Cut Cones IV : Lattice Points

M. DEZA V. GRISHUKHIN*

Laboratoire d'Informatique, URA 1327 du CNRS Département de Mathématiques et d'Informatique Ecole Normale Supérieure * CEMI RAN Russian Academy of Sciences

LIENS - 93 - 3

February 1993

Cut cones IV: lattice points

Michel Deza

CNRS-LIENS, Ecole Normale Superieure, Paris

Viatcheslav Grishukhin* Central Economic and Mathematical Institute of Russian Academy of Sciences (CEMI RAN), Moscow.

February 1993

Abstract

Let $R_+(\mathcal{K}_n), Z(\mathcal{K}_n), Z_+(\mathcal{K}_n)$ be, respectively, the cone over R, the lattice and the cone over Z, generated by all cuts of the complete graph on n nodes. For $i \geq 0$, let $A_n^i := \{d \in R_+(\mathcal{K}_n) \cap Z(\mathcal{K}) :$ d has exactly i realizations in $Z_+(\mathcal{K}_n)\}$. We show that A_n^i is infinite, except undecided case $A_6^0 \neq \emptyset$ and empty A_n^i for $i = 0, n \leq 5$ and for $i \geq 2, n \leq 3$. The set A_n^1 contains $0, 1, \infty$ of nonsimplicial points for $n \leq 4, n = 5, n \geq 6$, respectively. On the other hand, there exists a finite number t(n) such that $t(n)d \in Z_+(\mathcal{K}_n)$ for any $d \in A_n^0$; we estimate also such scales for classes of points. We construct families of points of A_n^0 and $Z_+(\mathcal{K}_n)$, especially on a 0-lifting of a simplicial facet, and points $d \in R_+(\mathcal{K}_n)$ with $d_{i,n} = t$ for $1 \leq i \leq n - 1$.

1 Introduction

We study here integral points of cones. Suppose there is a cone C in \mathbb{R}^n which is generated by its extreme rays e_1, e_2, \dots, e_m , all $e_i \in \mathbb{Z}^n$.

Let d be a linear combination,

$$d = \sum_{1 \le i \le m} \lambda_i e_i. \tag{1}$$

^{*}This work was done during the second author's visit to Laboratoire d'Informatique de l'Ecole Normale Supérieure, Paris

¹

We call the expression a K-realization of d if $\lambda_i \in K$, $1 \leq i \leq m$, and K is either R_+ or Z or Z_+ .

If $\lambda_i \geq 0$ for all *i*, then $d \in C$, and (1) is a R_+ -realization of *d*. If λ_i is an integer for all *i*, then $d \in L$ where *L* is a lattice generated by the integral vectors e_i , $1 \leq i \leq m$, and (1) is a *Z*-realization of *d*. Obviously $L \subseteq Z^n$. If $\lambda_i \geq 0$ and is integral for all *i*, then we call the point *d* an h-point of *C*. Hence h-points are the points having a Z_+ -realization. A point $d \in C \cap L$ is called quasi-h-point if it is not an h-point. In other words, *d* is a quasi-h-point if it has R_+ - and *Z*-realizations but no Z_+ -realization.

We consider cut cones, i.e. those where e_i are cut vectors. Here are given examples of cut cones having or having no quasi-h-points. We prove that some points are quasi-h-points. We study scales, multiplying by which, a point has Z_+ -realizations.

In fact, those problems are related to feasibility problems of the following integer program

$$\{A\lambda = d, \ \lambda \in \mathbb{Z}_{+}^{m}\},\tag{2}$$

where A is the $n \times m$ matrix whose columns are the vectors e_i .

2 Definitions and notations

Set $V_n = \{1, ..., n\}$, $E_n = \{(i, j) : 1 \le i < j \le n\}$, then $K_n = (V_n, E_n)$ denotes the complete graph on n points. Denote by $P_{(i_1, i_2, ..., i_k)} = P_k$ the path in K_n going through the vertices $i_1, i_1, ..., i_k$.

For $S \subseteq V_n$, $\delta(S) \subseteq E_n$ denote the *cut* defined by S, with $(i, j) \in \delta(S)$ if and only if $|S \cap \{ij\}| = 1$. Since $\delta(S) = \delta(V_n - S)$, we take S such that $n \notin S$. The incidence vector of the cut $\delta(S)$ is called a *cut vector* and, by abuse of language, is also denoted as $\delta(S)$. Besides, $\delta(S)$ determines a distance function (in fact, a semimetric) $d_{\delta(S)}$ on points of V_n as follows: $d_{\delta(S)}(i, j) = 1$ if $(i, j) \in \delta(S)$, otherwise the distance between i and j is equal to 0. For simplicity sake, we set $\delta(\{i, j, k, ...\}) = \delta(i, j, k, ...)$.

Denote by \mathcal{K}_n the family of all nonzero cuts $\delta(S), S \subseteq V_n$. For any family $\mathcal{K} \subseteq \mathcal{K}_n$ define the cone $C(\mathcal{K}) := R_+(\mathcal{K})$ as the conic hull of cuts in \mathcal{K} . The cone $C(\mathcal{K})$ lies in the space $R(\mathcal{K})$ spanned by the set \mathcal{K} . We set $C_n := C(\mathcal{K}_n)$.

So, each point $d \in C(\mathcal{K})$ has a representation $d = \sum_{\delta(S) \in \mathcal{K}} \lambda_S \delta(S)$. Since $\lambda_S \geq 0$, the representation is called R_+ -realization of d. The number $\sum_{\delta(S) \in \mathcal{K}} \lambda_S$ is called the size of the R_+ -realization.

The lattice $L(\mathcal{K}) := Z(\mathcal{K})$ is the set of all integral linear combinations of cuts in \mathcal{K} . Let $L_n = L(\mathcal{K}_n)$. The lattice L_n is easily characterized; namely, $d \in L_n$ if and only if d satisfies the following condition of evenness

$$d_{ij} + d_{ik} + d_{jk} \equiv 0 \pmod{2}$$
, for all $1 \le i < j < k \le n$. (3)

So, $2Z^{n(n-1)/2} \subset L_n \subset Z^{n(n-1)/2}$.

The points of $L(\mathcal{K})$ with nonnegative coefficients, i.e. the points of $Z_{\pm}(\mathcal{K})$ are called *h*-points. We denote the set of h-points of the cone $C(\mathcal{K})$ by $hC(\mathcal{K})$. For $d \in Z_+(\mathcal{K})$, any decomposition of d as nonnegative integer sum of cuts is called a Z_+ -realization of d. An h-point of C_n is (seen as a semimetric) exactly isometrically embeddable into a hypercube (or h-embeddable) semimetric. This explains the name of an h-point.

For $d \in C_n$, define

- s(d) := minimum size of R_+ realizations of d,
- z(d) := minimum size of Z_+ -realizations of d if any.

Let d(G) be the shortest path metric of a graph G. We set

$$z_n^t := z(2td(K_n)).$$

For this special case, $G = K_n$, $s(d) = s(2td(K_n))$ is equal to $a_n^t := \frac{tn(n-1)}{\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil}$. A point *d* is called a *quasi-h-point* of $C(\mathcal{K})$ if $d \in A(\mathcal{K}) := C(\mathcal{K}) \cap L(\mathcal{K}) - L(\mathcal{K})$. $Z_+(\mathcal{K}).$

Recall (see [16]), that a *Hilbert basis* is a set of vectors $e_1, ..., e_k$ with the property that each vector lying in both, the lattice and the cone, generated by e_1, \ldots, e_k , is a nonnegative integral combination of these vectors. $A(\mathcal{K}) = \emptyset$ would mean that \mathcal{K} is a Hilbert basis of $C(\mathcal{K})$. Actually, \mathcal{K} would be the minimal Hilbert basis of $C(\mathcal{K})$ if it is a Hilbert basis, since $\delta(S)$ does not belong to $R_+(\mathcal{K}_n - \delta(S))$ for any $\delta(S) \in \mathcal{K}_n$ (see [4]).

Define

$$A^{i}(\mathcal{K}) := \{ d \in C(\mathcal{K}) \cap L(\mathcal{K}) : d \text{ has exactly } i \ Z_{+} - \text{realizations} \},\$$

$$A_n^i := A^i(\mathcal{K}_n).$$

So, above defined set $A(\mathcal{K})$ is $A^0(\mathcal{K})$. Define

$$\eta^{i}(d) := \min\{t \in Z_{+} : td \text{ has } > i Z_{+} \text{-realizations}\} =$$

$\mathbf{3}$

 $= \min\{t \in Z_+ : td \notin A^k(\mathcal{K}) \text{ for all } 0 \le k \le i\}.$

A cone $C = R_+(\mathcal{K})$ is said to be *simplicial* if the set \mathcal{K} is linearly independent; a point $d \in C$ is said to be *simplicial* if d lies on a simplicial face of C, i.e. if d admits unique R_+ -realization.

Call $e(\mathcal{K}) := |\mathcal{K}|$ mnus dimension of \mathcal{K} , the *excess* of \mathcal{K} . Set

$$\mathcal{K}_n^l = \{\delta(S) \in \mathcal{K}_n : |S| = l \text{ or } n - |S| = l\}.$$

For even n we set also

$$Even\mathcal{K}_n = \{\delta(S) \in \mathcal{K}_n : |S|, n - |S| \equiv 0 \pmod{2}\},\$$

$$Odd\mathcal{K}_n = \{\delta(S) \in \mathcal{K}_n : |S|, n - |S| \equiv 1 \pmod{2}\}.$$

For a subset $T \subseteq V_n$ denote

$$Even T\mathcal{K}_n = \{\delta(S) \in \mathcal{K}_n : |S \cap T| \equiv 0 \pmod{2}\},\$$

$$OddT\mathcal{K}_n = \{\delta(S) \in \mathcal{K}_n : |S \cap T| \equiv 1 \pmod{2}\}.$$

So $Even\mathcal{K}_n = Even\mathcal{T}\mathcal{K}_n$, $Odd\mathcal{K}_n = Odd\mathcal{T}\mathcal{K}_n$ for $T = V_n$, n even. Remark that $\mathcal{K}_{2m}^m = \{\delta(S) \in \mathcal{K}_{2m}^m : 1 \notin S\} = \{\delta(S) \in \mathcal{K}_{2m}^m : 1 \in S\}.$ Denote by $\mathcal{K}_n^{i,j}, \mathcal{K}_n^{\neq i}, \ \mathcal{K}_n^{\neq i}(\text{mod } a)$ the families of $\delta(S) \in \mathcal{K}_n$ with $|S| \in \mathcal{K}_n$

Denote by $\mathcal{K}_n^{i,j}, \mathcal{K}_n^{\neq i}, \mathcal{K}_n^{\neq i}$ (mod *a*) the families of $\delta(S) \in \mathcal{K}_n$ with $|S| \in \{i, j, n-i, n-j\}, |S| \notin \{i, n-i\}, \min\{|S|, n-|S|\} \not\equiv i \pmod{a}$, respectively. We write C_b^a for $C(\mathcal{K}_b^a)$ where *a* and *b* are indexes or sets of indexes.

