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Abstract. Shamir presents in [3] a family of cryptographic signature

schemes based on birational permutations of the integers modulo a large

integer N of unknown factorization. These schemes are attractive be-

cause of the low computational requirements, both for signature gener-

ation and signature veri�cation. However, the two schemes presented in

Shamir's paper are weak. We show here how to break the �rst scheme,

by �rst reducing it algebraically to the earlier Ong-Schnorr-Shamir sig-

nature scheme, and then applying the Pollard solution to that scheme.

We then show some attacks on the second scheme. These attacks give

ideas which can be applied to schemes in this general family.

1 The �rst scheme

The public information in Shamir's �rst scheme consists of a large integer N

of unknown factorization (even the legitimate users need not know its factor-

ization), and the coe�cients of k � 1 quadratic forms f

2

; � � � ; f

k

in k variables

x

1

; � � � ; x

k

each. Each of these quadratic forms can be written as

f

i

=

X

j;`

�

ij`

x

j

x

`

(1)

where i ranges from 2 to k and the matrix �

ij`

is symmetric i.e. �

ij`

= �

i`j

.

The secret information is a pair of linear transformations.One linear transfor-

mationB relates the quadratic forms f

2

; � � � ; f

k

to another sequence of quadratic

forms g

2

; � � � ; g

k

. The second linear transformation A is a change of coordinates

that relates the variables (x

1

; � � � ; x

k

) to a set of \original" variables (y

1

; � � � ; y

k

).

Denoting by Y the column vector of the original variables and by X the column

vector of the new variables, we can simply write Y = AX.

Of course, the coe�cients of A and B are known only to the legitimate user.

The trap-door requirements are twofold: when expressed in terms of the original

variables y

1

; � � � ; y

k

, the quadratic forms g

2

is computed as:

g

2

= y

1

y

2

(2)

and the subsequent g

i

's, 3 � i � k are sequentially linearized, i.e. can be written

g

i

(y

1

; � � � ; y

k

) = l

i

(y

1

; � � � ; y

i�1

)� y

i

+ q

i

(y

1

; � � � ; y

i�1

) (3)



where l

i

is a linear function of its inputs and q

i

a quadratic form.

To sign a message M; one hashes M to a k � 1-tuple (f

2

; � � � ; f

k

) of integers

modulo N , then �nds a sequence (x

1

; � � � ; x

k

) of integers modulo N satisfying

(1). This is easy from the trap-door.

We let A

i

, 2 � i � k denote the k � k symmetric matrix of the quadratic

form f

i

, namely:

A

i

= (�

ij`

)

1�j�k;1�`�k

(4)

The kernel K

i

of g

i

is the kernel of the linear mapping whose matrix is A

i

. It

consists of vectors which are orthogonal to all vectors with respect to g

i

. The

rank of the quadratic form g

i

is the rank of A

i

. It is the dimension of K

i

as

well as the unique integer r such that g

i

can be written as a sum of squares

of r independent linear functionals. Actually, all this is not completely accurate

as N is not a prime number and therefore Z=N is not a �eld. This question is

addressed at the end the paper and, meanwhile, we ignore the problem.

An easy computation shows that K

i

is the subspace de�ned in terms of the

original variables by the equations

y

1

= � � � = y

i

= 0 (5)

>From this, it follows that

i) K

i

is decreasing

ii) the dimension of K

i

is k � i

iii) any element of K

i�1

not in K

i

is an isotropic element wrt g

i

, which means

that the value of g

i

is zero at this element.

