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Abstract

Let Ry (Kp), Z(Kn), Z4+(Ky) be, respectively, the cone over R, the
lattice and the cone over Z, generated by all cuts of the complete
graph on n nodes. For i > 0, let Al = {d € Ry (K,) N Z(K) :
d has exactly i realizations in Z4 (K,)}. We show that A% is infinite,
except undecided case AY # () and empty A%, for i = 0, n <5 and for
i > 2, n<3. Theset AL contains 0,1, co of nonsimplicial points for
n <4, n=0>5, n> 6, respectively. On the other hand, there exists
a finite number ¢(n) such that {(n)d € Z4(K,) for any d € A2; we
estimate also such scales for classes of points. We construct families of
points of AY and Z, (K,), especially on a 0-lifting of a simplicial facet,
and points d € Ry(K,) with d; , =t for 1 <i<n-—1.

1 Introduction

We study here integral points of cones. Suppose there is a cone C' in R"
which is generated by its extreme rays ey, €s, ..., €, all ¢; € Z".
Let d be a linear combination,

d= Z Ai€;. (1)

1<i<m

*This work was done during the second author’s visit to Laboratoire d’Informatique
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We call the expression a K-realization of d if \; € K, 1 <17 < m, and K is
either Ry or Z or Z,.

If A; > 0 for all ¢, then d € C, and ( 1) is a R, -realization of d. If
A; is an integer for all ¢, then d € L where L is a lattice generated by the
integral vectors e;, 1 < ¢ < m, and ( 1) is a Z-realization of d. Obviously
L CZz". If A; > 0 and is integral for all ¢, then we call the point d an h-
point of €. Hence h-points are the points having a Z, -realization. A point
d e C'N L is called quasi-h-point if it is not an h-point. In other words, d is
a quasi-h-point if it has R, - and Z-realizations but no Z,-realization.

We consider cut cones, i.e. those where e; are cut vectors. Here are given
examples of cut cones having or having no quasi-h-points. We prove that
some points are quasi-h-points. We study scales, multiplying by which, a
point has 7, -realizations.

In fact, those problems are related to feasibility problems of the following
integer program

{AN=d, Ae 727}, (2)

where A is the n X m matrix whose columns are the vectors e;.

2 Definitions and notations

Set V,, = {1,....,n}, £, = {(7,j) : 1 <i < j < n}, then K, = (V,,, Fy)
denotes the complete graph on n points. Denote by P, i, . ) = P the
path in K, going through the vertices 71,14, ..., .

For § C V,, 6(5) C £, denote the cut defined by 5, with (¢,7) € 6(9)
if and only if | S N {ij} |= 1. Since 6(5) = 6(V,, — 5), we take S such
that n ¢ 5. The incidence vector of the cut §(.9) is called a cut vector and,
by abuse of language, is also denoted as 6(.9). Besides, 6(5) determines a
distance function (in fact, a semimetric) dsisy on points of V,, as follows:
dssy(i,7) = 1if (4,5) € 6(5), otherwise the distance between ¢ and j is
equal to 0. For simplicity sake, we set 6({¢,7,k,...})=6(4,J,k,...).

Denote by K, the family of all nonzero cuts 6(5),5 C V,,. For any
family £ C K,, define the cone C(K) := R (K) as the conic hull of cuts in
K. The cone C(K) lies in the space R(K) spanned by the set K. We set
C, =C(K,).

So, each point d € C(K) has a representation d = 3 ;. cx As6(S5).
Since Ag > 0, the representation is called R,-realization of d. The num-
ber 3 scs)ex As is called the size of the R, -realization.



The lattice L(K) := Z(K) is the set of all integral linear combinations of
cuts in K. Let L, = L(K,). The lattice L, is easily characterized; namely,
d € L, if and only if d satisfies the following condition of evenness

SO, 9 7n(n—1)/2 clL,C Znn=1)[2

The points of L(K) with nonnegative coefficients, i.e. the points of Z, (K)
are called h-points. We denote the set of h-points of the cone C(K) by
hC(K). For d € Z,(K), any decomposition of d as nonnegative integer sum
of cuts is called a Z, -realization of d. An h-point of C,, is (seen as a semi-
metric) exactly isometrically embeddable into a hypercube (or h-embeddable)
semimetric. This explains the name of an h-point.

For d € C,,, define
s(d) := minimum size of R, — realizations of d,

z(d) := minimum size of 7 -realizations of d if any.

Let d(G') be the shortest path metric of a graph G. We set

2t = 2(2td(K,)).

tn(n—1)

For this special case,G' = K,,, s(d) = s(2td(k,)) is equal to af, := BEE

A point d is called a quasi-h-point of C(K)if d € A(K) := C(K)NL(K)—
Z4(K).

Recall (see [16]), that a Hilbert basis is a set of vectors ey, ..., e, with the
property that each vector lying in both, the lattice and the cone, generated
by €1, ..., €x, is a nonnegative integral combination of these vectors. A(K) = ()
would mean that K is a Hilbert basis of C'(K). Actually, £ would be the
minimal Hilbert basis of C'(K) if it is a Hilbert basis, since 6(.5) does not
belong to R, (K, — 6(.9)) for any 6(.9) € K,, (see [4]).

Define

ANK) :={d € C(K)N L(K) : d has exactly i Z, — realizations},
Al = A(K).
So, above defined set A(K) is A°(K). Define

n'(d) := min{t € Z, : td has > i Z,-realizations} =



=min{t € Z, :td ¢ A*(K) for all 0 < k < i}.

A cone C' = R, (K)is said to be simplicialif the set K is linearly independent;
a point d € C is said to be simplicial if d lies on a simplicial face of (', i.e.
if d admits unique R,-realization.

Call ¢(K) := |K| mnus dimension of K, the excess of K. Set

KL={6(5)eK,:|S|=1lor n—|5|=1}.
For even n we set also
Evenk, = {6(5) € K, :|5|,n— 1|5 =0 (mod 2)},

OddK, ={6(5)€e K, : |S],n—|5] =1 (mod 2)}.
For a subset T' C V,, denote

EvenTK, = {6(5) e K, :|SNT| =0 (mod 2)},

OddTK, = {6(5) € K, :|1SNT| =1 (mod 2)}.

So Fvenk, = FvenTK,, OddK,, = OddT'K, for T =V, ,n even.
Remark that K7, ={6(9)e K3, :1¢ S} ={6(5) ey, 1€ S5}

Denote by K5/ K7, fi(mOd @) the families of 6(5) € K, with |5] €

{i,j,m—1i,n—7},|5| & {¢,n—1}, min{|S|,n—|9|} £ i(mod a), respectively.
We write C for C'(Ky) where a and b are indexes or sets of indexes.

3 Families of cuts K with A(K) = ()

Of course A(K) = 0 if ¢(K) = 0, i.e. if the cone C'(K) is simplicial. Tt is
easy to see that C'(K!) is simplicial if and only if either [ = 1, or [ = 2, or
(I,n)=(3,6). Also ¢(K3) = 0.