3 Families of cuts \mathcal{K} with $A(\mathcal{K}) = \emptyset$

Of course $A(\mathcal{K}) = \emptyset$ if $e(\mathcal{K}) = 0$, i.e. if the cone $C(\mathcal{K})$ is simplicial. It is easy to see that $C(\mathcal{K}_n^l)$ is simplicial if and only if either l = 1, or l = 2, or (l, n) = (3, 6). Also $e(\mathcal{K}_3) = 0$.

Note that $e(\mathcal{K}_n) = 2^{n-1} - 1 - \binom{n}{2}$

Some examples of \mathcal{K} with a positive excess but with $A(\mathcal{K}) = \emptyset$ are:

a) \mathcal{K}_4 , \mathcal{K}_5 with the excess 1 and 5, respectively. The first proof was given in [3]; details of the proof see in [10], where, for any $d \in C_n \cap L_n$, n = 4, 5, the explicit Z_+ -realization of d is given.

b) $Odd\mathcal{K}_6$ with the excess 1. For proof see [10].

c) (See the case n = 5 of Theorem 6.2 below) The family of cuts (with excess 5) on a facet of $C(\mathcal{K}_6)$ which is a 0-lifting of a simplicial 5-gonal facet of $C(\mathcal{K}_5)$.

But $\mathcal{K}_n^{1,2}$ of excess n has $A(\mathcal{K}) \neq \emptyset$ for $n \geq 6$. Below we give some examples of \mathcal{K} with $A(\mathcal{K}) \neq \emptyset$ which are, in a way, close to the above examples of \mathcal{K} with $A(\mathcal{K}) = \emptyset$.

Denote by Q(b) the linear form $\sum_{1 \leq i < j \leq n} b_i b_j x_{ij}$ for $b \in Z^n$. If $\sum_{i=1}^n b_i = 1$, the inequality $Q(b) \leq 0$ is called hypermetric inequality. Call $d \in \mathbb{R}^{n(n-1)/2}$ a hypermetric if it satisfies all hypermetric inequalities. It is valid for $C(\mathcal{K}_n)$, (see [3]). We denote the hypermetric inequality by $Hyp_n(b)$. For large classes of parameters b (see [4], [6]) $Hyp_n(b)$ is a facet of $C(\mathcal{K}_n)$. The only known case when a hypermetric face is simplicial is (up to permutation) $Hyp_n(1^2, -1^{n-3}, n-4), n \geq 3$, and (its "switching" in terms of [6]) $Hyp_n(-1, 1^{n-2}, -(n-4))$. Call the facet $Hyp_n(1^2, -1^{n-3}, n-4)$ the main n-facet. Call the facet $Hyp_n(1^2, 0^k, -1^{n-k-3}, n-k-4)$ the k-fold 0-lifting of the main (n-k)-facet. It is a facet of $C(\mathcal{K}_n)$, because every k-fold 0-lifting of a facet of C_{n-k} is a facet of C_n (see [4]). A 1-fold 0-lifting we call simply 0-lifting. Up to a permutation we have:

the unique type of facets of $C(\mathcal{K}_3)$ is the main 3-facet (triangle inequality);

the unique type of facets of $C(\mathcal{K}_4)$ is the main 4-facet (which is the 0-lifting $Hyp_4(-1, 1^2, 0)$ of a main 3-facet);

all facets of $C(\mathcal{K}_5)$ are 2-fold 0-liftings of a main 3-facet (i.e. 0-lifting of a main 4-facet), and the main 5-facet $Hyp_5(1^3, -1^2)$, called the *pentagonal* facet;

all facets of $C(\mathcal{K}_6)$ are: 2-fold 0-liftings of a main 4-facet, 0-lifting of a main 5-facet, the main 6-facet $Hyp_6(2, 1, 1, -1^3)$ and its "switching" $Hyp_6(-2, -1, 1^4)$.

Lemma 3.1. If \mathcal{K} is a family of cuts $\delta(S)$, $|S| \leq \frac{n}{2}$, lying on a face F of C_n , then the family

$$\mathcal{K}' = \mathcal{K} \cup \{\delta(\{n+1\})\} \cup \{\delta(S \cup \{n+1\}) : \delta(S) \in \mathcal{K}\}$$

is the family of cuts lying on a 0-lifting of the face F. If, for above \mathcal{K} , $C(\mathcal{K})$ is a simplicial facet of C_n), we obtain, for $n \geq 4$,

$$e(\mathcal{K}') = |\mathcal{K}'| - \dim \mathcal{K}' = (2|\mathcal{K}| + 1) - \dim \mathcal{K}' =$$

= $2(\binom{n}{2} - 1) + 1 - (\binom{n+1}{2} - 1) = n(n-3)/2.$

Recall that $A(\mathcal{K}) = \emptyset$ for $\mathcal{K} = \mathcal{K}_5, \mathcal{K}_6^1, \mathcal{K}_6^2, \mathcal{K}_6^3, \mathcal{K}_6^{1,3} = Odd\mathcal{K}_6$ and for the family of any (except triangle) facet of \mathcal{K}_6 , since \mathcal{K}_6^i is simplicial for i = 1, 2, 3, and $\mathcal{K}_5, Odd\mathcal{K}_6$ are examples given in the beginning of this section.

4 Antipodal extension

A fruitful method of obtaining quasi-h-points is the *antipodal extension operation* at the point n. For $d \in \mathbb{R}^{n(n-1)/2}$ we define $ant_{\alpha}d \in \mathbb{R}^{n(n+1)/2}$ by

$$(ant_{\alpha}d)_{ij} = d_{ij} \text{ for } 1 \leq i < j \leq n, (ant_{\alpha}d)_{n,n+1} = \alpha, (ant_{\alpha}d)_{j,n+1} = \alpha - d_{jn} \text{ for } 1 \leq j \leq n-1.$$

For $\mathcal{K} \subseteq \mathcal{K}_n$, define

$$ant\mathcal{K} = \{ant_1\delta(S) : \delta(S) \in \mathcal{K}\} \cup \{\delta(n+1)\}.$$

Note that

$$ant_1\delta(S) = \delta(S)$$
 if $\{n\} \in S$, and $ant_1\delta(S) = \delta(S \cup \{n+1\})$ if $\{n\} \notin S$.

Hence

$$ant\mathcal{K} = \{\delta(S) : \delta(S) \in \mathcal{K}, n \in S\} \cup \{\delta(S \cup \{n+1\}) : \delta(S) \in \mathcal{K}, \{n\} \notin S$$

Observe that if $d \in C(\mathcal{K})$ and $d = \sum_{\delta(S) \in \mathcal{K}} \lambda_S \delta(S)$, then

$$ant_{\alpha}d = \sum_{\delta(S)\in\mathcal{K}} \lambda_{S}ant_{\alpha}\delta(S) + \alpha(1-\sum_{S}\lambda_{S})\delta(n+1)$$
$$= \sum_{\delta(S)\in\mathcal{K}} \lambda_{S}ant_{1}\delta(S) + (\alpha-\sum_{S}\lambda_{S})\delta(\{n+1\}).$$
(4)

Also if

$$ant_{\alpha}d = \sum_{\delta(S)\in\mathcal{K}} \lambda_{S}ant_{1}\delta(S) + \lambda_{0}\delta(n+1),$$

then $\alpha = \sum_{S} \lambda_{S} + \lambda_{0}$, and $d = \sum_{\delta(S) \in \mathcal{K}} \lambda_{S} \delta(S)$ is the projection of $ant_{\alpha}(d)$ on $\mathbb{R}^{n(n-1)/2}$.

So $ant_{\alpha}d \in R(ant\mathcal{K})$ if and only if $d \in R(\mathcal{K})$.

Note that the cone $R(ant\mathcal{K})$ is the intersection of the triangle facets $Hyp_{n+1}(1^2, -1_j, 0^{n-2})$, where $b_n = b_{n+1} = 1$, $b_j = -1$ and $b_i = 0$ for $i \neq j$, $1 \leq i \leq n-1$.

Proposition 4.1 (Proposition 2.6 of [8])

 $(i)ant_{\alpha}d \in L_{n+1}$ if and only if $d \in L_n$ and $\alpha \in Z$,

 $(ii)ant_{\alpha}d \in C_{n+1}$ if and only if $d \in C_n$ and $\alpha \ge s(d)$,

 $(iii)ant_{\alpha}d \in hC_{n+1}$ if and only if $d \in hC_n$ and $\alpha \geq z(d)$,

(iv) $ant_{\alpha}d$ is a simplicial point of C_{n+1} if and only if d is a simplicial point of C_n and $\alpha \ge s(d)$.

Clearly, $s(ant_{\alpha}d) = \alpha$ if $ant_{\alpha}d \in C_{n+1}$ and $z(ant_{\alpha}d) = \alpha$ if $ant_{\alpha}d \in hC_{n+1}$. Also $ant_{\alpha}d \in A_n^i$ for i > 0 if and only if $d \in A_n^i$, $\alpha \in Z_+$, $\alpha \ge z(d)$. Proposition 4.1 implies obviously the following important

roposition 4.1 implies obviously the following importan

Corollary 4.2 Let $d \in hC_n$, and let α be an integer such that $s(d) \leq \alpha < z(d)$. Then $ant_{\alpha}d \in A(ant\mathcal{K}_n) \subset A^0_{n+1}$, i.e. $ant_{\alpha}d$ is a quasi-h-point in C_{n+1} .

5 Spherical *t*-extension and gate extension

Let $d \in C_{n+1}$. We write $d = (d^0, d^1)$, where

$$d^0 = \{d_{ij} : 1 \le i < j \le n\}, \ d^1 = \{d_{i,n+1} : 1 \le i \le n\}.$$

A point $d \in C_{n+1}$ is called the *spherical t-extension* or simply *t-extension* of the point $d^0 \in C_n$ if $d = (d^0, d^1)$ and $d^1_{i,n+1} = t$ for all $i \in V_n$. We denote the spherical *t*-extension of d^0 by $ext_t d^0$.

Let j_n be the n-vector all of whose components are equal to 1. Then for the *t*-extension (d^0, d^1) , we have $d^1 = tj_n$.

Proposition 5.1. ext_id is a hypermetric if and only if

- (i) d is a hypermetric,
- (ii) $t \ge (\sum b_i b_j d_{ij}) / \Sigma(\Sigma 1)$

for all integers $b_1, ..., b_n$ with $\Sigma := \sum_{i=1}^{n} b_i > 1$ and $g.c.d.b_i = 1$.

Proof. If ext_td is hypermetric, then $\sum b_ib_j(ext_td)_{ij} \leq 0$ for any $b_1, \dots, b_n, b_{n+1} \in Z_+$ with $\sum b_i = 1$, i.e.

$$\sum_{1 \le i < j \le n} b_i b_j d_{ij} + \sum_{1 \le i \le n} b_i b_{n+1} t \le 0.$$

Since $b_{n+1} = 1 - \Sigma$, the second term is equal to $-t\Sigma(\Sigma - 1)$. We obtain (i) if $b_{n+1} = 0$ or 1; otherwise $\Sigma(\Sigma - 1) \neq 0$, and we get (ii).

