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1 Preliminaries

We recall in this Section all the de�nitions that we need for this Chapter and, in particular,

the de�nitions about distance spaces, isometric embeddings, measure spaces, and our main

host spaces, namely, the Banach `

p

- and L

p

-spaces for 1 � p � 1.

1.0.1 Distance spaces and `

p

-spaces

Let X be a set. A function d : X�X ! R

+

is called a distance on X if d is symmetric,

i.e., satis�es d(i; j) = d(j; i) for all i; j 2 X , and if d(i; i) = 0 holds for all i 2 X . Then,

(X; d) is called a distance space. If d satis�es, in addition, the following inequalities

(1.1) d(i; j)� d(i; k) + d(j; k) for all i; j; k 2 X;

called triangle inequalities, then d is called a semimetric onX . Moreover, if d(i; j) = 0

holds only for i = j, then d is a metric on X .

Suppose d is a distance on the set V

n

= f1; : : : ; ng. Set E

n

= fij : i; j 2 V

n

; i 6= jg,

where the symbol ij denotes the unordered pair of the integers i; j, i.e., ij and ji are

considered identical. Because of symmetry and since d(i; i) = 0 for i 2 V

n

, we can view the

distance d as a vector d = (d

ij

)

1�i<j�n

2 R

E

n

and, vice versa, each vector d 2 R

E

n

yields

a symmetric function that is zero on the main diagonal. We will use both representations

as a function on V

n

� V

n

or as a vector of R

E

n

for a distance on V

n

.

Given a normed space (E; k : k), a metric d

k:k

is de�ned on E, called norm or

Minkowski metric, by setting

d

k:k

(x; y) =k x� y k

for all x; y 2 E.

We will consider, in particular, the norm metric, denoted by d

`

p

and called the `

p

-

metric, of the Banach `

p

-space (R

m

; k : k

p

) for p � 1. Recall that

k x k

p

= (

X

1�k�m

jx

k

j

p

)

1

p

for all x 2 R

m

. The metric space (R

m

; d

`

p

) is denoted by `

m

p

. Similarly, `

m

1

denotes the

metric space (R

m

; d

`

1

), where d

`

1

denotes the norm metric associated with the norm

k : k

1

which is de�ned by

k x k

1

= max(jx

k

j : 1 � k � m);

for all x 2 R

m

.
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For 1 � p < 1, the metric space `

1

p

consists of the set of in�nite sequences x =

(x

i

)

i�0

2 R

N

for which the sum

P

i�0

jx

i

j

p

is �nite, endowed with the distance d(x; y) =

�

P

i�0

jx

i

� y

i

j

p

�

1

p

. In the same way `

1

1

is the set of bounded in�nite sequences x 2 R

N

,

endowed with the distance d(x; y) = max(jx

i

� y

i

j : i � 0).

If (X; d) and (X

0

; d

0

) are two distance spaces, (X; d) is said to be isometrically em-

beddable into (X

0

; d

0

) if there exists a map � (the embedding) from X to X

0

such

that d(x; y) = d

0

(�(x); �(y)) for all x; y 2 X . One says also that (X; d) is an isometric

subspace of (X

0

; d

0

). All the embeddings considered here are isometric, so we sometimes

omit the adjective \isometric".

A distance space (X; d) is said to be `

p

-embeddable if (X; d) is isometrically embed-

dable into the space `

m

p

for some integer m � 1. The smallest such integer m is called the

`

p

-dimension of (X; d) and is denoted by m

p

(X; d). Then, we denote by

(1.2) m

p

(n) = max(m

p

(X; d) : jX j = n and (X; d) is `

p

-embeddable)

the minimum dimension m such that each `

p

-embeddable distance on n points can be

embedded in `

m

p

. It is known that m

p

(n) is �nite; in fact, m

p

(n) �

�

n

2

�

for all n and p (see

Section 7.1).

(X; d) is said to be `

1

p

-embeddable if it is an isometric subspace of `

1

p

.

We are interested here in the study of the distances spaces which can be isometrically

embedded in one of the following host spaces: `

m

p

, `

1

p

, or L

p

(
;A; �) (see the de�nition

below) for p � 1 and we are mainly concerned with the cases p = 1; 2.

The case p = 1 is directly relevant to the central topic of this book. Indeed, the

distances on n points that are `

1

-embeddable are precisely the members of the cut cone

CUT

n

; see Theorem 2.11.

The case p = 2 is also closely related to our topic; see Section 4.3.

On the other hand, it is well known that the distances on n points that are `

1

-

embeddable are precisely the semimetrics on n points, i.e., the members of the semimetric

cone MET

n

. To see it, note that if d is a semimetric on the set V

n

= f1; : : : ; ng, then the

mapping i 2 V

n

7! (d(1; i); d(2; i); : : : ; d(n � 1; i)) 2 R

n�1

is an isometric embedding of

(V

n

; d) into `

n�1

1

. This shows that

(1.3) m

1

(n) � n� 1:

We also consider isometric embeddings into the hypercube metric space (f0; 1g

m

; d

`

1

),

which is a subspace of `

m

1

. Note that the hypercube metric space can also be de�ned
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as the graphic metric space (V (H

m

); d

H

m

), where H

m

denotes the 1-skeleton of the m-

dimensional hypercube and d

H

m

is its path metric de�ned on the nodes of H

m

. A distance

space (X; d) is said to be hypercube embeddable if it can be isometrically embedded

in some hypercube metric space. Hence, each hypercube embeddable distance space is

`

1

-embeddable and, in fact, if d is rational valued, then the space (X; d) is hypercube

embeddable if and only if (X; �d) is `

1

-embeddable for some scalar �; see Proposition 2.8.

1.0.2 Measure spaces and L

p

-spaces

For de�ning the distance space L

p

(
;A; �), we need to recall some de�nitions on measure

spaces. Let 
 be a set and let A be a �-algebra of subsets of 
, i.e., A satis�es the

following properties

8

>

<

>

:


 2 A;

if A 2 A then 
 nA 2 A;

if A =

S

1�k�1

with A

k

2 A for all k; then A 2 A:

A function � : A �! R

+

is a measure on A if it is additive, i.e., �(

S

k�1

A

k

) =

P

k�1

�(A

k

) for all pairwise disjoint sets A

k

2 A, and satis�es �(;) = 0. Note that

measures are always assumed to be nonnegative. A measure space is a triple (
;A; �)

consisting of a set 
, a �-algebra A of subsets of 
, and a measure � on A. A probability

space is a measure space with total measure �(
) = 1.

Given a function f : 
 �! R, its L

p

-norm is de�ned by

k f k

p

=

�

Z




jf(!)j

p

�(d!)

�

1

p

:

Then, L

p

(
;A; �) denotes the set of functions f : 
 �! R which satisfy k f k

p

< 1.

The L

p

-norm de�nes a metric structure on L

p

(
;A; �), namely, by taking k f � g k

p

as

distance between two functions f; g 2 L

p

(
;A; �).

A distance space (X; d) is said to be L

p

-embeddable if it is a subspace of L

p

(
;A; �)

for some measure space (
;A; �).

The most classical example of an L

p

-space is the space L

p

(
;A; �), where 
 is the open

interval (0; 1), A is the family of Borel subsets of (0; 1), and � is the Lebesgue measure; it

is simply denoted by L

p

(0; 1).

We now make precise the connections existing between L

p

-spaces and `

p

-spaces.

If 
 = N, A = 2




is the collection of all subsets of 
, and � is the cardinality measure,

i.e., �(A) = jAj if A is a �nite subset of 
 and �(A) = 1 otherwise, then L

p

(N; 2

N

; j:j)

coincides with the space `

1

p

.
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If 
 = V

m

is a set of cardinality m, A = 2




, and � is the cardinality measure, then

L

p

(V

m

; 2

V

m

; j:j) coincides with `

m

p

.

In other words, `

m

p

is an isometric subspace of `

1

p

which, in turn, is L

p

-embeddable.

Finally, we introduce one more semimetric space. Let (
;A; �) be a measure space.

Set A

�

= fA 2 A : �(A) <1g. One can de�ne a distance d

�

on A

�

by setting

d

�

(A;B) = �(A4B)

for all A;B 2 A

�

: Then, d

�

is a semimetric on A

�

. We call it a measure semimetric,

and the space (A

�

; d

�

) is called a measure semimetric space. The semimetric d

�

is

also called a Fr�echet-Nikodym-Aronszajn distance in the literature. We will consider in

Section 6.3 the related Steinhaus distance, which is de�ned by

�(A4B)

�(A \B)

for A;B 2 A

�

: Note that the measure semimetric space (A

�

; d

�

) is the subspace of

L

1

(
;A; �) consisting of its 0-1 valued functions. Moreover, if 
 = V

m

is a �nite set

of cardinality m, A = 2




, and � is the cardinality measure, then the space (A

�

; d

�

)

coincides with the hypercube metric space (f0; 1g

m

; d

`

1

).

1.0.3 Finitude result for L

p

-embeddability

Though we are mainly concerned with �nite distance spaces, i.e., distance spaces (X; d)

with X �nite, we also present some results involving in�nite distance spaces. For instance,

we study in Section 5.1 the normed spaces whose norm metric is L

1

-embeddable. However,

the following fundamental result shows that the study of L

p

-embeddable spaces can be

reduced to the �nite case.

Theorem 1.4 [BCK66] Let p � 1 and let (X; d) be a distance space. Then, (X; d) is

L

p

-embeddable if and only if every �nite subspace of (X; d) is L

p

-embeddable.

We consider in detail L

1

-embeddable distance spaces in Section 2. In particular, we

show that, for a �nite distance space, the properties of being `

1

-, `

1

1

, or L

1

-embeddable

are all equivalent to the property of belonging to the cut cone (see Theorem 2.11).

Similar results are known for the case p = 2 (see, e.g., [WW75]). Namely, for a

�nite distance space (X; d), the properties of being `

2

-, `

1

2

-, or L

2

-embeddable are all

equivalent (and, then, (X; d) embeds in `

jX j�1

2

; see relation (4.18)). Moreover, if X is

countable, then (X; d) is `

1

2

-embeddable (or, equivalently, L

2

-embeddable) if and only if
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each subspace of (X; d) on n + 1 points embeds in `

n

2

. A crucial result in the case p = 2

is the well known result by Schoenberg [Sch38b], which shows that L

2

-embeddable spaces

can be characterized by the negative type inequalities; see Theorem 4.16 in Section 4.