Note that e(K,) =2"""-1-(})

Some examples of K with a positive excess but with A(K) = 0 are:

a) K4, K5 with the excess 1 and 5, respectively. The first proof was given
in [3]; details of the proof see in [10], where, for any d € C,, N L,,, n = 4,5,
the explicit Z, -realization of d is given.

b) OddKs with the excess 1. For proof see [10].

¢) (See the case n = 5 of Theorem 6.2 below) The family of cuts (with
excess 5) on a facet of C'(Kg) which is a 0-lifting of a simplicial 5-gonal facet

of C(Ks).



But K)? of excess n has A(K) # 0 for n > 6. Below we give some
examples of K with A(K) # 0 which are, in a way, close to the above
examples of K with A(K) = 0.

Denote by Q(b) the linear form 37, ., ;. bibjay; forb e Z". I 3707, b; =
1, the inequality Q(b) < 0is called hypermetric inequality. Call d € RMn=1)/2
a hypermetric if it satisfies all hypermetric inequalities. It is valid for C(KC,,),
(see [3]). We denote the hypermetric inequality by Hyp,(b). For large
classes of parameters b (see [4], [6]) Hyp,(b) is a facet of C'(K,). The
only known case when a hypermetric face is simplicial is (up to permuta-
tion) Hyp,(1%,—1""2,n —4),n > 3, and (its "switching” in terms of [6])
Hyp,(—1,1""2 —(n — 4)). Call the facet Hyp,(1*,—1"73 n — 4) the main
n-facet. Call the facet Hyp, (12,05, —1"=%=3 n — k — 4) the k-fold 0-lifting
of the main (n-k)-facet. It is a facet of C'(K,,), because every k-fold 0-lifting
of a facet of C,,_y, is a facet of €, (see [4]). A 1-fold 0-lifting we call simply
0-lifting. Up to a permutation we have:

the unique type of facets of C'(K3) is the main 3-facet (triangle inequal-
ity);

the unique type of facets of C'(K,) is the main 4-facet (which is the
0-lifting Hypa(—1,1%,0) of a main 3-facet);

all facets of C'(K5) are 2-fold 0-liftings of a main 3-facet (i.e. 0-lifting of
a main 4-facet), and the main 5-facet Hyps(1%, —1?), called the pentagonal
facet;

all facets of C'(K¢) are: 2-fold 0-liftings of a main 4-facet, 0-lifting of a
main 5-facet, the main 6-facet Hyps(2,1,1,—1%) and its "switching”
Hyps(—2,-1,1%).

Lemma 3.1. If K is a family of cuts 6(5), |5] < 5,
of C,, then the family

K'=KU{s({n+1H}U{é(SU{n+1}):6(5)€ K}

is the family of cuts lying on a 0-lifting of the face F'. If, for above K, C(K)
is a simplicial facet of C\,), we obtain, for n > 4,

e(K') = |K'| = dimK' = (2|K|+ 1) — dimK' =

:2((;‘) —1)+1—((";1) — 1) = n(n—3)/2.
O

Recall that A(K) = 0 for K = K5, K, K2, K2, K5° = OddKs and for the
family of any (except triangle) facet of K¢, since Kf is simplicial fori = 1,2, 3,
and Ky, OddKs are examples given in the beginning of this section.

lying on a face F



4 Antipodal extension

A fruitful method of obtaining quasi-h-points is the antipodal extension op-
eration at the point n. For d € R*"~V/? we define ant,d € R*"+1/? by

(antod);; = d;j for 1 <i < j<mn,
(antod)n pi1 = o,
(antod)jpp1 = a—dj, for 1 < j<mn—1.
For £ C K,,, define
antlK = {ant16(5) : 6(5) e K} u{é(n+1)}.
Note that
ant;6(5) = 6(5)if {n} € 5, and ant;6(5) = 6(SU{n+1})if {n} & 5.
Hence
ant = {6(9):6(5) e L,ne STU{s(SU{n+1}):6(5)e K, {n}& S
Observe that if d € C(K) and d = 375 5)cx As6(5), then

ant,d = Z Agant,6(9) + o 1—2/\5 (n+1)

§(S)eK

Z Agant §( a—Z/\S {n+1}). (4)

5(5)EK
Also if
ant,d = Z Agant 6(5) + Aob(n + 1),
5(5)EK
then @ = 374 As + A, and d = 375 cx As8(5) is the projection of ant,(d)
on RMn=1/2.

So ant,d € R(antK) if and only if d € R(K).

Note that the cone R(antK) is the intersection of the triangle facets
Hyp,y1(12,-1;,0"72), where b, = b4y = 1, b; = —1 and b; = 0 for i #
7, 1 <2< n—1.

Proposition 4.1 (Proposition 2.6 of [8])

(i)ant,d € L,y if and only if d € L,, and o € Z,

(it)ant,d € Cpyy if and only if d € C,, and a > s(d),



(iti)ant,d € hC, 4, if and only if d € hC),, and a > z(d),

(iv) ant,d is a simplicial point of C,,,; if and only if d is a simplicial point
of C,, and a > s(d). a
Clearly, s(ant,d) = a if ant,d € C,yy and z(ant,d) = a if ant,d €
hC\yy. Also ant,d € A for ¢ > 0 if and only if d € A', o € Z,, a > 2(d).
Proposition 4.1 implies obviously the following important
Corollary 4.2 Let d € hC,, and let o be an integer such that s(d) <
a < z(d). Then ant,d € A(antK,) C A°

nt1r b€ antyd is a quasi-h-point in
Chy.

5 Spherical t-extension and gate extension
Let d € Cy1. We write d = (d°, d'), where
d°={d;:1<i<j<n}, d" ={din1:1<i<n}.

A point d € €, is called the spherical t-extension or simply t-extension of
the point d° € C,, if d = (d°,d") and d} ., = t for all i € Vj,. We denote the
spherical t-extension of d° by ext,d°.

Let j, be the n-vector all of whose components are equal to 1. Then for
the ¢-extension (d°,d'), we have d' = tj,.

Proposition 5.1. ext,d is a hypermetric if and only if

(i) d is a hypermetric,

(i) ¢ > (2 bibjdi;)/X(E = 1)

for all integers by, ..., b, with ¥ :=3"7b; > 1 and g.c.d.b; = 1.

Proof. If ext,d is hypermetric, then 3" b;b;(extid);; < 0 for any by, ...,
bp,boy1 € Zy with 320, = 1, i.e.

ST bibdiy 4+ Y bibyit <0

1<i<j<n 1<i<n

Since b,4; = 1 — X, the second term is equal to —tX(X — 1). We obtain (i)
if b,11 = 0 or 1; otherwise ¥(X — 1) # 0, and we get (ii). a

Corollary 5.2. ext;d is a semimetric if and only if d is a semimetric
and t > %max(ij)dij.

In fact, apply (ii) above to the case b; = b; =1, b1 = —1 and by = 0
for other b’s.

Similarly to Proposition 5.1, one can check that ant,d is a hypermetric
(a semimetric) if and only if d is a hypermetric (a semimetric, respectively)



and

> (Y bibidy)/S(E - 1)+ > bidiy /S
1<i<j<n 1
for any integers by, ..., b, with ¥ :=357b; > 1 and g.c.d.b; = 1

(t> %ma$1gi<]’gn—1(dm’ + dij, + d;,,), respectively).

