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Abstract

We de�ne well-partial-orderings on abstract algebras and give their order

types. For every ordinal in an initial segment of Bachmann hierarchy there is

one and only one (up to isomorphism) algebra giving the ordinal as order type.

As a corollary, we show Kruskal-type theorems for various structures are

equivalent to well-orderedness of certain ordinals.

1 Introduction

The main theorem we prove in this paper is that the class of algebras yields a

system of ordinal notations. Before making the assertion precise, we enumer-

ate the consequences derived from the theorem: (1) we give the order types of

well-partial-orders on abstract algebras; (2) Kruskal-type theorems for abstract

algebras are shown to be equivalent to well-orderedness of ordinals; (3) we cal-

culate the order types of lexicographic path orderings for abstract algebras.

The notion of well-partial-order (and generally well-quasi-order) began to ap-

pear around 1950 in the literatures, for example, by Erd�os and Rado, and Hig-

man. After the celebrated work by Higman [19], this simple notion has found a

large number of applications in the �elds of algebras, combinatorics, mathemat-

ical logic, and computer science. One of the most elegant is Kruskal's theorem

[22, 27], asserting the class of �nite trees is a well-partial-order with respect

to the topological embedding. In the 80's, the theorem and its extension due

to Friedman were used to prove the graph minor theorem by Robertson and

Seymour [31] in combinatorics, and to give independence results for strong seg-

ments of second order arithmetic [13, 35] in mathematical logic, and to give

useful methods to prove the termination of programs [7] in computer science.

We de�ne a class of (abstract) algebras and partial orders (called embeddings)

on them. The class of algebras is generated from an empty set and singletons

by disjoint sum +, direct product �, and the least �xpoint without nested

recursion. The embedding on each algebra is de�ned as the divisibility ordering

by Higman [19]. It is not hard to see that the embeddings are well-partial-orders.
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A well-partial-order is by de�nition a partially ordered set that has no in�nite

bad sequences (See Section 2 for de�nition). Therefore the collection of all �nite

bad sequences of the well-partial-order makes a well-founded tree. Important

among the properties of the well-partial-orderings is the order type, which is by

de�nition simply the order type of the associated well-founded tree of all bad

sequences. In section 2, we give two other characterizations of the order type.

The one is the least ordinal reifying the well-partial-ordering, and the other is the

greatest ordinal of linearizations. The rei�cation proves well-partial-orderedness

from well-orderedness, and conversely the linearization proves well-orderedness

from well-partial-orderedness. Therefore knowing the order type, we may prove

well-partial-orderedness from well-orderedness of the order type, and vice versa.

The substantial part of this paper is devoted to calculating the order types of

the well-partial-orders of the algebra embeddings. The result is interesting in

its own right. The following is our main theorem:

The map assigning the order type to each algebra is a bijection from the

class of algebras to an initial segment of the class of ordinals.

The initial segment is the class of ordinals up to '(


!

; 0) in Bachmann hierar-

chy. Given two algebras, the order types of the embeddings on them are always

di�erent unless they have an isomorphism determined by simple rules. Further-

more for each ordinal � less than '(


!

; 0) there is a (unique up to isomorphism)

algebra whose embedding gives the order type �.

From this theorem several consequences are derived. The most immediate is

that one may regard the class of algebras as a system of ordinal notations.

This system has some new features in comparison with the traditional systems.

Notably every notation has a meaning in our system. For example, consider the

ordinal �

0

, which has a meaning as the least strongly critical ordinal [16]. But

what has a meaning is the ordinal itself, not the notation assigned to it. So the

notations assigned to �

0

di�er in one system to others. In Bachmann hierarchy

it is denoted by '(
; 0); in Buchholz notation [3]  

0







, etc. In our system,

it is denoted by �X: 2X

2

+ 1, which is because the order type of the algebra

�X: 2X

2

+1 is �

0

. There is still freedom of notations since �X: 2X

2

+1 is not a

unique notation for the algebra. However what is important is that we �nd an

entity, other than the class of ordinals, naturally having a well-order thereon.

Another consequence is that we establish the equivalence of well-partial-ordered-

ness of the algebra embeddings and well-orderedness of the ordinals that are the

order types of the embeddings. The merit of this equivalence is apparent if one is

concerned with proof theory. After a work of Gentzen on �rst order arithmetic, it

is well-known that well-orderedness of large ordinals is independent from logical

systems, especially fragments of second order arithmetic. For example, the

ordinal �

0

is independent from system ACA

0

, which is a conservative extension

of Peano arithmetic. Therefore our main theorem implies that well-partial-

orderedness of the embedding on the algebra �X:X

2

+ 1 of binary trees is
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independent from ACA

0

. In other words, Kruskal's theorem for binary trees is

unprovable in system ACA

0

. Several results are found in Section 6.

For the calculation of lower bounds of order types of algebra embeddings, we

use a version of recursive path ordering, which is a family of well-orderings most

often used to prove the terminations of term rewriting systems. We associate a

well-ordering called Ackermann ordering to each algebra. The ordering may be

regarded as a lexicographic path ordering if we view the algebra as the collection

of terms. We give the order types of the orderings in Section 6. The order types

are greater than those of the recursive path orderings that are de�ned using

multiset orderings.

2 Preliminaries

In this section, we give de�nitions for well-partial-orders and classic results.

A partial order is a set endowed with a binary relation E that is reexive,

transitive and anti-symmetric. A total order is a partial order where every two

elements a; b are comparable; namely, one of a E b and b E a holds. A bad

sequence in a partial order A is a sequence ha

0

; : : : ; a

n

(; : : :)i (�nite or in�nite)

of members of A satisfying 8i < j: a

i

5 a

j

.

2.1 De�nition

A well-partial-order is a partial order that has no in�nite bad sequences.

The order-reecting maps are important as morphisms of well-partial-orders,

since they send bad sequences to bad sequences. Here a map f : A ! B of

partial orders reects order if and only if f(a) E

B

f(a

0

) implies a E

A

a

0

for

all a; a

0

of A. As an immediate consequence, every order-reecting map reects

also the property of being a well-partial-order, namely the following holds:

2.2 Proposition

If f : A! B is an order-reecting map of partial-orders and B is a well-partial-

order, then A is a well-partial-order.

Among well-partial-orders the following two are well-known. The one is Higman

embedding on �nite lists of members of a partial order and the other is the

(homeomorphic) tree embedding of �nite trees. First we give the de�nitions of

these embeddings.

2.3 De�nition

Let hA;�i be a partial order and A

�

the set of �nite lists of members of A.



4 R. Hasegawa

The Higman embedding E

hig

is a partial order on A

�

de�ned as follows: ha

0

; : : : ;

a

m�1

i E

hig

ha

0

0

; : : : ; a

0

n�1

i if and only if there is a strictly monotonic map f :

m! n such that a

i

� a

0

f(i)

for all i < m.

A �nite ordered tree is a �nite tree with root where for each node there is a

linear order on the set of immediate successors. A �nite non-ordered tree is

a �nite tree with root without orders on immediate successors. We denote a

�nite ordered tree t by tht=0; : : : ; t=(n � 1)i where t=0; : : : ; t=(n � 1) are the

immediate successors of the root in this order. As for non-ordered trees, we use

the notation tft=0; : : : ; t=(n� 1)g.

2.4 De�nition

The tree embedding E

T

is a partial order on the set T of �nite ordered trees,

the order de�ned as follows: tht=0; : : : ; t=(m � 1)i E

T

t

0

ht

0

=0; : : : ; t

0

=(n � 1)i if

and only if either

(i) t E

T

t

0

=j for some j < n; or

(ii) there is a strictly monotonic function f : m ! n such that t=i E

T

t=f(i)

for all i < m.

If the node degree is �xed (e.g. binary trees) the assertion (ii) is replaced simply

by that t=i E

T

t

0

=i for all i < m. The tree embedding is also de�ned for non-

ordered �nite trees by imposing the condition that f is injection in place that

f is strictly monotonic. The following two theorems assert that the Higman

embedding and the tree embedding are well-partial-orders.

2.5 Theorem

(i) (Higman's Lemma) If A is a well-partial-order, then A

�

is a well-partial-

order with respect to the Higman embedding.

(ii) (Kruskal's Theorem) The set of �nite ordered trees is a well-partial-order

with respect to the tree embedding.

Vazsonyi's conjecture was well-partial-orderedness for non-ordered trees, but

Kruskal indeed proved the theorem for ordered trees and derived Vazsonyi's

conjecture from that [22]. For a simpler proof by Nash-Williams using the so-

called minimal bad sequence argument, we refer the reader to [27, 16, 35]. The

proof is worth comment in two respects; it uses a non-constructive argument in

an essential way, and also an impredicative argument. In fact, to formalize the

proof one needs a fragment of second order arithmetic having �

1

1

-comprehension

axiom or its substitute, e.g. bar induction on recursive well-founded relation.

2.6 Notation

Bad (A) denotes the tree of all �nite bad sequences of a given partial order A.
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The tree Bad(A) is well-founded if and only if A is a well-partial-order. So

the structure of the well-founded tree Bad (A) has a lot of information on the

structure of well-partial-order A. In particular, the order type jBad (A)j of the

well-founded tree is of great importance. Let T be a well-founded tree. We

assign an ordinal j�j to each node � by the following de�nition:

j�j = sup fj�

0

j+ 1 j �

0

is an immediate successor of �g.

Then the order type jT j of well-founded tree T is de�ned by the ordinal jh ij

assigned to the root h i of T .

2.7 De�nition

The order type of a well-partial-order A is the order type jBad(A)j of the well-

founded tree Bad (A).

Note that well-orderedness of jT j is equivalent to well-foundedness of T . Hence

well-orderedness of the tree jBad(A)j is equivalent to well-partial-orderedness

of A. It is di�cult, however, to calculate the ordinal jBad(A)j concretely. The

main techniques are the rei�cation [36] and the linearization, where the rei�ca-

tion gives upper bounds and the linearization lower bounds.

2.8 de�nition

Let A be a partial order and � an ordinal.

A rei�cation of A by � is a map r : Bad (A)! �+ 1 satisfying � � � ) r(�) >

r(� ). (Notation: � � � denotes that the sequence � is a proper initial segment

of � .)

It is immediate to see that if a partial order A has a rei�cation by an ordinal

�, then WO(�) implies Wpo(A). An example of rei�cation is the assignment

j � j given above. In fact, by recursion on the well-founded tree Bad (A), we can

show that the rei�cation j � j is the least one: if r is a rei�cation then j�j < r(�)

for every node � of jBad (A)j. Namely the following proposition holds.

2.9 Proposition

If a partial order A has a rei�cation by an ordinal �, then jBad (A)j � �.

Here for the inequality �, we cannot drop the equality. The assignment j � j gives

a rei�cation by the ordinal jBad (A)j. This proposition shows that rei�cations

provide upper bounds of jBad (A)j. As for lower bounds, they are obtained by

linearizations.
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2.10 De�nition

Let hA;Ei be a partial order.