This contrasts with the case p = 1 where no complete characterization by inequalities is

known for L

1

-embeddable spaces.

Isometric embeddings among the L

p

-spaces.

There is a vast literature on the topic of isometric embeddings among the various L

p

-spaces;

see, e.g., [WW75, Dor76, Bal87, LV93]. We summarize here some of the main results.

Theorem 1.5 [Dor76] Let 1 � p < 1, 1 � r � 1 and m 2 N,m � 2. Then, `

m

r

is an

isometric subspace of L

p

(0; 1) if and only if one of the following assertions holds.

(i) p � r < 2.

(ii) r = 2.

(iii) m = 2 and p = 1.

Hence, for instance, `

3

r

does not embed isometrically in L

p

(0; 1) if r > 2. It was already

shown in [BCK66] that L

p

(0; 1) embeds isometrically in L

1

(0; 1) for all 1 � p � 2.

As a reformulation of the above Theorem, we have the following implications for a distance

space (X; d).

� If (X; d) is `

2

p

-embeddable for some 1 � p � 1, then (X; d) is L

1

-embeddable.

� If (X; d) is `

p

-embeddable for some 1 � p � 2, then (X; d) is L

1

-embeddable.

� If (X; d) is `

2

-embeddable, then (X; d) is L

p

-embeddable for all 1 � p � 1.

Let r 6= p such that 1 � r; p <1 and letm � 1 be an integer. Then, `

m

r

embeds isometrically

in `

n

p

for some integer n � 1 if and only if r = 2 and p is an even integer ([LV93]). Given

an even integer p, we can de�ne N (m; p) as the smallest integer n � 1 for which `

m

2

embeds

isometrically into `

n

p

. It is shown in [LV93] that N (2; p) =

p

2

+ 1 and that, for any p � 2

and m � 1, max(N (m � 1; p); N (m; p� 2)) � N (m; p) �

�

m+p�1

m�1

�

. An exact evaluation of

N (m; p) is known for small values of p;m; for instance, N (3; 4) = 6; N (3; 6) = 11; N (3; 8) =

16; N (7; 4) = 28; N (8; 6) = 120; N (23; 4) = 276; N (23; 6) = 2300; N (24; 10) = 98280:

Therefore, given r and m 2 N such that 1 < r � 2 < m, we have that `

m

r

does not embed

isometrically into `

n

1

(n positive integer), but `

m

r

embeds into L

1

(0; 1) and, moreover, every

�nite subspace of `

m

r

on s points embeds into `

(

s

2

)

1

.

2 The cut cone and `

1

-metrics

In this Section, we show how the members of the cut cone can be interpreted in terms of

metrics and measure spaces. We essentially follow [Ass80b] and [AD82].

In order to make the Chapter self-contained, we recall the de�nition of the cut cone.

Given a subset S of V

n

= f1; : : : ; ng, �(S) denotes the cut semimetric de�ned by
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(2.1) �(S)

ij

= 1 if jS \ fi; jgj= 1; and �(S)

ij

= 0 otherwise,

for all 1 � i < j � n. Then, CUT

n

denotes the cone in R

E

n

generated by the cut

semimetrics �(S) for all subsets S � V

n

, CUT

n

is called the cut cone on n points,

and the cut polytope CUT

2

n

denotes the polytope in R

E

n

whose vertices are the cut

semimetrics �(S) for all subsets S of V

n

. So,

(2.2) CUT

n

= f

X

S�V

n

�

S

�(S) : �

S

� 0 for all S � V

n

g;

(2.3) CUT

2

n

= f

X

S�V

n

�

S

�(S) :

X

S�V

n

�

S

= 1 and �

S

� 0 for all S � V

n

g:

If one considers an arbitrary �nite set X instead of V

n

, then one de�nes similarly the

cut cone CUT(X) and the cut polytope CUT

2

(X) on X . So, CUT(V

n

) = CUT

n

and

CUT

2

(V

n

) = CUT

2

n

.

2.1 `

1

-spaces (�nite case)

Clearly, every member d of the cut cone CUT

n

de�nes a semimetric on n points. Hence

arises the question of characterizing the class of semimetrics that belong to the cut cone.

Several equivalent characterizations are stated in Theorem 2.11. We now present several

intermediate results.

Proposition 2.4 Let d = (d

ij

)

1�i<j�n

2 R

E

n

. The following assertions are equivalent.

(i) d 2 CUT

n

(resp. d 2 CUT

2

n

).

(ii) There exist a measure space (resp. a probability space) (
;A; �) and A

1

; : : : ; A

n

2 A

such that d

ij

= �(A

i

4A

i

) for all 1 � i < j � n.

Proof. Assume d 2 CUT

n

. Then, d =

P

S�f1;:::;ng

�

S

�(S) for some �

S

� 0. We de�ne

a measure space (
;A; �) as follows. Let 
 denote the family of subsets of f1; : : : ; ng,

let A denote the family of subsets of 
 and let � denote the measure on A de�ned

by �(A) =

P

S2A

�

S

for each A 2 A (i.e., A is a collection of subsets of f1; : : : ; ng).

De�ne A

i

= fS 2 
 : i 2 Sg. Then, �(A

i

4A

j

) = �(fS 2 
 : jS \ fi; jgj = 1g)

=

P

S2
:jS\fi;jgj=1

�

S

= d

ij

holds, for all 1 � i < j � n. Moreover, if d 2 CUT

2

n

, then we

have

P

S

�

S

= 1, i.e. �(
) = 1, that is (
;A; �) is a probability space.

Conversely, assume d

ij

= �(A

i

4A

j

) for 1 � i < j � n, where (
;A; �) is a measure

space and A

1

; : : : ; A

n

2 A. Set A

S

=

T

i2S

A

i

\

T

i 62S

(
 n A

i

) for each S � f1; : : : ; ng.

Then, A

i

=

S

S:i2S

A

S

, A

i

4A

j

=

S

S:jS\fi;jgj=1

A

S

and 
 =

S

S

A

S

. Therefore, d =

P

S�f1;:::;ng

�(A

S

)�(S), showing that d belongs to the cut cone CUT

n

. Moreover, if
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(
;A; �) is a probability space, i.e., �(
) = 1, then

P

S

�(A

S

) = 1, implying that d

belongs to the cut polytope CUT

2

n

.

Proposition 2.5 Let d 2 R

E

n

and (V

n

; d) the associated distance space. The following

assertions are equivalent.

(i) d 2 CUT

n

.

(ii) (V

n

; d) is `

1

-embeddable, i.e., there exist n vectors u

1

; : : : ; u

n

2 R

m

for some m such

that d

ij

=k u

i

� u

j

k

1

for all 1 � i < j � n.

Proof. (i) ) (ii). Suppose that d 2 CUT

n

. Then, d =

P

1�k�m

�

k

�(S

k

) with

�

1

; : : : ; �

m

� 0. For 1 � i � n, de�ne the vector u

i

2 R

m

with components (u

i

)

k

= �

k

if

i 2 S

k

and (u

i

)

k

= 0 otherwise, for 1 � k � m. Then d

ij

=k u

i

� u

j

k

1

holds, showing

that (V

n

; d) is `

1

-embeddable.

(ii)) (i). Assume that (V

n

; d) is `

1

-embeddable, i.e., there exist n vectors u

1

; : : : ; u

n

2 R

m

for some m � 1 such that d

ij

=k u

i

� u

j

k

1

, for 1 � i < j � n. We show that d 2 CUT

n

.

It su�ces to show the result for the case m = 1 by additivity of the `

1

-norm. Hence,

d

ij

= ju

i

� u

j

j where u

1

; : : : ; u

n

2 R. Without loss of generality, we can suppose that

0 = u

1

� u

2

� : : : � u

n

. Then, d =

P

1�k�n�1

(u

k+1

� u

k

)�(f1; 2; : : : ; k � 1; kg) holds,

showing that d 2 CUT

n

.

Remark 2.6 The proof of Proposition 2.5 shows that, if d is a distance on V

n

, then d is

`

m

1

-embeddable whenever d can be decomposed as a nonnegative combination of m cut

semimetrics.

There is a characterization for hypercube embeddable semimetrics analogue to that of

Proposition 2.5.

Proposition 2.7 Let d 2 R

E

n

and (V

n

; d) be the associated distance space. The following

assertions are equivalent.

(i) d =

P

S

�

S

�(S) for some nonnegative integer scalars �

S

.

(ii) (V

n

; d) is hypercube embeddable, i.e., there exist n vectors u

1

; : : : ; u

n

2 f0; 1g

m

for

some m such that d

ij

=k u

i

� u

j

k

1

for all 1 � i < j � n.

(iii) There exist a �nite set 
 and n subsets A

1

; : : : ; A

n

of 
 such that d

ij

= jA

i

4A

j

j for

all 1 � i < j � n.

(iv) (V

n

; d) is an isometric subspace of (Z

m

; d

`

1

) for some integer m � 1.
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Proof. The proof of (i) () (ii) is analogous to that of Proposition 2.5. Namely, for

(i) =) (ii), assume d =

P

1�k�m

�(S

k

) (allowing repetitions). Consider the binary n�m

matrix M whose columns are the incidence vectors of the sets S

1

; : : : ; S

m

. If u

1

; : : : ; u

n

denote the rows of M , then d

ij

=k u

i

� u

j

k

1

holds, providing an embedding of (V

n

; d)

in the hypercube of dimension m. Conversely, for (ii) =) (i), consider the matrix M

whose rows are the n given vectors u

1

; : : : ; u

n

. Let S

1

; : : : ; S

m

be the subsets of f1; : : : ; ng

whose incidence vectors are the columns of M . Then, d =

P

1�k�m

�(S

k

) holds, giving a

decomposition of d as a nonnegative integer combination of cuts.

(iii) is a reformulation of (ii), (iii) =) (iv) is obvious, and (iv) =) (i) follows from the

proof of the implication (ii) =) (i) of Proposition 2.5.

The next result follows immediately from Propositions 2.5 and 2.7.

Proposition 2.8 Let (V

n

; d) be a distance space where d is rational valued. Then, (V

n

; d)

is `

1

-embeddable if and only if (V

n

; �d) is hypercube embeddable for some scalar �.

The equivalence (i) () (ii) from Proposition 2.7 can be generalized in the context of

Hamming spaces and multicuts.

Recall that, given x; y 2R

k

, theirHamming distance d

H

(x; y) is de�ned as the number of

positions where the coordinates of x and y di�er. Hence, when considered on binary vectors,

the Hamming distance coincides with the `

1

-distance.