Corollary 5.2. ext_td is a semimetric if and only if d is a semimetric and $t \geq \frac{1}{2}max_{(ij)}d_{ij}$.

In fact, apply (ii) above to the case $b_i = b_j = 1$, $b_{n+1} = -1$ and $b_k = 0$ for other b's.

Similarly to Proposition 5.1, one can check that $ant_t d$ is a hypermetric (a semimetric) if and only if d is a hypermetric (a semimetric, respectively)

and

$$t \ge (\sum_{1 \le i < j \le n} b_i b_j d_{ij}) / \Sigma(\Sigma - 1) + \sum_{1}^n b_i d_{in} / \Sigma$$

for any integers $b_1, ..., b_n$ with $\Sigma := \sum_{i=1}^n b_i > 1$ and g.c.d. $b_i = 1$

 $(t \ge \frac{1}{2}max_{1 \le i < j \le n-1}(d_{ij} + d_{in} + d_{jn}), \text{ respectively}).$

There is another operation, similar to antipodal extension operation. We call it the *gate extension operation* at the point *n* (called *gate*). For $d \in R^{n(n-1)/2}$, define $gat_{\alpha}d \in R^{n(n-1)/2}$ by

$$(gat_{\alpha}d)_{ij} = d_{ij} \text{ for } 1 \leq i < j \leq n,$$

$$(gat_{\alpha}d)_{n,n+1} = \alpha,$$

$$(gat_{\alpha}d)_{i,n+1} = \alpha + d_{in} \text{ for } 1 \leq i \leq n - 1.$$

The following identity shows that $gat_{\alpha}d$ is, in a sense, a complement of $ant_{\alpha}d$.

$$ant_{\alpha}d + gat_{2t-\alpha}d = 2ext_td.$$
(5)

Recall that we take S in $\delta(S)$ such that $n \notin S$. Hence, for $\mathcal{K} \subseteq \mathcal{K}_n$, we have

$$gat\mathcal{K} = \mathcal{K} \cup \{\delta(n+1)\}.$$

Actually, $ant\mathcal{K}_n = OddT\mathcal{K}_{n+1}$, $gat\mathcal{K}_n = \{\delta(n+1)\} \cup EvenT\mathcal{K}_{n+1}$, for $T = \{n, n+1\}$.

Note that the cone $R_+(gat\mathcal{K})$ is the intersection of the triangle facets $Hyp_{n+1}(1_i, 0^{n-2}, -1, 1_{n+1})$, where $b_i = b_{n+1} = 1$, $b_n = -1$, $b_j = 0$ for $j \neq i, 1 \leq j \leq n-1$.

It is clear that any R_+ -realization of $gat_{\alpha}d$ (if it belongs to C_{n+1}) has the form $\sum_S \lambda_S \delta S + \alpha \delta(n+1)$ where $n+1 \notin S$, and where the above realization is any R_+ -realization of d. So, $gat_{\alpha}d \in L_{n+1}(C_{n+1}, hC_{n+1}, A_{n+1}^i)$, respectively) if and only if $d \in L_n(C_n, hC_n, A_n^i)$, respectively) and $\alpha \in Z(R_+, Z_+, Z)$, respectively).

Also $gat_{\alpha}d$ is a hypermetric (a metric) if and only if $\alpha \in R_+$ and d is a hypermetric (a metric, respectively).

Hence if $\alpha \in \mathbb{Z}_+$, we have

$$gat_{\alpha}d \in A_{n+1}^{i} \Longleftrightarrow d \in A_{n}^{i}.$$

$$\tag{6}$$

In particular, $gat_{\alpha}d$ is a quasi-h-point if and only if d is.

The following facts are obvious.

1. If d_i is the t_i -extension of d_i^0 , i = 1, 2, then $d_1 + d_2$ is the $(t_1 + t_2)$ -extension of $d_1^0 + d_2^0$.

2. If d^0 lies in a facet of the cut cone, then the *t*-extension of d^0 lies in the 0-lifting of the facet.

We call a point $d \in C_n$ even if all distances d_{ij} are even.

Let $d = \sum_{S} \lambda_{S} \delta(S)$ be a Z_{+} -realization of an h-point d. We call the realization (0,1)-realization $(2Z_{+}$ -realization) if all λ_{S} are equal to 0 or 1 (are even, respectively). We have

Fact. Let d be an h-point. Then $d = d_1 + d_2$, where d_1 has a (0,1)-realization, and d_2 has an $2Z_+$ -realization.

Obviously, if d has an $2Z_+$ -realization, then d is even. But if d is even, it can have no $2Z_+$ -realizations.

The following Proposition 5.3 is an analog of Proposition 4.1.

Proposition 5.3. (i) $ext_t d \in L_{n+1}$ if and only if $d \in 2Z^{n(n-1)/2}$ and $t \in Z$,

(ii) $ext_i d \in C_{n+1}$ if $d \in C_n$ and $2t \ge s(d)$,

(iii) suppose that d has $2Z_+$ -realizations, and let $z_{even}(d)$ denote their minimal size; then $ext_t d \in hC_{n+1}$ if $d \in hC_n$ and $2t \geq z_{even}(d)$.

Proof. (i) is implied by the trivial equality $d_{i,n+1} + d_{j,n+1} + d_{ij} = 2t + d_{ij}, \ 1 \le i < j \le n$.

From (5) we have $ext_td = \frac{1}{2}(ant_{\alpha}d + gat_{2t-\alpha}d)$. Taking $\alpha = s(d)$ and applying (ii) of Proposition 4.1 we get (ii).

Taking $\alpha = z_{even}(d)$, applying (iii) of Proposition 4.1 and using that $ant_{z_{even}}d, gat_{2t-z_{even}}(d) \in 2Z_{+}(\mathcal{K}_{n+1})$, we get (iii).

Define $ext_t^m d = ext_t(ext_t^{m-1}d)$, where $ext_t^1 d = ext_t d$.

Proposition 5.4. If $2t \ge s(d)$, then $ext_t^m d \in C_{n+m}$ for any $m \in Z_+$, and

$$max(s(ext_t^{m-1}d), 2t - \frac{t}{\lceil m/2 \rceil}) \le s(ext_t^m d) \le 2t - 2^{-m}(2t - s(d)).$$

Proof. From Proposition 5.3(ii) we get

$$s(ext_td) \le \frac{1}{2}s(ant_{s(d)}d + gat_{2t-s(d)}d) = t + \frac{1}{2}s(d) \le 2t.$$

By induction on m, we obtain that $ext_t^m d \in C_{n+m}$ for all $m \in Z_+$, and the upper bound for $s(ext_t^m d)$.

The lower bound is implied by the fact that the restriction of $ext_t^m d$ on m extension points is $td(K_m)$. Since $s(td(K_m)) = \frac{1}{2}a_m^t$ (see Section 2), we have

$$s(ext_t^m) \ge s(td(K_m)) = \frac{1}{2} \frac{tm(m-1)}{\lfloor m/2 \rfloor \lceil m/2 \rceil} = 2t - \frac{t}{\lceil m/2 \rceil}.$$

Remark. So, if $s(d) \leq 2t$, then $\lim_{m\to\infty} s(ext_t^m d) = 2t$.

Probably, there exist $m_0 = m_0(t, d)$ such that $s(ext_t^m d) = 2t$ for $m \ge m_0$. We conjecture that $ext_t^m d \notin C_{n+m}$ for $m > m_1$ if s(d) > 2t.

For example, if t = 1 and d = d(G) (d(G) is the shortest path metric of the graph G), then it can be proved that $m_1 = 2$.

If the conjecture is true, then

$$s(d) = 2min\{t : ext_t^m d \in C_{n+m} \text{ for all } m \in Z_+\}.$$

Recall, that Proposition 4.1(ii) implies

$$s(d) = \min\{\alpha : ant_{\alpha}d \in C_{n+1}\}.$$

In terms of $ext_n^m d$ we have also analogs of (i) and (iii) of Proposition 4.1. **Proposition 5.5.**

(i) $ext_t^m d \in L_{n+m}$ for all $m \in Z_+$ if and only if $d \in 2Z^{n(n-1)/2}$ and t is even.

(iii) $ext_t^m d \in hC_{n+m}$ for all $m \in Z_+$ if and only if t is an even positive integer, and $d = td(K_n)$.

Proof. The evenness of t follows from $ext_t^3d \in L_{n+3}$. So, (i) is implied by Proposition 5.3(i).

Recall the result of [5] that $t \sum_{i=1}^{n} \delta(i)$ is the unique Z_{+} -realization of $td(K_{n})$ for even t and $m \geq \frac{t^{2}}{4} + \frac{t}{2} + 3$. Using this fact, we get that any Z_{+} -realization of $ext_{i}^{m}d$ contains t/2 cuts $\delta(i)$ for some i if m is large enough. So, $d = ext_{i}d'$ for some $d' \in hC_{n-1}$, etc. \Box

6 Quasi-h-points of 0-lifting of the main facet

Consider the main facet

$$F_0(n) = Hyp_n(1^2, -1^{n-3}, n-4) = Hyp_n(b^0),$$

where $b_1^0 = b_2^0 = 1$, $b_i^0 = -1$, $3 \le i \le n-1$, $b_n^0 = n-4$. The cut vectors $\delta(S)$ lying in the facet are defined by equations $b(S) \equiv \sum_{i \in S} b_i = 0$ or 1. We take S not containing n. Then $S \in S$, where

$$\mathcal{S} = \{\{1\}, \{2\}, \{1i\}, \{2i\}, \{12i\} \ (3 \le i \le n-1), \{12ij\} \ (3 \le i < j \le n-1)\}.$$

We set

$$m = |\mathcal{S}| = \frac{n(n-1)}{2} - 1.$$

Every n-facet contains at least m cut vectors. Since the main n-facet contains exactly m cuts, it is simplicial.

The 0-lifting of the main facet is the facet

$$F(n) = Hyp_{n+1}(1^2, -1^{n-3}, n-4, 0).$$

Besides the above cuts $\delta(S), S \in S$, it contains, according to Lemma 3.1, only the cuts $\delta(S \cup \{n+1\}), S \in S$, and $\delta(n+1)$.

Note that $A(\mathcal{K}) = \emptyset$ for the main n-facet (as for any simplicial $C(\mathcal{K})$).

Now we consider even points having no $2Z_+$ -realization. The simplest such points are points having a (0,1)-realization. We call these points even (0,1)-points.