A linearization of A is a total order v on A �ner than E, namely, the total order

v for which a E a

0

) a v a

0

holds.

If hA;vi is a linearization of a well-partial-order hA;Ei, then hA;vi becomes a

well-order. It is this property that was used in [7] to prove that the simpli�cation

ordering terminates. The following proposition asserts that the linearization

gives lower bounds of the order types of well-partial-orders.

2.11 Proposition

If a well-partial-order A has a linearization of order type �, then � � Bad (A).

(Proof ) Let T be the well-founded tree of �nite descending sequences with

respect to the total order given by the linearization. Then T � Bad (A) and so

� = jT j � jBad(A)j.

In this proposition, we cannot omit the equality of �, In fact, the following is

proved in [6]. Let jLin(A)j be the ordinal

supfjhA;vij : hA;vi is a linearizationg.

De Jongh and Parikh proved that there is a linearization of order type jLin(A)j.

In other words, sup can be replaced by max. We can show that jLin(A)j is equal

to jBad (A)j, and so there is a linearization of order type jBad (A)j.

Therefore if one �nds an ordinal � giving both rei�cation and linearization, then

the order type jBad(A)j of well-partial-orderA turns out to be equal to the ordi-

nal �. In addition, well-partial-orderedness ofA is equivalent to well-orderedness

of � in the logic necessary to prove the rei�cation and the linearization.

In order to calculate the order types of well-partial-orders, we need some ordinal

notations. In later sections, we will use the class of algebras as a system of

ordinal notations. We will compare the system with the Bachmann hierarchy.

We refer the reader to [17] for de�nitions and basic properties of Bachmann

hierarchy. h'(�; -)i denotes the family of normal functions in the hierarchy.

We use also the family h'(�; -)i modi�ed so that '(-; -) becomes one-to-one.

We use � for the natural sum of ordinals and 
 for the natural product. For

the de�nition, see [36]. Therein we can �nd also the de�nition of additively

indecomposable ordinals and multiplicatively indecomposable ordinals.

3 Discontinuity of Higman Embeddings

In this section we give an analysis of Higman embedding from the calculation

of order types. The results in this section will be derived from more general



Well-Orderings of Algebra and Kruskal's Theorem 7

theorems in later sections. A strange property of Higman embedding, however,

leads us to what we want to prove later. The anomaly we show here is that,

whereas the de�nition of Higman embedding is completely uniform on the base

partial order, the order type of Higman embedding is not continuous on the

order type of the base well-partial-order.

For Higman's lemma, proofs without using the minimal bad sequence argument

were known to many researchers [33, 36, 26, 30, 5]. Sch�utte and Simpson gave

a rei�cation of Higman's embedding [33, 36]. They proved that if the base

partial order A is a well-partial-order and has a rei�cation by ordinal �, then

the Higman embedding has a rei�cation !

!

�+1

. By a closer inspection, however,

we see that this last ordinal is not the least rei�cation ordinal in most cases.

We give the exact order types for Higman embedding by analyzing the proof

by Sch�utte and Simpson. We show the order types are !

!

�

in some cases, and

!

!

�+1

in the other. If the rei�cation ordinal of the base partial order is of

the form �



+ n, epsilon number plus a �nite number, then the order type of

Higman embedding must be !

!

�+1

; otherwise !

!

�

(if � is �nite, then !

!

�1+�

).

This means that the order types of Higman embedding �lls all multiplicatively

indecomposable ordinals except epsilon numbers. Therefore there are no well-

partial-orders whose Higman embedding yields an epsilon number as the order

type.

This observation is our start point. In later sections, we show these gaps at

epsilon numbers are �lled with other structures (binary trees, etc.). In fact,

we show more: every ordinal up to '(


!

; 0) in Bachmann hierarchy is �lled up

with a structure (called an algebra), and furthermore there is no superposition,

namely, every ordinal is �lled up with a unique algebra. The Higman embedding

has gaps at all epsilon numbers, and these gaps are �lled with other algebras.

For example, the ordinal �

0

is with the algebra of binary trees.

The following is a sketch of the rei�cation of Higman embedding given in [36].

We prove the following theorem.

3.1 Theorem

If A is a well-partial-order of order type �, then Higman embedding on A

�

has

the order type of the following:

8

>

<

>

:

!

!

��1

if � = n �nite

!

!

�

if � = � + n where � is a limit, not an epsilon number

!

!

�+1

if � = � + n where � is a limit, an epsilon number

3.2 Notation

s; s

1

; : : : for members of A

S; S

1

; : : : for members of Bad(A)
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�; �

1

; : : : for members of A

�

�;�

1

; : : : for members of Bad(A

�

)

For a partial order hA;Ei and s 2 A,

A

s

=

def

ft 2 A j s 5 tg;

and for S 2 Bad (A),

A

S

=

def

ft 2 A jS^hti 2 Bad(A)g.

Note that for the sequence hsi of length one, A

s

= A

hsi

holds. To each � 2

Bad (A

�

), we associate a set of the form

`

i

Q

j

B

ij

(�nite disjoint union of �nite

product) where the summand

Q

j

B

ij

is of the form

(A

S

1

)

�

� A

S

0

1

� (A

S

2

)

�

�A

S

0

2

� � � � � A

S

0

m�1

� (A

S

m

)

�

(m � 1),

as well as a one-to-one map h

�

: (A

�

)

�

,!

`

i

Q

j

B

ij

. If the bad sequence

� is extended to �^h�i where � 2 (A

�

)

�

, a new set

`

i

Q

j

B

0

ij

is de�ned by

decomposing the summand such that h

�

(�) 2

Q

j

B

i

0

j

into a disjoint sum as in

Figure 1. There we suppose

h

�

(�) = h�

1

; s

n

1

; �

2

; s

n

2

; : : : ; s

n

m�1

; �

m

i

2 (A

S

1

)

�

� A

S

0

1

� (A

S

2

)

�

�A

S

0

2

� � � � � A

S

0

m�1

� (A

S

m

)

�

.

and after the decomposition, the product � is distributed over the disjoint sum

+ in order to maintain the form of

`

i

Q

j

B

ij

.

The rei�cation given in [36] is as follows. Suppose the base well-partial-order has

a rei�cation j j : Bad(A)! �+1. Let (A

�

)

�

�

denote the set

`

i

Q

j

B

ij

associated

to � 2 Bad (A). If we �nd an ordinal assignment j(A

�

)

�

�

j to each (A

�

)

�

�

so that

j(A

�

)

�

�

j > j(A

�

)

�

�̂ h�i

j then the required rei�cation is obtained by the mapping

� 7! j(A

�

)

�

�

j. The assignment satisfying this condition is given as follows: for

each (A

�

)

�

�

=

`

i

Q

j

B

ij

we assign an ordinal by j(A

�

)

�

�

j =

L

i

N

j

jB

ij

j where

� is a natural sum and 
 is a natural product. Further, to each multiplicand

B

ij

is assigned an ordinal according to whether B

ij

has the form A

S

or (A

S

)

�

by the following equation:

jB

ij

j =

(

!

!

jSj

if B

ij

is A

S

!

!

jSj+1

if B

ij

is (A

S

)

�

.

j(A

�

)

�

�

j > j(A

�

)

�

�̂ h�i

j is easily checked using the fact that the ordinals of the

form !

!

x

are multiplicatively indecomposable.

It is possible, however, to assign smaller ordinals. All that is required for the

assignment is that jA

S

j is additively indecomposable, j(A

S

)

�

j is multiplicatively

indecomposable, and jA

S

j < j(A

S

)

�

j. Therefore we can assign !

jSj

to A

S

and

!

!

jSj

to (A

S

)

�

unless jSj is an epsilon number, in which case jA

S

j < j(A

S

)

�

j

fails. To handle this case, de�ne an ordinal function ( )

y

by the following:
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((A

S

1

)

�

)

�

1

� A

S

0

1

� (A

S

2

)

�

� A

S

0

2

�� � �� A

S

0

m�1

� (A

S

m

)

�

+ (A

S

1

)

�

� (A

S

0

1

)

s

n

1

� (A

S

2

)

�

� A

S

0

2

�� � �� A

S

0

m�1

� (A

S

m

)

�

+ (A

S

1

)

�

� A

S

0

1

� ((A

S

2

)

�

)

�

2

� A

S

0

2

�� � �� A

S

0

m�1

� (A

S

m

)

�

+ (A

S

1

)

�

� A

S

0

1

� (A

S

2

)

�

� (A

S

0

2

)

s

n

2

�� � �� A

S

0

m�1

� (A

S

m

)

�

.

.

.

+ (A

S

1

)

�

� A

S

0

1

� (A

S

2

)

�

� A

S

0

2

�� � �� (A

S

0

m�1

)

s

n

m�1

� (A

S

m

)

�

+ (A

S

1

)

�

� A

S

0

1

� (A

S

2

)

�

� A

S

0

2

�� � �� A

S

0

m�1

� ((A

S

m

)

�

)

�

m

where (with an abuse of notation), for �

i

= hs

n

i�1

+1

; s

n

i�1

+2

; : : : ; s

n

i

�1

i,

((A

S

i

)

�

)

�

i

=

(A

S

i

ĥs

n

i�1

+1

i

)

�

+(A

S

i

ĥs

n

i�1

+1

i

)

�

�A

S

i

� (A

S

i

ĥs

n

i�1

+2

i

)

�

.

.

.

+ (A

S

i

ĥs

n

i�1

+1

i

)

�

�A

S

i

� (A

S

i

ĥs

n

i�1

+2

i

)

�

�� � ��A

S

i

� (A

S

i

ĥs

n

i

�1

i

)

�

Figure 1

�

y

=

(

�� 1 if � is �nite

� if � = � + n and � is a limit, not an epsilon number

�+ 1 if � = � + n and � is a limit, an epsilon number.

This function ( )

y

simply skips all epsilon numbers. Then a new assignment to

the multiplicands B

ij

is given by the equation

jB

ij

j =

�

!

jSj

y

if B

ij

is A

S

!

!

jSj

y

if B

ij

is (A

S

)

�

.

3.3 Lemma

The mapping � 7! j(A

�

)

�

�

j yields a rei�cation Bad (A

�

)! !

!

�

y

+ 1 where � is

the order type of the base well-partial-order A.

In turn, to show that these ordinals !

!

�

y

are exactly the order types of Higman

embedding, we must give linearizations yielding the same ordinals as those of

rei�cations. If the order type of the base well-partial-order is not of the form

�



+ n, then the required linearization is given by the recursive path ordering

on monadic terms (kachinuki ordering) [23, 32, 25]. The kachinuki ordering is

a linear ordering @ on the set A

�

of �nite lists of a linear order A, the order

@ de�ned as follows: hs

0

; : : : ; s

m�1

i @ ht

0

; : : : ; t

n�1

i if and only if one of the

following holds:
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(i) s

0

= t

0

, hs

1

; : : :i @ ht

1

; : : :i

(ii) s

0

� t

0

, hs

1

; : : :i @ ht

0

; : : :i

(iii) s

0

� t

0

, hs

0

; : : :i v ht

1

; : : :i

In (iii), � denotes � [ = and likewise for v. By calculation, one can show

that the order type of kachinuki ordering is the ordinal !