Let q � 2 be an integer and let S

1

; : : : ; S

q

be q subsets of V

n

that partition V

n

. Then, the

multicut vector �(S

1

; : : : ; S

q

) is the vector of R

E

n

de�ned by

�(S

1

; : : : ; S

q

)

ij

= 0 if i; j 2 S

h

for some h; 1 � h � p;

�(S

1

; : : : ; S

q

)

ij

= 1 otherwise

for 1 � i < j � n.

Proposition 2.9 Let d 2 R

E

n

and (V

n

; d) be the associated distance space. The following

assertions are equivalent.

(i) d =

P

(S

1

;:::;S

q

) partition of V

n

�

S

1

:::S

q

�(S

1

; : : : ; S

q

) for some nonnegative integers

�

S

1

:::S

q

.

(ii) (V

n

; d) is an isometric subspace of the Hamming space (f0; 1; : : : ; q� 1g

m

; d

H

) for some

integer m � 1.

The following result will permit us to link `

1

- and L

1

-embeddability.

Lemma 2.10 Let (X; d) be a distance space. The following assertions are equivalent.

(i) (X; d) is L

1

-embeddable.

(ii) (X; d) is a subspace of a measure semimetric space (A

�

; d

�

) for some measure space

(
;A; �).
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Proof. The implication (ii) ) (i) is clear, since (A

�

; d

�

) is a subspace of L

1

(
;A; �).

We check (i) ) (ii). It su�ces to show that each space L

1

(
;A; �) is a subspace of

(B

�

; d

�

) for some measure space (T;B; �). Set T = 
 � R, B = A � R where R is the

family of Borel subsets of R, and � = � 
 � where � is the Lebesgue measure on R. For

f 2 L

1

(
;A; �), let E(f) = f(!; s) 2 
 � R : s > f(!)g denote its epigraph. Then,

the map f 7�! E(f)4E(0) provides an isometric embedding from L

1

(
;A; �) to (B

�

; d

�

),

since k f � g k

1

= �(E(f)4E(g)) holds.

We summarize in the next Theorem the equivalent characterizations that we have

obtained for members of the cut cone CUT

n

.

Theorem 2.11 Let d 2 R

E

n

and (V

n

; d) be the associated distance space. The following

assertions are equivalent.

(i) d 2 CUT

n

.

(ii) (V

n

; d) is `

1

-embeddable.

(iii) (V

n

; d) is L

1

-embeddable.

(iv) There exist a measure space (
;A; �) and A

1

; : : : ; A

n

2 A such that d

ij

= �(A

i

4A

i

)

for all 1 � i < j � n.

(v) (V

n

; d) is an isometric subspace of `

1

1

.

2.2 L

1

-spaces (in�nite case)

Theorem 2.11 remains partially valid for the case of a distance space (X; d) where the

set X is in�nite. Indeed, the equivalence (iii) () (iv) holds by Lemma 2.10 and the

implication (ii) =) (iii) holds trivially. In fact, there is an in�nite analogue of the cut

cone, as we now see.

For each subset Y of X , let �

Y

denote the cut function induced by Y de�ned by

�

Y

(x; y) = 1 if jY \ fx; ygj = 1, �

Y

(x; y) = 0 otherwise, for x; y 2 X ; so �

Y

is just the

symmetric function corresponding to the cut semimetric �(Y ). Let D(X) denote the set

of all cut functions �

Y

for Y � X .

Let C

1

(X) denote the set of all semimetrics d on X for which (X; d) is L

1

-embeddable.

Theorem 2.12 Let (X; d) be a distance space. The following assertions are equivalent.

(i) (X; d) is L

1

-embeddable.

(ii) There exists a measure � on D(X) such that d(x; y) =

R

D(X)

�(x; y)�(d�) for x; y 2 X.

Proof. (i)) (ii). Assume (X; d) is L

1

-embeddable. Then, by Lemma 2.10, there exist a

measure space (
;A; �) and a map x 7�! A

x

fromX to A

�

such that d(x; y) = �(A

x

4A

y

)
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for x; y 2 X . For ! 2 
, set A

!

= fx 2 X : ! 2 A

x

g. We de�ne a measure � on D(X)

additively by setting �(f�

Y

g) = �(f! 2 
 : A

!

= Y g) for each Y � X .

Note that ! 2 A

x

if and only if x 2 A

!

and ! 2 A

x

4A

y

if and only if jA

!

\ fx; ygj = 1.

Therefore,

d(x; y) = �(A

x

4A

y

) = �(f! 2 
 : jA

!

\ fx; ygj = 1g)

= �(f! 2 
 : �

A

!

(x; y) = 1g)

= �(

S

Y �X :�

Y

(x;y)=1

f! 2 
 : A

!

= Y g)

=

R

D(X)

�(x; y)�(d�):

(ii) ) (i). Conversely, assume that d =

R

D(X)

��(d�) for some non negative measure

on D(X). Fix s 2 X and set A

x

= f� 2 D(X) : �(s; x) = 1g for each x 2 X . Then,

d(x; y) = �(A

x

4A

y

) holds, since �(x; y) = 0 if � 62 A

x

4A

y

and �(x; y) = 1 if � 2 A

x

4A

y

.

This shows, using Lemma 2.10, that (X; d) is L

1

-embeddable.

Theorem 2.13 (i) C

1

(X) is a convex cone.

(ii) The extremal rays of C

1

(X) are the rays generated by the nonzero cut functions �

Y

for Y � X, ; 6= Y 6= X.

Proof. (i) follows from Corollary 4.25 (i).

We check (ii). It is easy to see that each cut function lies on an extreme ray of C

1

(X) (it

lies, in fact, on an extreme ray of the semimetric cone). Consider now d 2 C

1

(X) which is

not a cut function. We can suppose that d(x

1

; x

2

) = 1, d(x

1

; x

3

) = � > 0 and d(x

2

; x

3

) =

� > 0 for some x

1

; x

2

; x

3

2 X with � � �. Set d

1

=

R

D(X)

�(x

1

; x

2

)�(x

1

; x

3

)��(d�) and

d

2

= d � d

1

. Then, d

1

; d

2

2 C

1

(X) by Theorem 2.12. But d

1

(x

1

; x

2

) =

1+���

2

> 0,

since 2�(x

1

; x

2

)�(x

1

; x

3

) = �(x

1

; x

2

) + �(x

1

; x

3

) � �(x

2

; x

3

) for each cut function �. Also,

d

1

(x

2

; x

3

) = 0 and d

2

(x

2

; x

3

) = �. Therefore d does not lie on an extreme ray of C

1

(X)

since d = d

1

+ d

2

where d

1

and d

2

are not proportional to d.

By Theorem 1.4 applied in the case p = 1, we have that a distance space is L

1

-

embeddable if and only if every �nite subspace of it is L

1

-embeddable. Therefore, L

1

-

embeddability can be characterized by a family of linear inequalities, each involving only

a �nite number of variables. In other words, characterizing L

1

-embeddability amounts to

�nding the facet de�nig inequalities of the cut cone CUT

n

for all n � 2.

3 The correlation cone and f0; 1g-covariances

As before, we set V

n

= f1; : : : ; ng and E

n

= fij : i; j 2 V

n

; i 6= jg denotes the set of

unordered pairs of elements of V

n

. Given a subset S of V

n

, let �(S) = (�(S)

ij

)

1�i�j�n

2
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R

V

n

[E

n

(identifying the diagonal pair ii with the element i 2 V

n

) be de�ned by

(3.1) �(S)

ij

= 1 if i; j 2 S and �(S)

ij

= 0 otherwise

for all i; j 2 V

n

; �(S) is called a correlation vector. The correlation cone COR

n

is the cone generated by all correlation vectors �(S) for S � V

n

and the correlation

polytope COR

2

n

is the convex hull of the correlation vectors �(S) for S � V

n

. So,

(3.2) COR

n

= f

X

S�V

n

�

S

�(S) : �

S

� 0 for all S � V

n

g;

(3.3) COR

2

n

= f

X

S�V

n

�

S

�(S) :

X

S�V

n

�

S

= 1 and �

S

� 0 for all S � V

n

g:

The correlation cone and/or polytope were considered in many papers, among them,

[MD72, Dez73, Erd87, Isa89, Pad89, Sim90, BH91, Pit86, Pit91]. The polytope COR

2

n

is

also known under the name of boolean quadric polytope ([Pad89]). The terminology

\correlation polytope" was introduced by Pitowsky ([Pit91]). It is motivated by the fact

that COR

2

n

arises naturally in the context of probability; see Proposition 3.13. Actually,

this interpretation was already used in [MD72] in the context of quantum mechanics for

describing the pair distributions of particles in lattice sites.

It is sometimes convenient to consider an arbitrary �nite subset X instead of V

n

. Then,

the correlation cone is denoted by COR(X) and the correlation polytope by COR

2

(X).

3.1 The covariance mapping

A simple but fundamental property is that the cut cone CUT

n+1

and the correlation

cone COR

n

(resp. the cut polytope CUT

2

n+1

and the correlation polytope COR

2

n

) are in

one-to-one correspondance via the following covariance mapping.

The covariance mapping � is the mapping from the space R

E

n+1

(indexed by the

�

n+1

2

�

pairs of elements of V

n+1

) to the space R

V

n

[E

n

(indexed by the n elements of V

n

and the

�

n

2

�

pairs of elements of V

n

) de�ned by p = �(d) for d = (d

ij

)

1�i<j�n+1

and

p = (p

ij

)

1�i�j�n

with

(3.4) p

ij

=

1

2

(d

i;n+1

+ d

j;n+1

� d

ij

) for all 1 � i � j � n

or, equivalently,
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(3.5)

(

d

ij

= p

ii

+ p

jj

� 2p

ij

for 1 � i < j � n

d

i;n+1

= p

ii

for 1 � i � n:

The covariance mapping � is a linear bijection from R

E

n+1

to R

V

n

[E

n

. One can easily

check that, for any subset S of V

n

, �(�(S)) = �(S) holds. Therefore,

(3.6) �(CUT

n+1

) = COR

n

and �(CUT

2

n+1

) = COR

2

n+1

:

In the same way, given a �nite subset X and an element x

0

2 X , the cut cone CUT(X)

and the correlation cone COR(X n fx

0

g) (resp. the cut polytope CUT

2

(X) and the

correlation polytope COR

2

(X n fx

0

g)) are in one-to-one linear correspondance, via the

covariance mapping �, also denoted as �

x

0

if one wants to stress the choice of the point

x

0

. For the sake of clarity, we rewrite the de�nition.