Let $d^0 \in F_0(n)$ be an even h-point, and let $\sum_{S \in S_0} \lambda_S \delta(S)$ be one of its Z_+ -realizations. Consider a minimal set of comparisions mod 2 that λ_S 's have to satisfy. The comparisions are implied by the conditions $d_{ij} \equiv 0$ for all pairs (ij). Since $d^0 \in L_n$, we have $d_{ij} \equiv d_{ik} + d_{jk} \pmod{2}$ for all ordered triples (ijk). Hence independent comparisions are implied by the comparisions are as follows. (For simplicity sake, we set $\lambda_{\{ij\ldots\}} = \lambda_{ij\ldots}$ and omit the indication (mod 2)).

$$\lambda_{1i} + \lambda_{2i} + \lambda_{12i} + \sum_{3 \le j \le n-1, j \ne i} \lambda_{12ij} \equiv 0, \ 3 \le i \le n-1,$$

$$\lambda_1 + \sum_{3 \le i \le n-1} (\lambda_{1i} + \lambda_{12i}) + \sum_{3 \le i < j \le n-1} \lambda_{12ij} \equiv 0,$$

$$\lambda_2 + \sum_{3 \le i \le n-1} (\lambda_{2i} + \lambda_{12i}) + \sum_{3 \le i < j \le n-1} \lambda_{12ij} \equiv 0.$$

(7)

The system of comparisions (7) has n-1 equations with m = n(n-1)/2 - 1 unknowns. Hence the number of (0,1)-solutions distinct from the trivial zero solution is equal to $2^{m-(n-1)} - 1 = 2^{\binom{n-1}{2}-1} - 1$.

This shows that all points of $F_0(3)$ have $2Z_+$ -realizations. The only even (0,1)-points of $F_0(4)$ are 2 points $2d(K_3)$ with $d_{13} = 0$ or $d_{23} = 0$, and the point $2d(K_4 - P_{(1,2)})$. There are 31 even (0,1)-points in $F_0(5)$.

Since there are exponentially many even (0,1)-points in $F_0(n)$, we consider points of the following type and call them *special*.

For these points the coefficients λ_s are as follows.

$$\lambda_1 = a_1, \ \lambda_2 = a_2, \ \lambda_{1i} = b_1, \ \lambda_{2i} = b_2, \ \lambda_{12i} = c_1, \ 3 \le i \le n-1,$$

$$\lambda_{12ij} = c_2, \ 3 \le i < j \le n-1.$$

Here $a_i, b_i, c_i, i = 1, 2$, are equal to 0 or 1.

If we set

$$k = n - 3, \ l = \frac{n(n-1)}{2},$$

then for the special points (7) takes the form

$$b_1 + b_2 + c_1 + (k - 1)c_2 \equiv 0,$$

$$a_1 + k(b_1 + c_1) + \frac{k(k - 1)}{2}c_2 \equiv 0,$$

$$a_2 + k(b_2 + c_1) + \frac{k(k - 1)}{2}c_2 \equiv 0.$$

Since we have 3 equations for 6 variables, we can express 3 variables a_1, a_2, c_1 through other 3 variables b_1, b_2, c_2 .

There are 4 families of the solutions of the system depending on what is $k \pmod{4}$. The solutions are as follows (undefined equivalences are taken by (mod 2)).

$$k \equiv 0 \pmod{4}, a_1 = a_2 = 0, c_1 \equiv b_1 + b_2 + c_2,$$

 $k \equiv 1 \pmod{4}, a_1 = b_2, a_2 = b_1, c_1 \equiv b_1 + b_2, c_2 \text{ arbitrary},$
 $k \equiv 2 \pmod{2}, a_1 = a_2 = c_2, c_1 \equiv b_1 + b_2 + c_2,$
 $k \equiv 3 \pmod{4}, a_1 \equiv b_2 + c_2, a_2 \equiv b_1 + c_2, c_1 \equiv b_1 + b_2.$

In each case we obtain 7 nontrivial special even (0,1)-point.

Taking in attention the definition of S, for $a = 0, \pm$, we denote by λ_{ik}^a , λ_k^a the k-vectors with the components λ_{ij}^a , $3 \leq j \leq n-1$, i = 1, 2, λ_{12j}^a , $3 \leq j \leq n-1$, respectively. Similarly, λ_l^a is the l-vector with the components λ_{12ij}^a , $3 \leq i < j \leq n-1$.

In this notation a special point d^0 has a (0,1)-realization λ^0 such that $\lambda_i^0 = a_i, \ \lambda_{ik}^0 = b_i j_k, \ i = 1, 2, \ \lambda_k^0 = c_1 j_k$ and $\lambda_l^0 = c_2 j_l$.

Recall that special points are simplicial. Therefore their size is equal to $\sum_{s \in S} \lambda_s$. We show below that the *t*-extension of 2 special points with $(a_1, a_2, b_1, b_2, c_1, c_2) = (1, 1, 0, 0, 0, 1)$ and (0, 1, 0, 1, 1, 1) are quasi-h-points for $n \equiv 2 \pmod{4}$.

For n = 6 the points d^0 are $d(K_6 - P_3)$ and $ant_{10}(ext_4d(K_4))$. Another example of $d \in A_7^0$ is $ant_6(ext_3d(K_5)) = d^{5,3}$ in terms of Corollary 6.6 below.

Proposition 6.1. Let d^0 be one of the 7 special points of the main facet $F_0(n)$. Let t be a positive integer such that $t \ge \frac{1}{2} \sum_{S \in S} \lambda_S^0$. Then the t-extension of d^0 is an h-point if $n \not\equiv 2 \pmod{4}$, and if $n \equiv 2 \pmod{4}$, then there is 2 points d^0 such that its t-extension is a quasi-h-point, namely the points with $(a_1, a_2, b_1, b_2, c_1, c_2) = (1, 1, 0, 0, 0, 1)$ and (0, 1, 0, 1, 1, 1).

Proof. Recall that we can take S such that $n \notin S$ for all $S \in S$.

We apply the equation (2) to the *t*-extension *d*. In the case the matrix *A* takes the form

$$A = \left(\begin{array}{cc} B & B & 0\\ D & \overline{D} & j_n \end{array}\right)$$

Here the first m columns correspond to sets $S \in S$, the next m columns correspond to sets $S \cup \{n+1\}$, $S \in S$, and the last (2m+1)st column corresponds to $\{n+1\}$. The size of the matrix B is $\binom{n}{2} \times m$, and D, \overline{D} are $n \times m$ matrices such that $D + \overline{D} = J$, where J is the matrix all of whose elements are equal to 1. Each column of the matrix J is the vector j_n consisting of n 1's. In this notations, we can write J as the direct product $J = j_n \times j_m^T$. Hence for any m-vector a we have $Ja = (j_m, a)j_n$.

The rows of D and \overline{D} are indexed by pairs (i, n + 1), $1 \leq i \leq n$. The S-column of the matrix D is the (0, 1)-indicator vector of the set S. Since $n \notin S$ for all $S \in S$, the last row of D consits of 0's only.

We look out solutions of the system (2) for this matrix A such that λ is a nonnegative integral (2m+1)-vector. We set

$$\mu_S = \lambda_{S \cup \{n+1\}}, \ S \in \mathcal{S}, \ \gamma = \lambda_{\{n+1\}}.$$

Then the system (2) takes the form

$$B(\lambda + \mu) = d^{0},$$

$$D(\lambda - \mu) + (\gamma + (j_{m}, \mu))j_{n} = d^{1}$$

Now, if we set $\lambda^+ = \lambda + \mu$, $\lambda^- = \lambda - \mu$, $\gamma_1 = \gamma + (j_m, \mu)$, and recall that $d^1 = tj_n$, we obtain the equations

$$B\lambda^{+} = d^{0},$$

$$D\lambda^{-} + \gamma_{1}j_{n} = tj_{n}.$$
 (8)

Recall that the last row of D is the 0-row. Hence the last equation of the system (8) gives $\gamma_1 = t$, and the equation (8) takes the form

$$D\lambda^{-} = 0.$$

A solution $(\lambda^+, \lambda^-, \gamma_1)$ is feasible if the vector (λ, μ, γ) is nonnegative. Since

$$\lambda = \frac{1}{2}(\lambda^+ + \lambda^-), \ \mu = \frac{1}{2}(\lambda^+ - \lambda^-), \ \text{and} \ \gamma = t - (j_m, \mu),$$

a solution $(\lambda^+, \lambda^-, \gamma_1)$ is feasible if

$$\lambda^+ \ge 0, \ |\lambda^-| \le \lambda^+, \ \text{and} \ t \ge (j_m, \mu).$$
 (9)

Since the main facet $F_0(n)$ is simplicial, the system $B\lambda^+ = d^0$ has the full rank m such that $\lambda^+ = \lambda^0$ is the unique solution.

We try to find an integral solution for λ^- . By (9), we have that $|\lambda^-| \leq \lambda^0$. This implies that $\lambda_s^- \neq 0$ only for sets S where $\lambda_s^0 \neq 0$. Since λ^0 is a (0,1)-vector, an integral λ_s^- takes the value 0 and ± 1 only.

We write explicitly the matrix $(D, j_n) \equiv D_n$.

$$D_n = \begin{pmatrix} 1 & 0 & j_k^T & 0 & j_k^T & j_l^T & 1\\ 0 & 1 & 0 & j_k^T & j_k^T & j_l^T & 1\\ 0 & 0 & I_k & I_k & I_k & G_k & j_k\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

The first, the second and the last rows of the matrix D_n are indexed by the pairs (1, n + 1), (2, n + 1) and (n, n + 1), respectively. The third row consists of matrices with k rows corresponding to the pairs (i, n + 1) with $3 \le i \le n - 1$. The columns of D_n are indexed by sets $S \in S_0 \cup \{n + 1\}$ in the following sequence $\{1\}, \{2\}, \{1i\}, \{2i\}, \{12i\}, 3 \le i \le n - 1, \{12ij\}, 3 \le i < j \le n - 1, \{n + 1\}$. I_k is the $k \times k$ unite matrix, and G_k is $k \times l$ incidence matrix of the complete graph K_k . G_k contains exactly two 1's in each column, i.e. $j_k^T G_k = 2j_l^T$. The matrix $D_{n'}$ is an obvious submatrix of D_n , for n' < n.

In the above notation, the equation $D\lambda^- = 0$ takes the form

$$\begin{split} \lambda_{i}^{-} + j_{k}^{T} (\lambda_{ik}^{-} + \lambda_{k}^{-}) + j_{l}^{T} \lambda_{l}^{-} &= 0, \ i = 1, 2, \\ \lambda_{1k}^{-} + \lambda_{2k}^{-} + \lambda_{k}^{-} + G_{k} \lambda_{l}^{-} &= 0. \end{split}$$

Since $j_k^T G_k = 2j_l^T$, the last equality implies that

$$j_k^T(\lambda_{1k}^- + \lambda_{2k}^- + \lambda_k^-) + 2j_l^T\lambda_l^- = 0.$$

Hence the above system implies

$$\lambda_1^- + \lambda_2^- + j_k^T \lambda_k^- = 0.$$

Recall that we look out a $(0, \pm 1)$ -solution. Note that if $\lambda_S^+ = 1$ and $\lambda_S^- = 0$, then $\lambda_S = \mu_S = \frac{1}{2}$ is nonintegral. Hence we shall look out a solution such that $\lambda_S^- = \pm \lambda_S^0$. So, such a solution is nonzero there where λ_S^0 is nonzero.