!

�1+�

[32]. Hence,

except the case � = �



+ n, the kachinuki ordering gives the same ordinal !

!

�

y

as the one given by the rei�cation. For the exceptional case, we must create

another linearization providing the maximum order type. If the order type � of

the base well-partial-order is an epsilon number �



, then the following ordering

@

0

gives the required linearization: for �; � 2 A

�

, the order relations � @

0

�

holds if and only if either j�j < j� j or both j�j = j� j and � is smaller than � by

lexicographic ordering, where j�j denotes the length of the sequence �. Then

the order type of @

0

is (�



)

!

= !

!

�



+1

. For the case � = �



+ n+ 1 (n � 0), by

induction , we may assume there is an order isomorphism j � j

n

from (Anfm

A

g)

�

to !

!

�



+n+1

, where m

A

is the largest element of the linear order A. Then the

sequence � = h�

1

;m

A

; : : : ; �

k�1

;m

A

; �

k

i of A

�

is carried to

j�j

n+1

= (!

!

�



+n+1

)

k�1

� j�

1

j

n

+ � � �+ (!

!

�



+n+1

) � j�

k�1

j

n

+ j�

k

j

n

,

giving the order isomorphism from A

�

to !

!

�



+n+2

. Therefore the following

lemma holds.

3.4 Lemma

Higman embedding on A

�

has a linearization of order type !

!

�

y

where � is the

order type of the base well-partial-order A.

Theorem 3.1 is an immediate consequence of Lemmata 3.3 and 3.4. From this

observation, we see that the order types jBad(A

�

)j of Higman embedding has

gaps at epsilon numbers as well as all ordinals that are not multiplicatively

indecomposable. In the following sections, we show how these gaps are �lled by

other algebras uniquely.

4 Algebra Embedding

In his seminal paper [19], Higman studied the divisibility ordering on abstract

algebras, and showed minimal algebras are well-partial-orders if the set of op-

erators is ordered by a well-partial-ordering. In particular, if the number of

operators is �nite, the divisibility orderings are always well-partial-orders. Hig-

man embedding is a special case of this general observation.

Our de�nition of algebras is almost on the same line of the minimal algebras.

We include the disjoint sum and the direct product to the de�nition of algebras.

Moreover we allow a set of generators, if the set itself is an algebra. In short, the
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class of algebras is the smallest class generated from empty sets and singletons

by the disjoint sum +, the direct product �, and the least �xpoint operator �

using one algebra variable.

Following the de�nition of algebras and their terms, we will de�ne a partial

ordering on each algebra, called an algebra embedding. This partial order is

exactly the divisibility ordering of Higman. So every algebra embedding turns

out to be a well-partial-order. Our goal is to calculate the order type of these

algebra embeddings. From this calculation, one unexpected property is shown:

for each ordinal less than '(


!

; 0), there is an algebra giving the ordinal as the

order type. In addition, such an algebra is unique up to isomorphism (Theorem

6.19). In Section 5, we give the upper bounds of the order types by providing

rei�cations, and in Section 6, the lower bounds by linearizations.

4.1 De�nition

Algebras are generated by the following rules:

; i : 1 X

A B

A +B

A B

A �B

A

�X:A.

Here i is the identi�er of the singleton, and we impose on A+B and A�B the

condition that all identi�ers occurring in them are distinct. X is the only one

algebra variable. This means in our setting only single recursion is allowed

The intended meaning of the connectives de�ning algebras should be almost

clear. For example, i : 1 is a singleton containing a unique i. We have only one

algebra variable X, and so it is impossible to de�ne a many sorted algebra with

mutual recursion. The extension to this direction allows us more complicated

structures as the tree embedding with gap condition, and will be handled in a

forthcoming paper.

If all occurrences of the variable X are within the scopes of �-operators, then

the algebra is called closed; otherwise open. Note that though we have only

single recursion, there is no restriction to use an algebra already constructed as

a part of another algebra, e.g., �X:X � (�X:X + (i : 1)) + (i

0

: 1).

4.2 De�nition

Let A be an algebra.

t is a term of sort A i� t : A is derived by the following rules:

i : 1

a : A

�a : A +B

b : B

�

0

b : A +B
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a : A b : B

ha; bi : A� B

a : �A

a : �X:A

(� is the substitution [(�X:A)=X]).

To be precise, the �rst rule should be written i : (i : 1). Namely i is a unique

element of the singleton algebra i : 1. � and �

0

are injections associated to each

pair of algebras A and B. h�; �i is a pairing function associated to each pair of

algebras A and B. And  is the constructor associated to each initial algebra

�X:A.

4.3 Remark

In the last rule, the substitution �A should be done without renaming of iden-

ti�ers. For example, if A is X + (i : 1), the substitution �A yields (�X:X + (i :

1))+(i : 1). This last is not an algebra in an exact sense, since there are common

identi�ers i therein. For simplicity, we call such objects also algebras.

We omit identi�ers of singletons 1 if the distinction of the occurrences are clear

from the context.

4.4 Remark

If A is an initial algebra of the form �X:C

1

X

n

1

+: : :C

p

X

n

p

with closed algebras

C

1

; : : : ; C

p

, then A is isomorphic to the set of terms generated by the following

BNF:

a ::= const

1

(c

1

;

n

1

copies

z }| {

a; : : : ; a) j � � � j const

p

(c

p

;

n

p

copies

z }| {

a; : : : ; a)

(c

i

is a term of sort C

i

)

where const

k

is any symbol uniquely associated to the algebra A and the

summand. To see the isomorphism, identify const

k

(c

k

; a

1

; : : : ; a

n

k

) with  �

�

k

hc

k

; a

1

; : : : ; a

n

k

i where  is the constructor associated to A and �

k

is the k-th

injection of C

k

A

n

k

to C

1

A

n

1

+ � � �+ C

k

A

n

k

+ � � �+ C

p

A

n

p

.

4.5 Example

(i) Natural numbers N = �X:X + 1. The terms of sort N are generated by

the BNF n ::= succ(n) j zero.

(ii) Finite lists of A, A

�

= �X:AX + 1. The terms are generated by the rule

l ::= push(a; l) j emp where a : A.

(iii) Finite lists of A entailed with B, A

�

B = �X:AX + B. The terms are

generated by the rule l ::= push

0

(a; l) j tail(b) where a : A and b : B. The

terms of this sort may be written in the form ha

1

; : : : ; a

k

; bi (k � 0).
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(iv) Binary trees B = �X:X

2

+ 1. The terms are generated by the rule t ::=

cons(t; t) j nil

4.6 Notation

Let s and t be two term, not necessarily of the same sort.

s � t denotes that s is a subterm of t in a usual sense. s may be equal to t. We

write s � t if s is a proper subterm of t.

Next we de�ne an embedding on each algebra A. The properties of this embed-

ding are the center of our interest. Among the rules in the following de�nition,

the projection rule is important and makes the embedding correspond to the

divisibility ordering of [19]. Other congruence rules are generally required to

partially ordered algebras [19, 15] (in [15] this property of preserving order is

called isotony; also antitony occurs in ordered algebraic structures).

4.7 De�nition

The embedding E

A

is a binary relation (in fact, a partial order) on the set of

terms of an algebra A given by one projection rule and �ve congruence rules as

follows:

(projection)

a E

A

a

0�

a E

A

a

0

if a

0�

is a proper subterm of a

0

(i.e., a

0�

� a

0

) having sort A.

(congruence)

i E

1

i

a E

A

a

0

�a E

A+B

�a

0

b E

B

b

0

�

0

b E

A+B

�

0

b

0

a E

A

a

0

b E

B

b

0

ha; bi E

A�B

ha

0

; b

0

i

b E

B[A]

b

0

b E

A

b

0

where A = �X:B[X].

4.8 Remark

The reason we imposed the condition that the identi�ers of singletons should

all be distinct is as follows: the intended meaning of A + B is a disjoint sum

of two partial orders A and B. Therefore the terms of A and the terms of B

are incomparable. Consider an algebra C = (�X:X + 1) + 1, which should be

a disjoint sum of the set of natural numbers and a singleton. If we suppose,

however, two singletons therein have the same term i, then �

0

(i) and � �  � �

0

(i)
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are both terms of C, where i in the �rst term comes from the last 1 of C, and

i in the second from the �rst 1. By the projection rule of the embedding,

�

0

(i) E

C

� �  � �

0

(i).

Hence two summands �X:X + 1 and 1 of C are not disjoint, contradicting

the intended meaning. Therefore we force the identi�ers of singletons to be all

distinct (even if we omit the identi�ers for simplicity).

4.9 Example

(i) The embedding on the algebra N of natural numbers is the linear order on

natural numbers

zero E

N

succ(zero) E

N

succ(succ(zero)) E

N

� � �

(ii) The embedding on the algebra A

�

of �nite lists of A is exactly the same as

Higman embedding (De�nition 2.3).

(iii) The embedding on the algebra B of binary trees is exactly the tree embed-

ding on binary trees (De�nition 2.4 and the remark that follows).

In the theory of well-partial-order, order-reecting maps play an important role

as mentioned in Section 2. Since the algebra embedding is de�ned using sub-

terms, we need the reection of the property of being subterms in order to show

some naturally arising maps are order-reecting. The following de�nition of

anti-createdness is the formalization of the reection for subterms.

4.10 De�nition

Let A[X]; B[X] be algebras with a free variable X, and C;D closed algebras (or

in general arbitrary sets). Suppose g is a function from C to D and f a function

from A[C] to B[D].

f anti-creates subterms with respect to g if and only if

8a : A[C] 8d : D such that d � fa 9c : C

c

g

7! d

\ \

a 7!

f

fa:

In other words, there are no new created subterms d � fa other than the images

of some subterms c � a.

4.11 Remark

We may be interested in the case that f and g are partial functions. The

de�nition of anti-createdness works if we force the quanti�ers 8a and 9c to

range over the domains of the partial functions.
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We can extend the algebras by adjoining a class of sets as atomic sorts. We

should regard the elements of the sets as atomic terms, which have no proper

subterms. By this extension, every open algebra A[X] may be naturally re-

garded as an endofunctor on the category Set of small sets. We can immediately

prove that A[f ] anti-creates subterms with respect to every function f .

We are interested especially in the anti-createdness of the following two special

cases:

(i) Let A[X] and B[X] be two open algebras and f

X

a natural transformation

from A[X] to B[X]. We say the transformation f

X

anti-creates subterms if

functions f

X

anti-create subterms with respect to identity functions id

X

for all

sets X.

(ii) Let C and D be initial algebras and f a function from C to D. We say f

anti-creates subterms if f anti-creates subterms with respect to f itself.

The following proposition and corollary are the principal result with regard to

order-reecting maps. Namely natural transformations between open algebras

induce order-reecting maps of initial algebras, provided the natural transfor-

mations anti-create subterms.