There is another operation, similar to antipodal extension operation.
We call it the gate extension operation at the point n (called gate). For
d € R*"=V12 define gat,d € R**=D/? by

(gatyd);; = d;j for 1 <i< j<nmn,

(gatad)n,n+1 = Q,
(gatod)i py1 = @+ d;p, for 1 <7 <n—1.

The following identity shows that gat.d is, in a sense, a complement of
ant,d.
antod + gats,_,d = 2ext,d. (5)

Recall that we take S in 6(.9) such that n ¢ 5. Hence, for K C K,,, we have
gatk = KU {6(n+ 1)}.

Actually, antK,, = OddTK,, 11, gatK, = {6(n+ 1)} U FvenTK, 1, for T =
{n,n+1}.

Note that the cone R(gatK) is the intersection of the triangle facets
Hypnyi(1;,0"72,=1,1,4,), where b; = b,y = 1, b, = =1, b; = 0 for

It is clear that any R, -realization of gat,d (if it belongs to C, ;) has the
form 3"¢ As65+ad(n+1) where n+1 ¢ 5, and where the above realization is
any R-realization of d. So, gatod € Ly11(Cryr, hCrir, Al L, respectively)
if and only if d € L,(C,,hC,, Al respectively) and a € Z(Ry,Z,,7Z, re-
spectively).

Also gat,d is a hypermetric (a metric) if and only if @« € R, and d is a
hypermetric (a metric, respectively).

Hence if o € Z,, we have

gat,d € A, <= de A, (6)

In particular, gat,d is a quasi-h-point if and only if d is.

The following facts are obvious.

1. If d; is the t;-extension of dY, i = 1,2, then d; + dy is the (¢; + t5)-
extension of d? + dS.



2. If d° lies in a facet of the cut cone, then the ¢-extension of d° lies in
the 0-lifting of the facet.

We call a point d € (), even if all distances d;; are even.

Let d = >°5 As6(5) be a Z,-realization of an h-point d. We call the
realization (0,1)-realization (27 -realization) if all Ag are equal to 0 or 1
(are even, respectively). We have

Fact. Let d be an h-point. Then d = d; + ds, where d; has a (0,1)-
realization, and d; has an 27, -realization.

Obviously, if d has an 27, -realization, then d is even. But if d is even,
it can have no 27 -realizations.

The following Proposition 5.3 is an analog of Proposition 4.1.

Proposition 5.3. (i) ext;d € L,y if and only if d € 227"=D/? and
teZ,

(ii) extiyd € Cpyy if d € Cp and 2t > s(d),

(iii) suppose that d has 27, -realizations, and let z.,.,(d) denote their
minimal size; then ext,d € hCp1y if d € hC,, and 2t > z.yen(d).

Proof. (i) is implied by the trivial equality d; 11 + dj 41 + dij =
204+ diy, 1 <i<j<m.

From ( 5) we have ext,d = 1(antod + gatsy_,d). Taking o = s(d) and
applying (ii) of Proposition 4.1 we get (ii).

Taking a = z..en(d), applying (iii) of Proposition 4.1 and using that
reven @y gato_., (yd € 271 (Ky41), we get (iil). O
Define ext™d = ext,(ext] "'d), where ext!d = ext,d.

Proposition 5.4. If 2t > s(d), then ext]*d € Cyyp for any m € 7,
and

ant

maz(s(ext]'d), 2t — ) < s(ext’d) < 2t — 27"(2t — s(d)).

t
[m/2]

Proof. From Proposition 5.3(ii) we get
1 1
s(ext,d) < §s(ant5(d)d + gaty_yyd) =t + §s(d) < 21.

By induction on m, we obtain that ext]*d € C, 4, for all m € Z,, and the
upper bound for s(ext?d).

The lower bound is implied by the fact that the restriction of ex?}*d on

m extension points is td(K,,). Since s(td(K,,)) = $al, (see Section 2), we

have

s(eat]) > s(td(K,,)) = L tm(m—-1) t

S22 2] T

9



a
Remark. So, if s(d) < 2t, then lim,,_ ., s(exzt]*d) = 2t.
Probably, there exist mq = mq(t, d) such that s(ext?*d) = 2t for m > my.
We conjecture that ext*d ¢ C, 4, for m > my if s(d) > 2t.
For example, if t = 1 and d = d(G) (d(G) is the shortest path metric of
the graph () , then it can be proved that m; = 2.
If the conjecture is true, then

s(d) = 2min{t : ext]’d € Cp 1y, for all m € Z, }.
Recall, that Proposition 4.1(ii) implies
s(d) = min{a :ant,d € Cpyy ).

In terms of ext]'d we have also analogs of (i) and (iii) of Proposition 4.1.

Proposition 5.5.

(i) ext?d € Ly yp for all m € Z, if and only if d € 272"~V and t is
even.

(iii) ext]*d € hCp i, for all m € Z, if and only if t is an even positive
integer, and d = td(K,).

Proof. The evenness of ¢ follows from ext}d € L, 3. So, (i) is implied
by Proposition 5.3(i).

Recall the result of [5] that ¢3°7 6(7) is the unique Z,-realization of
td(K,) for even t and m > % + % + 3. Using this fact, we get that any Z,-
realization of ext]d contains t/2 cuts 6(¢) for some ¢ if m is large enough.
So, d = ext,d for some d' € hC, _,, etc. o

6 Quasi-h-points of 0-lifting of the main facet

Consider the main facet
Fo(n) = Hypn(lzv _1n—37 n— 4) = Hypn(bo)v

where b} =05 =1, ) = -1, 3 <i<n-—1, b2 = n—4. The cut vectors
6(9) lying in the facet are defined by equations b(S5) =3 ,c5b; = 0or 1. We
take 5 not containing n. Then S € §, where

§ = ({1}, (2} {1} {20 {120} B< i <n— 1), {120/} (3<i<j<n— D},
We set

1
m:|5|:7"("2 )

10



Every n-facet contains at least m cut vectors. Since the main n-facet contains
exactly m cuts, it is simplicial.
The 0-lifting of the main facet is the facet

F(n) = Hypna(1°,=1"7%,n — 4,0).

Besides the above cuts 6(5),5 € §, it contains, according to Lemma 3.1,
only the cuts 6(SU{n+1}),5€ S, and §(n+1).

Note that A(K) = 0 for the main n-facet (as for any simplicial C'(K)).

Now we consider even points having no 27, -realization. The simplest
such points are points having a (0,1)-realization. We call these points even
(0,1)-points.

Let d° € Fy(n) be an even h-point, and let "o 5 As6(5) be one of its
Z-realizations. Consider a minimal set of comparisions mod 2 that Ag’s
have to satisfy. The comparisions are implied by the conditions d;; = 0
for all pairs (ij). Since d” € L,,, we have d;; = d; + dj; (mod 2) for all
ordered triples (ijk). Hence independent comparisions are implied by the
comparisions d;, = 0 (mod 2), 1 < ¢ < n — 1. The comparisions are as
follows. (For simplicity sake, we set Ay;; 1 = A;; . and omit the indication

(mod 2)).