We will construct a basis b

i

of the k-dimensional space, such that b

i+1

; � � � ; b

k

spans K

i

for i = 2; � � � ; k� 1. The main problem we face is the fact that the g

i

's

and therefore the K

i

's are unknown. In place, we know the f

i

's. We concentrate

on the (unknown) coe�cient �

i

of g

k

in the expression of f

i

, i.e. we write

f

i

= �

i

g

k

+

k�1

X

j=2

�

ij

g

j

(6)

As coe�cients have been chosen randomly,we may assume that �

k

is not zero. Let

i < k. Consider the quadratic form Q

i

(�) = f

i

��f

k

. When � = �

i

=�

k

, this form

has a non-trivial kernel and therefore �

i

=�

k

is a root of the polynomial P

i

(�) =

det(Q

i

(�)). This is not enough to recover the correct value of �. Computing

the matrix of Q

i

(�) for �

i

= �

i

=�

k

in the basis corresponding to the original

coordinates y

1

; � � � ; y

k

yields the following

0

B

B

B

B

B

B

B

B

B

B

@

C 0

0 0

1

C

C

C

C

C

C

C

C

C

C

A



In the same basis, the matrix of Q

i

(�) for any �, can be written as

0

B

B

B

B

B

B

B

B

B

B

@

C U

�

(U

�

)

t

0

1

C

C

C

C

C

C

C

C

C

C

A

We observe that U

�

is linear in � and vanishes at �

i

. Since determinants can

be computed up to a multiplicative constant in any basis, it follows that (���

i

)

2

factors out in P

i

(�). Thus the correct value of �

i

can be found by observing that

it is a double root of the polynomial equation P

i

(�) = 0. This double root is

disclosed by taking the g.c.d. (mod N ) of P

i

and P

0

i

with respect to �. We

�nd a linear equation in �, from which we easily compute �

i

.

Once all coe�cients �

i

have been recovered, we set for i = 2; � � � ; k � 1

~

f

i

= f

i

� �

i

f

k

i < k (7)

and

~

f

k

= f

k

. We note that all quadratic forms

~

f

i

have kernel K

k�1

. This allows

to pick a non-zero vector b

k

inK

k�1

. The construction can then go on inductively

in the quotient space of the k-dimensional space by the vector spanned by fb

k

g

with

~

f

2

; � � � ;

~

f

k�1

in place of f

2

; � � � ; f

k

.

At the end of the recursive construction, we obtain a sequence b

i

, 3 � i � k

such that b

i+1

; � � � ; b

k

spans K

i

for i = 2; � � � ; k� 1 and a sequence of quadratic

forms

~

f

2

; � � � ;

~

f

k

such that

i)

~

f

i

has kernel K

i

ii) b

i

is an isotropic element wrt

~

f

i

Choosing b

1

, b

2

at random, we get another set of coordinates z

1

; � � � ; z

k

such that

i)

~

f

2

is a quadratic form in the coordinates z

1

, z

2

ii)

~

f

3

; � � � ;

~

f

k

is sequentially linearized

The rest is easy. From a sequence of prescribed values for f

2

; � � � ; f

k

, we

can compute the corresponding values of

~

f

2

; � � � ;

~

f

k

. Next, we can �nd values

of fz

1

; z

2

g achieving a given value of

~

f

2

(mod N ) in exactly the same way

as the Pollard solution of the Ong-Schnorr-Shamir scheme [2]. Then, values for

z

3

; � � � ; z

k

achieving given values of

~

f

3

; � � � ;

~

f

k

are found by successively solving

k � 2 linear equations. Finally, the values of z

1

; � � � ; z

k

can be translated into

values of x

1

; � � � ; x

k

:

Example. In Shamir's paper [3], an example is given with N = 101

v

2

= 78x

2

1

+ 37x

2

2

+ 6x

2

3

+ 54x

1

x

2

+ 19x

1

x

3

+ 11x

2

x

3

(mod 101)

v

3

= 84x

2

1

+ 71x

2

2

+ 48x

2

3

+ 44x

1

x

2

+ 33x

1

x

3

+ 83x

2

x

3

(mod 101)



Matrices of f

2

, f

3

are as follows

0

@

78 27 60

27 37 56

60 56 6

1

A

0

@

84 22 67

22 71 92

67 92 48

1

A

We get:

P (�) = det(f

2

� �f

3

) = 34(�

3

+ 75�

2

+ 55�+ 71) (8)

