that

d(x; y) = �(A

x

4A

y

) for all x; y 2 X ([4]).
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7.1 Hypermetric facets for the cut cone

Hypermetric inequalities form a large class of valid inequalities for the cut cone. Therefore,

we have the inclusion CUT

n

� HYP

n

for all n � 3. In fact, for n � 6, the hypermetric

inequalities su�ce for describing the cut cone, i.e. CUT

n

= HYP

n

for n � 6, but the

inclusion CUT

n

� HYP

n

is strict for n � 7. In other words, CUT

n

(n � 7) has a

facet that is not de�ned by a hypermetric inequality or, equivalently, HYP

n

(n � 7) has

an extreme ray that is not generated by a cut semimetric. Indeed, such extreme rays

of HYP

n

arise from the extreme L-polytope 2

21

(see section 5.2). For examples of non

hypermetric facets of CUT

n

, see e.g. [36], [37]; the complete description of the facets of

CUT

7

can be found there.

Hypermetric facets for the cut cone have been studied in several papers ([29], [36],

[37],[38], [62]); we refer to [35] for a survey.

We now recall the description of CUT

n

for n � 6. As a short notation, let us denote

the hypermetric inequality

P

1�i<j�n

b

i

b

j

x

ij

� 0, where b 2 Z

n

with

P

1�i�n

b

i

= 1, by

Hyp

n

(b

1

; : : : ; b

n

), or Hyp

n

(b).

For n = 3; 4, the cut cone CUT

n

is completely determined by the triangle inequalities

x

ij

� x

ik

� x

jk

� 0 for i; j; k 2 X .

For n = 5, the facets of CUT

5

are (up to permutation of the nodes) de�ned by one of

the following hypermetric inequalities Hyp

5

(1; 1;�1; 0; 0) and Hyp

5

(1; 1; 1;�1;�1) ([28],

[29]).

For n = 6, the facets of CUT

6

are (up to permutation of the nodes) de�ned by

one of the following hypermetric inequalities Hyp

6

(1; 1;�1; 0; 0; 0), Hyp

6

(1; 1; 1;�1;�1; 0),

Hyp

6

(2; 1; 1;�1;�1;�1) and Hyp

6

(1; 1; 1; 1;�2;�1) ([15]).

The complete characterization of the hypermetric inequalities Hyp

n

(b) that de�ne

facets of CUT

n

seems to be a hard problem. Note that, if Hyp

n

(b) de�nes a facet of

CUT

n

, then it also de�nes a facet of HYP

n

and, thus, its associated L-polytope is a repar-

titioning polytope P

m

p;q

(b) (m = jfi : b

i

= 0gj, p + 1 = jfi : b

i

> 0gj, q = jfi : b

i

< 0gj)

which can be embedded in a parallepiped; see Propositions 3.7 and 4.10. In particular, by

Theorem 4.11, if Hyp

n

(b) de�nes a facet of CUT

n

, then max(jb

i

j : 1 � i � n) �

2

n�2

(n�1)!

n+1

.

Let �

n

denote the maximum absolute value of an n � n determinant with binary entries;

then, the following bound max(jb

i

j : 1 � i � n) � �

n�1

can be shown in an elementary

way ([12]).

Example 8. Consider the hypermetric inequality Hyp

7

(b) for b = (3; 1; 1; 1;�1;�2;�2).

This is an example of a hypermetric inequality that de�nes a facet of HYP

7

, but not of

CUT

7

.

Indeed, there are 20 a�nely independent cut semimetrics satisfying the hypermetric

inequality Hyp

7

(b) at equality. The truncated distance of the graph G

9

shown in Figure
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3 (taking value 1 on the edges of G

9

and value 2 on the pairs that are not edges) also

satis�es the hypermetric inequality Hyp

7

(b) at equality (for this, label the nodes of G

9

as

1,2,3,4,5,6,7 if their degrees in the complement

�

G

9

of G

9

are 3,2,2,2,5,1,1, respectively).

So, this distance together with the 20 cut semimetrics form a set of 21 a�nely independent

distances satisfying Hyp

7

(b) at equality.

Note also that the truncated distance of the graph G

12

(with a suitable labeling of its

nodes) (resp. G

11

, G

10

) satis�es the hypermetric inequality Hyp

7

(�3; 1; 1; 1; 1;�2; 2) (resp.

Hyp

7

(3;�1;�1;�1; 1;�2; 2), Hyp

7

(�3; 1;�1;�1; 1; 2; 2)) at equality. In fact, the hyper-

metric inequalities Hyp

7

(�3; 1; 1; 1; 1;�2; 2), Hyp

7

(3;�1;�1;�1; 1;�2; 2),Hyp

7

(�3; 1;�1;�1; 1; 2; 2)

are switchings of Hyp

7

(b) by the cuts �(f1; 5; 7g), �(f1; 6g), �(f2g), respectively (see Sec-

tion 7.3 for the de�nition of switching).