AiF A+ A+ Y Mg =0,3<i<n—1,

3<j<n—1,j#i

AL+ Z (A + A1) + Z A12ij =0, (7)
3<i<n—-1 3<i<j<n—1

Ag + Z (Azi + Aioi) + Z Araij = 0.
3<i<n—-1 3<i<j<n—1

The system of comparisions ( 7) has n—1 equations with m = n(n—1)/2—1
unknowns. Hence the number of (0,1)-solutions distinct from the trivial zero
solution is equal to 2m~(*—1 — 1 = 231 _q,

This shows that all points of F;(3) have 27, -realizations. The only even
(0,1)-points of Fy(4) are 2 points 2d(/5) with di3 = 0 or dsz = 0, and the
point 2d(K, — P 5)). There are 31 even (0,1)-points in Fy(5).

Since there are exponentially many even (0,1)-points in Fy(n), we con-
sider points of the following type and call them special.

For these points the coefficients Ag are as follows.

Al =y, Ay =y, Ai; =by, Aoy =bo, Moy =cy, 3<0<n—1,

11



Algij =¢a, 3< 1< j<n—1.

Here a;, b;,¢;, © = 1,2, are equal to 0 or 1.
If we set )
k=n—3, 1= M7
2
then for the special points ( 7) takes the form

bl-l—bz-l—cl-l—(k‘—l)CzEO,

k(k—1
a1+k(b1+01)+%02507

k(k—1
az-l—k‘(bz-l—cl)-l—%CzEO.

Since we have 3 equations for 6 variables, we can express 3 variables aq, as, ¢4
through other 3 variables by, b, ¢s.

There are 4 families of the solutions of the system depending on what is
k (mod 4). The solutions are as follows (undefined equivalences are taken

by (mod 2)).
k=0 (m0d4),a1 IQQIO, Cq Ebl-l—bz-l—Cz,

k=1 (mod 4), ay = by, as = by, c; = by + by, ¢y arbitrary,
k‘EQ(mOdQ), ] = Uy = Co, Clzbl-l—bz-l—Cz,
kE3(m0d4),a1£b2—|—cz, azzbl-l—Cz, Clzbl-l—bz.

In each case we obtain 7 nontrivial special even (0,1)-point.

Taking in attention the definition of S, for @ = 0, £, we denote by A%, A{
the k-vectors with the components Aj;, 3 <j <n—1,i=1,2, Af,;, 3 <
Jj < n —1, respectively. Similarly, A} is the [-vector with the components
Aoy 3<i<j<n—1

In this notation a special point d° has a (0,1)-realization A° such that
No=a;, N =bige, 1 =1,2, A = c15;, and AY = ¢q7.

Recall that special points are simplicial. Therefore their size is equal
to > ges As. We show below that the t-extension of 2 special points with
(ar,as,by,bs,¢1,¢5) = (1,1,0,0,0,1) and (0,1,0,1,1,1) are quasi-h-points
for n = 2 (mod 4).

For n = 6 the points d° are d(K¢ — P3) and antyg(extyd(K,)). Another
example of d € A2 is antg(extzd(Ks)) = d°? in terms of Corollary 6.6 below.

12



Proposition 6.1. Let d° be one of the 7 special points of the main
Jacet Fy(n). Let t be a positive integer such that t > 1+ 3¢5 A%. Then the
t-extension of d° is an h-point if n £ 2 (mod 4), and if n = 2 (mod 4), then
there is 2 points d° such that its t-extension is a quasi-h-point, namely the
points with (ay,as,by,bs,¢1,¢9) = (1,1,0,0,0,1) and (0,1,0,1,1,1).

Proof. Recall that we can take & such that n ¢ 5 for all 5 € S.

We apply the equation ( 2) to the t-extension d. In the case the matrix

A takes the form
B B 0
A_(D D jn)

Here the first m columns correspond to sets S € &, the next m columns
correspond to sets S U {n 4+ 1}, 5 € &, and the last (2m + 1)st column
corresponds to {n + 1}. The size of the matrix B is (g) x m, and D, D
are n X m matrices such that D + D = J, where J is the matrix all of
whose elements are equal to 1. Each column of the matrix J is the vector j,
consisting of n 1’s. In this notations, we can write J as the direct product
J = jn x jL. Hence for any m-vector a we have Ja = (jn,a)j,.

The rows of D and D are indexed by pairs (i,n+ 1), 1 < i < n. The
S-column of the matrix D is the (0, 1)-indicator vector of the set 5. Since
n ¢ 9 forall § €8, the last row of D consits of 0’s only.

We look out solutions of the system ( 2) for this matrix A such that A
is a nonnegative integral (2m+1)-vector. We set

Hs = ASU{TL-I—1}7 S S S, Y= A{n+1}
Then the system ( 2) takes the form
B(A+p)=d’,

DN =)+ (7 + Gy 1)) i = d',

Now, if weset AT = A4, A== A—=pu, 71 =7+ (Jm, 1), and recall that
d' = tj,, we obtain the equations

BAY = d°,

Recall that the last row of D is the 0-row. Hence the last equation of the
system ( 8) gives v; = ¢, and the equation ( 8) takes the form

DA™ =0.

13



A solution (AT, A7, v,) is feasible if the vector (A, u,7) is nonnegative.
Since

1 1
A= AT+ A7) = 5(AT = A7), and v =t = (jm, 1),
a solution (AT, A7, ;) is feasible if
AT >0, |AT]| < AT, and € > (G, ). (9)

Since the main facet Fy(n) is simplicial, the system BAt = d° has the
full rank m such that A* = A\° is the unique solution.

We try to find an integral solution for A=. By ( 9), we have that |A7| <
A%, This implies that A5 # 0 only for sets S where A% # 0. Since A\° is a
(0,1)-vector, an integral A5 takes the value 0 and £1 only.

We write explicitely the matrix (D, j,) = D,.

Lo ji 0 jp 4 1
oo oo gr g
oo L, I I Gy i

0 0 0 0 0 0 1

The first, the second and the last rows of the matrix D, are indexed by
the pairs (1,n 4+ 1),(2,n + 1) and (n,n + 1), respectively. The third row
consists of matrices with k& rows corresponding to the pairs (i,n 4+ 1) with
3 <i<n—1. The columns of D, are indexed by sets S € SoU{n+1} in the
following sequence {1},{2},{1:},{2:¢},{12¢}, 3 <7 < n -1, {125}, 3 <
i< j<n-—1, {n+1}. I is the & x k unite matrix, and G}, is k x [
incidence matrix of the complete graph K. G} contains exactly two 1’s in
each column, i.e. j7 G} = 2jF. The matrix D, is an obvious submatrix of
D, for n' < n.
In the above notation, the equation DA~ = 0 takes the form

NI A+ AT =0, 1= 1,2,
A F A+ AL +GeA7 =0.
Since jI' Gy = 21, the last equality implies that
Ji O+ Az + A0) + 2§ A7 =0,
Hence the above system implies

AT+ Ay +iiAr =0

14



Recall that we look out a (0,41)-solution. Note that if A& = 1 and
A5 =0, then Ag = g = + is nonintegral. Hence we shall look out a solution
such that A5 = £A%. So, such a solution is nonzero there where A% is
nonzero.