P

0

(�) = �

2

+ 50�+ 52 (9)

gcd(P; P

0

) = �� 63 (10)

We let

~

f

2

= f

2

� 63f

3

;

~

f

3

= f

3

(11)

The kernel of

~

f

2

is spanned by vector b

3

= (31; 12; 1)

t

. We pick b

2

= (0; 1; 0)

t

and b

1

= (1; 31; 0)

t

. We get, in the corresponding coordinates z

1

; z

2

; z

3

:

~

f

2

= 26z

2

1

+ 8z

2

2

;

~

f

3

= z

3

(26z

1

+ 20z

2

) + 90z

2

1

+ 2z

1

z

2

+ 71z

2

2

(12)

2 The second scheme

We now treat Shamir's [3] second scheme. The ideas developed in this section

will have general applicability.

Throughout, we will pretend we are working in Z=p rather than Z=N .

We treat �rst the case s = 1: We begin with k variables y

1

; y

2

; : : : ; y

k

; with

k odd. These are subjected to a secret linear change of variables which gives

u

i

=

P

j

a

ij

y

j

; i = 1; 2; : : : ; k; with the matrix A = (a

ij

) secret. The products

u

i

u

i+1

; including u

k

u

1

; are subjected to a second secret linear transformation

B = (b

ij

); so that v

i

=

P

j

b

ij

u

j

u

j+1

; i = 1; 2; : : : ; k � 1: The public key is

the set of coe�cients (c

ij`

) expressing v

i

in terms of pairwise products y

j

y

`

; for

1 � i � k � 1;

v

i

=

X

j;`

c

ij`

y

j

y

`

; 1 � i � k � 1; c

ij`

= c

i`j

(13)

(Here i is ranging to k � 1; so we have discarded s = 1 of the v

i

:)

The �rst step in our solution: linear combinations of the v

i

are linear combi-

nations of the u

i

u

i+1

; but they form only a subspace of dimension k � 1: Some

linear combinations of the v

i

,

v

1

+ �v

2

+

X

3�j�k�1

�

j

v

j

(14)



will be quadratic forms in the y

i

of rank 2. A computation shows that the only

linear combinations of the products u

i

u

i+1

of rank 2 are of the form

�

i

u

i�1

u

i

+ �

i

u

i

u

i+1

= u

i

(�

i

u

i�1

+ �

i

u

i+1

); (15)

for any values of �

i

; �

i

; i: Because the v

j

span a subspace of codimension 1, and

because we are further restricting to one lower dimension by the choice of the

multiplier 1 for v

1

in the linear combination, we �nd that for each i there will

be one pair (�

i

; �

i

) and one set of coe�cients (�; �

j

) such that

�

i

u

i�1

u

i

+ �

i

u

i

u

i+1

= u

i

(�

i

u

i�1

+ �

i

u

i+1

) = v

1

+ �v

2

+

X

3�j�k�1

�

j

v

j

: (16)

The condition of being rank 2 is an algebraic condition: setting

v

1

+ �v

2

+

X

3�j�k�1

�

j

v

j

=

X

ij

�

ij

y

i

y

j

; (17)

with �

ij

= �

ji

; we �nd that each 3 � 3 submatrix of the (�

ij

) has vanishing

determinant. Each of these determinants is a polynomial equation in �; �

j

: Use

resultants to eliminate �

j

from this family of polynomial equations (in the ring

Z=N ) and �nd a single polynomial F of degree k satis�ed by �: We also �nd �

j

as polynomials in �, by returning to the original equations and eliminating the

variables �

i

; i 6= j.