4.12 Proposition

Let f

X

: A[X]! B[X] be a natural transformation between two open algebras.

If f

X

anti-creates subterms and the function f

X

for each X reects order, then

the natural transformation f

X

induces a function f

�

: �X:A[X] ! �X:B[X]

that anti-creates subterms and reects order.

(Proof ) The value f

�

(a) is de�ned by (B[f

�

](f

�X:A

(a))) by induction on

the construction of a. The anti-createdness is necessary to show that f

�

reects

order.

The condition imposed on f

X

is stronger than necessary. All we need is that

f

�X:A

exists, reects order and anti-creates subterms with respect to id

�X:A

.

However, the following corollary requires a further condition, which is derived

from the hypothesis that f

X

is a natural transformation.

4.13 Corollary

Let f

X

be a natural transformation from an open algebra A[X] to an open algebra

B[X].

If f

X

is a natural isomorphism where both f

X

and its inverse f

�1

X

anti-create

subterms and reect order, then f

�

is an isomorphism where both f

�

and its

inverse anti-create subterms and reect order.
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From this corollary, we know that if a natural transformation and its inverse

between two open algebras reect order and anti-create subterms, then the

isomorphism is applicable even within the scope of �-operators. In the following

we give such isomorphisms.

4.14 Lemma

The following are natural isomorphisms such that both the isomorphisms and

their inverses reect order and anti-create subterms.

(A +B) + C

�

�! A + (B +C)

(A �B) � C

�

�! A � (B �C)

A+ B

�

�! B + A

A� B

�

�! B � A

;+ A

�

�! A ; �A

�

�! ;

1� A

�

�! A

A(B + C)

�

�! AB + AC

�X:A

�

�! A whenever A does not contain free X

�X:A

�

�! ; whenever A[X := ;]

�

�! ;

�X:XA

1

+ � � �+XA

n

+B

�

�! (�X:XA

1

+ � � �XA

n

+ 1)B

where A

1

; : : : ; A

n

, and B are closed algebras

The last isomorphism becomes easier to see if we write it �X:XA + B

�

�!

(�X:XA + 1)B with A = A

1

+ � � �+ A

n

. The left hand side is the algebra of

�nite lists of A entailed with B (Example 4.5 (iii)). The terms of this algebra

can be written in the form ha

1

; : : : ; a

m

; bi. Then the operation ha

1

; : : : ; a

m

; bi 7!

hha

1

; : : : ; a

m

i; bi yields an isomorphism from �X:XA+B to the direct product

(�X:XA + 1)B of the algebra A

�

= �X:XA + 1 of �nite lists of A and the

algebra B. The rule �X:A

�

�! ; should be clear if one sees that ; is the least

�xpoint of the operator A[X] if A[;]

�

=

;.

We view the isomorphisms in the previous lemma as rewriting rules from the left

hand sides to the right, except �rst four isomorphisms that assert associativity

and commutativity for disjoint sum and direct product. So the rewriting rules

are up to associativity and commutativity of + and �. We stress once more

those isomorphisms remain valid even within the scopes of �-operators.

4.15 De�nition

A normal form of an algebra A is an algebra that is isomorphic to A by the

isomorphisms in the previous lemma, and that has no redex if one views the

isomorphisms as rewriting rules (up to associativity and commutativity of +

and �).
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4.16 Lemma

The rewriting rules are conuent and strongly terminating. Therefore every

algebra has a unique normal form. In addition, the function yielding a normal

form for each algebra is primitive recursive.

An algebra is in normal form if and only if it has the form

`

i

Q

j

B

ij

where each

B

ij

is an initial algebra in normal form. Note that the rewriting rules are given in

a form of normal conditional rewriting [10] due to the side condition A[;]

�

�! ;

of the rule �X:A[X]

�

�! ;. It is possible, however, to check the voidness of

the algebra independently from the reductions. Therefore the rewriting rules

may be presented as a system of usual term rewriting (though associativity

and commutativity of disjoint sum and direct product are still manipulated

implicitly). Then the reduction can be carried out along with the construction

of algebras. Hence the primitive recursiveness of the function inducing the

normal forms is almost evident.

Every initial algebra is isomorphic to an algebra written in the form of polyno-

mials �X:X

n

C

n

+ � � �XC

1

+C

0

where each C

i

is a closed algebra. Note that,

however, in normal form the monomialX

i

(D+D

0

) should be decomposed into

X

i

D +X

i

D

0

.

4.17 Remark

In Corollary 6.20, we will show that the above isomorphisms completely deter-

mine the equivalence of algebras with respect to the morphisms respecting the

embeddings. Therefore the equivalence is primitive recursively decidable by the

comparison of normal forms.

5 Rei�cation of Algebra Embedding

In this section, we give a rei�cation for the embedding relations E

A

of each

algebra A. The crucial idea is to use the class of algebras itself as a system

of ordinal notations. To this end, we provide a well-ordering with the class of

algebras and associate a descending sequence of algebras with each bad sequence

of an algebra A. We give also the order isomorphism from the well-ordering of

the algebras to the segment of Bachmann hierarchy up to '(


!

; 0).

The rei�cation to be given shows that well-partial-orderedness of each algebra

reduces to well-orderedness of some associated ordinal. The reduction is carried

out in a weak fragment of second order arithmetic, e.g. in system RCA

0

[14,

34, 37], even intuitionistically. Therefore if one has an elementary proof of well-

orderedness of the associated ordinal, then also well-partial-orderedness of the

algebra is proved in an elementary method (we do not single out which is more

elementary). Furthermore if the proof of well-ordering is constructive, so is the

proof of the well-partial-orderedness.
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a

0

a

1

A

A

h i

 

a

0

a

1

A

ha

0

i

y1

J

J







 

a

0

a

1

A

ha

0

;a

1

i

y2

�

�

J

J

A

A

A







y1 : a

0

is not in A

ha

0

i

. y2 : Neither a

0

nor a

1

is in A

ha

0

;a

1

i

.

Figure 2

5.1 Notation

Let A be a partial order and a an element of A.

A

a

denotes the the suborder fx 2 A j a 5

A

xg of A.

Given a bad sequence ha

0

; a

1

; : : :i of a partial order A, we associate a sequence

A;A

ha

0

i

; A

ha

0

;a

1

i

; : : : of suborders of A. Here the suborder A

�

is de�ned for

every �nite sequence � of members of A by

A

h i

= A

A

�^hai

= (A

�

)

a

(see Figure 2). Then the sequence A

h i

; A

ha

0

i

; A

ha

0

;a

1

i

; : : : are decreasing with

respect to the strict inclusion � of sets. Therefore the following observation

follows:

A partial order A is a well-partial-order if and only if the decreasing sequence

A

h i

; A

ha

0

i

; A

ha

0

;a

1

i

; : : : associated to each bad sequence ha

0

; a

1

; : : :i eventually

terminates after �nite steps.

5.2 Proposition

(i) 1

i

= ;

(ii) (A +B)

�a

= A

a

+ B, and (A +B)

�b

= A +B

b

.

(iii) (A �B)

ha;bi

= (A

a

� B) [ (A� B

b

).

(iv) A

a

= (B[A

a

])

b

where A = �X:B[X] and a = b. Here the suborder

(B[A

a

])

b

of A is de�ned by fb

0

: A j b

0

2 (B[A])

b

and 8a

0�

� b

0

: a

0

: A)

a

0�

2 A

a

g.

The meaning of (iv) may be clearer if one observes that A

a

is a least �xpoint of

the operator X 7! (B[X])

b

in the complete lattice of all subsets of A. What we
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next do is to translate the above suborders A

a

to algebras A

�

a

. As seen below,

the translation is simple: disjoint sum to disjoint sum, direct product to direct

product, least �xpoint to least �xpoint. The only point to remark is that union

is translated to disjoint sum.

5.3 De�nition

An algebra A

�

a

is associated to each algebra A in normal form and a term a of

sort A by the following de�nition:

(i) 1

�

i

= ;.

(ii) (A+ B)

�

�a

= A

�

a

+ B

(A+ B)

�

�

0

b

= A+ B

�

b

(iii) (A� B)

�

ha;bi

= A

�

a

� B +A� B

�

b

(iv) (�X:B[X])

�

b

= �X: (B[X])

�

b

where (B[X])

�

b

is carried out in such a way

that if X

�

a

�

is encountered for some a

�

in the process of calculation, then it

is replaced by A

�

a

�

(see Example below).

5.4 Example

(i) Let B be the algebra �X:X

2

+ 1 of binary trees and cons(t=0; t=1) a term

of sort B (see Example 4.5 (iv)).

B

�

cons(t=0;t=1)

= �X: (X

2

+ 1)

�

�ht=0;t=1i

= �X: (X

2

)

�

ht=0;t=1i

+ 1

= �X:XB

�

t=1

+ B

�

t=0

X + 1

= (B

�

t=0

+B

�

t=1

)

�

Observe that X

�

t=0

and X

�

t=1

are replaced by B

�

t=0

and B

�

t=1

respectively.

(ii) Let A

�

be the algebra �X:AX + 1 of �nite lists of A and ha

0

; a

1

: : : ; a

n�1

i

a term of sort A

�

.

(A

�

)

�

ha

0

;:::;a

n�1

i

= �X:A

�

a

0

X + A(A

�

)

�

ha

1

;:::a

n�1

i

+ 1

�

=

(A

�

a

0

)

�

+ (A

�

a

0

)

�

A(A

�

)

�

ha

1

;:::a

n�1

i

.

.

.

�

=

(A

�

a

0

)

�

+ (A

�

a

0

)

�

A(A

�

a

1

)

�

+ � � �

+ (A

�

a

0

)

�

A(A

�

a

1

)

�

A � � �A(A

�

a

n�1

)

�

If we replace (A

�

a

i

)

�

by (A

a

i

)

�

then this becomes equal to ((A

S

i

)

�

)

�

i

in

Figure 2 by transformationA

S

i

7! A and �

i

7! ha

0

; : : : ; a

n�1

i. By applying
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this repeatedly, the de�nition of (A

�

)

�

�

given in Section 3 due to Simpson

[36] (where � is a bad sequence of terms of sort A

�

) turns out to be equal

to the one in this section.

The following lemma is almost evident, but the most important for the rei�ca-

tion.

5.5 Lemma

Let A be an algebra in normal form and a a term of sort A.

There is a E-reecting map (thus injection) f

a

: A

a

� A

�

a

.

(Proof) Induction on the construction of a. Prove at the same time if A is

written B[C] for some algebra B[X] and C, then f

a

anti-creates subterms with

respect to id

C

. For the case A is an initial algebra �X:B[X], the following

observation is used: supposed a = b where b : B[A], the map f

b

: (B[A])

b

!

(B[A])

�

b

= B

�

b

[A] is also a map from (B[A

a

])

b

toB

�

b

[A

a

] by anti-createdness.

Recall that the transformation of A

a

into A

�

a

changes union to disjoint sum.