The main part of above equations is contained in the term GA;. We
can treat the (£1)-variables (A~ );; = AL,,; as labels of edges of the complete
graph K,,. Now the problem is reduced to finding such labelling of edges of
K,, that the sum of labels of edges incident to a given vertex is equal to a
prescribed value, usually equal to 0 or £1. The existence of such a solution
depends on a possibility of factorization of K, into circuits and 1-factors.

Corresponding facts can be found in [14], Theorems 9.6 and 9.7.

A tedious inspection shows that a feasible labelling exists for each of the
7 special points if n # 2 (mod 4) (i.e. if £ # 3 (mod 4)), and for 5 special
points if » = 2 (mod 4). For other 2 points with (ay,as,by,bs,¢1,¢9) =
(1,1,0,0,0,1) and (0,1,0,1,1,1) there is no feasible solution, i.e. there are
S such that A5y = 0 # +A%.

Now the assertion of the proposition follows. a

In the table below t-extensions of some special points are given explicitly.
The last column of the table gives a point of A} | for any m > 2.

n(mod 4) = 3 0 1 2

diy n—3 0 n—1 2

dy; h+1 9 ()2 () +1L
3<i1<n-1

da %)) )+ () +1
3<1<n-1

di(t #j) 2(n—4) 2(n-5) 2(n—4) 2(n —5)
3<i,7<n-1)

diy "2 ) )+ () +1

dan " ) )+ ()41

d;, n—3 n—4 n—23 n—4
3<i1<n-1

dinyr(1# 0+ 1) "30/2 0 (/2 () +3)/2 (57 +3)/2
Remarks.

a) For the smallest possible n = 2(mod 4), and n > 6, (i.e. for n =
6) distance d is the 3-extension of ds = 2d(Ks — P 62)), corresponding
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to the special point (1,1,0,0,0,1). On the other hand, the 3-extension of
2d(Ks5 — Py 5)) by the point 6 is an h-point.

For n = 0 and » = 3 (mod 4) this d is an antipodal extension at the
point n, i.e. d;, + do; = do, for all 7.

b) If we consider A} such that A?,;; = 0 or 1, then the problem is reduced
to a factorization of the graph whose edges are pairs (ij) such that A{,;; # 0.

¢) In fact, we can take ¢ slightly less. By ( 9), we must have ¢t > (j,, pt).
Let r be the number of 5 € &, such that A¢ = 1. Then (jn,pu) <
1 0
3 (X ses, As — 1)

Proposition 6.2. Let K be the family of cuts lying on the 0-lifting F(n)
of the main facet Fy(n). Then A(K) = 0 if and only if n < 5.

Proof. By Lemma 6.1, F(6) has quasi-h-points, and ( 6) implies that
quasi-h-points exist in all F'(n) for n > 6. We prove that there is no quasi-
h-point on F(n) for n <5.

We use the above notations and the equations B(A + p) = d°, D, (A —
) +71jn = d*. The first equation has the unique solution A4y = A°. Hence
2D, A — D A" + 417, = db, where v1 = v + (Jimgs A°) — (Jmy, A). The last row
gives 71 = dy n41. Hence the i-th row of the equation with D, takes the
form

1
(DnA)z = 5((DHAO)Z ‘I’ di,n+1 - dn,n+1)-

It can be shown that the condition of evenness ( 3) implies that the right
hand side is an integer for n < 5. Moreover, for n < 5, the matrix D, is
unimodular, i.e. |detD’| <1 for each n X n submatrix D’ of D,. Therefore
any solution A is an integer. This implies that g and v = dy i1 — (Jime» 1)
are integers, too.

So, all points d € L, 41 N F(n) have a Z, -realization (A, p,~) for n < 5.
a

Now we give some other examples of Z,-realizations of ¢-extensions of
even h-points.

Using the fact that 37,y 4(7) is the unique Z, -realization of 2d( K, ) for
n # 4, (see [5]), we obtain

Lemma 6.3. The only 7, -realizations of ext,(2d(K,)), n > 5, t € Z,
are

(1) > 6(i)+ (t—1)6(n+1) for t > 1,

1€V,

(1) D> 6(in+ 1)+ (t—n+1)6(n+1)fort >n—1.

1€V,
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Proof. Note that d = 2d(K,,) is an even (0,1)-point of C,. The coefficients
of its (0,1)-realization A\° are as follows: A% = 1if § = {i}, 1 <i<n -1,
or § = V,_1, and A} = 0 for other 5. (Recall that we use S such that
n ¢ S.) Since it is unique Z,-realization of d°, the equation BA* = d° has
the unique integral solution At = A%,

Submatrix of D consisting of columns corresponding § with A% # 0, and
without the last zero row, has the form D = (/,_1,j,_1). Hence the unique
(£1)-solutions of the equation DA™ = 0 are as follows: 1) A7 =1, 1 <<
n—1, Ay, =-land2) Ay =-1,1<i<n—-1, Ay _ =1

Since (jm,p) = 1 in the first case, and (j,,p) = n — 1, in the second
case, we have v = t — 1, and v =t — n + 1, respectively. These solutions
give the above 7, -realizations (1) and (17). a

If we define d™* = antyext,(2d(K,_1)), we obtain

d?jyt:27 1§Z<]§n_17 di,n:di,n+1:t7 1§Z§n7 dn,n+1:2t-

If we apply ( 4) to (1) and (17) of Lemma 6.3 (where n is interchanged
by n—1), we obtain (2) and (2) with n and n+ 1 interchanged of Lemma 6.4
below. Summing these two expressions, we obtain the symmetric expression
(3) of the lemma.

Lemma 6.4. For d™' the following holds

(2)d™' = > 8(i,n+ 1)+ (t—1)8(n)+ (t —n+2)é(n+ 1),

1EVL_1

(3) 2d™" = Z (6(i,n)+6(i,n+ 1))+ (2t —n+ 1)(6(n)+ 6(n+ 1)).
i€Vaoy

Lemma 6.5. Forn > 6, d™* is h-embeddable if and only if t > n — 2.
Moreover, fort > n—2, the only 7, -realizations are (2) and its image under
the transposition (n,n+1).

Proof. In fact, if we use Lemma 6.4, then the restrictions of an h-
embedding of d™* onto V,, 1, —{n} and V,, has to be of the form (1) and (1”)
or (17) and (1). ]

The realizations (2) and (3) of Lemma 6.4 imply

Corollary 6.6. d"" is a quasi-h-point of C,, and (antC,)N C,llfl having
the scale,?z'f{”z;l] <t<n—-3, n>5.

In fact, for n = 7 we have to prove only that 2d(Ks — FP5)) is an quasi-
h-point of scale 2, and it will be done Section 7. For n > 8 we use (2), (3)
and Lemma 6.4.
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Remark. d"~'? = 2d(K, — P,) and it is a quasi-h-point for n > 6. Its
scale lies in the segment [[2], 2). d"~"? € Z(antK,_1 NK}?) (see Remark
¢) after Lemma 7.1 below) for n > 6, but d"~%% € R, (antK,_; N K}?) only
for n = 6.