The main part of above equations is contained in the term $G_k \lambda_l^-$. We can treat the (± 1) -variables $(\lambda^-)_{ij} \equiv \lambda_{12ij}^-$ as labels of edges of the complete graph K_n . Now the problem is reduced to finding such labelling of edges of K_n that the sum of labels of edges incident to a given vertex is equal to a prescribed value, usually equal to 0 or ± 1 . The existence of such a solution depends on a possibility of factorization of K_n into circuits and 1-factors.

Corresponding facts can be found in [14], Theorems 9.6 and 9.7.

A tedious inspection shows that a feasible labelling exists for each of the 7 special points if $n \not\equiv 2 \pmod{4}$ (i.e. if $k \not\equiv 3 \pmod{4}$), and for 5 special points if $n \equiv 2 \pmod{4}$. For other 2 points with $(a_1, a_2, b_1, b_2, c_1, c_2) = (1, 1, 0, 0, 0, 1)$ and (0, 1, 0, 1, 1, 1) there is no feasible solution, i.e. there are S such that $\lambda_s^- = 0 \neq \pm \lambda_s^0$.

Now the assertion of the proposition follows.

In the table below *t*-extensions of some special points are given explicitly. The last column of the table gives a point of A^0_{4m-1} for any $m \ge 2$.

$n \pmod{4} \equiv$	3	0	1	2
d_{12}	n-3	$\binom{0}{(n-4)}$	n-1 $\binom{n-4}{2}+2$	$\binom{n-4}{+1}$
$3 \le i \le n - 1$	$\binom{n-3}{2}$	$\binom{n-4}{2}$	$\binom{n-3}{2}$ + 1	$\binom{n-4}{1}$ + 1
$\begin{array}{c} a_{2i} \\ 3 \le i \le n-1 \end{array}$	(¹ ₂ ⁻)	(¹ ₂ ⁻)	$\binom{n}{2} + 1$	$\binom{n}{2} + 1$
$ \begin{aligned} d_{ij}(i \neq j) \\ (3 \leq i, j \leq n-1) \end{aligned} $	2(n-4)	2(n-5)	2(n-4)	2(n-5)
d_{1n}	$\binom{n-3}{2}$	$\binom{n-3}{2}$	$\binom{n-3}{2} + 1$	$\binom{n-3}{2} + 1$
d_{2n}	$\binom{n-2}{2}$	$\binom{n-3}{2}$	$\binom{n-2}{2} + 1$	$\binom{n-3}{2} + 1$
$d_{in} \\ 3 \le i \le n - 1$	n - 3	n - 4	n-3	n - 4
$\frac{5 \leq i \leq n}{d_{in+1}(i \neq n+1)}$	$\binom{n-2}{2}/2$	$\binom{n-3}{2}/2$	$(\binom{n-2}{2}+3)/2$	$(\binom{n-3}{2}+3)/2$
Remarks.				

a) For the smallest possible $n \equiv 2 \pmod{4}$, and $n \geq 6$, (i.e. for n = 6) distance d is the 3-extension of $d_6 = 2d(K_6 - P_{(1,6,2)})$, corresponding

to the special point (1,1,0,0,0,1). On the other hand, the 3-extension of $2d(K_5 - P_{(1,2,5)})$ by the point 6 is an h-point.

For $n \equiv 0$ and $n \equiv 3 \pmod{4}$ this d is an antipodal extension at the point n, i.e. $d_{in} + d_{2i} = d_{2n}$ for all i.

b) If we consider λ_l^0 such that $\lambda_{12ij}^0 = 0$ or 1, then the problem is reduced to a factorization of the graph whose edges are pairs (ij) such that $\lambda_{12ij}^0 \neq 0$.

c) In fact, we can take t slightly less. By (9), we must have $t \ge (j_m, \mu)$. Let r be the number of $S \in S_0$ such that $\lambda_S = 1$. Then $(j_m, \mu) \le \frac{1}{2}(\sum_{S \in S_0} \lambda_S^0 - r)$.

Proposition 6.2. Let \mathcal{K} be the family of cuts lying on the 0-lifting F(n) of the main facet $F_0(n)$. Then $A(\mathcal{K}) = 0$ if and only if $n \leq 5$.

Proof. By Lemma 6.1, F(6) has quasi-h-points, and (6) implies that quasi-h-points exist in all F(n) for n > 6. We prove that there is no quasi-h-point on F(n) for $n \le 5$.

We use the above notations and the equations $B(\lambda + \mu) = d^0$, $D_n(\lambda - \mu) + \gamma_1 j_n = d^1$. The first equation has the unique solution $\lambda + \mu = \lambda^0$. Hence $2D_n\lambda - D_n\lambda^0 + \gamma_1 j_n = d^1$, where $\gamma_1 = \gamma + (j_{m_0}, \lambda^0) - (j_{m_0}, \lambda)$. The last row gives $\gamma_1 = d_{n,n+1}$. Hence the i-th row of the equation with D_n takes the form

$$(D_n\lambda)_i = \frac{1}{2}((D_n\lambda^0)_i + d_{i,n+1} - d_{n,n+1}).$$

It can be shown that the condition of evenness (3) implies that the right hand side is an integer for $n \leq 5$. Moreover, for $n \leq 5$, the matrix D_n is unimodular, i.e. $|detD'| \leq 1$ for each $n \times n$ submatrix D' of D_n . Therefore any solution λ is an integer. This implies that μ and $\gamma = d_{n,n+1} - (j_{m_0}, \mu)$ are integers, too.

So, all points $d \in L_{n+1} \cap F(n)$ have a Z_+ -realization (λ, μ, γ) for $n \leq 5$.

Now we give some other examples of Z_+ -realizations of t-extensions of even h-points.

Using the fact that $\sum_{i \in V_n} \delta(i)$ is the unique Z_+ -realization of $2d(K_n)$ for $n \neq 4$, (see [5]), we obtain

Lemma 6.3. The only Z_+ -realizations of $ext_t(2d(K_n)), n \ge 5, t \in Z_+, are$

(1)
$$\sum_{i \in V_n} \delta(i) + (t-1)\delta(n+1)$$
 for $t \ge 1$,
(1') $\sum_{i \in V_n} \delta(i, n+1) + (t-n+1)\delta(n+1)$ for $t \ge n-1$.

Proof. Note that $d^0 = 2d(K_n)$ is an even (0,1)-point of C_n . The coefficients of its (0,1)-realization λ^0 are as follows: $\lambda_S^0 = 1$ if $S = \{i\}$, $1 \le i \le n-1$, or $S = V_{n-1}$, and $\lambda_S^0 = 0$ for other S. (Recall that we use S such that $n \notin S$.) Since it is unique Z_+ -realization of d^0 , the equation $B\lambda^+ = d^0$ has the unique integral solution $\lambda^+ = \lambda^0$.

Submatrix of D consisting of columns corresponding S with $\lambda_S^+ \neq 0$, and without the last zero row, has the form $D = (I_{n-1}, j_{n-1})$. Hence the unique (± 1) -solutions of the equation $D\lambda^- = 0$ are as follows: 1) $\lambda_i^- = 1$, $1 \leq i \leq n-1$, $\lambda_{V_{n-1}}^- = -1$, and 2) $\lambda_i^- = -1$, $1 \leq i \leq n-1$, $\lambda_{V_{n-1}}^- = 1$.

Since $(j_m, \mu) = 1$ in the first case, and $(j_m, \mu) = n - 1$, in the second case, we have $\gamma = t - 1$, and $\gamma = t - n + 1$, respectively. These solutions give the above Z_+ -realizations (1) and (1').

If we define $d^{n,t} = ant_{2t}ext_t(2d(K_{n-1})))$, we obtain

$$d_{ij}^{n,t} = 2, \ 1 \le i < j \le n-1, \ d_{i,n} = d_{i,n+1} = t, \ 1 \le i \le n, \ d_{n,n+1} = 2t.$$

If we apply (4) to (1) and (1') of Lemma 6.3 (where *n* is interchanged by n-1), we obtain (2) and (2) with *n* and n+1 interchanged of Lemma 6.4 below. Summing these two expressions, we obtain the symmetric expression (3) of the lemma.

Lemma 6.4. For $d^{n,t}$ the following holds

(2)
$$d^{n,t} = \sum_{i \in V_{n-1}} \delta(i, n+1) + (t-1)\delta(n) + (t-n+2)\delta(n+1),$$

(3)
$$2d^{n,t} = \sum_{i \in V_{n-1}} (\delta(i,n) + \delta(i,n+1)) + (2t - n + 1)(\delta(n) + \delta(n+1)).$$

Lemma 6.5. For $n \ge 6$, $d^{n,t}$ is h-embeddable if and only if $t \ge n-2$. Moreover, for $t \ge n-2$, the only Z_+ -realizations are (2) and its image under the transposition (n, n+1).

Proof. In fact, if we use Lemma 6.4, then the restrictions of an h-embedding of $d^{n,t}$ onto $V_{n+1} - \{n\}$ and V_n has to be of the form (1) and (1') or (1') and (1).

The realizations (2) and (3) of Lemma 6.4 imply

Corollary 6.6. $d^{n,t}$ is a quasi-h-point of C_n and $(antC_n) \cap C_{n+1}^{1,2}$ having the scale 2 if $\left\lfloor \frac{n-1}{2} \right\rfloor \le t \le n-3, n \ge 5$.

In fact, for n = 7 we have to prove only that $2d(K_6 - P_{(5,6)})$ is an quasih-point of scale 2, and it will be done Section 7. For $n \ge 8$ we use (2), (3) and Lemma 6.4.

Remark. $d^{n-1,2} = 2d(K_n - P_2)$ and it is a quasi-h-point for $n \ge 6$. Its scale lies in the segment $\left[\left\lceil \frac{n}{4}\right\rceil, \frac{n}{2}\right)$. $d^{n-1,2} \in Z(ant\mathcal{K}_{n-1} \cap \mathcal{K}_n^{1,2})$ (see Remark c) after Lemma 7.1 below) for $n \ge 6$, but $d^{n-1,2} \in R_+(ant\mathcal{K}_{n-1} \cap \mathcal{K}_n^{1,2})$ only for n = 6.

The cone $(antC_{n-1}) \cap C_n^{1,2}$ has excess 1. It has 2n - 2 cuts $\delta(i, n - 1), \delta(i, n), \delta(n - 1), \delta(n)$, for $i \in V_{n-2}$, its dimension is 2n - 3, and there is the following unique linear dependency

$$\sum_{i \in V_{n-2}} \delta(i, n-1) + (n+4)\delta(n) = \sum_{i \in V_{n-2}} \delta(i, n) + (n-4)\delta(n-1).$$

The sides of above equation differ only by the transposition (n-1,n).