Let X be a set (not necessarly �nite), x

0

2 X , let d be a distance on X and let p be a

symmetric function on X n fx

0

g. Then, p = �(d) = �

x

0

(d) if

(3.7) p(x; y) =

1

2

(d(x; x

0

) + d(y; x

0

)� d(x; y)) for all x; y 2 X n fx

0

g

or, equivalently,

(3.8)

(

d(x; x

0

) = p(x; x) for all x 2 X n fx

0

g;

d(x; y) = p(x; x) + p(y; y)� 2p(x; y) for all x; y 2 X n fx

0

g:

Therefore, for X �nite,

�

x

0

(CUT(X)) = COR(X n fx

0

g) and �

x

0

(CUT

2

(X)) = COR

2

(X n fx

0

g):

Note that, if one uses relation (3.7) for computing p(x; x

0

), then one obtains that p(x; x

0

) =

0 for all x 2 X . This explains why we consider p as being de�ned only on the pairs of

elements from X n fx

0

g.

The covariance mapping appeared in many di�erent areas of mathematics. See, for

instance, [Cri88], [CP93] (where, for a metric space (X; d) and its image p = �(d), the

quantity p(x; y) is known as the Gromov product of x; y 2 X n fx

0

g), [Fic87] (where it

is called a linear generalized similarity function).

The connection between cut and correlation polyhedra, which is formulated in (3.6),

was rediscovered independently by several authors (e.g., in [Ham65, Dez73, Sim90]).



14 M. Deza and M. Laurent

3.2 Covariances

We now introduce the notion of M -covariance. This notion is studied in [Ass79, Ass80b]

for M being a subset of a Hilbert space. We consider here only the case when M = R or

M = f0; 1g.

Definition 3.9 Let M be a subset of R. A symmetric function p : X �X �! R is called

an M-covariance if there exist a measure space (
;A; �) and functions f

x

2 L

2

(
;A; �)

taking values in M , for all x 2 X, such that

p(x; y) =

Z




f

x

(!)f

y

(!)�(d!) for all x; y 2 X:

In particular, p is a f0; 1g-covariance if and only if there exist a measure space (
;A; �)

and sets A

x

2 A

�

, for all x 2 X, such that

p(x; y) = �(A

x

\ A

y

) for all x; y 2 X:

The next two Lemmas show how R-covariances and f0; 1g-covariances are related to

L

2

- and L

1

-embeddable distance spaces, respectively, via the covariance mapping. These

facts will be extensively used in the sequel.

Lemma 3.10 Let X be a set and x

0

2 X. Let d be a distance on X and let p = �

x

0

(d)

be the corresponding symmetric function on X n fx

0

g. Then, (X;

p

d) is L

2

-embeddable if

and only if p is an R-covariance on X n fx

0

g.

Proof. It is an immediate veri�cation.

Lemma 3.11 [Dez73] Let X be a set and x

0

2 X. Let d be a distance on X and let

p = �

x

0

(d) be the corresponding symmetric function on X n fx

0

g. Then, (X; d) is L

1

-

embeddable if and only if p is a f0; 1g-covariance on X n fx

0

g.

Proof. By Lemma 2.10, (X; d) is L

1

-embeddable if and only if there exist a measure

space (
;A; �) and sets A

x

2 A

�

for x 2 X such that d(x; y) = �(A

x

4A

y

) for all x; y 2 X .

Without loss of generality, we can suppose that A

x

0

= ;. Then, it follows from relation

(3.7 ) that p(x; y) =

1

2

(�(A

x

) + �(A

y

)� �(A

x

4A

y

)) = �(A

x

\A

y

) for all x; y 2 X n fx

0

g.

The following �nitude result is a consequence of Lemma 3.11 and Theorem 1.4.
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Proposition 3.12 Let p be a symmetric function on X. Then, p is a f0; 1g-covariance

on X if and only if, for each �nite subset Y of X, the restriction of p to Y is a f0; 1g-

covariance on Y .

We now give an interpretation of the members of the correlation cone and polytope

which is an analogue of Proposition 2.4 (via the covariance mapping). It was rediscovered

in [Pit86].

Proposition 3.13 Let p = (p

ij

)

1�i�j�n

2 R

V

n

[E

n

. The following assertions are equiva-

lent.

(i) p 2 COR

n

(resp. p 2 COR

2

n

).

(ii) There exist a measure space (resp. a probability space) (
;A; �) and A

1

; : : : ; A

n

2 A

such that p

ij

= �(A

i

\ A

j

) for all 1 � i � j � n.

Therefore, for X �nite, p is a f0; 1g-covariance on X if and only if p belongs to the

correlation cone COR(X).

For the members of the correlation cone which can be written as a nonnegative integer

combination of correlation vectors, we can assume that the measure space in Proposi-

tion 3.13 (ii) is endowed with the cardinality measure. Namely, we have the following

result, which is an analogue of Proposition 2.7 (i)() (iii) (via the covariance mapping).

Proposition 3.14 Let p = (p

ij

)

1�i�j�n

2 R

V

n

[E

n

. The following assertions are equiva-

lent.

(i) p =

P

S�V

n

�

S

�(S) for some nonnegative integers �

S

.

(ii) There exist a �nite set 
 and n subsets A

1

; : : : ; A

n

of 
 such that p

ij

= jA

i

\ A

j

j for

all 1 � i � j � n.

A vector p satisfying the conditions of Proposition 3.14 is sometimes called an inter-

section pattern in the literature (see, e.g., [DR84]). Testing whether a given vector p is

an intersection pattern is an NP-complete problem ([Chv80]). However, this problem is

polynomial when restricted to some classes of vectors; for instance, it is polynomial when

retricted to the class of the vectors p such that p

ii

= 2 for all i 2 V

n

. We refer to Chapter

??? (on hypercube embedding) for results related to these questions.

3.3 The Boole problem

We now describe an application of the interpretation of the correlation cone and polytope

given in Proposition 3.13 for the following Boole problem.

Let (
;A; �) be a probability space and let A

1

; : : : ; A

n

be n events of A. A classical

question, which goes back to Boole [Boo54], is the following:
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Suppose we are given the values p

i

= �(A

i

) for 1 � i � n, what is the best estimation

of �(A

1

[ : : :A

n

) ?

It is easy to see that the answer is max(p

1

; : : : ; p

n

) � �(A

1

[ : : :A

n

) � min(1;

P

1�i�n

p

i

):

The next natural question is the following:

Suppose we are given the values p

i

= �(A

i

) for 1 � i � n and the values of the

joint probabilities p

ij

= �(A

i

\ A

j

) for 1 � i < j � n. What is the best estimation of

�(A

1

[ : : : [A

n

) in terms of the p

i

's and the p

ij

's ?

In fact, an answer to this problem is given by the facet de�ning inequalities for the

correlation polytope COR

2

n

. Namely,

�(A

1

[ : : :[A

n

) � max(w

T

p : w

T

z � 1 is facet de�ning for COR

2

n

)

(see Proposition 3.17 and relation (3.20)).

The approach described below for obtaining estimations of �(A

1

[ : : : [ A

n

) uses lin-

ear programming; it was considered in [KM76], [Pit91]. Given p 2 COR

n

, consider the

following two linear programming problems.

(3.15)

z

min

:= min

P

;6=S�V

n

�

S

subject to

P

;6=S�V

n

�

S

�(S) = p

�

S

� 0 for ; 6= S � V

n

(3.16)

z

max

:= max

P

;6=S�V

n

�

S

subject to

P

;6=S�V

n

�

S

�(S) = p

�

S

� 0 for ; 6= S � V

n

Proposition 3.17 Let z

min

and z

max

be de�ned by the relations (3.15) and (3.16). Then,

z

min

� �(A

1

[ : : :[A

n

) � z

max

.

Proof. Let p 2 COR

n

be de�ned by p

ij

= �(A

i

\ A

j

) for all 1 � i � j � n (setting

p

ii

= p

i

). For S � V

n

, set A

S

=

T

i2S

A

i

\

T

i 62S

(
 nA

i

). Then, A

i

\A

j

=

S

S�V

n

:i;j2S

A

S

,


 =

S

S�V

n

A

S

and A

1

[ : : :[A

n

=

S

S�V

n

:S 6=;

A

S

. Therefore, p =

P

S�V

n

:S 6=;

�(A

S

)�(S)

holds, with �(A

S

) � 0 for all S. Hence (�(A

S

) : ; 6= S � V

n

) is a feasible solution to the

programs (3.15) and (3.16), with objective value �(A

1

[ : : :[A

n

). This shows the result.

The dual programs to (3.15) and (3.16) are the following programs (3.18) and (3.19),

respectively.
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(3.18)

max w

T

p

subject to w

T

�(S) � 1 for ; 6= S � V

n

(3.19)

min w

T

p

subject to w

T

�(S) � 1 for ; 6= S � V

n

By linear programming duality, we obtain that

(3.20) z

min

= max(w

T

p : w

T

z � 1 is a valid inequality for COR

2

n

)

and one can easily verify that, in relation (3.20), it is su�cient to consider facet de�ning

inequalities. Similarly,

z

max

= min(w

T

p : w

T

z � 1 is facet de�ning for the polytope

Conv(f�(S) : ; 6= S � V

n

g):

(The latter polytope is distinct from COR

2

n

since it does not contain the origin.)

Therefore, by (3.20), every valid inequality for COR

2

n

yields a lower bound for �(A

1

[

: : : [ A

n

) in terms of the joint probabilities p

ij

= �(A

i

\ A

j

) for 1 � i � j � n. We now

give some examples of such lower bounds.