The complete characterization of the hypermetric facets Hyp

n

(b) for CUT

n

is known

for the following classes of parameters b = (b

1

; : : : ; b

n

):

(i) b

1

� : : : � b

p

> 0 > b

p+1

� : : : � b

n

with b

n�1

= �1 (i.e. all negative b

i

's except at

most one are equal to -1) ([29], [36]).

(ii) b

i

2 fw;�w; 1;�1g for all i = 1; : : : ; n, for some integer w � 2 ([37]).

For instance, in case (i), Hyp

n

(b

1

; : : : ; b

p

;�1; : : : ;�1) de�nes a facet of CUT

n

for all

3 � p � n� 3, b

1

; : : : ; b

p

� 1 and b

1

+ : : :+ b

p

� (n� p) = 1.

One of the main tools for constructing hypermetric facets is a lifting procedure permit-

ting to obtain a hypermetric facet of CUT

n+1

from a given hypermetric facet of CUT

n

.

For instance, if Hyp

n

(b) de�nes a facet of CUT

n

, then Hyp

n+1

(b; 0) de�nes a facet of

CUT

n+1

(this is 0-lifting).

Recall that a valid inequality v

T

x � 0 de�nes a simplicial face of CUT

n

if the semi-

metrics �(S) satisfying the equality v

T

x = 0 are a�nely inedependent. For example,

Hyp

3

(1; 1;�1), Hyp

4

(1; 1;�1; 0), Hyp

5

(1; 1; 1;�1;�1) de�ne simplicial facets of CUT

3

,

CUT

4

, CUT

5

, respectively. More generally, Hyp

n

(n � 4; 1; 1;�1; : : : ;�1) de�nes a sim-

plicial facet of CUT

n

for all n � 3. In fact, for b = (a; n � 5 � a; 1; 1;�1; : : : ;�1) with

a �

n�5

2

, n � 6, Hyp

n

(b) de�nes a facet of CUT

n

if and only if a � n � 4, and Hyp

n

(b)

de�nes a simplicial face of CUT

n

if and only if a � n� 4 ([36]).

Several generalizations of hypermetric inequalities have been proposed. They are of the

form

P

1�i<j�n

b

i

b

j

x

ij

�

P

ij2E(G)

x

ij

� 0, where b 2Z

n

and G is a subgraph (eventually

edgeweighted) of K

n

. So, hypermetric inequalties are the case when

P

1�i�n

b

i

= 1 and

G is the empty graph. When

P

1�i�n

b

i

= 2r + 1 is odd and G is an antiweb (resp. the

suspension of a tree), we have the clique-web inequalities (considered in [1], [36], [37],

[38]) (resp. the suspended-tree inequalities, considered in [18]). Further generalizations of

suspended-tree inequalities are considered in [63].
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For instance, let b 2 Z

n

with b

1

; : : : ; b

p

> 0 > b

p+1

; : : : ; b

n

,

P

1�i�n

b

i

= 3, p � 3 and

let C be a cycle on the nodes (1; : : : ; p). Then, the inequality

X

1�i<j�n

b

i

b

j

x

ij

�

X

ij2E(C)

x

ij

� 0

is valid for CUT

n

(it is the case r = 1 of the clique-web inequalities); it de�nes a facet of

CUT

n

, for instance, if p � 5 and b

p+1

= : : := b

n

= �1.

Also, let b 2Z

n

with

P

1�i�n

b

i

= 2r + 1, b

1

; : : : ; b

p

> 0 > b

p+1

; : : : ; b

n

, 3 � p � n � 1,

let T be a tree spanning the nodes (2; : : : ; p) and, for i 2 f2; : : : ; pg, let deg

T

(i) denote the

degree of node i in T . Then, the inequality

X

1�i<j�n

b

i

b

j

x

ij

�

r(r+ 1)

2

(

X

2�i�p

(2� deg

T

(i))x

1i

+

X

ij2E(T )

x

ij

) � 0

is valid for CUT

n

(it is the suspended-tree inequality).

7.2 Analogues of hypermetric inequalities for other cut families

We indicate how hypermetric inequalities can be modi�ed in order to obtain valid inequal-

ities for other cut families.

We recall some de�nitions. Let X = f1; : : : ; ng and let T � X with jT j even. The cut

�(S) is called an even T -cut (resp. odd T -cut) if jS \ T j is even (resp. odd). If n is

even and T = X , then an even T -cut is simply called an even cut.

Even cuts can generalized to t-ary cuts as follows. Let t � 2 be an integer and suppose

n � 0 ( mod t). The cut �(S) is called a t-ary cut if jSj � 0 ( mod t). Hence, 2-ary cuts

are just even cuts.

Let S

1

; : : : ; S

k

be a partition of X into k parts. The multicut �(S

1

; : : : ; S

k

) consists

of the edges ij of K

n

whose endnodes i; j belong to distinct classes of the partition. So,

for k = 2, we have the usual notion of cut. The multicut �(S

1

; : : : ; S

k

) is said to be even

if jS

1

j; : : : ; jS

k

j are all even.

We now indicate analogues of hypermetric inequalities that are valid for even T -cuts,

t-ary cuts, multicuts, and even multicuts.