Hence even if a

0

E a

0

holds in A

a

it is not necessarily the case that f

a

(a

0

) E

f

a

(a

00

) in A

�

a

since they may lie in di�erent summands. So f

a

reects embedding

but does not preserve it.

5.6 Remark

(i) Since union is transformed to disjoint sum, if the union has a non-void

meet then f

a

must choose summands for the terms in the meet. If we

are concerned with constructive logic, we require the canonical choice of

summands. The designing of the canonical choice is possible since a

0

2 A

a

is a primitive recursive predicate in A, a and a

0

.

(ii) If we are concerned with Reverse Mathematics, the lemma should be proved

in a fragment of second order arithmetic that is as weak as possible. The

lemma proves by induction that f

a

anti-creates subterms and reects em-

beddings. These two notions are formalized by �

0

1

-formulas, and therefore

the lemma is provable in the most basic system RCA

0

, since this system

has �

0

1

-induction that induces �

0

1

-induction.

5.7 Corollary

Let A be an algebra in normal form and ha

0

; a

1

; : : : ; a

n�1

i a bad sequence of A.

There is a E-reecting injection

A

ha

0

;:::;a

n�1

i

� A

�

ha

0

;:::;a

n�1

i

.

Here
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A

ha

0

;:::;a

n�1

i

= (� � � ((A

a

0

)

a

1

) � � �)

a

n�1

A

�

ha

0

;:::;a

n�1

i

= (� � � ((A

�

a

0

)

�

a

1

) � � �)

�

a

n�1

:

In the right hand side of the second equation, for example, a

1

is identi�ed with

its image under f

a

0

: A

a

0

! A

�

a

0

.

By this corollary, we can associate to each bad sequence ha

0

; a

1

; : : :i of an alge-

bra A a sequence of algebras, A;A

�

ha

0

i

; A

�

ha

0

;a

1

i

; : : :. Therefore showing A is a

well-partial-order is equivalent to saying that all sequences A;A

�

ha

0

i

; A

�

ha

0

;a

1

i

; : : :

associated to bad sequences of A eventually terminate after �nite steps. This

last is proved by providing a well-ordering with the class of algebras so that the

sequences are strictly decreasing.

The basic idea is to regard the expressions of algebras as �nite trees. Suppose

given a closed algebra in normal form. If the algebra is of the formA

0

+A

1

+� � �+

A

n�1

, then it is regarded as a tree +fA

0

; A

1

; : : : ; A

n�1

g having n immediate

successors A

0

; A

1

; : : : ; A

n�1

of the root, and labeled by + on the root node.

Likewise for A

0

�A

1

�� � ��A

n�1

. If the algebra is an initial algebra equivalent

to �X:X

n

A

n

+ � � � + XA

1

+ A

0

(if there are many homogeneous monomials

X

i

C + � � �+X

i

C

0

then identify it with a single monomialX

i

(C+ � � �C

0

)), then

it is regarded as a tree �hA

n

; : : : ; A

1

; A

0

i labeled by � on the root. Note that for

the nodes labeled by + or � there are no orders on immediate successors, while

for the nodes labeled by � there are orders. Following the recursive path ordering

with status [24, 20], we de�ne a well-order on the class of algebras incorporating

both multiset path ordering and lexicographic path ordering depending on the

labels on the nodes. The precedence order of the labels is ; � 1 � + � � � �.

In the following de�nition, the term subalgebra is used to denote the subexpres-

sions of algebras (like subterms), not the subalgebra in the theory of universal

algebra. We need multiset ordering <

�

on multisets [9] and lexicographic order-

ing <

�

on �nite lists of variable lengths. This last ordering is de�ned as follows:

ha

m

; : : : ; a

1

; a

0

i <

�

ha

0

n

; : : : ; a

0

1

; a

0

0

i if and only if either (i) m < n; or (ii) m = n

and there is j � m such that a

m

= a

0

m

, a

m�1

= a

0

m�1

, : : :, a

j+1

= a

0

j+1

and

a

j

< a

0

j

. This ordering corresponds to <

r

in [10].

5.8 De�nition

Let A;B be closed algebras regarded as �nite trees by the procedure mentioned

above. Suppose �; � 2 f;; 1;+;�; �g are the labels on the roots of A;B respec-

tively. The set of labels has the precedence order ; � 1 � + � � � �.

The binary relation A < B is de�ned by the following:

(i) A < B if there is a proper subalgebra B

�

of B such that A � B

�

. Here

A � B means A < B or A = B.

(ii) A < B if � � � and for all proper subalgebra A

�

, it holds that A

�

< B.

(iii) A < B if � = � and one of the following is the case:
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(a) The label � is either + or �, and fA

0

; A

1

; : : : ; A

m�1

g <

�

fB

0

; B

1

; : : : ;

B

n�1

g by multiset ordering, where A

i

; B

j

are immediate successors of the

root of the trees A;B respectively.

(b) The label � is �, and hA

m

; : : : ; A

1

; A

0

i <

�

hB

n

; : : : ; B

1

; B

0

i by lexico-

graphic ordering, where A

i

; B

j

are immediate successors of the root of the

trees A;B respectively.

(iv) A < B holds only when one of (i) through (iii) applies.

Another view for hA

m

; : : : ; A

0

i <

�

hB

n

; : : : ; B

0

i is to regard X as greater than

all closed algebras and compare X

m

A

m

+ � � �+A

0

and X

n

B

n

+ � � �+B

0

. This

approach has an advantage that there is no need to transform initial algebras

to the form �X:X

n

C

n

+ � � �+ C

0

. The following proposition is proved by the

usual argument that derives a contradiction assuming there is a minimal in�nite

descending sequence.

5.9 Proposition

The binary relation < is a well-order on the class of algebras in normal form.

Let us denote by jAj the ordinal corresponding to an algebra A.

5.10 Proposition

If A is an algebra in normal form, then A

�

a

< A for every a : A.

The proof is easy by de�nition of A

�

a

. We remark that if A is not in normal

form then this proposition does not necessarily hold. For example, consider

A = 2� 3. Then A

�

a

= 1� 3 + 2� 2 = 7 > 6 for all a : A.

Recall that we associated a sequence A;A

�

ha

0

i

; A

�

ha

0

;a

1

i

; : : : of algebras to each

bad sequence ha

0

; a

1

; : : :i of A. By the last proposition, we have the decreasing

sequence A > A

�

ha

0

i

> A

�

ha

0

;a

1

i

> � � �. This sequence must be �nite since the

order < is a well-order on the class of algebras in normal form by Proposition

5.9. Therefore the mapping ha

0

; : : : ; a

n�1

i 7! jA

�

ha

0

;:::;a

n�1

i

j yields a rei�cation

of the partial order A by the ordinal jAj. This observation leads us to the

following theorem, which is a main theorem of this section.

5.11 Theorem

Every algebra is a well-partial-order with respect to the embedding E

A

and the

order type jBad(A)j of the well-partial-order is upper bounded by the ordinal

jAj.

5.12 Remark

The argument used in this section is quite elementary except the proof that the

order < on the class of algebras is a well-order. So the reduction of well-partial-
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orderedness of an algebra A to well-orderedness of the ordinal jAj is proved in

system RCA

0

, even intuitionistically (see Remark 5.6).

In order to compare the upper bound jAj of the algebra embedding with a

traditional ordinal notation, we give an order isomorphism from the class of al-

gebras in normal form to an initial segment of Bachmann hierarchy. We refer the

reader to [17] for a comprehensive de�nition of Bachmann hierarchy. The family

of normal functions of the hierarchy is denoted by h'

�

(-)i where � ranges over

all ordinals less than �


+1

(
 is the �rst regular ordinal greater than !). For our

purpose, it su�ces to consider the indices � up to 


!

. We choose as the base

normal function '

0

(-) the enumeration !

!

x

of multiplicatively indecomposable

ordinals. This choice is because our de�nition of algebras has connectives +

and also �, and so every ordinal between consecutive multiplicatively indecom-

posable ordinals is constructed in terms of these two connectives. The family

h'

�

i is a modi�cation of the hierarchy so that ordinals have unique notations

[17]. The reader might observe that the recursion relation of ' [17] has the same

outlook as the lexicographic path ordering (also the ordinal function # in [29]

has the same relation). We �rst employ an auxiliary ordinal function � from




!

to 


!

in order to make the description easier.

5.13 De�nition

The function � is a map from 


!

to 


!

, the map de�ned as in Figure 3. There

� < 


!

is supposed to be in Cantor normal form 


n

�

n

+ � � �+
�

1

+�

0

to base


.

Cantor Normal Form of � Value of �(�)

� < 
 �

� = 
�

1

+ �

0

'(0;�1 + �

1

)
 (1 + �

0

)

� = 


2

+ 
�

1

+ �

0

'(1 + �

1

; �

0

)

� = 


2

�

2

+ 
�

1

+ �

0

(�

2

> 1) '(
(�1 + �

2

) + �

1

; �

0

)

� � 


3

'(


n�1

�

n

+ � � �+
�

2

+ �

1

; �

0

)

Figure 3

Note that if every coe�cient �

i

of the Cantor normal form is less than '(


!

; 0)

then �(�) is also less than '(


!

; 0). The de�nition of �may appear complicated,

but it is a kind of adjustment for the case � < 


2

. An order isomorphism of the

class of algebras into an initial segment of Bachmann hierarchy up to '(


!

; 0)

is de�ned as follows:
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5.14 Proposition

By the following equations, the class of algebras in normal form becomes order

isomorphic to the ordinal '(


!

; 0).

j;j = 0

j1j = 1

jA+ Bj = jAj � jBj (natural sum)

jA� Bj = jAj 
 jBj (natural product)

j�X:X

n

C

n

+ � � �+XC

1

+ C

0

j

= �(


n

jC

n

j+ � � �+
jC

1

j+ (�1 + jC

0

j))

6 Linearization of Algebra Embeddings

In the last section, the upper bounds of order types of algebra embeddings are

given by the well-ordering on the class of algebras. Namely for each algebra

A the order type of Bad (A) is upper bounded by jAj, which is the ordinal

corresponding to A in the well-ordering of the class of algebras.

The lower bounds of well-partial-orders are given by linearizations, as seen in

Preliminaries. In this section, we give a uniform way to linearize the alge-

bra embeddings, called Ackermann orderings. We show for almost all algebras

A an Ackermann ordering gives a linearization of order type jAj. For excep-

tional cases, a modi�cation of the Ackermann ordering yields the order type

jAj. Therefore the ordinals jAj are lower bounds of algebra embeddings as well

as their upper bounds. So we derive that the order type of embedding of an

algebra A is exactly the ordinal jAj.

Ackermann orderings on algebras depend on the orders of summands and mul-

tiplicands. That is to say, if one exchanges the order of summands from A+B

to B +A then the associated Ackermann orderings are in general di�erent, and

likewise for A � B. Given an algebra, therefore, there are several associated

Ackermann orderings according to the permutations of summands and multi-

plicands.

6.1 Convention

In this section, + and � are non-commutative unless otherwise mentioned.