The number of quasi-h-points in $(antC_{n-1}) \cap C_n^{1,2}$ is 0 for n = 5 (since it is so for the larger cone C_5) and $\geq n - 2 - \lceil \frac{n}{2} \rceil = \lfloor \frac{n}{2} \rfloor - 2$, which is implied by Corollary 6.6. Perhaps, it is exactly 1 for n = 6, 7.

7 Cones on 6 points

Consider the following cones generated by cut vectors on 6 points:

$$C_6, C_6^1, C_6^2 = EvenC_6, C_6^3, C_6^{1,2}, C_6^{1,3} = OddC_6, C_6^{2,3}, antC_5.$$

Recall (see Section 3) that the facets of C_6 are up to permutations of V_6 as follows:

a) 3-fold 0-lifting of the main 3-facet, 3-gonal facet $Hyp_6(1^2, -1, 0^3)$,

b) 0-lifting of the main 5-facet, 5-gonal facet $Hyp_6(1^3, -1^2, 0)$,

c) the main 6-facet and its "switching" (7-gonal simplicial facets) $Hyp_6(2, 1^2, -1^3)$ and $Hyp_6(-2, -1, 1^4)$.

Let

$$d_6 := 2d(K_6 - P_{(5,6)}).$$

Recall that (up to permutations) d_6 is the only known quasi-h-point of C_6 .

The following lemma is useful for what follows. It can be checked by inspection. Recall that $V_n = \{1, 2, ..., n\}$.

Lemma 7.1. (1) All Z_+ -realizations of $2d_6$ are

1a)
$$2d_6 = \sum_{i \in V_4} (\delta(i,5) + \delta(i,6)) \in Z_+(\mathcal{K}_6^2) = Z_+(Even\mathcal{K}_6),$$

$$1b) \ 2d_6 = (\delta(5) + \delta(6)) + \sum_{i \in V_3} (\delta(i, 4, 5) + \delta(i, 4, 6)) \in$$

$$Z_+(\mathcal{K}_6^{1,3}) = Z_+(Odd\mathcal{K}_6),$$

$$1c) \ 2d_6 = \delta(5) + \delta(j,5) + \sum_{i \in V_4 - \{j\}} (\delta(i,j,6) + \delta(i,6)) \text{ for } j \in V_4.$$

(2) Some representations of $d_6 = 2d(K_6 - P_{(5,6)})$ in L_6 are

$$2a) d_{6} = \delta(5) + \sum_{i \in V_{4}} \delta(i, 6) - \delta(6) \in L_{6}^{1,2},$$

$$2b) d_{6} = 2\delta(5) + 2\delta(6) + \sum_{i \in V_{4}} \delta(i) - \delta(5, 6) \in L_{6}^{1,2},$$

$$2c) d_{6} = \sum_{i \in V_{4}} \delta(V_{4} - \{i\}) - \delta(5, 6) -$$

$$\sum_{i \in V_4} (\delta(i, i+1, 6) - \delta(i, i+1)) \in L_6^{2,3}.$$

Here i + 1 is taken by mod 4. **Remarks.**

a) The projection of 2a) onto $V_6 - \{1\}$ gives the Z_+ -realization $2d(K_5 - P_{(5,6)}) = \delta(5) + \sum_{i=2,3,4} \delta(i,6)$; it and its permutation by the transposition (5,6) are the only Z_+ -realizations of the above h-point.

b) "Small" pertubations of d_6 do not produce other quasi-h-points. For example, one can check that

 $d_6 + \delta(1,2) = \delta(1) + \delta(2) + \delta(6) + \delta(1,2,5) + \delta(3,5) + \delta(4,5);$

it and its permutation by the transposition (5,6) are the only Z_+ -realizations of this h-point.

c) Actually, 2a) is the case $n = 5, \alpha = 4$ of

$$ant_{\alpha}(2d(K_n)) = \delta(n) + \sum_{i \in V_{n-1}} \delta(i, n+1) - (n-\alpha)\delta(n+1) = \sum_{i \in V_{n+1}} \delta(\{i\}) + (\frac{\alpha}{2} - 1)(\delta(\{n\}) + \delta(\{n+1\}) - \delta(\{n, n+1\})).$$

d) One can check that $L_n^{\neq 1} \subset L_n$ strictly, and $2Z^{15} \subset L_6^{\neq}$ strictly. Note that $L_6^{2,3} = L_6^{\neq 1}$. On the other hand, $L_n^{i,j} = L_n$ if and only if (i,j) = (1,2).

e) By 1a) and 1b) of Lemma 7.1 we have

$$2d_6 \in hC_6^2$$
 and $2d_6 \in hC_6^{1,3}$,

but
$$2d_6 \notin L_6^2 \cup L_6^{1,3} = L(Even\mathcal{K}_6) \cup L(Odd\mathcal{K}_6).$$

We call a subcone of C_n a *cut subcone* if its extreme rays are cuts.

Lemma 7.2. Let $d \in A(\mathcal{K})$ and let $\mathcal{K}(d)$ be the set of cuts of a minimal cut subcone of C_n containing d. Then

(i) $d \in A(\mathcal{K}')$ for any \mathcal{K}' such that $\mathcal{K}(d) \subseteq \mathcal{K}' \subseteq \mathcal{K}$,

(ii) $e(\mathcal{K}') = 1$ implies $\mathcal{K}' = \mathcal{K}(d)$.

Proof. In fact, $d \notin Z_+(\mathcal{K}(d))$ implies $d \notin Z_+(\mathcal{K}')$, and $d \in Z(\mathcal{K}(d)) \cap C(\mathcal{K}(d))$ implies $d \in Z(\mathcal{K}') \cap C(\mathcal{K}')$, and (i) follows. If $e(\mathcal{K}') = 1$, then any proper cut subcone of $C(\mathcal{K})$ is simplicial and has no quasi-h-points. \Box

Now we remark that the cone $C_6^{1,2} \cap antC_5$ has excess 1, since it has dimension 9 and contains 10 cuts $\delta(5), \delta(6), \delta(i,5)\delta(i,6), 1 \leq i \leq 4$, with the unique linear dependency

$$\sum_{i \in V_n} (\delta(i,5) - \delta(i,6)) = 2(\delta(5) - \delta(6)).$$

Proposition 7.3. $d_6 = 2d(K_6 - P_2) \in A(\mathcal{K}_6)$ and it is a quasi-h-point of the following proper subcones of $C_6: C_6^{1,2}, C_6^{2,3}, antC_5$, the triangle facet $Hyp(1^2, -1, 0^3)$ and $C_6^{1,2} \cap antC_5$ (which is a minimal cut subcone of C_6 containing d).

Proof. The point d_6 , is the antipodal extension $ant_4(d_5)$ of the point $d_5 := 2d(K_5)$. The minimum size of Z_+ -realizations of d_5 is equal to $z(d_5) = z_5^1 = 5$, since the only its Z_+ -realization is the following decomposition $2d(K_5) = \sum_{i=1}^{5} \delta(i)$.

The minimum size of R_+ -realizations of d_5 is $s(d_5) = a_5^1 = 10/3$ which is given by the R_+ -realization $d_5 = \frac{1}{3} \sum_{1 \le i < j \le 5} \delta(ij)$.

Since 10/3 < 4 < 5, we deduce that $d_6 = 2d(K_6 - P_{\{5,6\}}) \notin Z_+(C_6)$.

But $d_6 \in C_6 \cap L_6$, from (1) and (2) of Lemma 7.1. So, $d_6 \in A_6^0$. Now, from 1a) and 2) of the same lemma, we have $d_6 \in C(\mathcal{K}_6^{1,2} \cap ant\mathcal{K}_5) \cap L(\mathcal{K}_6^{1,2} \cap ant\mathcal{K}_5)$, and so, using (ii) of Lemma 7.2, we get that $\mathcal{K}_6^{1,2} \cap ant\mathcal{K}_5$ is a minimal subcone $\mathcal{K}(d)$.

Using (i) of Lemma 7.2, and the fact that $antC_5$ is the intersection of some triangular facets, we get the assertion of Proposition 7.3 for $C_6^{1,2}$, $antC_5$ and the triangle facet. Finaly, 1a) and 2c) of Lemma 7.1 imply that $d_6 \in A(\mathcal{K}_6^{2,3})$.

Remarks.

a) On the other hand, the following subcones $C(\mathcal{K})$ of C_6 have $A(\mathcal{K}) = \emptyset$: 5 simplicial cones C_6^i , i = 1, 2, 3, both 7-gonal facets, and nonsimplicial cones: C_5 , $C_6^{1,3} = OddC_6$ and 5-gonal facet.

b) Nonsimplicial cones $C_6, C_6^{1,2}, C_6^{2,3}, C_6^{1,3}, C_5, ant C_5, Hyp_6(1^2, -1, 0^3), Hyp_6(1^3, -1^2, 0)$ have excess 16,6,10,1,5,5,9,5, respectively. The cones $C_6, C_6^{1,2}, C_6^{2,3}, C^{1,3}, C_5$ have, respectively, 210,495,780,60,40 facets and the facets are partitioned, respectively, into 4,5,8,1,2 classes of equivalent facets up to permutatons.

8 Scales

In this section we consider the scale $\eta^0(ant_\alpha 2d(K_n))$ which is, by Proposition 4.1(iii), equal to $min\{t \in Z_+ : \alpha t \ge z_n^t\}$, especially for two extreme cases $\alpha = 4$ and $\alpha = n - 1$. The number t below is always a positive integer.

Denote by H(4t) a Hadamard matrix of order 4t, and by PG(2,t) a projective plane of order t.

It is proved in [5] that $t \sum_{1}^{n} \delta(\{i\})$ is the unique Z_{+} -realization of $2td(K_{n})$ if $n \geq t^{2}+t+3$, and that for $n = t^{2}+t+2$, $2td(K_{n})$ has other Z_{+} -realizations if and only if there exists a PG(2, t). Below, in $(iv_{1}) - (iv_{3})$ of Theorem 8.1, we reformulate this result in terms of A_{n}^{1} , $\eta^{1}(2d(K_{n}))$, z_{n}^{t} , using the following trivial relations

$$\eta^{1}(2d(K_{n})) \geq t + 1 \Leftrightarrow 2td(K_{n}) \in A_{n}^{1} \Leftrightarrow z_{n}^{t} = nt \Leftrightarrow$$
$$\Leftrightarrow t \sum_{i=1}^{n} \delta(\{i\}) \text{ is the unique } Z_{+}\text{-realization of } 2td(K_{n}).$$

 (iii_2) of Theorem 8.1 follows from a result of Ryser (reformulated in terms of z_n^t in Theorem 4.6(1) of [9]) that $z_n^t \ge n-1$ with equality if and only if n = 4t and there exists a H(4t).