The cone (antC,_;) N C}? has excess 1. It has 2n — 2 cuts 6(i,n —
1),6(i,n),6(n—1),6(n), for ¢ € V,,_,, its dimension is 2n — 3, and there is
the following unique linear dependency

Z 0(i,m—1)4 (n+ 4)d( Z 6(i,n)+ (n—4)6(n—1).

tEV_2 tEVn_

The sides of above equation differ only by the transposition (n-1,n).

The number of quasi-h-points in (antC,_,)NC}?is 0 for n = 5 (since it
is so for the larger cone Cs5) and > n —2 — [3]| = [§]| — 2, which is implied
by Corollary 6.6. Perhaps, it is exactly 1 for n = 6, 7.

7 Cones on 6 points

Consider the following cones generated by cut vectors on 6 points:
Ce, CL, C% = EvenCy, C3, Cg°, C3° = 0ddCs, C3°, antCs.

Recall (see Section 3) that the facets of C's are up to permutations of Vi as
follows:

a) 3-fold 0-lifting of the main 3-facet, 3-gonal facet Hyps(1%,—1,0%),

b) 0-lifting of the main 5-facet, 5-gonal facet Hyps(1?,—1%,0),

¢) the main 6-facet and its "switching” (7-gonal simplicial facets)
Hyps(2,1%,—1%) and Hyps(—2,—1,1%).

Let

dg 1= 2d([(6 — P(576)).

Recall that (up to permutations) de is the only known quasi-h-point of Cs.
The following lemma is useful for what follows. It can be checked by
inspection. Recall that V,, = {1,2,....,n}.
Lemma 7.1. (1) All Z-realizations of 2ds are

la) 2ds = > (8(i,5)+ 6(i,6)) € Z,(K3) = Zy(EvenKs),

1€V,

1b) 2ds = (6(5 6))+ > (6(1,4,5)+ 6(i,4,6)) €

i€V
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74 (Ks”) = Z,.(0ddKs),

le) 2ds = 6(5) + 6(4,5)+ > (6(i,5,6)+ 6(i,6)) for j € Vi.

teVy— {J}

(2) Some representations of ds = 2d(K¢ — Prs6)) in Le are

a) ds = 8(5)+ Y _ 6(i,6) — 8(6) € Lg”,

i€V,

2b) ds = 28(5) + 26(6) + > 6(i) — 6(5,6) € Ly*,

i€V,

ds =Y 8(Vya—{i}) - 6(5,6)—

1€V,

> (8(iyi+1,6)— 8(i,i+ 1)) € Ly®.

i€Va

Here 1 + 1 is taken by mod 4. a

Remarks.

a) The projection of 2a) onto Vs — {1} gives the Z, -realization 2d( K5 —
Pise)) = 6(5) + 30i22546(i,6); it and its permutation by the transposition
(5,6) are the only Z,-realizations of the above h-point.

b) "Small” pertubations of ds do not produce other quasi-h-points. For
example, one can check that

de+6(1,2) = 6(1)+ 6(2) 4 6(6) + 6(1,2,5)+ 6(3,5) + 6(4,5);

it and its permutation by the transposition (5,6) are the only Z, -realizations
of this h-point.
c¢) Actually, 2a) is the case n = 5,a = 4 of

ant,(2d(K,)) = 6(n) + Z (i,m+1l)—(n—a)f(n+1)=

1EVL_1

Y. i+ (5 = DE(n) +o({n +1}) = 6({n.n+1})).

1€V

d) One can check that L#! C L, strictly, and 22'5 C L7 strictly. Note
that L2® = LZ'. On the other hand, L}/ = L, if and only if (7,7) = (1,2).
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e) By la) and 1b) of Lemma 7.1 we have
2ds € hC? and 2dg € hCy°,

but 2ds ¢ L2U Ly® = L(EvenKs) U L(OddKs).

We call a subcone of €, a cut subcone if its extreme rays are cuts.

Lemma 7.2. Let d € A(K) and let K(d) be the set of cuts of a minimal
cut subcone of C, containing d. Then

(i) d € A(K') for any K" such that K(d) C K’ C K,

(ii) e(K') = 1 implies K' = K(d).

Proof. In fact, d ¢ Z,(K(d)) implies d ¢ Z,(K'), and d € Z(K(d))N
C(K(d)) implies d € Z(K') N C(K'), and (i) follows. If e(K’) = 1, then any
proper cut subcone of C'(K) is simplicial and has no quasi-h-points. a

Now we remark that the cone Cy” N antCy has excess 1, since it has
dimension 9 and contains 10 cuts 6(5),6(6),6(¢,5)6(7,6), 1 < i < 4, with
the unique linear dependency

> (6(2,5) = 6(4,6)) = 2(6(5) — 6(6)).

i€V
Proposition 7.3. ds = 2d(Ks — P») € A(Kg) and it is a quasi-h-point of
the following proper subcones of Cs: Cy?, C2®, antCs, the triangle facet
Hyp(1%,-1,0%) and Cg* 0 antCs (which is a minimal cut subcone of C
containing d ).

Proof. The point ds , is the antipodal extension ants(ds) of the point
ds := 2d(Ks). The minimum size of Z-realizations of d5 is equal to z(ds) =
23 = 5, since the only its Z,-realization is the following decomposition
2(K5) = Y0, 8(i).

The minimum size of R, -realizations of ds is s(ds) = a; = 10/3 which is
given by the R -realization ds = 53" ;cj<50(1]).

Since 10/3 < 4 < 5, we deduce that ds = 2d(Kes — Pis61) € Z+(Cs).

But dg € CsNLg, from (1) and (2) of Lemma 7.1. So, dg € AJ. Now, from
la) and 2) of the same lemma, we have d; € C(K§*NantKs)NL(Kg*NantKs),
and so, using (ii) of Lemma 7.2, we get that Kg’NantKs is a minimal subcone
K(d).

Using (i) of Lemma 7.2, and the fact that antC; is the intersection of
some triangular facets, we get the assertion of Proposition 7.3 for Cy°, antCs
and the triangle facet. Finaly, la) and 2c) of Lemma 7.1 imply that ds €
AKZ?). m

Remarks.
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a) On the other hand, the following subcones C'(K) of Cs have A(K) = 0:
5 simplicial cones (%, ¢ = 1,2,3, both 7-gonal facets, and nonsimplicial
cones: Cs, Cg® = 0ddCy and 5-gonal facet.

b) Nonsimplicial cones Cs, C5*,C3%, O3, Cs,antCs, Hyps(1%,—1,0%),
Hyps(13,-12,0) have excess 16,6,10,1,5,5,9,5, respectively. The cones Cj,-
Ca?,C22,C13, (g have, respectively, 210,495,780,60,40 facets and the facets
are partitioned, respectively, into 4,5.8,1,2 classes of equivalent facets up to
permutatons.

8 Scales

In this section we consider the scale °(ant,2d(K,)) which is, by Proposition
4.1(iii), equal to min{t € Z, : at > z.}, especially for two extreme cases
a =4 and a = n — 1. The number ¢ below is always a positive integer.