6.2 De�nition

Let A be a closed algebra where the order of summands and multiplicands is

�xed.

The Ackermann ordering on A is the binary relation <

A

between terms of A

de�ned as follows:

(i) A = ; or 1.

<

A

is void.
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(ii) A = B +C.

a <

A

a

0

if and only if one of

(1) a = �b and a

0

= �

0

c;

(2) a = �b; a

0

= �b

0

and b <

B

b

0

;

(3) a = �

0

c; a

0

= �

0

c

0

and c <

C

c

0

.

(iii) A = B �C.

hb; ci <

A

hb

0

; c

0

i if and only if either

(1) c <

C

c

0

;

(2) c = c

0

and b <

B

b

0

.

(iv) A = �X:C[X].

c <

A

c

0

(where c; c

0

: C[A]) if and only if either

(1) c �

A

a

0

for some proper subterm a

0

: A of c

0

. Here �

A

is <

A

or =.

(2) c <

C[A]

c

0

and a <

A

c

0

for all proper subterm a : A of c.

6.3 Notation

We write Ack(A) if we emphasize that we are concerned with the Ackermann

ordering on an algebra A.

Our de�nition of Ackermann ordering is based on the same idea of the orderings

in [1, 10, 21]. Note that the Ackermann ordering associated to a direct product

algebra A � B is the lexicographic ordering, but it compares from right to left

in the reverse order to the usual lexicographic ordering. This choice is in order

to accommodate our ordering to the traditional ordinal notations.

6.4 Proposition

The reexive closure �

A

of Ackermann ordering <

A

is a total order and is a

linearization of the algebra embedding E

A

, that is,

a E

A

a

0

) a �

A

a

0

.

It is convenient to introduce an alternative way to construct initial algebras.

This is for reducing the number of exceptional cases in the argument below.

The di�erence is that we assume the existence of the least element.

6.5 De�nition

~�X:B[X] is an alternative form of an initial algebra whose terms are generated

by the following rules (where A = ~�X:B[X]):

0

A

: A

b : B[A]

b : A

where 0

A

is a constant term associated to each (occurrence of) the algebra A

and  is the associated constructor.
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The Ackermann ordering on A = ~�X:B[X] is de�ned as follows: a <

A

a

0

if and

only if either

(i) a = 0

A

and a

0

6= 0

A

(i.e., 0

A

is the least element)

(ii) a �

A

a

0�

for some proper subterm a

0�

of a

0

having sort A.

(iii) a = b, a

0

= b

0

, b <

B[A]

b

0

and a

�

< a

0

for all proper subterm a

�

of a

having sort A.

The initial algebra ~�X:B[X] is translated to the former notation by ~�X:B[X] =

�X: 1 + B[X]. It is easy to see these two are order isomorphic with respect to

the associated Ackermann orderings.

The following are a set of isomorphisms respecting Ackermann orderings. There

we say a morphism f : A ! B preserves Ackermann orderings if it satis�es

a <

A

a

0

) f(a) <

B

f(a

0

). As in the case of algebra embeddings, we regard

those isomorphisms as rewriting rules from left to right.

6.6 Proposition

The following nine natural transformations are isomorphisms where both the

isomorphisms and their inverses preserve Ackermann orderings.

;+ A

�

�! A

A+ ;

�

�! A

; � A

�

�! ;

A� ;

�

�! ;

1� A

�

�! A

A� 1

�

�! A

A(B + C)

�

�! AB +AC

~�X:A

�

�! 1 +A whenever A is closed

~�X:B[X] +C

�

�! (~�X:B[X]) + (~�X:B

1

[X])C

if B[X] is of degree 1 and C is closed.

In the last transformation B

1

[X] is obtained from B[X] by erasing all constant

summands. For example, if B[X] = F + DXE + F

0

+ D

0

XE

0

then B

1

[X] =

DXE +D

0

XE

0

.

Note that (A + B)C is not isomorphic to AC + BC. Also there is no need for

the rule ~�X:B[X]

�

�! ; since ~�X:B[X] is always non-empty.

Next we calculate the order types of Ackermann orderings. It su�ces to consider

the algebras having no redices for the rewriting rules in the previous proposition.



Well-Orderings of Algebra and Kruskal's Theorem 27

The full exposition is lengthy. So we will be content with a brief description

how the calculation is carried out. The �rst thing is to associate to each closed

algebra A a sequence that is strictly increasing and unbounded with respect to

the Ackermann ordering <

A

. Later we will give the ordinals corresponding to

the components of the sequence so that the supremum of those ordinals provide

the order types of <

A

.

6.7 De�nition

Let A be a closed algebra having no redices for the rewriting rules de�ned by

the previous proposition.

A sequence ha[n]i

n2!

is associated to A by the following de�nition (we follow

the convention that hc[n]i

n2!

is the sequence associated to C, etc.):

(o) ; and 1 have no associated sequences.

(i) For a disjoint sum algebra A = B + C,

a[n] = �

0

(c[n])

(ii) For a product algebra A = B � C,

a[n] = h0

B

; c[n]i where 0

B

denotes the least element of B.

(iii) For an initial algebra, the sequence is manipulated by the following four

cases (a) through (d).

(a) If A is of the form ~�X:B[X] + C[X] �D (C[X] may be void), then

a[0] = 0

A

a[n+ 1] = 

D

h0

C[A]

; d[n]i

where 

D

: C[A] �D ! A is the composition of the constructor  preceded

by the injection from C[A] �D to B[A] + C[A] �D.

(b) If A is of the form ~�X:B[X] + C[X] �X (C[X] may be void), then

a[0] = 0

A

a[n+ 1] = 

X

h0

C[A]

; a[n]i where 

X

: C[A] �A! A.

(c) If A is of the form ~�X:B[X] + C[X] �D +E + 1 (C[X] must contain X),

a[0] = 

1

(i) where 

1

: 1! A

a[n+ 1] = 

D

hc

0

; d[n]i

where c

0

: C[A] is de�ned as follows: if C[A] = C

1

� � � � � C

n

then the

i-th component of c

0

is the least element 0

C

i

for all C

i

except the leftmost

occurrence of A, for which the component is set a[0]. Namely if C[X] =

C

1

� � �X � � �C

n

where the designatedX is the leftmost occurrence ofX, then

c

0

is put h0

C

1

; : : : ; a[0]; : : : ; 0

C

n

i where the component a[0] corresponds to

the occurrence ofX. The component a[0] in the de�nition of a[n+1] ensures

a[0] <

A

a[n+ 1].
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(d) If A is of the form ~�X:B[X] +C[X] �X +E + 1 (C[X] may be void),

a[0] = 

1

(i)

a[n+ 1] = 

X

h0

C[A]

; a[n]i

6.8 Proposition

Let A be a closed algebra with the associated sequence ha[n]i

n2!

.

The sequence ha[n]i

n2!

is strictly increasing and unbounded with respect to Ack-

ermann ordering <

A

.

In the above we associate a sequence of terms to each closed algebra A. In

the following we associate a sequence of algebras to each closed algebra A.

The proposition after the de�nition shows that these two sequences are related

intimately.

6.9 De�nition

Let A be a closed algebra having no redices for the rewriting rules de�ned in

Proposition 6.6

The fundamental sequence hA

^
n

i

n2!

is a sequence of closed algebras associated

to each A as follows (the cases correspond to those in the De�nition 6.7):

(o) ; and 1 has no fundamental sequences.

(i) A = B + C

A

n̂

= B + C

n̂

(ii) A = B � C

A

n̂

= B � C

n̂

(iii) A is an initial algebra.

(a) A = ~�X:B + CD

A

^
0

= ;

A

n̂+1

= ~�X:B + CD

n̂

(b) A = ~�X:B + CX

A

^
0

= ;

A

n̂+1

= ~�X:B + CA

n̂

(c) A = ~�X:B + CD + E + 1

A

^
0

= ~�X:B + CD + E

A

n̂+1

= ~�X:B + CD

n̂

+A

^

0

+ 1

(d) A = ~�X:B + CX + E + 1

A

0̂

= ~�X:B + CX + E

A

1̂

= ~�X:B + CA

0̂

+ 1

A

n̂+2

= ~�X:B + CA

n̂+1
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For an algebra A and a term a of sort A, let A

<a

denote the suborder fx : A j

x <

A

ag of A.

6.10 Proposition

(i) Ack(A

<a[n]

) is order isomorphic to Ack(A

n̂

).

(ii) Ack(A) is order isomorphic to sup

n2!

(Ack (A

^
n

)).

(i) is proved by giving morphisms preserving Ackermann orderings from A

<a[n]

to A

n̂

, and from A

n̂

to A

<a[n]

. (ii) is an immediate consequence of (i) since

the sequence ha[n]i

n2!

is unbounded. This assertion (ii) allows us to calculate

the order type of Ackermann ordering Ack(A) from the smaller order types of

Ack(A

^
n

).

6.11 De�nition

The function � : 


!

! 


!

has the same de�nition as � of De�nition 5.13 except

that all' therein is replaced by ' and that �(
�

1

+�

0

) = '(0;�1+�

1

)�(1+�

0

)

(natural product is replaced by ordinary product).

Now we provide the order type A

?

of Ackermann ordering Ack(A). In the

following, we say an initial algebra ~�X:B[X] has degree n if the largest number of

X in a single summand of B[X] is n (an analogy of the degrees of polynomials).

The rightmost multiplicand of

`

m

i=1

Q

n

i

j=1

B

ij

where B

ij

is not decomposable

any more to the form of a product, is the multiplicand B

mn

m

.

6.12 De�nition

Let A be a closed algebra. Without loss of generality we assume A has no redices

for the rewriting rules given in Proposition 6.6.

An ordinal A

?

is associated to each A by the following

(o) ;

?

= 0, 1

?

= 1, X

?

= 
.

(i) (A+ B)

?

= A

?

+ B

?

.

(ii) (A� B)

?

= A

?

� B

?

.

(iii) In case A is an initial algebra,

(a) If A = ~�X:B[X] + C is of degree 2 or more (C may be void), let � be the

least ordinal satisfying max(D

i

?

) < �(B

?

+ �) where D

i

ranges over all

proper subalgebras of ~�X:B[X] other than the rightmost multiplicand of

B[X]. Then A

?

= �(B

?

+ �+ C

?

).

(b) If A has degree 1, it has the form A = ~�X:B[X]+E+DXC ending with a

summand of degree 1 (E may be void), since we assumed A has no redices.

Let � be the least ordinal ful�lling maxf(~�X:B

1

[X])

?

; D

?

g < !

!

�+1

where
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B

1

[X] is obtained fromB[X] by erasing all constant summands (see Propo-

sition 6.6). If (~�X:B[X])

?

and E

?

are both less than !

!

�+1

then

A

?

= !

!

�+C

?

;

otherwise

if C = 1 then A

?

= !

�+1

else A

?

= !

!

+(�1+C

?

)

where

!

�

� maxf(~�X:B[X])

?

; E

?

g < !

�+1

!