Thus each solution � to F (�) = 0 gives rise to a linear combination of v

j

which is of rank 2. The root � corresponds to that index i for which

v

1

+ �v

2

+

X

3�j�k�1

�

j

v

j

= u

i

(�

i

u

i�1

+ �

i

u

i+1

): (18)

We will indicate this correspondence by writing � = �

i

:

For each solution � = �

i

; the rows of the resulting matrix (�

ij

) span a subspace

Y (�

i

) = Y

i

of Z

k

p

of rank 2; namely, Y

i

is spanned by u

i

and �

i

u

i�1

+ �

i

u

i+1

:

Observe that u

i

, u

i+2

, and (�

i+1

u

i

+ �

i+1

u

i+2

) are linearly related, as are

u

i

, u

i�2

, and (�

i�1

u

i�2

+ �

i�1

u

i

). So

u

i

2 Y

i

\ (Y

i+1

+ Y

i+2

) \ (Y

i�1

+ Y

i�2

) (19)

This is an algebraic relation among �

i�2

; �

i�1

; �

i

; �

i+1

; and �

i+2

:

We formulate the relation as the vanishing of several determinants, and re-

duce the resulting ideal by factoring out any occurrences of (�

i

� �

j

); i 6= j to

assure that �

i

; �

j

are really two di�erent solutions. That is, we consider the ideal

formed by F (�

i

), (F (�

i

) � F (�

j

))=(�

i

� �

j

), etc., and the various determinants.

We apply the Groebner basis and the Euclidean algorithm to this ideal to �nd

a basis.

Only multiples of some u

i

satisfy such a relation (19) over Z=p, namely, two

di�erent linear relations. We �x a multiple of each u

i

by normalizing u

i

to have

�rst coordinate 1. The linear relations serve to de�ne u

i

in terms of �

i

.



By similar argument, there is a quadratic equation expressing �

i+1

in terms

of �

i

; whose two solutions are �

i+1

and �

i�1

. The algebraic condition is that the

corresponding spaces Y

i

; Y

i+1

are in two di�erent triples of subspaces enjoying

linear relations:

rank(Y

i

+ Y

i+1

+ Y

i+2

) = rank(Y

i

+ Y

i+1

+ Y

i�1

) = 5 (20)

We represent the solution of the quadratic equation by �; and say that (�; � )

generates a pair of `adjacent' elements (u

i

; u

i+1

) (elements which are multiplied

together in the original signature). We think of � as generating an extension of de-

gree k over Z=N , and � as generating an extension of degree 2 over Z=N [�]=F (�).

The ability to distinguish the unordered pairs of `adjacent' roots f�

i

; �

i+1

gmakes

the system similar, in spirit, to a Galois extension of Q whose Galois group is

the dihedral group on k elements. We will call on this analogy later. (Remark:

it is only an analogy, because � and � really are elements of the ground �elds.)

We can get the missing kth equation

v

0

k

=

X

i

u

i

u

i+1

: (21)

The coe�cients of v

0

k

in terms of y

j

y

`

ostensibly depend on �

i

and on the pairings

(�

i

; �

i+1

); or equivalently on (�; � ). But the coe�cients would come out the same

no matter which solution (�; � ) were chosen, that is, no matter whether we

assigned the ordering (1; 2; 3; : : : ; k) or (3; 2; 1; k; k�1; : : : ; 4) to the solutions u

i

.

This means that the coe�cients will be in fact independent of (�; � ). They will

be expressible in terms of only the coe�cients of the original v

i

; 1 � i � k. This

is because they are symmetric (up to dihedral symmetry) in the solutions �

i

.

The arguments here are analogous to those of Galois theory. Each coe�cient

c of v

0

k

is expressed as

c =

X

0�i<k;0�j�1

w

ij

�

i

�

j

(22)

For each of 2k di�erent choices of (�; � ) the value of c comes out the same.

Treating (22) as 2k linear equations in the 2k unknowns w

ij

, with coe�cients

given by �

i

�

j

for various choices of (�; � ), we must �nd (if the matrix has full

rank) that w

00

= c, and w

ij

= 0 for (i; j) 6= (0; 0):

Now we wish to solve a particular signature. We are given the values v

1

; : : : ; v

k�1

,

and we assign an arbitrary value to v

0

k

. We have the equations relating v

i

to

u

j

u

j+1

:

v

i

=

X

j

b

0

ij

u

j

u

j+1

; (23)

where b

0

ij

depends on �

j

. Select (symbolically) one pair (�; � ) to �x the �rst

two solutions (u

1

; u

2

), and compute the others in terms of (�; � ): Then we have

b

0

ij

u

j

u

j+1

depending only on (�; � ).