� ([39]) Suppose T � X with jT j even. Let b 2 Z

n

such that b

i

is odd for all i 2 T , b

i

is

even for all i 2 X � T and

P

1�i�n

b

i

= 2. Then, the inequality

X

1�i<j�n

b

i

b

j

x

ij

� 0 (35)
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is satis�ed by all even T -cuts. In particular, if b

i

= �1 for all i, then the inequality (35)

de�nes a facet of the even cut cone (the cone generated by all even cuts of K

n

).

Let t � 2 be an integer and suppose n � 0 ( mod t). Let b 2 Z

n

such that b

i

�

� ( mod t) for all i = 1; : : : ; n, where � 2 f1; 2; : : : ; t� 1g, and

P

1�i�n

b

i

= t. Then, the

inequality (35) is satis�ed by all t-ary cuts.

� ([49], [34]) Let b 2Z

n

with � =

P

1�i�n

b

i

� 1. The inequality

X

1�i<j�n

b

i

b

j

x

ij

�

�(� � 1)

2

is satis�ed by all multicuts. For instance, if b

i

= �1 for all i, then the above inequality

de�nes a facet of the multicut polytope (the convex hull of all multicuts of K

n

). (Note

that the multicut cone coincides with the cut cone.) Another generalization of hypermetric

inequalities to multicuts is presented in [22].

�([39]) Let b 2Z

n

with � =

P

1�i�n

b

i

� 2. The inequality

X

1�i<j�n

b

i

b

j

x

ij

�

�(� � 2)

2

is satis�ed by all even multicuts.

7.3 Hypermetric inequalities for the cut polytope

The cut polytope CUT

2

n

is de�ned as the convex hull of all cut semimetrics �(S) for S � X .

This polytope has been extensively studied since it plays a central role for the resolution

of the maximum cut problem in combinatorial optimization.

In fact, CUT

2

n

is, in a sense, equivalent to the cut cone CUT

n

. Indeed, all the facets of

CUT

2

n

containing a given vertex �(S) of CUT

2

n

can be obtained from the facets of CUT

n

(that is, the facets of CUT

2

n

containing the origin �(;) = 0) by some simple reection,

called switching ([16]).

Switching acts on inequalities as follows. Let v

T

x � � be a valid inequality for CUT

2

n

and let �(S) be a cut. De�ne v

S

2 R

(

n

2

)

by v

S

ij

= �v

ij

if �(S)

ij

= 1 and v

S

ij

= v

ij

otherwise.

Then, the inequality (v

S

)

T

x � � � v

T

�(S), obtained by switching v

T

x � � by the cut

�(S), is valid for CUT

2

n

.

Given b 2Z

n

, set � =

P

1�i�n

b

i

and  = min(j�� 2

P

i2S

b

i

j : S � X), called the gap

of the b

i

's. Then, the inequality

X

1�i<j�n

b

i

b

j

x

ij

�

�

2

� 

2

4
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is valid for CUT

2

n

; it is called a gap inequality ([52]).

Note that the gap inequalities with � = 0 are exactly the inequalities of negative type

and the gap inequalities with � = 1 are the hypermetric inequalities. Moreover, the gap

inequalities with � odd and such that

P

i2A

b

i

=

��1

2

for some A � X , are exactly the

switchings of the hypermetric inequalities; they are of the form

P

1�i<j�n

b

i

b

j

x

ij

�

�

2

�1

4

.

Let G be a graph on n nodes and let mc(G) denote the maximum cardinality of a cut

in G, i.e. mc(G) = max(

P

ij2E(G)

x

ij

: x 2 CUT

2

n

). Some upper bounds for mc(G) are

known. Let L(G) denote the Laplacian matrix of G, L(G) is the n�n matrix whose ij-th

entry is deg

G

(i) if i = j, -1 if ij 2 E(G) and 0 otherwise. Set

'(G) =

n

4

min(�

max

(L(G) + diag(u)) : u 2 R

n

;

X

1�i�n

u

i

= 0)

where diag(u) is the diagonal matrix with diagonal entries u

1

; : : : ; u

n

and �

max

(L(G) +

diag(u)) is the largest eigenvalue of the matrix L(G) + diag(u). Set

 (G) = max(

1

2

Trace(AY ) :

1

2

J � Y is positive semide�nite and Y

ij

= 0 for 1 � i � n)

where J is the n � n matrix with all entries equal to 1. Then, mc(G) � '(G) ([27]) and

mc(G) �  (G) ([60]). In fact, by general duality theory, these two bounds coincide, i.e.

'(G) =  (G) ([55]).

It is easy to see that

 (G) = max(

X

ij2E(G)

: x satis�es the inequalities (36) for all b 2Z

n

):

X

1�i<j�n

b

i

b

j

x

ij

�

�

2

4

(36)

The inequalities (36) are clearly valid for the cut polytope CUT

2

n

, but they are never

facet de�ning since they are dominated by the gap inequalities. While optimization over

the convex body de�ned by the gap inequalities is probably hard, optimization over its

relaxation by the inequalities (36) can be done in polynomial time. Compare with the

complexity results about hypermetric inequalities from Remark 4.12.
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