Theorem 8.1

$$\begin{array}{l} (i_1) \ ant_{\beta}2td(K_n) \in C_{n+1} \ \text{if and only if } \beta \geq \frac{tn(n-1)}{\lfloor n/2 \rfloor \lceil n/2 \rceil}; \\ (i_2) \ ant_{\beta}2td(K_n) \in A^0 \ \text{if and only if } \frac{tn(n-1)}{\lfloor n/2 \rfloor \lceil n/2 \rceil} \leq \beta < z_n^t, \ \beta \in Z_+; \\ (i_3) \ ant_{\beta}2td(K_n) \in hC_{n+1} \ \text{if and only if } \beta \geq z_n^t, \ \beta \in Z_+; \\ (i_4) \ ant_{\alpha}2d(K_n) \in C_{n+1} \cap L_{n+1} \ \text{if and only if } \frac{n(n-1)}{\lfloor n/2 \rfloor \lceil n/2 \rceil} \leq \alpha, \ \alpha \in Z_+. \end{array}$$

Moreover, if
$$d = ant_{\alpha} 2d(K_n) \in C_{n+1} \cap L_{n+1}$$
, then
(*ii*₁) either $n = 3, d \in A_3^1$, *d* is simplicial, $d = ant_3 2d(K_4)$
(so $\eta^i(d) = 1$ for $i \ge 0$),
or $d \in A_n^1$, *d* is not simplicial, $\alpha \ge n \ge 4$ (so $\eta^0(d) = 1$),
or $d \in A_n^0$ (so $\eta^0(d) \ge 2$),
(*ii*₂) $\eta^0(d) = min\{t : z_n^t \le \alpha t\}$.
(*iii*₁) $\eta^0(ant_4 2d(K_n) = \eta^0(2d(K_{n+1} - P_{(1,2)})) = \eta^0(2d(K_{n\times 2}));$
(*iii*₂) $\lceil n/4 \rceil \le \eta^0(ant_4 2d(K_n)) \le$
 $min\{t \in Z_+ : n \le 4t \text{ and there exists a } H(4t)\} < n/2;$
(*iii*₃) For $n = 4t, 4t - 1$, we have $\eta^0(ant_4 2d(K_n)) =$
 $\lceil n/4 \rceil = t$ if and only if there exists a $H(4t);$
(*iv*₁) $\eta^0(ant_{n-1}2d(K_n)) = \eta^1(2d(K_n)) \le min\{n - 3, \eta^1(2d(K_{n+1}))\};$
(*iv*₂) $\left\lfloor \frac{1}{2}(\sqrt{4n - 7} - 1) \right\rfloor = min\{t \in Z_+ : n \le t^2 + t + 2\}$
 $\le \eta^0(ant_{n-1}2d(K_n))$
 $\le min\{t \in Z_+ : n \le t^2 + t + 2$ and there exists a $PG(2, t)\};$
(*iv*₃) For $n = t^2 + t + 2$, we have $\eta^0(ant_{n-1}2d(K_n)) =$
 $\left\lfloor \frac{1}{2}(\sqrt{4n - 7} - 1) \right\rfloor = t$ if and only if there exists a $PG(2, t).$

Remarks. a) For $i \ge 0$, we have $\eta^{i+1}(2d(K_4)) = i + 1$, but $\eta^i(ant_3(2d(K_4))) = 1$, since $ant_3(2d(K_4))$ is a simplicial point. For $i \ge 0$ and $n \ge 5$, we have $\eta^{i+1}(2d(K_n)) \le \eta^i(ant_{n-1}(2d(K_n)))$ with equality for i = 0 and for some pair (i, n) with $i \ge 1$. Propositions 5.9-5.11 of [9] imply that

$$\eta^{i+1}(2d(K_5)) = \eta^i(ant_4(2d(K_5))) = 2 \text{ for } i = 0, 1;$$

$$\eta^3(2d(K_5)) = \eta^2(ant_4(2d(K_5))) = \eta^4(2d(K_5)) = 3;$$

$$\eta^5(2d(K_5)) = \eta^4(ant_4(2d(K_5))) = \eta^3(ant_4(2d(K_5))) = 4.$$

b) Using the well-known fact that H(4t) exists for $t \leq 106$, we obtain that

$$\eta^{0}(ant_{4}(2d(K_{n}))) = \eta^{0}(2d(K_{n+1} - P_{2})) =$$
$$\eta^{0}(2d(K_{n\times 2})) = \lceil n/4 \rceil \text{ for } n \in [4, 424];$$

c) Using the well-known fact that PG(2, t), $t \leq 11$, exists if and only if $t \neq 6$, 10, we obtain for $a_n = \eta^0(ant_{n-1}(2d(K_n))) = \eta^1(2d(K_n))$, that $6 \leq a_n \leq 7$ for $33 \leq n \leq 43$, $10 \leq a_n \leq 11$ for $93 \leq n \leq 111$, and $a_n = \left\lfloor \frac{1}{2}(\sqrt{4n-7}-1) \right\rfloor$ for all other $n \in [4, 134]$.

d) (iii),(iv) of Theorem 8.1 imply that

 $\eta^0(d(K_{2t\times 2})) \ge 2t$ with equality if and only if there exists H(4t),

 $\eta^1(d(K_{t^2+t+2})) \ge 2t$ with equality if and only if there exists PG(2,t).

Note also that $a_n \leq n-3$ with equality if and only if n = 4, 5. **Proof** of (iv_1) . For $n \geq 4$ we have

$$\left\lceil \frac{1}{2}(\sqrt{4n-7}-1) \right\rceil \le \eta^1(2d(K_n)) = \eta^0(ant_{n-1}(2d(K_n))) \le n-3.$$

In fact, we have

$$\eta^{1}(2d(K_{n})) = \min\{t \in Z_{+} : z_{n}^{t} < nt\},\$$
$$\eta^{0}(ant_{N}(2d(K_{n}))) = \min\{t \in Z_{+} : z_{n}^{t} \le Nt\},\$$

since $2td(K_n)$ has the following Z_+ -realization $t \sum_{i=1}^{n} \delta(\{i\})$ of maximal size nt, and since $t(ant_N(2d(K_n))) \in hC_{n+1}$ if and only if $2td(K_n)$ admits a Z_+ -realization of size at most Nt. Denote

$$p = \eta^1(2td(K_n)), \ q = \eta^0(ant_{n-1}(2d(K_n))).$$

Then $p \leq q$, because $z_n^q \leq (n-1)q$ implies $z_n^q \leq nq$. Also, $q \leq n-3$, because $2(n-3)d(K_n)$ has the Z_+ -realization $\sum_{1}^{n-1}((n-4)\delta(\{i\})+\delta(\{i,n\}))$ of size (n-3)(n-1). On the other hand, $p \geq q$, because $z_n^p < np$ implies $z_n^p \leq np - (n-3)$, which is proved in Proposition 5.3 of [9]. So $z_n^p \leq np - q \leq np - p$. We have $p \geq \left\lfloor \frac{1}{2}(\sqrt{4n-7}-1) \right\rfloor$, because otherwise $n \geq p^2 + p + 3$, and using [5], $2td(K_n)$ has exactly one Z_+ -realization, a contradiction with the definition of p.

Theorem 8.2.

$$\begin{array}{l} (i)\eta_n^0 < \infty, \\ (ii)\eta_n^{i-1} | \eta_n^i \text{ for } i \ge 1, \text{ and } \eta_{n-1}^i | \eta_n^i \text{ for } n \ge 5, \\ (iii)\eta^i(ad) = \left\lceil \eta^i(d)/a \right\rceil \text{ for } d \in C_n \cup L_n, \ i \ge 0, \ a \in Z_+. \end{array}$$

Proof. (i) Define

$$Y = L_n \cap C_n \cap \{\sum \lambda_S \delta(S) : 0 \le \lambda_S \le 1\}.$$

Clearly, Y is finite, and one can find λ such that λd is an h-point for every $d \in Y$.

Let $d \in L_n \cap C_n$ has a R_+ -realization $d = \sum \mu_S \delta(S)$. Clearly the coefficients μ_S are rational numbers. We have $d = d_1 + d_2$, where $d_1 = \sum \lfloor \mu_S \rfloor \delta(S)$, and $d_2 = \sum (\mu_S - \lfloor \mu_S \rfloor) \delta(S)$. By the construction, d_1 is an h-point. Since $d_2 = d - d_1$ and $d \in L_n \cap C_n$, $d_1 \in L_n \cap C_n$, we obtain $d_2 \in Y$. Hence there is λ such that $\lambda d_2 \in hC_n$, and we obtain that $\lambda d = \lambda d_1 + \lambda d_2$ is an h-point, too.

(iii) Take $\lambda = \eta^i(ad)$, i.e. $\lambda(ad)$ has at least i + 1 Z_+ -realizations. Hence $\lambda a \ge \eta^i(d)$ implies $\lambda \ge \lceil \eta^i(d)/a \rceil$, i.e. $\eta^i(ad) \ge \lceil \eta^i(d)/a \rceil$.

Now, take $\lambda = \lceil \eta^i(d)/a \rceil$. So, $\lambda - 1 < \eta^i(d)/a \le \lambda \Rightarrow (\lambda - 1)a < \eta^i(d) \le \lambda a$. Hence λad has at least i + 1 Z_+ -realizations, implying that $\lambda \ge \eta^i(ad)$, and so $\lceil \eta^i(d)/a \rceil \ge \eta^i(ad)$.

Remarks. a) $\eta_4^i = \eta^i (2d(K_4)) = i$ for $i \ge 1$; $\eta_n^0 = 1$ if and only if n = 4, 5.

b) For $d \notin L_n$ and $\lambda \in Z_+$, we have $\lambda d \in L_n$ implies that λ is even (because $(\lambda d_{ij} + \lambda d_{ik} + \lambda d_{jk})/2 = \lambda (d_{ij} + d_{ik} + d_{jk})/2$). Hence, for $d \in Z^{\binom{2}{n}} - A_n^0$, we have either $d \notin L_n$ (so $\eta^0(d)$ is even), or $\eta^0(d) = 1$ (i.e. $d \in hC_n$). Since $d(G) \notin A_n^0$ for any connected graph G on n vertices (see [13]), we have either $\eta^0(d(G)) = 1$ or $\eta^0(d(G))$ is even. But, for example, $\eta^0(2d(K_{10} - P_2)) = \eta^0(2d(K_{9\times 2})) = 3$.

It will be interesting to see whether η_n^0 and $max\{\eta^0(d) : d \in A_n^0\}$ are bounded from above by $const \times n$.

The best known lower bound for the last number is $\eta^0(d(K_n - P_2))$ which belongs to the interval [2 [(n-1)/4], n-2].

It is proved in [17] that for a graphic metric d = d(G), we have (i) $p^0(d) \leq p - 2$ if $d(G) \in C$

(i) $\eta^0(d) \le n-2$ if $d(G) \in C_n$,

(ii) $\eta^0(d) \in \{1, 2\}$, i.e. G is an isometric subgraph of a hypercube or a halved cube if d(G) is simplicial.

9 h-points

Recall that any point of $Z_+(\mathcal{K}_n) = hC_n$ is called an h-point.