Denote by H(4t) a Hadamard matrix of order 4¢, and by PG(2,t) a
projective plane of order t.

It is proved in [5] that ¢ >} 6({})is the unique Z, -realization of 2td(K,)
if n > t?4+¢+3, and that for n = t* +t+2, 2td(K,,) has other Z,-realizations
if and only if there exists a PG/(2,t). Below, in (iv;) — (iv3) of Theorem 8.1,
we reformulate this result in terms of A}, n'(2d(K,)), 2!, using the following
trivial relations

n'(2d(K,)) > t+1 & 2d(K,) € AL & 2, =nl &
& tZ 6({i}) is the unique 7, -realization of 2td(K,).
1

(it13) of Theorem 8.1 follows from a result of Ryser (reformulated in
terms of 2/ in Theorem 4.6(1) of [9]) that 2! > n — 1 with equality if and
only if n = 4t and there exists a H(4t).

Theorem 8.1

(i1) antg2td(K,) € Cpyq if and only if 5 > %ﬁ%;

(i5) ants2td(K,) € A® if and only if L;;sz"r;l/z] <p<z, BeZy;
(i3) antg2td(K,) € hCp4q if and only if 3 > 2, p € Z,;

(i4) ant,2d(K,) € Chy1 N L,y if and only if % <o, 0€Z,.
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Moreover, if d = ant,2d(K,) € Cp,i1 N Lyyq, then
(i,) either n = 3,d € A, d is simplicial, d = ant;2d(K,)
(so ni(d) =1 for i > 0),
or d € A, dis not simplicial, &« > n > 4 (so n°(d) = 1),
orde AY (son°(d) > 2),
(iiy) n°(d) = min{t : 2! < at}.
(i) 7P (ants2d( ) = 1P(2d(E s — Prao)) = (2K r));
(7i1y) [n/4] < n°(ant,2d(K,)) <
min{t € Z, : n < 4t and there exists a H(4t)} < n/2;
(iii3) For n = 4t,4t — 1, we have n°(ant,2d(K,)) =
[n/4] =t if and only if there exists a H(4t);
(iv1) n°(ant,_2d(K,)) = n*(2d(K,)) < min{n — 3,7 (2d(K,4+1))};
(ivs) [%(\/471 —-7- 1)} =min{t € Z, :n <t +t+42}
< n°(ant,_12d(K,))
<min{t € Z, :n <t +1t+4 2 and there exists a PG(2,1)};
(iv3) For n = t* + t + 2, we have n°(ant,_12d(K,)) =
[%(\/471 -7- 1)} =t if and only if there exists a PG/(2,1).

Remarks. a) For ¢ > 0, we have n't1(2d(K,)) = i + 1, but
n'(ant3(2d(K4))) = 1, since antz(2d(K4)) is a simplicial point. For ¢ > 0
and n > 5, we have n't*(2d(K,)) < n'(ant,_1(2d(K,))) with equality for
i = 0 and for some pair (¢,n) with ¢ > 1. Propositions 5.9-5.11 of [9] imply
that

T (2d(Ks5)) = n'(anty(2d(K5))) = 2 for i = 0, 1;
n°(2d(K5)) = n*(anta(2d(K5))) = 7' (2d(K5)) = 3;
n°(2d(K5)) = n*(anty(2d(K5))) = n°(ant4(2d(K5))) = 4.
b) Using the well-known fact that H(4t) exists for ¢ < 106, we obtain that

p(anta(2d(K.)) = 724Ky — Py)) =

n°(2d(K,y2)) = [n/4] for n € [4,424];

c¢) Using the well-known fact that PG(2,1), t < 11, exists if and only if ¢ #
6,10, we obtain for a,, = n°(ant,_(2d(K,))) = n'(2d(K,)), that 6 < a, <7
for 33 <n <43,10 < a, <11for 93 <n < 111, and a, = [1(vIn =7 —1)]
for all other n € [4,134].
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d) (iii),(iv) of Theorem 8.1 imply that
n°(d(Kyx2)) > 2t with equality if and only if there exists H(4t),

' (d(Ki24142)) > 2t with equality if and only if there exists PG(2,1).

Note also that a, < n — 3 with equality if and only if n = 4, 5.
Proof of (iv,). For n > 4 we have

1
[5(\/47@ —7_ 1)} < 2d(K,)) = 1 (anty_1(2d(K ) < n — 3.
In fact, we have
n'(2d(K,)) = min{t € Z, : 2}, < nt},

n°(anty(2d(K,))) = min{t € Z, : 2, < Nt},

since 2td(K,,) has the following 7, -realization ¢} 6({i}) of maximal size
nt, and since t(anty(2d(K,))) € hC,4 if and only if 2¢td(K,) admits a
7 -realization of size at most Nt¢. Denote

p=n"(2td(K,)), ¢ = n°(ant,_1(2d(K,))).

Then p < ¢, because z¢ < (n — 1)q implies z¢ < ng. Also, ¢ < n — 3,
because 2(n —3)d(K,) has the Z, -realization 377" ((n —4)8({i})+é({i,n})
of size (n — 3)(n — 1). On the other hand, p > ¢, because z£ < np implies
2 < np—(n—3), which is proved in Proposition 5.3 of [9]. So 22 < np—q¢ <
np — p. We have p > [%(\/471 —7- 1)} , because otherwise n > p* + p + 3,
and using [5], 2td( K,) has exactly one Z, -realization, a contradiction with
the definition of p.

Theorem 8.2.

(1), < o0,
(i)Yl for i > 1, and ni_,|n for n > 5,
(tii)n'(ad) = [n(d)/a] forde C, UL,, i >0, a€ Z,.
Proof. (i) Define
Y =L,NCN{> As6(5):0< Ag <1}

Clearly, Y is finite, and one can find A such that Ad is an h-point for every
deY.
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Let d € L, N C, has a R -realization d = Y ugd(.5). Clearly the co-
efficients g are rational numbers. We have d = d; + d,, where d; =
Yo lps] 6(5), and dy = Y (s — [ps])0(S). By the construction, d; is an
h-point. Since dy = d—d, andd € L,NC,, di € L,NC,, we obtain d, €Y.
Hence there is A such that Ad, € h(C,, and we obtain that A\d = Ad; + Ads
is an h-point, too.

(iii) Take A = n'(ad), i.e. A(ad) has at least i + 1 Z, -realizations. Hence
Aa > ni(d) implies A > [n'(d)/a], i.e. ni(ad) > [n'(d)/a].

Now, take A = ['(d)/a]. So, A\ =1 < p'(d)/a < A = (A= 1)a < n'(d) <
Aa. Hence Aad has at least ¢ + 1 Z, -realizations, implying that A\ > n'(ad),
and so [n'(d)/a] > n'(ad).

Remarks. a) 75 = n'(2d(K,)) = i for ¢ > 1; 52 = 1 if and only if
n=4,5.

b) For d ¢ L, and A € Z,, we have Ad € L, implies that A is even
(because (Ad;; + Adip + Adjp)/2 = Adi; + diy + djy)/2). Hence, for d €
AG . AP we have either d ¢ L, (so n°(d) is even), or n°(d) = 1 (i.e.
d € hC,). Since d(G) ¢ AY for any connected graph G on n vertices (see
[13]), we have either °(d(G)) = 1 or n°(d((G)) is even. But, for example,
n°(2d( Ko — P2)) = n°(2d(Kox»)) = 3.