Suppose p =

P

S

�

S

�(S) with �

S

� 0 for all S. Let u 2 R

V

n

[E

n

be de�ned by u

i

= n

for i 2 V

n

and u

ij

= �2 for ij 2 E

n

. By taking the scalar product of both sides of p =

P

S

�

S

�(S) with u, we obtain that n

P

1�i�n

p

i

� 2

P

1�i<j�n

p

ij

=

P

S

�

S

jSj(n+ 1� jSj),

where n � jSj(n+ 1� jSj) � b

n+1

2

cd

n+1

2

e if S 6= ;. Hence, we deduce that

n

P

1�i�n

p

i

� 2

P

1�i<j�n

p

ij

b

n+1

2

cd

n+1

2

e

�

X

;6=S�V

n

�

S

�

n

P

1�i�n

p

i

� 2

P

1�i<j�n

p

ij

n

and, therefore, from the de�nition of z

min

, z

max

and from Proposition 3.17,

(3.21)

n

X

1�i�n

p

i

� 2

X

1�i<j�n

p

ij

b

n+1

2

cd

n+1

2

e

� �(A

1

[: : :[A

n

) �

n

X

1�i�n

p

i

� 2

X

1�i<j�n

p

ij

n

:

The inequality

(3.22) 2k

X

1�i�n

p

i

� 2

X

1�i<j�n

p

ij

� k(k + 1)
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is valid for the correlation polytope COR

2

n

, for all 1 � k � n � 1; it is facet de�ning if

1 � k � n� 2 and n � 4. Setting b

n+1

= 2k+ 1� n and b

1

= : : : = b

n

= 1, the inequality

(3.22) corresponds (via the covariance map) to the inequality

(3.23)

X

1�i<j�n+1

b

i

b

j

x

ij

� k(k + 1)

which is valid for the cut polytope CUT

2

n+1

. Note that the inequality (3.23) is a switching

of the hypermetric inequality Hyp

n+1

(1; : : : ; 1;�1; : : : ;�1; 2k+ 1 � n) (with n � k coef-

�cients +1 and k coe�cients -1) (see Section 4.1 for de�nitions). Therefore, we have the

following lower bound for �(A

1

[ : : :[A

n

):

(3.24)

2

k + 1

X

1�i�n

p

i

�

2

k(k + 1)

X

1�i<j�n

p

ij

� �(A

1

[ : : :[ A

n

)

for each k, 1 � k � n� 1. The bound (3.24) was found independently by several authors,

including [Chu41, DS67, Gal77]. Note that (3.24) coincides with the lower bound of (3.21)

in the case n = 2k. The case k = 1 of (3.24) gives the bound

X

1�i�n

p

i

�

X

1�i<j�n

p

ij

� �(A

1

[ : : :[A

n

)

which is a special case of the Bonferroni bound (3.29) mentioned below.

More generally, given integers b

1

; : : : ; b

n

and k � 0, the inequality

(3.25)

X

1�i�n

b

i

(2k+ 1� b

i

)p

i

� 2

X

1�i<j�n

b

i

b

j

p

ij

� k(k + 1)

is valid for COR

2

n

. This yields the bound

1

k(k+ 1)

(

X

1�i�n

p

i

b

i

(2k + 1� b

i

)� 2

X

1�i<j�n

b

i

b

j

p

ij

) � �(A

1

[ : : :[A

n

):

The inequality (3.25) can alternatively be written as

(3.26) (

X

1�i�n

b

i

p

i

� k)(

X

1�i�n

b

i

p

i

� k � 1) � 0

with the convention that, when developing the product, the expression p

i

p

j

is replaced by

the variable p

ij

(setting p

ii

= p

i

). The inequality (3.25) (or (3.26)) (or special cases of

it) was considered by many authors (e.g., [Yos70, MD72, KM76, Erd87, Mes87, Pit91]).
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(Note that, if we set b

n+1

= 2k+1�

P

1�i�n

b

i

, the inequality (3.25) corresponds (via the

covariance mapping) to the inequality

X

1�i<j�n+1

b

i

b

j

x

ij

� k(k + 1);

which is valid for the cut polytope CUT

2

n+1

.)

3.4 Generalization to higher order correlations

Clearly, much of the treatment of Section 3.3 can be generalized to higher order correla-

tions. Namely, let I be a family of subsets of V

n

. Given a subset S of V

n

, its I-correlation

vector �

I

(S) 2 R

I

is de�ned by

(

�

I

(S)

I

= 1 if I � S;

�

I

(S)

I

= 0 otherwise;

for all I 2 I. Then, the cone COR

n

(I) (resp. the polytope COR

2

n

(I)) is de�ned as the

conic hull (resp. the convex hull) of all I-correlation vectors �

I

(S) for S � V

n

.

Given an integer 1 � m � n, let I

�m

denote the collection of all subsets of V

n

of

cardinality less or equal to m. Hence, I

�2

consists of all singletons and pairs of elements

of V

n

and COR

n

(I

�2

), COR

2

n

(I

�2

) coincide with COR

n

, COR

2

n

, respectively.

For I = 2

V

n

, which consists of all subsets of V

n

, COR

2

n

(2

V

n

) is a simplex of dimension

2

n

�1 and COR

n

(2

V

n

) is a simplicial cone of dimension 2

n

�1. This implies, in particular,

that every correlation polytope COR

2

n

(I) arises as a projection of the simplex COR

2

n

(2

V

n

)

(namely, on the subspace R

2

V

n

nI

).

Proposition 3.13 remains valid for the case of arbitrary I-correlations.

Proposition 3.27 Let I be a nonempty collection of subsets of f1; : : : ; ng and let p =

(p

I

)

I2I

2 R

I

. The following assertions are equivalent.

(i) p 2 COR

n

(I) (resp. p 2 COR

2

n

(I)).

(ii) There exist a measure space (resp. a probability space) (
;A; �) and A

1

; : : : ; A

n

2 A

such that p

I

= �(\

i2I

A

i

) for all I 2 I.

We have the following general formulation of the Boole problem.

Suppose we are given the values of the joint probabilities p

I

= �(\

i2I

A

i

), for all I 2 I.

What is the best estimation of �(A

1

[ : : :[A

n

) in terms of the p

I

's ?

The same reasoning as in the case of the usual pairwise correlations permits to show

the following generalization of Proposition 3.17.
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Proposition 3.28 Let p

I

= �(\

I2I

A

i

) for I 2 I. Then,

z

min

� �(A

1

[ : : :[A

n

) � z

max

, where

z

min

= min(

P

;6=S�V

n

�

S

: p =

P

;6=S�V

n

�

S

�

I

(S) with �

S

� 0 for all S)

= max(w

T

p : w

T

z � 1 is facet de�ning for COR

2

n

(I))

and

z

max

= max(

P

;6=S�V

n

�

S

: p =

P

;6=S�V

n

�

S

�

I

(S) with �

S

� 0 for all S)

= min(w

T

p : w

T

z � 1 is facet de�ning for Conv(f�

I

(S) : ; 6= S � V

n

g)):

Boros and Prekopa [BP89] consider in detail the case I = I

�m

; they describe a method

for �nding bounds on �(A

1

[: : :[A

n

) in terms of the quantities S

k

=

P

1�i

1

<:::<i

k

�n

�(A

i

1

\

: : :\ A

i

k

) for 1 � k � n. For instance, the following bounds hold

(3.29)

(

�(A

1

[ : : :[ A

n

) �

P

1�i�m

(�1)

i�1

S

i

for m even ;

�(A

1

[ : : :[ A

n

) �

P

1�i�m

(�1)

i�1

S

i

for m odd :

They were �rst discovered by Bonferroni [Bon36]. Several improvments of them have been

proposed, most recently in [Gra93].

The inequality (3.26) can be easily generalized to the case of the polytope COR

2

n

(I

�2m

)

for any m � 1. Given integers b

1

; : : : ; b

n

and k

1

; : : : ; k

m

� 0, the inequality

Y

1�l�m

(

X

1�i�n

b

i

p

i

� k

l

)(

X

1�i�n

b

i

p

i

� k

l

� 1) � 0

is clearly valid for the polytope COR

2

n

(I

�2m

). Thus arises the question of determining the

parameters b

1

; : : : ; b

n

; k

1

; : : : ; k

m

for which it is facet de�ning. This problem is, however,

already di�cult for the case m = 1 of the correlation polytope COR

2

n

.

4 Conditions for L

1

-embeddability

We present in Section 4.1 some of the most important known necessary conditions for

L

1

-embeddability, namely, the hypermetric and the negative type conditions. There are

many other known necessary conditions for L

1

-embeddability, arising from known valid

inequalities for the cut cone; they are described in Chapter ????( on facets). We focus

here on the hypermetric and negative type conditions since they will be used repeatedly in

this Chapter and throughout the book. In Section 4.3, we show the implications exisiting

between the properties of being L

1

-, L

2

-embeddable, of negative type, or hypermetric,

for a distance space. In Section 4.4, we present two operations, the direct sum and the

tensor product, which preserve, respectively, L

1

-embeddable distance spaces and f0; 1g-

covariances.
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4.1 Hypermetric and negative type conditions

4.1.1 Hypermetric and negative type inequalities

Let n � 2, b

1

; : : : ; b

n

be integers such that � :=

P

1�i�n

b

i

2 f0; 1g. We consider the

inequality

(4.1)

X

1�i<j�n

b

i

b

j

d

ij

� 0:

If

P

1�i�n

b

i

= 1, then the inequality (4.1) is called a hypermetric inequality and is

denoted by Hyp

n

(b

1

; : : : ; b

n

). If

P

1�i�n

b

i

= 0, then the inequality (4.1) is called an

inequality of negative type and is denoted by Neg

n

(b

1

; : : : ; b

n

). The inequality (4.1)

is said to be pure if jb

i

j = 0; 1 for all i 2 V

n

. We can suppose that at least two of the

b

i

's are nonzero (else, the inequality (4.1) is void). Hence,

P

1�i�n

jb

i

j = 2k + � for some

integer k � 1. The inequality (4.1) is then said to be (2k+ �)-gonal.

In particular, the 2-gonal inequality is the inequality of negative type Neg

n

(b

1

; : : : ; b

n

),

where b

i

= 1; b

j

= �1 and b

h

= 0 for h 2 V

n

n fi; jg, for some distinct i; j 2 V

n

; it is

nothing but the nonnegativity constraint

d

ij

� 0:

The pure 3-gonal inequality is the hypermetric inequality Hyp

n

(b

1

; : : : ; b

n

), where b

i

=

b

j

= 1; b

k

= �1 and b

h

= 0 for h 2 V

n

nfi; j; kg, for some distinct i; j; k 2 V

n

; it is nothing

but the triangle inequality (1.1).

For � = 0; 1, the pure (2k + �)-gonal inequality reads

X

1�r<s�k+�

d

i

r

i

s

+

X

1�r<s�k

d

j

r

j

s

�

X

1�r�k+�

1�s�k

d

i

r

j

s

� 0;

where i

1

; : : : ; i

k

; i

k+�

; j

1

; : : : ; j

k

are distinct indices of V

n

.