A point *d* is called *k*-gonal, if it satisfies all hypermetric inequalities $Hyp_n(b)$ with $\sum_{i=1}^{n} |b_i| = k$.

The following cases are examples when the conditions $d \in L_n$ and hypermetricity of d imply that d is an h-point.

a) [13], [15]: If d = d(G) and G is bipartite, then 5-gonality of d implies that $d \in hC_n$;

b) [1]: If $\{d_{ij}\} \in \{1,2\}$, $1 \leq i < j \leq n$, then $d \in L_n$ and 5-gonality of d imply that $d \in hC_n$ (actually, $d = d(K_{1,n-1})$, $d(K_{2,2})$ or $2d(K_n)$ in this case);

c) [2]: If $n \ge 9$ and $\{d_{ij}\} \in \{1, 2, 3\}$, $1 \le i < j \le n$, then $d \in L_n$ and ≤ 11 -gonality of d imply that $d \in hC_n$.

So, the cases a),b),c) are among known cases when the problem of testing membership of d in hC_n can be solved by a polynomial time algorithm. The polynomial testing holds for any d = d(G) (see [17]) and for "generalized bipartite" metrics (see [7] which generalize the cases b) and c) above).

The cases a),b) and c) imply (i),(ii) and (iii), respectively, of

Corollary 9.1 If $d \in A_n^0$, then

(i) neither d = d(G) for a bipartite graph G,

(*ii*) nor $\{d_{ij}\} \in \{1, 2\}, \ 1 \le i < j \le n$,

(*iii*) nor $\{d_{ij}\} \in \{1, 2, 3\}, 1 \le i < j \le n, if n \ge 9$.

A point $d \in Z_+(\mathcal{K}_n) = hC_n$ is called *rigid* if d admits a unique Z_+ realization. In other words, d is rigid if and only if $d \in A_n^1$. Clearly, if $d \in hC_n$ is simplicial, then d is rigid. Rigid nonsimplicial points are more interesting. Hence we define the set

$$\tilde{A}_n^1 := \{ d \in A_n^1 : d \text{ is not simplicial} \},\$$

and call its points *h*-rigid.

Theorem 9.2

 $\begin{array}{l} (i)A_n^0 = \emptyset \text{ for } n \leq 5, \ 2d(K_6 - P_2) \in A_6^0, |a_n^0 = \infty \text{ for } n \geq 7, \\ (ii)\tilde{A}_n^1 = \emptyset \text{ for } n \leq 4, \ \tilde{A}_5^1 = \{2d(K_5)\}, \ |\tilde{A}_n^1| = \infty \text{ for } n \geq 6, \\ (iii) \text{ for } i \geq 2, \ A_n^i = \emptyset \text{ if } n \leq 3, \ |A_n^i| = \infty \text{ if } n \geq 4. \end{array}$

Proof. (i) and (ii) The first equalities in (i) and (ii) are implied by results of [3]. The inclusion in (i) is implied by [1]. The second equality in (ii) is proved in [12]. We have $|A_n^0| = \infty$ for $n \ge 7$, because $A_6^0 \ne \emptyset$ and $|A_{n+1}^i| = \infty$ whenever $A_n^i \ne \emptyset$ from (6).

We prove the third equality of (ii): $|\tilde{A}_n^1| = \infty$ for $n \ge 6$. The equality is implied by the fact that $ant_{\alpha}(2d(K_n)) \in \tilde{A}_{n+1}^1$ for any $n \ge 5$, $\alpha \in Z_+$, $\alpha \ge n$. We prove the inclusion.

Recall that $2td(K_n)$ has the unique Z_+ -realization of size tn if $n \ge t^2 + t + 3$. (See [5] or the beginning of Section 8). For t = 1 we obtain the equality $z(2d(K_n)) = n$ for $n \ge 5$ Using that $2d(K_n)$ is not simplicial for $n \ge 4$, and (iv) of Proposition 4.1 we obtain the wanted inclusion.

(iii) Since C_3 is simplicial, $A_3^i = \emptyset$ for $i \ge 2$. Consider now n = 4. We show that $A_4^i = \{2(i-1)d(K_4) + d : d \text{ is a simplicial h-point of } C_4\}$. This follows from the fact that the only linear dependency on cuts of C_4 is, up to multiple, $\delta(1) + \delta(2) + \delta(3) + \delta(4) = \delta(1, 4) + \delta(2, 4) + \delta(3, 4)$.

So, $|A_4^i| = \infty$, because there are an infinity of simplicial points, e.g. $\lambda d(K_{2,2})$ for $\lambda \in \mathbb{Z}_+$. Finally we use (6).

Some questions.

a) Is it true that all 10 permutations of $d_6 = 2d(K_6 - P_2)$ are only quasih-points of C_6 ? If yes, then these 10 points and 31 nonzero cuts from \mathcal{K}_6 form a Hilbert basis of C_6 .

b) Does exist a ray $\{\lambda d : \lambda \in R_+\} \subset C_n$ containing an infinity set of quasi-h-points? Recall that we got in Section 6 examples of rays $\{d^0 + td^1 : t \geq 0\}$ containing infinitely many quasi-h-points.

Lemma 9.3. Let $d \in A_n^0$, and let $d = ant_{\alpha}d'$ where $d' \notin A_{n-1}^0$. Then d' is an h-point and $z(d') \geq \lceil s(d') \rceil + 1$.

Proof. In fact, $d \in C_n \cap L_n$, so $d' \in C_{n-1} \cap L_{n-1}$. But $d' \notin A_{n-1}^0$, so d' is an h-point of C_{n-1} . Hence by Proposition 4.1(ii), $\alpha \in Z_+$, $s(d') \leq \alpha < z(d')$.

Note that for $n \ge 5$ we have $2d(K_{n\times 2}) \in A_{2n}^0$, $2d(K_{n\times 2}) = ant_4d'$ where $d' \in A_{2n-1}^0$ and $d' = ant_4d''$ for $d'' \in A_{2n-2}^0$, etc.

So, d' is neither simplicial point nor an antipodal extension (i.e.

 $d' \notin R_+(ant\mathcal{K}_{n-2}))$, nor $d' \in Z_+(\mathcal{K}_{n-1}^m)$, $m = \lfloor (n-1)/2 \rfloor$, because in each of these 3 cases we have for an h-point d', z(d') = s(d');

it implies also that, by Proposition 4.1(iv), d itself is not simplicial.

The following proposition makes plausible the fact that the metric $d_6 = 2d(K_6 - P_2)$ is the unique (up to permutations) quasi-h-point of C_6 .

Proposition 9.4. Let $d \in A_6^0$, $d = ant_{\alpha}d'$ and $d \neq d_6$. Then

a) both d and d' are not simplicial;

b) $d' \notin R_+(ant\mathcal{K}_4), d' \notin Z_+(\mathcal{K}_5^2);$

c) $d' \neq \lambda d(G)$ for any $\lambda \in Z_+$ and any graph G on 5 vertices;

d) d' has at least two Z_+ -realizations.

Proof. Since $A_5^0 = \emptyset$ by [3], we can apply Proposition 9.3, and a),b) follow. One can see by inspection, that among all 21 connected graphs on 5 vertices, the only graphs G with nonsimplicial $d(G) \in C_6$ are the following 3 graphs: $K_5, K_5 - P_2$, and $K_4.K_2 = K_4$ with an additional vertex adjacent to a vertex of K_4 . For these graphs, $\lambda d(G)$ is an h-point if and only if $\lambda \in 2Z_+$.

Since $2d(K_5 - P_2) = ant_4(2d(K_4))$, then, according to b), $d' \neq \lambda d(K_5 - P_2)$.

Since for any $\lambda \in Z_+$ we have $z(2\lambda d(K_4.K_2)) = 5\lambda = s(2\lambda d(K_4.K_2))$, and (by Proposition 9.3) s(d') < z(d'), then $d' \neq \lambda d(K_4.K_2)$.

Remains the case $d' = \lambda d(K_5)$. We have $s(d') = \lambda 5/3$, z(d') = 5 for $\lambda = 2$ and z(d') = s(d') for $\lambda \in 2Z_+$, $\lambda > 2$.(See Proposition 5.11 of [9]). So $s(d') \leq \alpha < z(d')$ implies $\lambda = 2$, $\alpha = 4$, i.e. exactly the case $d = ant_4(2d(K_5))$. This proves c).

d) follows from the fact (see [12]) that $2d(K_5)$ is the unique nonsimplicial h-point of C_5 with unique Z_+ -realization.

References

- [1] P.Assouad, M.Deza, Espaces métriques plongebles dans un hypercube: aspects combinatoires, Annals of Discrete Math. 8(1980) 197-210.
- [2] D.Avis, On the complexity of isometric embedding in the hypercube, in Lecture Notes in Computer science, volume 450, Algorithms, Springer Verlag(1990) 348-357.
- [3] M.Deza, On the Hamming geometry of unitary cubes, Doklady Academii Nauk SSSR 134 (1960)1037-1040 (in Russian) (resp. Soviet Physics Doklady (English translation) 5(1961) 940-943).
- [4] M.Deza, Matrices de formes quadratiques non négatives pour des arguments binaires, C.R.Acad.Sci.Paris 277(1973) 873-875.
- [5] M.Deza, Une proprieté éxtremal des plans projectifs finis dans une classe de codes equidistants, *Discrete Mathematics* 6(1973) 343-352.
- [6] M.Deza, M.Laurent, Facets for the cut cone I,II, Mathematical Programming, 52(1992)121-161,162-188.
- [7] M.Deza, M.Laurent, Isometric hypercube embedding of generalized bipartite metrics, Research report 91706-OR, Institut für Discrete Mathematik, Universität Bonn, 1991.
- [8] M.Deza, M.Laurent, Extension operations for cuts, *Discrete Mathematics* 106-107(1992)163-179.
- [9] M.Deza, M.Laurent, Variety of hypercube embeddings of the equidistant metric and designs, *Journal of Combinatorics*, *Information and System sciences*(1992) to appear.

- [10] M.Deza, M.Laurent, The cut cone: simplicial faces and linear dependencies, Bulletin of the Institute of Math. Academia Sinica(1992) to appear.
- [11] M.Deza, M.Laurent, S.Poljak, The cut cone III: on the role of triangle facets, Graphs and Combinatorics 8(1992)125-142.
- [12] M.Deza, N.M.Singhi, Rigid pentagons in hypercubes, Graphs and Combinatorics 4(1988)31-42.
- [13] D.Z.Djokovic, Distance preserving subgraphs of hypercubes, Journal of Combinatorial Theory B14(1973)263-267.
- [14] F.Harary, Graph Theory, Addison-Wesley P.C., 1969.
- [15] R.L.Roth, P.M.Winkler, Collapse of the metric hierarchy for bipartite graphs, European Journal of Combinatorics 7(1986)371-375.
- [16] A.Schrijver, Theory of linear and integer programming, Wiley, 1986.
- [17] S.V.Shpectorov, On scale embeddings of graphs into hypercubes, European Journal of Combinatorics 14(1993)