It will be interesting to see whether n° and maxz{n°(d) : d € A"} are
bounded from above by const x n.

The best known lower bound for the last number is n°(d(K,, — P»)) which
belongs to the interval [2 [(n —1)/4] ,n — 2].

It is proved in [17] that for a graphic metric d = d(G'), we have

(i) n°(d) <n—-21if d(G) € C,,,

(ii) n°(d) € {1,2}, i.e. G is an isometric subgraph of a hypercube or a
halved cube if d(G) is simplicial.

9 h-points

Recall that any point of Z,(K,) = hC,, is called an h-point.

A point d is called k-gonal, if it satisfies all hypermetric inequalities
Hyp,(b) with 377 [b;] = k.

The following cases are examples when the conditions d € L, and hy-
permetricity of d imply that d is an h-point.

a) [13], [15]: If d = d(G) and G is bipartite, then 5-gonality of d implies
that d € hCy;
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b) [1]: If {d;;} € {1,2}, 1 < i< j < n, then d € L, and 5-gonality of
d imply that d € hC), (actually, d = d(K; ,_1), d(K>5) or 2d(K,) in this
case);

¢) [2]: fn>9and{d;} €{1,2,3}, 1 <i<j<n, thende L, and
< 11-gonality of d imply that d € hC,,.

So, the cases a),b),c) are among known cases when the problem of testing
membership of d in h(C, can be solved by a polynomial time algorithm. The
polynomial testing holds for any d = d(G) (see [17]) and for "generalized
bipartite” metrics (see [7] which generalize the cases b) and c¢) above).

The cases a),b) and ¢) imply (i),(ii) and (iii), respectively, of

Corollary 9.1 If d € A°, then

(i) neither d = d(G) for a bipartite graph G,

(77) nor {d;;} € {1,2}, 1 <i< j <,

(711) nor {d;;} € {1,2,3}, 1 <i<j<mn, ifn>9.

A point d € Z,(K,) = hC, is called rigid if d admits a unique Z,-
realization. In other words, d is rigid if and only if d € Al. Clearly, if
d € h(, is simplicial, then d is rigid. Rigid nonsimplicial points are more
interesting. Hence we define the set

Al :={d e Al : d is not simplicial },

and call its points h-rigid.
Theorem 9.2

(1)A2 = 0 for n <5, 2d(Ks — Py) € A, |a) = o0 for n > 7,
(1i)AL = 0 for n < 4, A} = {2d(K5)}, |AL] = oo for n > 6,
(7i1) for i > 2, AL =0 ifn <3, |AL| = 00 if n > 4.

Proof. (i) and (ii) The first equalities in (i) and (ii) are implied by
results of [3]. The inclusion in (i) is implied by [1]. The second equality
in (ii) is proved in [12]. We have |A?| = oo for n > 7, because AY # () and
|Al | = oo whenever Al #  from( 6).

We prove the third equality of (ii): |AL| = oo for n > 6. The equality is
implied by the fact that ant,(2d(K,)) € %Lll_l_l foranyn > 5, a € Z,, a > n.
We prove the inclusion.

Recall that 2td(K,,) has the unique Z, -realization of size tn if n > t* +
t+ 3. (See [5] or the beginning of Section 8). For ¢ = 1 we obtain the
equality z(2d(K,)) = n for n > 5 Using that 2d(K,) is not simplicial for
n >4, and (iv) of Proposition 4.1 we obtain the wanted inclusion.
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(iii) Since Cy is simplicial, A = 0 for ¢ > 2. Consider now n = 4. We
show that A} = {2(¢ — 1)d(K,) 4+ d : d is a simplicial h-point of C,}. This
follows from the fact that the only linear dependency on cuts of C'y is, up to
multiple, (1) 4+ 6(2) 4+ 6(3) + 6(4) = 6(1,4) + 6(2,4) 4 6(3,4).

So, |A}] = oo, because there are an infinity of simplicial points, e.g.
Ad( K5 ) for A € Z,. Finally we use (6). ]

Some questions.

a) Is it true that all 10 permutations of dg = 2d(Ks— P») are only quasi-
h-points of (4?7 If yes, then these 10 points and 31 nonzero cuts from Kg
form a Hilbert basis of Cs.

b) Does exist a ray {Ad : A € Ry} C C), containing an infinity set of
quasi-h-points? Recall that we got in Section 6 examples of rays {d° 4 td' :
t > 0} containing infinitely many quasi-h-points.

Lemma 9.3. Let d € A%, and let d = ant,d' where d' ¢ A2_,. Then d'
is an h-point and z(d') > [s(d')] + 1.

Proof. In fact,d € C,NL,,sod € C,_iNL,_,. Butd' ¢ A° | sodis
an h-point of C,_;. Hence by Proposition 4.1(ii), o € Z,, s(d') < a < z(d').

Note that for n > 5 we have 2d( K, x2) € AS,, 2d(K, y») = ant,d’ where
d'e Ay _ and d' = ant,d” for d”€ AY, _,, etc.

So, d’ is neither simplicial point nor an antipodal extension (i.e.

&' & Ry (antK, ), nor &' € Z4(K7,), m = |(n — 1)/2],

because in each of these 3 cases we have for an h-point ', 2(d') = s(d');
it implies also that, by Proposition 4.1(iv), d itself is not simplicial. O

The following proposition makes plausible the fact that the metric dg =
2d(Ke — Py) is the unique (up to permutations) quasi-h-point of Cs.

Proposition 9.4. Let d € AY, d = ant,d and d # ds. Then

a) both d and d' are not simplicial;

b) d’ € R+(anth4), d’ € Z+(IC52));

c)d # Nd(G) for any N € Z, and any graph G on 5 vertices;

d) d' has at least two 7, -realizations.

Proof. Since A = ) by [3], we can apply Proposition 9.3, and a),b)
follow. One can see by inspection, that among all 21 connected graphs on 5
vertices, the only graphs ¢ with nonsimplicial d(G') € Cs are the following 3
graphs: Ky, K5 — P5, and K,. K5 = K, with an additional vertex adjacent to
a vertex of I{4. For these graphs, Ad(() is an h-point if and only if A € 27,.

Since 2d( K5 — P») = anty(2d(K,)), then, according to b), d’ # Ad(K5 —
Py).

Since for any A € Z, we have z(2Ad(K4.K5)) = bA = s(2A\d(K,4.K>)),
and (by Proposition 9.3) s(d') < z(d'), then d' # Ad(K,.K>).
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Remains the case d' = Ad(K5). We have s(d') = A5/3, 2(d') = 5 for
A= 2and 2(d) = s(d') for A € 2Z;, X > 2.(See Proposition 5.11 of
[9]). So s(d') < a < z(d') implies A = 2, a = 4, i.e. exactly the case
d = ant4(2d(K5)). This proves c).

d) follows from the fact (see [12]) that 2d( K'5) is the unique nonsimplicial
h-point of Cy with unique Z,-realization.
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