Figure 1 shows the pure 4-gonal and 5-gonal inequalities or, rather, their left hand sides.

It should be understood as follows: a plain edge between two nodes i and j indicates a

coe�cient +1 for the variable d

ij

and a dotted edge indicates a coe�cient -1.
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Figure 1

The negative type inequalities are classical inequalities in analysis; they were used,

in particular, by Schoenberg [Sch37, Sch38a, Sch38b]. The hypermetric inequalities were

introduced by Deza [Dez61, Dez62] and later, independently, by Kelly [Kel70].

4.1.2 Hypermetric and negative type distance spaces

We now turn to the de�nition of a hypermetric distance space, or of a negative type

distance space. Basically, a distance space (X; d) is said to be hypermetric (resp. of

negative type) if d satis�es all hypermetric inequalities (resp. all inequalities of negative

type). More precisely, we have the following de�nitions.

Let (X; d) be a distance space. Then, (X; d) is said to be of negative type if, for all

n � 2, x

1

; : : : ; x

n

2 X , b

1

; : : : ; b

n

2Zwith

P

1�i�n

b

i

= 0, the following inequality holds

(4.2)

n

X

i;j=1

b

i

b

j

d(x

i

; x

j

) � 0:

(X; d) is said to be hypermetric if, for all n � 2, x

1

; : : : ; x

n

2 X , b

1

; : : : ; b

n

2 Zwith

P

1�i�n

b

i

= 1, the inequality (4.2) holds. For � = 0; 1 and k 2 Z; k � 1, (X; d) is said to

be (2k + �)-gonal if, for all n � 2, x

1

; : : : ; x

n

2 X , b

1

; : : : ; b

n

2Zwith

P

1�i�n

b

i

= � and

P

1�i�n

jb

i

j = 2k + �, the inequality (4.2) holds.

Note that, in the above de�nitions, we do not require that the points x

1

; : : : ; x

n

be

distinct. For instance, suppose that x

1

= x

2

. Then, d(x

1

; x

2

) = 0 and d(x

1

; x

i

) = d(x

2

; x

i

)

for all i and, therefore, the inequality (4.2) reads

X

2�i<j�n

b

0

i

b

0

j

d(x

i

; x

j

) � 0

after setting b

0

2

= b

1

+ b

2

; b

0

3

= b

3

; : : : ; b

0

n

= b

n

. In other words, we could have assumed in

the above de�nitions that the inequality (4.2) is pure, i.e., that jb

i

j = 0; 1 for all i. For
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instance, the distance space (X; d) is (2k + �)-gonal if and only if, for all (not necessarly

distinct) x

1

; : : : ; x

k

; x

k+�

; y

1

; : : : ; y

k

2 X , the following inequality holds

(4.3)

X

1�i<j�k+�

d(x

i

; x

j

) +

X

1�i<j�k

d(y

i

; y

j

)�

X

1�i�k+�

1�j�k

d(x

i

; y

j

) � 0:

In particular, (X; d) is 5-gonal if and only if, for all x

1

; x

2

; x

3

; y

1

; y

2

2 X , the following

inequality holds

(4.4)

X

1�i<j�3

d(x

i

; x

j

) + d(y

1

; y

2

)�

X

1�i�3

j=1;2

d(x

i

; y

j

) � 0:

Clearly, if (X; d) is of negative type, then the inequality (4.2) holds for all b

1

; : : : ; b

n

2 R

with

P

1�i�n

b

i

= 0. Some more implications among the k-gonal conditions are summma-

rized in the next result.

Lemma 4.5 Let (X; d) be a distance space.

(i) If (X; d) is (2k + 1)-gonal, then (X; d) is (2k + 2)-gonal, for any integer k � 1.

(ii) If (X; d) is (k + 2)-gonal, then (X; d) is k-gonal, for any integer k � 2.

Proof. (i) Let x

1

; : : : ; x

k+1

; y

1

; : : : ; y

k+1

be 2k + 2 points of X . By assumption, (X; d)

satis�es each of the k + 1 inequalities (4.3) obtained by considering all y

i

's except one.

Similarly, (X; d) satis�es each of the k + 1 inequalities (4.3) obtained by considering all

x

i

's except one (and exchanging the role of the x

i

's and y

i

's). If we sum up these 2k + 2

inequalities, we deduce that (X; d) satis�es the (2k + 2)-gonal inequality (4.3) relative to

the points x

1

; : : : ; x

k+1

; y

1

; : : : ; y

k+1

.

(ii) We check that (X; d) is (2k� 1)-gonal whenever it is (2k+ 1)-gonal; the other case is

similar. Let x

1

; : : : ; x

k

; y

1

; : : : ; y

k�1

be 2k�1 points of X . Let x 2 X and set x

k+1

= y

k

=

x. By assumption, (X; d) satis�es the (2k+1)-gonal inequality (4.3) relative to the points

x

1

; : : : ; x

k+1

; y

1

; : : : ; y

k

. But, the latter inequality, after some cancellations, is nothing but

the (2k � 1)-gonal inequality (4.3) relative to the points x

1

; : : : ; x

k

; y

1

; : : : ; y

k�1

.

Remark 4.6 The proof of Lemma 4.5 (i) shows, in fact, that the pure (2k + 2)-gonal

inequality follows from the pure (2k + 1)-gonal inequalities. However, for k � 2 integer,

the k-gonal inequalities do not follow from the (k + 2)-gonal inequalities (the proof of

Lemma 4.5 (ii) works indeed at the level of distance spaces since we make the assumption

that the two points x

k+1

and y

k

of X coincide).
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Equality case in the hypermetric and negative type inequalities. The following

question is considered in [Kel70, Ass84, Bal90]. What are the distance spaces, within a

given class, that satisfy a given hypermetric or negative type inequality at equality ?

For instance, Kelly [Kel70] characterizes the �nite subspaces of (R; d

`

1

) that satisfy the

(2k+1)-gonal inequality at equality. Namely, given x

1

; : : : ; x

k+1

; y

1

; : : : ; y

k

2R, the equality

X

1�i<j�k+1

jx

i

� x

j

j+

X

1�i<j�k

jy

i

� y

j

j �

X

1�i�k+1

1�j�k

jx

i

� y

j

j = 0

holds if and only if y

1

; : : : ; y

k

separate x

1

; : : : ; x

k+1

, i.e., there exist a permutation � of

f1; : : : ; k + 1g and a permutation � of f1; : : : ; kg such that

x

�(1)

� y

�(1)

� x

�(2)

� y

�(2)

� : : :� y

�(k)

� x

�(k+1)

:

Generalizations and related results can be found in [Kel70, Ass84].

Ball (Lemma 4,[Bal90]) characterizes the reals x

1

; : : : ; x

n

for which the distance space

(fx

1

; : : : ; x

n

g; d

`

1

) satis�es the negative type inequalityNeg

n

(�(n�4); 1; : : : ; 1;�2) at equal-

ity. This result is used for Proposition 7.4 (i) in Section 7.1, for deriving a lower bound on

the minimum `

1

-dimension of a distance space.

The hypermetric cone HYP(X) (resp. the negative type cone NEG(X)) is

de�ned as the set of all the distances d on X that are hypermetric (resp. of negative

type). In the �nite case, X = V

n

, the cone HYP(V

n

) is simply denoted by HYP

n

and

the cone NEG(V

n

) by NEG

n

; both are assumed to be cones in R

E

n

. Hence, HYP

n

(resp.

NEG

n

) is the cone in R

E

n

de�ned by the inequalities (4.1) for all integers b

1

; : : : ; b

n

with

P

1�i�n

b

i

= 1 (resp.

P

1�i�n

b

i

= 0).

4.1.3 Analogues of the hypermetric and negative type conditions for covari-

ances

We now introduce the notion of a function of positive type, which will turn out to be

closely related to that of a distance of negative type.

Definition 4.7 A symmetric function p : X�X �! R is said to be of positive type on

X if, for all n � 2, x

1

; : : : ; x

n

2 X, the matrix (p(x

i

; x

j

))

1�i;j�n

is positive semide�nite,

i.e., the inequality

P

1�i;j�n

b

i

b

j

p(x

i

; x

j

) � 0 holds for all b

1

; : : : ; b

n

2 R (or, equivalently,

for all b

1

; : : : ; b

n

2Z).

The next Lemma 4.8 shows that the notions of functions of positive type and distances

of negative type are, in fact, equivalent (via the covariance mapping). Then, Lemma 4.9

is an analogue of Lemma 4.8 for hypermetric inequalities. Both results will be used very

often in the book and, in particular, in this Chapter and in Chapter ??? (on hypermetrics).
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Lemma 4.8 Let X be a set and x

0

2 X. Let d be a distance on X and p = �

x

0

(d) be the

corresponding symmetric function on X n fx

0

g. The following assertions are equivalent.

(i) (X; d) is of negative type, i.e., for all n � 2, x

1

; : : : ; x

n

2 X, b

1

; : : : ; b

n

2 Zwith

P

1�i�n

b

i

= 0,

P

1�i;j�n

b

i

b

j

d(x

i

; x

j

) � 0.

(ii) p is a function of positive type on X n fx

0

g, i.e., for all n � 2, x

1

; : : : ; x

n

2 X n fx

0

g,

b

1

; : : : ; b

n

2Z,

P

1�i;j�n

b

i

b

j

p(x

i

; x

j

) � 0.

Proof. The proof is based on the following observation. Given x

1

; : : : ; x

n

2 X n fx

0

g,

b

1

; : : : ; b

n

2Z, we have that

P

1�i;j�n

b

i

b

j

p(x

i

; x

j

) =

P

1�i;j�n

1

2

(d(x

i

; x

0

) + d(x

j

; x

0

)� d(x

i

; x

j

))

=

P

1�i�n

b

i

(

P

1�j�n

b

j

)d(x

0

; x

i

)�

P

1�i;j�n

b

i

b

j

d(x

i

; x

j

)

= �

�

P

0�i;j�n

b

i

b

j

d(x

i

; x

j

)

�

;

after setting b

0

= �

P

1�j�n

b

j

.

Lemma 4.9 Let X be a set and x

0

2 X. Let d be a distance on X and p = �

x

0

(d) be the

corresponding symmetric function on X n fx

0

g. The following assertions are equivalent.

(i) (X; d) is hypermetric, i.e., for all n � 2, x

1

; : : : ; x

n

2 X, b

1

; : : : ; b

n

2Zwith

P

1�i�n

b

i

=

1,

P

1�i;j�n

b

i

b

j

d(x

i

; x

j

) � 0 holds.