!



� maxf(~�X:B[X])

?

; E

?

g < !

!

+1

Note that the disjoint sum and the direct product are mapped to the ordinal sum

+ and the ordinal product � and in addition the variable X to 
. Therefore

if an initial algebra contains the summand of the form � � �C � X � � � where C

is closed, this C disappears in �((B[X])

?

) since C

?

� 
 = 
. Likewise if two

summands occur as D[X] + E[X] and the degree of D[X] is smaller than that

of E[X] then the entire D[X] disappears. However the closed algebra C or the

closed algebras in D[X] may be too large to ignore them. The ordinals �, 

and � occurring in the de�nition above reect this e�ect of closed algebras that

would simply be ignored if there were no adjusting ordinals �; ; �.

6.13 Remark

The de�nition of A

?

is quite complicated when A is an initial algebra, especially,

of degree 1. However if one is interested in the algebras of the form A =

~�X:X

n

C

n

+ � � �+XC

1

+C

0

, then the associated ordinal A

?

has the simple form

�(


n

C

n

?

+ � � �+
C

1

?

+C

0

?

).

The following theorem shows that A

?

is exactly the order type jAck(A)j of

Ackermann ordering on A.

6.14 Theorem

jAck(A)j = A

?

for every closed algebra A having no redices for the rewriting

rules given in Proposition 6.6.

(Proof) Prove that (A

^
n

)

?

converges to A

?

. Therefore by trans�nite induction

for A

?

we can prove jAck(A)j = A

?

by (ii) of Proposition 6.10.

The order types of the recursive path ordering (the multiset path ordering)

seem to be folkloric. If the set of labels is well-ordered by order type �, the



Well-Orderings of Algebra and Kruskal's Theorem 31

associated multiset path ordering is order isomorphic to '(�; 0) in Feferman-

Sch�utte notation [8]. The order types of lexicographic path orderings were

seldom mentioned in the literature. Some partial results are found in [28, 10].

From the previous theorem, we know that the order types of the lexicographic

path orderings are much greater than the corresponding multiset path orderings.

Recall that Ackermann orderings are linearizations of algebra embeddings. So

we have a lower bound for the order type of Bad (A). Consider an initial algebra

A of the form ~�X:X

n

C

n

+ � � �+XC

1

+C

0

. Then the order type jBad(A)j of the

algebra A is upper bounded by �(


n

jC

n

j+ � � �+
jC

1

j+ jC

0

j) by Theorem 5.11

and lower bounded by �(


n

C

n

?

+ � � �+ 
C

1

?

+ C

0

?

) by Theorem 6.14. If we

assume as the induction hypothesis jC

i

j = C

i

?

, then the di�erence of the upper

bound and the lower bound is only the di�erence of � and �, which comes from

the one of ' and '. By the recursion relation in [17] we can single out when �

and � coincide and when they are di�erent as in the following.

In the following proposition, the lowermost coe�cient of an ordinal � < 


!

means, if we let 


n



n

+ � � �+


1

+ 

0

be a Cantor normal form of � to base 
,

the non-zero ordinal 

k

such that 

i

= 0 for all i < k.

6.15 Proposition

Let � = �

0

+m be an ordinal less than 


!

where �

0

is a limit and m is �nite.

If � � 


2

then

�(�) =

�

�(� + 1) if the lowermost coe�cient of �

0

is equal to �(�

0

)

�(�) otherwise.

If � = 
 and  = 

0

+m where 

0

is a limit and m is �nite, then

�(�) =

�

�(
( + 1)) if 

0

= �(�)

�(�) otherwise

Therefore A

?

6= jAj happens only when either

(i) A is of the form ~�X:X

n

C

n

+ � � �+X

k

C

k

+m (n � 2, k � 0 and m is �nite)

and C

k

?

= �(


n

C

n

?

+ � � �+


k

C

k

?

). Then jAj = �(


n

C

n

?

+ � � �+


k

C

k

?

+

1 +m).

(ii) A is of the form ~�X:X(C

1

+m) (m is �nite) and C

1

?

= �(
 �C

1

?

). In this

case, jAj = �(
(C

1

?

+ 1 +m)).

In these cases, we must �nd other linearizations yielding the same ordinals as

the upper bounds jAj. The most di�cult is to manipulate the case k � 1 of (i).

6.16 Lemma

Let A be an initial algebra of the form ~�X:B[X] +X

k

C +D (degree 2 or more,

k � 1, C;D are closed, and B[X] may be void).
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If A

?

= C

?

there is a linearization of the embedding E

A

such that the order type

of the linearization is �(B

?

+


k

C

?

+ 1 +D

?

).

(Proof) Put A

0

= ~�X:C +B[X] +X

k

C +D, whose Ackermann ordering has

order type �(B

?

+ 


k

C

?

+ 1 + D

?

). There is a bijection f : A ! A

0

such

that if a E

A

a

0

then f(a) �

A

0

f(a

0

). The inverse image of f gives the required

linearization.

The case (i) above is handled by this lemma if k � 1. That is to say, the

linearization of the lemma applied to the algebra A = ~�X:X

n

C

n

+ � � �+X

k

C

k

+

m provides the order type �(


n

C

n

?

+ � � �


k

C

k

?

+ 1 + m) = jAj as required.

If k = 0, we simply exchange the order of the summand as A

0

= ~�X:C

0

+




n

C

n

+ � � �+m. Then the Ackermann ordering of A

0

gives a linearization of A

with order type jAj by Theorem 6.14. For the case (ii), we consider the algebra

A

00

= ~�X:C

1

X +Xm. The Ackermann ordering on A

00

is the linearization of A

with order type jAj. Therefore we have the following theorem and corollary as

the main results of this section.

6.17 Theorem

Let A be a closed algebra in normal form in the sense of Section 4.

There is a linearization of the embedding E

A

such that the order type of the

linearization is equal to jAj.

6.18 Corollary

For each closed algebra A, the embedding E

A

is a well-partial-order whose order

type jBad(A)j is equal to jAj (where A is assumed to be reduced to a normal

form without loss of generality).

So the order types jBad(A)j of algebra embeddings are given e�ectively by

jAj. Recall that the mapping j � j is a bijection up to isomorphism respecting

embeddings into the class of ordinals. Hence we have the following theorem,

which is the main achievement of this paper.

6.19 Theorem

The mapping A 7! jBad(A)j is a bijection from the class of algebras (up to

isomorphism) onto an initial segment of ordinals up to '(


!

; 0).

In other words, for each ordinal less than '(


!

; 0) there is an algebra whose

order type is equal to the ordinal, and furthermore such an algebra is unique

up to embedding-reecting isomorphism. We also note that the isomorphism of

algebras is primitive recursively decidable:
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6.20 Corollary

The following is primitive recursively decidable: given two closed algebras, de-

termine whether they are isomorphic with respect to embedding-reecting mor-

phisms.

(Proof) If the normal forms of two algebras are distinct, then they have di�er-

ent order types and thus cannot be isomorphic. The reduction to normal forms

is primitive recursive (Lemma 4.16).

We give several examples of the order types jAj = jBad (A)j of algebras. For the

second and the fourth, we can �nd announcements in [6].

j�X:X + 1j = !

j�X:X

2

+ 1j = �

0

j�X:X

2

+XN + 1j = '(!; 0) where N is �X:X + 1

j�X:X

2

2 + 1j = �

0

j�X:X

n+1

+ 1j = '(


n

; 0) where n � 2

Also the result in Section 3 follows since j�X:AX + 1j is equal to !

!

�1+jAj+1

if jAj is of the form �



+ n, epsilon number plus �nite number; and equal to

!

!

�1+jAj

otherwise.

The merit of reducing well-partial-orderedness to well-orderedness becomes ap-

parent when proof theory is combined. After a famous work of Gentzen, ordinal

numbers are known to be useful to measure the strength of logical systems. The

proof theoretical ordinal jT j of a logical system T is the least ordinal � such that

well-orderedness of � is not provable in T [3]. The following are known.

jACA

0

j = �

0

j�

1

1

-DC

0

j = '(!; 0) [4]

jATR

0

j = �

0

[14]

These systems are fragments of second order arithmetic, assuming as basic ax-

ioms the comprehension axiom for recursive formulas and the induction axiom

(not the induction scheme; the subscript (-)

0

comes from this restriction on the

induction). This basic system is called RCA

0

. System ACA

0

has in addition a

comprehension axiom for arithmetical formulas [34, 37]. This system is a con-

servative extension of Peano arithmetic. The proof theoretical ordinal �

0

follows

from this fact. System �

1

1

-DC

0

has the dependent choice axiom for �

1

1

-formulas

[4]. System ATR

0

has the axiom asserting the existence of Turing jumps along

any recursive well-ordering [14, 34, 37].

Therefore well-partial-orderedness of the algebra �X:X

2

+ 1 of binary trees is

non-provable in system ACA

0

, but provable in any stronger system having a

greater proof theoretical ordinal, e.g., �

1

1

-DC

0

, ACA, ACA

0

+ �

1

1

-Reection.

Likewise well-partial-orderedness of embedding on �X:X

2

+ XN + 1 is non-

provable in �

1

1

-DC

0

and well-partial-orderedness of embedding on �X:X

2

2 + 1
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is independent from ATR

0

, while they are provable in any stronger systems than

�

1

1

-DC

0

and ATR

0

(respectively) having greater proof theoretical ordinals.

Another immediate consequence of our main results is that we can use the class

of algebras as an ordinal notation up to '(


!

; 0). This ordinal notation has

some new features in comparison with traditional ordinal notations; (i) every

ordinal notation has a meaning. For example, �X:X

2

+ 1 denotes the ordi-

nal �

0

since the order type of the corresponding algebra embedding is equal

to �

0

; (ii) every notation can be encoded by a �

1

1

-formulas. As is well-known,

non-iterated inductive de�nitions on arithmetical formulas are simulated by the

comprehension axiom for �

1

1

formulas without set parameters [11]. (iii) our

system of notations provides an alternative description for Bachmann hierar-

chy. The Bachmann hierarchy is de�ned by the Bachmann collection, which is

sensitive to the choice of fundamental sequences for limit ordinals. Our theo-

rem shows the hierarchy can admit a de�nition without using the fundamental

sequences. The Feferman-Aczel notation � [2] also arose for giving the system

of notations not depending on fundamental sequences [12].

One might say the obtained notation is up to '(


!

; 0) (smaller than Howard

ordinal '(�


+1

; 0)) and is too weak to analyze impredicative logical system.

However we hope to show in a forthcoming paper this bound can be extended

to �


!

0 = j�

1

1

-CA

0

j by allowing mutual recursions.