Invert this matrix b

0

to solve for u

j

u

j+1

in terms of the given v

i

and (�; � ):

Now assign

u

1

= �; (24)



where � is an unknown. Compute

u

2

=

(u

1

u

2

)

�

; u

3

=

�(u

2

u

3

)

(u

1

u

2

)

; u

4

=

(u

1

u

2

)(u

3

u

4

)

�(u

2

u

3

)

; : : : ; u

1

=

(u

1

u

2

)(u

3

u

4

) : : : (u

k

u

1

)

�(u

2

u

3

) : : : (u

k�1

u

k

)

(25)

The last equation gives a quadratic equation which � must satisfy:

(u

1

u

2

)(u

3

u

4

) : : : (u

k

u

1

) = �

2

(u

2

u

3

) : : : (u

k�1

u

k

) (26)

We do not solve for � (we cannot). So now we have three algebraic unknowns:

�; �; �; of successive degrees k; 2; 2.

These equations give u

i

in terms of �; �; �. Notice that each u

i

is an odd

function of �: either � times a function of (�; � ) or �

�1

times a function of (�; � ).

We also have u

i

as linear combinations of y

j

with coe�cients depending on (�; � ).

Solve for y

j

in terms of (�; �; �), and note that y

j

is again an odd function of �.

Now each product y

j

y

`

will be a function only on (�; � ), since it will be an even

function of �, and we know �

2

in terms of (�; � ). But again the value y

j

y

`

will be

independent of the dihedral ordering (1; 2; 3; : : : ; k) versus (3; 2; 1; k; k�1; : : : ; 4),

and thus independent of the choice of solutions (�; � ). That means, by standard

Galois theory arguments, that (�; � ) will not appear in the expressions of y

j

y

`

.

So we have found the products y

j

y

`

in terms of the given coe�cients, the

given values v

1

; v

2

; : : : ; v

k�1

, and the assumed value v

0

k

. We have given a valid

signature.

3 Comments and extensions

3.1 Working mod N versus working mod p

Some justi�cation is needed to go from calculations modp to calculations mod

N . In section 1, we basically use tools from linear algebra such as Gaussian

elimination or determinants. Thus all computations go through regardless the

fact that N is composite. The situation is a bit more subtle in section 2. For

instance, F has k solutions modp but k

2

solutions modN , each obtained by

mixing some solution modp with some solution modq. But if we consider only

the image, modp, of our calculations modN , things are all right: the symmetric

functions of the k roots of a polynomial are expressible in terms of the coe�cients

of the polynomial, and the expressions of the products y

j

y

`

in terms of the

coe�cients of the public key are valid modp. They are also valid mod q, and the

Chinese remainder theorem su�ces to make them valid modN . This in spite

of the fact that a solution � of F mod N might well mix di�erent solutions

�

i

mod p and �

j

mod q: Since we never explicitly solve for �, but only work with

it symbolically and use the fact that F (�) = 0 mod N , we never are in danger

of factoring N .



3.2 Extension to the case s > 1 (Sketch)

The case s > 1 is more complicated. Suppose again that we have k variables

y

1

; y

2

; : : : ; y

k

, with k odd, whose pairwise products constitute the signature, and

that the hashed message has k � s quantities v

1

; v

2

; : : : ; v

k�s

, together with

coe�cients c

ij`

expressing v

i

in terms of y

j

y

`

. Suppose for simplicity that s > 1

is odd, so that k � s is even.

Some linear combinations of the k�s quadratic forms v

i

will have rank s+1.