(ii) For all n � 2, x

1

; : : : ; x

n

2 X n fx

0

g, b

1

; : : : ; b

n

2 Z, p satis�es the inequality

P

1�i;j�n

b

i

b

j

p(x

i

; x

j

)�

P

1�i�n

b

i

p(x

i

; x

i

) � 0:

Proof. The proof is based on the following observation. Given x

1

; : : : ; x

n

2 X n fx

0

g,

b

1

; : : : ; b

n

2Z, then

P

1�i;j�n

b

i

b

j

p(x

i

; x

j

)�

P

1�i�n

b

i

p(x

i

; x

i

)

=

P

1�i�n

b

i

(

P

1�j�n

b

j

� 1)d(x

0

; x

i

)�

P

1�i;j�n

b

i

b

j

d(x

i

; x

j

)

= �(

P

0�i;j�n

b

i

b

j

d(x

i

; x

j

));

after setting b

0

= 1�

P

1�j�n

b

j

.

4.2 Characterization of L

2

-embeddability

We present in this Section several equivalent characterizations for L

2

-embeddable distance

spaces.

We start with some preliminary results. Given a set of vectors v

1

; : : : ; v

n

2 R

k

(k � 1),

their Gram matrix is the n� n matrix whose (i; j)-th entry is v

T

i

v

j

; its rank is equal to

the rank of the system (v

1

; : : : ; v

n

). The next Lemma 4.10, which states the connection

existing between Gram matrices and positive semide�nite matrices, is well known; we give

the proof for completeness.
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Lemma 4.10 Let A = (a

ij

)

1�i;j�n

be a symmetric matrix which is positive semide�-

nite and let k � n be its rank. Then, A is a Gram matrix, i.e., there exist vectors

v

1

; : : : ; v

n

2 R

k

such that a

ij

= v

T

i

v

j

for 1 � i; j � n. Moreover, if v

0

1

; : : : ; v

0

n

are other

vectors of R

k

such that a

ij

= v

0T

i

v

0

j

for 1 � i; j � n, then v

0

i

= T (v

i

), 1 � i � n, for some

orthogonal transformation T of R

k

. The system (v

1

; : : : ; v

n

) has rank k.

Proof. By assumption, A has k non zero eigenvalues which are positive. Hence, there

exists an n � n matrix Q

0

such that A = Q

0

DQ

T

0

, where D is an n � n matrix whose

entries are all zero except k diagonal entries, say with indices (1; 1); : : : ; (k; k), equal to 1.

Denote by Q the n� k submatrix of Q

0

consisting of its �rst k columns. Then, A = QQ

T

holds, i.e., a

ij

= v

T

i

v

j

for 1 � i; j � n, where v

1

; : : : ; v

n

denote the rows of Q. It is easy to

see that (v

1

; : : : ; v

n

) has the same rank k as A.

Let Q

0

be another n � k matrix such that A = Q

0

Q

0T

. Both matrices Q;Q

0

have rank

k, hence there exists a k � k non singular matrix B such that Q

0

= QB. Let Q

1

be a

non singular k � k submatrix of Q formed, say, by its �rst k rows, and let Q

0

1

denote the

k � k submatrix of Q

0

formed by its �rst k rows. Then, Q

0

1

= Q

1

B. From the equality

Q

1

Q

T

1

= Q

0

1

(Q

0

1

)

T

, we obtain that BB

T

is the identity matrix, i.e., B is an orthogonal

transformation of R

k

.

Let M be a symmetric n � n matrix. The inertia In(M) of M is de�ned as the

triple (p; q; s), where p (resp. q,s) denotes the number of positive (resp. negative, zero)

eigenvalues of M ; hence, n = p + q + s. If P is a nonsingular matrix, then it is well

known that the two matrices M and PMP

T

have the same inertia (this result is known

as Sylvester's law of inertia).

Lemma 4.11 Let M be a symmetric matrix with the following block decomposition

M =

0

B

@

A B

B

T

C

1

C

A

; where C is nonsingular. Then, In(M) = In(C) + In(A� BC

�1

B

T

).

(The matrix A� BC

�1

B

T

is also known as the Schur complement of C in M .)

Proof. One veri�es easily the following identity:

0

B

@

I BC

�1

0

T

I

1

C

A

0

B

@

A �BC

�1

B

T

0

0

T

C

1

C

A

0

B

@

I 0

C

�1

B

T

I

1

C

A

=

0

B

@

A B

B

T

C

1

C

A

= M:

By Sylvester's law of inertia, we obtain that the matrices M and

0

B

@

A�BC

�1

B

T

0

0

T

C

1

C

A
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have the same inertia. Therefore, In(M) = In(C) + In(A�BC

�1

B

T

).

Lemma 4.12 Let M be a symmetric n�n matrix and let U be a subspace of R

n

such that

x

T

Mx � 0 holds for all x 2 U . If U has dimension n�1, then M has at most one positive

eigenvalue.

Proof. Suppose, for contradiction, thatM has two positive eigenvalues �

1

and �

2

. Let u

1

and u

2

be eigenvectors for �

1

and �

2

, respectively, with u

T

1

u

2

= 0 and k u

1

k

2

=k u

2

k

2

= 1.

Let V denote the subspace of R

n

spanned by u

1

and u

2

. Then, x

T

Mx > 0 holds for all

x 2 V , x 6= 0; indeed, if x = a

1

u

1

+a

2

u

2

, then x

T

Mx = a

2

1

�

1

+a

2

2

�

2

> 0 if (a

1

; a

2

) 6= (0; 0).

As U and V have respective dimensions n � 1 and 2, there exists x 2 U \ V with x 6= 0.

Then, x

T

Mx � 0 since x 2 U and x

T

Mx > 0 since x 2 V , yielding a contradiction.

Let (X; d) be a distance space with X = f1; : : : ; ng. Let D denote the corresponding

distance matrix; it is the n � n symmetric matrix whose (i; j)-th entry is d(i; j) (with

diagonal terms all equal to 0). We also consider the symmetric (n + 1)� (n + 1) matrix

M(X; d) de�ned by

(4.13) M(X; d) =

0

B

B

B

@

D �e

�e

T

0

1

C

C

C

A

where e = (1; : : : ; 1) 2 R

n

. (The bordered matrixM(X; d) is closely related to the Cayley-

Menger matrix of the distance space (X; d); indeed, the latter is de�ned in the same way

but it has the borders e; e

T

instead of �e;�e

T

.)

Let x

0

2 X and let p = �

x

0

(d) denote the image of d under the covariance mapping

�

x

0

(recall relation (3.8)). Let P (X; d) denote the (n� 1)� (n� 1) matrix whose (i; j)-th

entry is p(i; j) for i; j 2 X n fx

0

g. The next Lemma 4.14 establishes a relation between

the ranks of the matrices M(X; d), P (X; d), and (I �

1

n

J)D(I �

1

n

J), where I denotes the

identity matrix and J the all ones matrix.

Lemma 4.14 rank(P (X; d)) = rank(M(X; d))� 2 = rank((I �

1

n

J)D(I �

1

n

J)).

Proof. The equalities rank(M(X; d)) = rank(P (X; d))+2and rank((I�

1

n

J)D(I�

1

n

J)) =

rank(P (X; d)) can be checked by doing some row/column manipulations on M(X; d) and

(I �

1

n

J)D(I �

1

n

J), and applying relation (3.8).
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We now present a classical result, due to Schoenberg [Sch35, Sch38b], on the char-

acterization of L

2

-embeddable distance spaces. Theorem 4.16 gives a characterization of

the distance spaces that are isometrically L

2

-embeddable in terms of the negative type

inequalities and Theorem 4.15 is an equivalent formulation in the context of covariances.

Theorem 4.15 Let p be a symmetric function on X. Then, p is of positive type on X if

and only if p is an R-covariance on X.

Proof. Suppose �rst that p is anR-covariance onX . Then, p(x; y) =

R




f

x

(!)f

y

(!)�(d!)

for all x; y 2 X , where f

x

are real valued functions of L

2

(
;A; �). Let b 2 Z

X

. Then,

P

x;y2X

b

x

b

y

p(x; y) =

R




jf

x

(!)j

2

�(d!) � 0. This shows that p is of positive type on X .

Conversely, suppose that p is of positive type on X . We show that p is an R-covariance

on X . From the �nitude result from Theorem 1.4 (for p = 2) and Lemma 3.10, we can

suppose that X is �nite. By assumption, the matrix (p(i; j))

i;j2X

is positive semide�nite

and, thus, is a Gram matrix, by Lemma 4.10. This shows that p is an R-covariance on X .

Theorem 4.16 Let (X; d) be a distance space. Then, (X; d) is of negative type if and

only if (X;

p

d) is L

2

-embeddable.

Proof. It follows from Theorem 4.15, after applying Lemmas 3.10 and 4.8.

When the distance space (X;

p

d) is `

2

-embeddable with X �nite, the associated dis-

tance matrix D is also known as a Euclidian distance matrix in the literature (see,

e.g., [Gow85, HWLT91]).

Proposition 4.17 Let (X; d) be a �nite distance space of negative type. Then, (X;

p

d)

is `

2

-embeddable and its minimum `

2

-dimension m

2

(X;

p

d) satis�es:

m

2

(X;

p

d) = rank(P (X; d)) = rank(M(X; d))� 2 = rank((I �

1

n

J)D(I �

1

n

J)).

Proof. In view of Lemma 4.14, we have only to check that m

2

(X;

p

d) = rank(P (X; d)).

Set k = m

2

(X;

p

d) and r = rank(P (X; d)). By Lemma 4.10, P (X; d) is the Gram matrix

of a system of vectors v

i

2 R

r

for i 2 X n fx

0

g. Then, v

i

; i 2 X , provide an `

2

-embedding

of (X;

p

d), if we set v

x

0

= 0. This implies that r � k. On the other hand, there exist

vectors u

i

2 R

k

; i 2 X , such that d(i; j) =k u

i

� u

j

k

2

2

for all i; j 2 X . We can suppose

without loss of generality that u

x

0

= 0. Then, P (X; d) coincides with the Gram matrix of

u

i

; i 2 X n fx

0

g, which implies that r � k. Hence, r = k holds.
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Therefore, the parameterm

2

(n), which we recall is de�ned as the minimum `

2

-dimension

of an `

2

-embeddable distance space on n points, satis�es

(4.18) m

2

(n) = n� 1:

We now present two additional equivalent characterizations for distance spaces of neg-

ative type.