7 Embedding on Finite Trees

We turn to �nite ordered trees, the nodes of which have outdegrees �nite but

without upper bounds on the number. The set of �nite ordered trees is de�ned

naturally if we use a subsidiary sort F (forest), which should be the sort of �nite

lists of trees. The following rules generate �nite ordered trees t and forests f

(see Figure 4):

t ::= span(f)

f ::= nil j cons(t; f)

f = h

�

�

�

J

J

�

�

�

; : : : ;

�

�

�

X

X

X

C

C

C

i  span(f) =

�

: : :

�

�

�

J

J

�

�

�

�

�

�

X

X

X

C

C

C

�

�

�

H

H

H

Figure 4
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In other words, the algebra T of �nite ordered trees is a solution of system of

equations

T = F

F = 1 + T � F:

The algebra T is not de�nable in the sense of De�nition 4.1 since it uses a

subsidiary sort F and mutual recursion. In the form of �-operators, the algebra

T is written �X: (�Y: 1 + XY ) where two variables X and Y are in the scope

of �Y . Recall that the algebra in the sense of De�nition 4.1 admits only one

variable.

Allowing a �nite number of sort variables, we can de�ne more complicated

structures and we need higher ordinals to reify them. We leave the extension

to this direction to a forthcoming paper, and here are content with an analysis

of the algebra T of �nite ordered trees, which is important and the simplest (in

a precise sense; the algebra T yields the least order type among those algebras

requiring mutual recursion to de�ne).

Finite trees in T are represented using a unary node span, a binary node cons

and a 0-ary node nil. T should be di�erent, however, from the algebra �X:X

2

+

X+1 that has the same family of nodes. The di�erence arises from the di�erent

notions of subterms. Suppose given a tree t = tht=0; : : : ; t=(n� 1)i (represented

by span, cons and nil). For the notion of subtrees (subterms of sort T ), there

are few problems: every t=i is a subtree of t and every subtree of t=i is a subtree

of t. The problem lies in the sort F of forests. Let f = ht=0; : : : ; t=(n� 1)i be

a forest. The term f is represented by cons and nil as

cons(t=0; : : :cons(t=(n� 1); nil) : : :)

If we follow the idea in Section 4 that subterms are simply subexpressions,

then ht=1; : : : ; t=(n � 1)i, ht=2; : : : ; t=(n � 1)i etc. are sub-forests of f . There

are, however, other subterms of sort F hidden in each t=i. If t=i is of the

form uhu=0; : : : ; u=(p � 1)i, the forest hu=0; : : : ; u=(p � 1)i is a subexpression

of ht=0; : : : ; t=i; : : : ; t=(n � 1)i. But if we admitted this as subterms (recall

that algebra embeddings are de�ned using subterms), then the embedding on

the algebra T would be di�erent with the tree embedding given in De�nition

2.4. For example, consider two trees s and t in Figure 5. s does not embed

s =

� �

� � �

�

�

�

A

A

�

�

@

@

t =

� � � �

� �

�

�

�

@

@

�

�

A

A

�

�

A

A

Figure 5

into t by tree embedding since t has no nodes of outdegree 3. If one admits all
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subexpressions of sort F as sub-forests, then s embeds into t, as in the following:

Consider two forests h�; �i and hspanh�; �ii, where � stands for span(nil). Since

the �rst is a subexpression of the second, we have h�; �i E

F

hspanh�; �ii by the

projection rule of algebra embeddings. Then one can derive hspanh�; �i; �; �i E

F

hspanh�; �i; spanh�; �ii and then spanhspanh�; �i; �; �iE

T

spanhspanh�; �i; span

h�; �ii by congruence rules. The last means s E

T

t and thus the embedding on

T is undesirably not equal to the tree embedding.

This dilemma is settled simply by rejecting that h�; �i is a subterm of

hspanh�; �ii. In general, if f = ht=0; : : : ; t=n� 1i is a term of sort F , then

the subterms of f having sort F are only ht=1; : : : ; t=n� 1i, ht=2; : : : ; t=n� 1i

etc., and never look inside of the already formed tree t=i. In the form of infer-

ence rules, a is a subterm of b (where a; b are terms of sort T or F ) if and only

if the relation a � b is derived by the following rules:

a � a for every term a

a � f

a � cons(t; f)

t : T and f : F

a � f

a � span(f)

f : F

Note that there is no rule inferring from a � cons(t; f) from a � t. Then the

embeddings associated to the algebras T and F are de�ned in the same way

as in De�nition 4.7. One has only to read a

0�

� a the relation derived by the

above rules. It is easy to see that E

T

is the tree embedding on �nite ordered

trees and E

F

is the Higman embedding induced from the tree embedding.

We give a rei�cation of the tree embedding by the ordinal '(


!

; 0). Recall that

this ordinal is the supremum of the order types of all (single recursive) algebras.

We associate to each bad sequence of �nite ordered trees a descending sequence

of algebras. The rei�cation technique given in Section 5 works completely as

well. To F [X] = �Y: 1+XY and f = 

F

(a) : F [T ] where a : 1+TF , an algebra

F

�

f

[X] is associated by F

�

f

[X] = �Y: (1+XY )

�

a

where allX

�

s

is replaced by T

�

s

and all Y

�

g

by F

�

g

[X]. Moreover to T = �X:F [X] and t = 

T

(f), an algebra

T

�

t

is associated by T

�

t

= �X:F

�

f

[X] where each X

�

s

is replaced by T

�

s

.

7.1 Example

Let t : T be spanht=0; : : : ; t=n� 1i.

T

�

t

= �X:F

�

ht=0;:::;t=n�1i

[X]

= �X: (�Y: 1 + T

�

t=0

Y +X � F

�

ht=1;:::;t=n�1i

[X])

�

=

�X: (T

�

t=0

)

�

(1 +X � F

�

ht=1;:::;t=n�1i

[X])

.

.

.
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�

=

�X: (T

�

t=0

)

�

+X(T

�

t=0

)

�

(T

�

t=1

)

�

+ � � �+X

n�1

(T

�

t=0

)

�

� � � (T

�

t=n�1

)

�

Note that T

�

t

is a single recursive algebra.

We can show that there is an embedding-reecting injection T

t

� T

�

t

for all

t : T as in Lemma 5.5. Hence to each bad sequence ht=0; t=1; : : :i of terms of

sort T we can associate a descending sequence T

�

ht=0i

; T

�

ht=0;t=1i

; : : : of algebras.

Therefore well-orderedness of the relation < on the class of algebras, which is

equivalent to well-orderedness of '(


!

; 0), shows that the tree embedding is

well-partial-ordered.

Conversely well-partial-orderedness of E

T

implies well-orderedness of '(


!

; 0).

To see this, note that '(


!

; 0) is the supremum of '(


n

; 0) (n < !) and '(


n

; 0)

is the order type of well-partial-order on the algebra �X:X

n+1

+1 of (n+1)-ary

trees for n � 2. There is an embedding-reecting map from �X:X

n+1

+ 1 to T

as easily seen. Hence Wpo(T ) implies Wpo(�X:X

n+1

+ 1) for all n, which in

turn implies well-orderedness of '(


!

; 0).

7.2 Theorem

Well-partial-orderedness of the tree embedding on �nite ordered trees is equiva-

lent to well-orderedness of the ordinal '(


!

; 0).

This theorem is �rst proved by Rathjen and Weiermann [29] for non-ordered

trees. We do not claim our method is essentially di�erent with theirs. We

include our method here hoping that the the reader might feel the argument is

simpler and having an intention to provide a guide to more general arguments

for mutual recursion.

We also give a brief description for another result on �nite trees, which already

appeared in the literature but can be simpli�ed by our method. In [18], Gupta

proved that well-partial-orderedness of the tree minor relation is equivalent to

well-orderedness of the ordinal �

0

. The method in [18] is to associate regular

expressions to trees and ordinals to regular expressions so that bad sequences

with respect to the tree minor yield descending sequences of ordinals less than

�

0

.

A �nite non-ordered tree is a minor of another if and only if the former is

obtained from the latter by several applications of edge deletion and edge con-

traction. We write s E

m

t if s is a tree minor of t (equal to the relation /

m

r

in

[18]). This is the graph minor relation applied on rooted trees but respecting

the orientation on the edges (rooted trees may be regarded as oriented graphs

where the orientations on the edges are from roots to leaves).

In the above, we modi�ed the notion of subterms to obtain the tree embedding

as the embedding on the algebra T . In Figure 5, we observed that if the notion
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of subterms is not modi�ed then s embeds into t undesirably. However the

reader might notice that s is a minor of t by contracting the rightmost edge

from the root of t (s; t are ordered trees here). In fact, if we add the omitted

rule of subterms

a � t

a � cons(t; f)

t : T and f : F

then a �nite ordered tree s embeds into t by the algebra embedding E

T

if and

only if s is obtained from t by several applications of two rewriting rules in

Figure 6. Observe that the rule (i) is the combination of a single application

of edge contraction and several applications of edge deletion, and the rule (ii)

is a consequence of several applications of edge deletions. So �xing in some

canonical way the order on the sets of immediate successors of all nodes in

order to transform non-ordered trees to ordered trees, we easily see s E

T

t

(with the added rule above for subterms) implies s E

m

t. Therefore Wpo(E

m

)

implies Wpo(E

T

).

(i)

�

t=0
� � �

t=(i � 1)
�

t=(i + 1)
� � �

t=(n � 1)

t=i 0
� � �

t=i (n

i

� 1)

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

P

P

P

P

P

P

P

P

�

�

�

@

@

@

 

�

t=0
� � �

t=(i � 1) t=i 0
� � �

t=i (n

i

� 1)

�

�

�

�

�

�

�

�

�

�

�

A

A

A

P

P

P

P

P

P

P

P

(ii)

�

t=0
� � �

t=(i � 1) t=i t=(i + 1)
� � �

t=(n � 1)

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

P

P

P

P

P

P

P

P

 

�

t=0
� � �

t=(i � 1) t=(i + 1)
� � �

t=(n � 1)

�

�

�

�

�

�

�

�










J

J

J

P

P

P

P

P

P

P

P

Figure 6

On the other hand, the rules in Figure 6 correspond exactly the algebra embed-
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ding on B = �X:X

2

+ 1 of binary trees by the transformation s 7! s

[

from B

to T in Figure 7. Hence Wpo(E

B

) implies Wpo(E

T

) and so in turn Wpo(E

m

).

Since Theorem 5.11 shows the algebra B is rei�ed by the ordinal �

0

, we �nally

have the proof that well-orderedness of �

0

implies well-partial-orderedness of

the tree minor relation. The converse is easier. Therefore we have the following

theorem �rst proved by Gupta [18].

s=0 s=1
� � �

s=(m� 1)

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

 

�

(s=0)

b

�

(s=1)

b

�

(s=(m� 1))

b

�

�

�

�

�

�

@

@
@

�

�

@

@

�

�

@

@

@

Figure 7

7.3 Theorem

Well-partial-orderedness of the tree minor is equivalent to well-orderedness of

the ordinal �

0

So it is independent from system ACA

0

that the set of �nite non-ordered trees

is well-partial-ordered with respect to the tree minor relation. In addition, since

the argument is formalizable in intuitionistic logic, we have a constructive proof

of the fact that the tree minor is a well-partial-ordered, from a constructive

proof of well-orderedness of �

0

(See [18]).
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