Namely, for each index set I � f1; 2; : : :; kg of size (s+ 1)=2 such that 8i; j 2 I:

j i � j j� 2, there is such a linear combination of the form

X

i2I

u

i

(�

iI

u

i�1

+ �

iI

u

i+1

) (27)

The number of such index sets I is

k

s+1

2

�

k �

s+3

2

s�1

2

�

(28)

There are more than k linear combinations, leading to increased complication.

The space Y

I

, spanned by rows of the corresponding quadratic form, contains

u

i

for each index i 2 I. So each u

i

is in the intersection of a large number of

subspaces Y

I

, and hopefully only multiples of u

i

will be in such an intersection.

This algebraic condition should distinguish the u

i

, hopefully indexing them by

the roots � of some polynomialF (�) of degree k. Pairs fu

i

; u

i+2

g of solutions with

index di�ering by 2 should be distinguished by appearing together in many dif-

ferent subspaces Y

I

. >From this we would be able to distinguish pairs fu

i

; u

i+1

g.

We would fabricate the missing equations: for j = k� s+ 1; : : : ; k, let u

0

i(j)

be a

multiple of u

i

, normalized to have a 1 in position j, and set v

0

j

=

P

i

u

0

i(j)

u

0

i+1(j)

.

3.3 The case k=3, s=1

In the special case k = 3, s = 1, where we must satisfy two quadratic equations

in three variables, we can employ an ad hoc method, since the methods outlined

above don't work. Take a linear transformation of the two quadratic equations

so that the right-hand side of one equation vanishes; that is, if the given values

are v

1

and v

2

, take v

2

times the �rst equation minus v

1

times the second. This

gives a homogeneous quadratic equation in three variables y

1

; y

2

; y

3

:

X

ij

c

ij

y

i

y

j

= 0 (29)

The second equation is inhomogeneous:

X

ij

d

ij

y

i

y

j

= d

0

(30)



By setting z

1

= y

1

=y

3

, z

2

= y

2

=y

3

in (29), we obtain an inhomogeneous quadratic

equation in two variables z

1

; z

2

. We can easily �nd an a�ne change of basis from

z

1

; z

2

to z

0

1

; z

0

2

which transforms the equation to the form

c

0

11

z

0

1

2

+ c

0

12

z

0

1

z

0

2

+ c

0

22

z

0

2

2

= c

0

0

mod N (31)

and a further linear change of variables to z

00

1

; z

00

2

yielding

c

00

11

z

00

1

2

+ c

00

22

z

00

2

2

= c

00

0

mod N (32)

which can be solved by the Pollard [2] attack on the Ong-Schnorr-Shamir [1]

scheme. We �nd from this a set of ratios y

j

=y

3

, and, by extension, a set of ratios

y

i

y

j

=y

2

3

, satisfying (29). Setting y

2

3

= �, the second equation (30) becomes a

linear equation in �. Thus we �nd a consistent set of pairwise products y

i

y

j

satisfying the desired equations (29), (30).

3.4 Open questions

The birational permutation signature scheme has many instances, of which we

have attacked only the �rst few examples. For a more complex instance of the

scheme, the ideas of the present paper will still apply: the trap door conditions

lead to algebraic equations on the coe�cients of the transformations, and we

hope to gather enough such equations to make it possible to solve them by g.c.d.

or Groebner basis methods. But, for any speci�c instance, it remains to see

whether the ideas of the present paper would be su�cient to mount an attack.

One general theme is that when solutions of the algebraic equations enjoy a

symmetry, it makes the equations harder to solve, but we don't need to solve

them, since the �nal solution will enjoy the same symmetry, and quantities sym-

metric in the roots of the equation can be expressed in terms of the coe�cients

of the equation alone, not in terms of the roots. When the roots fail to enjoy a

symmetry, they can be distinguished by algebraic conditions, which yield further

algebraic equations, and the Groebner basis methods have more to work with.

This gives us hope that the methods outlined in this paper will apply with some

generality to many instances of the birational permutation signature scheme.
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