Theorem 4.19 Let (X; d) be a �nite distance space with X = f1; : : : ; ng. Let D be the

associated n�n distance matrix and let M(X; d) be the bordered matrix de�ned by (4.13).

Consider the following assertions.

(i) (X; d) is of negative type.

(ii) The matrix (I �

1

n

J)(�D)(I �

1

n

J) is positive semide�nite.

(iii) The matrix M(X; d) has exactly one positive eigenvalue.

(iv) The matrix D has exactly one positive eigenvalue.

Then, (i)() (ii) [Gow85], (i)() (iii) [HW88], and (i) =) (iv). Moreover, if D has a

constant row sum, then (i)() (iv) [KS93].

Proof. (i) () (ii) Set K = I �

1

n

J and A = K(�D)K. Then, for x 2 R

n

, we have

that x

T

Ax = y

T

(�D)y, setting y = Kx. One checks easily that the range of K consists

of the vectors y 2 R

n

such that

P

1�i�n

y

i

= 0. Therefore, we obtain that A is positive

semide�nite if and only if y

T

(�D)y � 0 for all y 2 R

n

such that

P

1�i�n

y

i

= 0, i.e., (X; d)

is of negative type.

(i) () (iii) Let Q be an orthogonal n � n matrix such that Qe is equal to the vector

e

0

= (0; : : : ; 0; 1). Set D

0

= QDQ

T

, Q

0

=

0

B

B

B

@

Q 0

0

T

1

1

C

C

C

A

; and M

0

= Q

0

M(X; d)Q

0T

. Hence,

M

0

=

0

B

@

D

0

�e

0

�e

0T

0

1

C

A

=

0

B

B

B

@

D

0

0

b 0

b

T

� �1

0 �1 0

1

C

C

C

A

; if we let D

0

be pictured as

0

B

@

D

0

0

b

b

T

�

1

C

A

;

where D

0

0

is an (n � 1) � (n � 1) matrix and b 2 R

n�1

. As the matrix

 

� �1

�1 0

!

is nonsingular, we can apply Lemma 4.11 for computing the inertia of M

0

. We obtain

that In(M

0

) = In(D

0

0

) + In

 

� �1

�1 0

!

: By Sylvester's law of inertia, M(X; d) and M

0
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have the same inertia and, in particular, both M(X; d) and M

0

have the same number

of positive eigenvalues. One checks easily that the matrix

 

� �1

�1 0

!

has exactly one

positive eigenvalue. Therefore, M(X; d) has one positive eigenvalue if and only if D

0

0

has

no positive eigenvalue, i.e., x

T

D

0

0

x � 0 for all x 2 R

n�1

. But, x

T

D

0

0

x � 0 holds for all

x 2 R

n�1

if and only if y

T

D

0

y � 0 holds for all y 2 R

n

such that e

0T

y = 0 (because

y

T

D

0

y = x

T

D

0

0

x+ x

n

(2b

T

x+ �x

n

), if y = (x; x

n

)) or, equivalently, z

T

Dz � 0 holds for all

z 2 R

n

such that e

T

z = 0, i.e., (X; d) is of negative type.

(i) =) (iv) The matrix D has at least one positive eigenvalue since D has its diagonal

terms equal to 0. If (X; d) is of negative type then, by Lemma 4.12, D has at most one

positive eigenvalue since x

T

Dx � 0 holds for all x in an (n� 1)-dimensional subspace of

R

n

. Therefore, D has one positive eigenvalue.

Finally, suppose that D has a constant row sum, equal to s, and that (iv) holds. Then, s

is the positive eigenvalue of D since De = se holds. This implies that the matrix

s

n

J �D

is positive semide�nite. Hence, by Lemma 4.10, there exists an n � k matrix X such

that

s

n

J � D = XX

T

. Let v

1

; : : : ; v

n

denote the row vectors of X . Then, we have that

s

n

� d(i; j) = v

T

i

v

j

for all i; j or, equivalently, d(i; j) =k v

i

� v

j

k

2

2

for all i; j. This shows

that (X;

p

d) is `

2

-embeddable, i.e., by Theorem 4.16, that (X; d) is of negative type.

4.3 A chain of implications

We summarize in this Section the implications existing between the properties of being

L

1

-, L

2

-embeddable, of negative type, and hypermetric.

Theorem 4.20 Let (X; d) be a distance space. Consider the following assertions.

(i) (X; d) is L

2

-embeddable.

(ii) (X; d) is L

1

-embeddable.

(iii) (X; d) is hypermetric.

(iv) (X; d) is of negative type.

(v) (X;

p

d) is L

2

-embeddable.

We have the chain of implications (i) =) (ii) =) (iii) =) (iv)() (v).

Proof. (i) =) (ii) is a classical result in analysis. For (ii) =) (iii), it su�ces to

check that every �nite subspace of (X; d) is hypermetric, i.e., that every member of the

cut cone satis�es the hypermetric inequalities or, equivalently, that each cut semimetric

satis�es the hypermetric inequalities. Indeed, given a subset S of V

n

and b

1

; : : : ; b

n

2 Z

with

P

1�i�n

b

i

= 1, we have that

P

1�i<j�n

b

i

b

j

�(S)

ij

= (

P

i2S

b

i

)(

P

i2V

n

nS

b

i

) =

P

i2S

b

i

(1�

P

i2S

b

i

) � 0
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since all b

i

's are integers. For (iii) =) (iv), we use the equivalent formulations of the

negative type and hypermetric conditions given in Lemmas 4.8 and 4.9. Finally, (iv)()

(v) holds by Theorem 4.16.

Example 4.21 Let d(K

2;3

) denote the path metric of the complete bipartite graph K

2;3

with node set fx

1

; x

2

; x

3

g [ fy

1

; y

2

g. Then, d(K

2;3

)(x

i

; x

j

) = d(K

2;3

)(y

1

; y

2

) = 1 and

d(K

2;3

)(x

i

; y

j

) = 2. Hence, d(K

2;3

) violates the pentagonal inequality (4.4). Therefore,

d(K

2;3

) is not hypermetric and, thus, not L

1

-embeddable.

From the implication (ii) =) (iii) from Theorem 4.20, we have the inclusion C

1

(X) �

HYP(X) (recall that C

1

(X) is the cone of all L

1

-embeddable distances on X). This

inclusion is, in general, strict. It is strict, in particular, if 7 � jX j <1 or X = N.

For showing the strict inclusion CUT

n

� HYP

n

for n � 7, it su�ces to exhibit an

inequality which de�nes a facet for CUT

n

and is not hypermetric. Many such inequalities

are described in Chapter ??? (on facets).

For showing the strict inclusion C

1

(N) � HYP(N), consider the distance d on N ob-

tained by taking the spherical t-extension of the path metric of the Schl�ai graph G

27

, i.e.,

d

ij

is the shortest length of a path joining i and j in G

27

if i and j are both nodes of G

27

and d

ij

= t otherwise. For t �

4

3

, d is hypermetric but d is not L

1

-embeddable (since the

path metric of G

27

lies on an extreme ray of the hypermetric cone on 27 points) ([Gri92]).

However, there are many examples of classes of distance spaces (X; d) for which the

properties of being hypermetric and L

1

-embeddable are equivalent. We present such ex-

amples with X in�nite in Sections 5.1 and 5.2.

We summarize in Remark 4.22 below a list of distance spaces (X; d) for which L

1

-

embeddability can be characterized by a set I of inequalities that are all hypermetric or

of negative type.

Remark 4.22 (i) (V

n

; d) with n � 6; I consists of the hypermetric inequalities, i.e.,

CUT

n

= HYP

n

for n � 6 ([Dez61] for n � 5 and [AM89] for n = 6).

(ii) A normed space (R

m

; d

k:k

); I consists of the negative type inequalities,

a normed space (R

m

; d

k:k

) whose unit ball is a polytope; I consists of the 7-gonal inequal-

ities (see Theorems 5.1 and 5.2).

(iii) (L; d

v

) where (L;�) is a lattice with distance d

v

(x; y) = v(v _ y) � v(x ^ y) for

x; y 2 L; I consists of the 5-gonal inequalities or, equivalently, I consists of the negative

type inequalities (see Theorem 5.6 and Example 5.9).
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(iv) (A; d) where A is a family of subsets of a set 
 which is stable under the symmetrical

di�erence and d(A;B) = v(A4B) for A;B 2 A with v nonnegative and v(;) = 0; I

consists of the inequalities of negative type (see Example 5.10).

(v) The graphic space (V; d(G)) where G is a connected bipartite graph with node set V ;

I consists of the 5-gonal inequalities (see Chapter ????(on graphs)).

(vi) The graphic space (V; d(G)) where G is a connected graph on at least 38 nodes and

having a node adjacent to all other nodes; I consists of the negative type inequalities and

the 5-gonal inequalities (see Chapter ????(on graphs)).

4.4 The direct sum and tensor product operations

We present two operations, the direct sum and the tensor product, which preserve, re-

spectively, L

1

-embeddability and f0; 1g-covariances.

Definition 4.23 (i) Let (X

1

; d

1

) and (X

2

; d

2

) be two distance spaces. Their direct sum

is the distance space (X

1

�X

2

; d

1

� d

2

), where

d

1

� d

2

((x

1

; x

2

); (y

1

; y

2

)) = d

1

(x

1

; y

1

) + d

2

(x

2

; y

2

) for all x

1

; y

1

2 X

1

; x

2

; y

2

2 X

2

:

(ii) Let p

1

: X

1

�X

1

�! R and p

2

: X

2

�X

2

�! R be two symmetric functions. Their

tensor product is the symmetric function p

1


 p

2

: (X

1

�X

2

)� (X

1

�X

2

) �! R de�ned

by

p

1


 p

2

((x

1

; x

2

); (y

1

; y

2

)) = p

1

(x

1

; y

1

)p

2

(x

2

; y

2

) for all x

1

; y

1

2 X

1

; x

2

; y

2

2 X

2

:

Proposition 4.24 [Ass79, Ass80b] (i) If (X

1

; d

1

) and (X

2

; d

2

) are L

1

-embeddable, then

their direct sum (X

1

�X

2

; d

1

� d

2

) is L

1

-embeddable.

(i) If p

1

is a f0; 1g-covariance on X

1

and p

2

is a f0; 1g-covariance on X

2

, then their tensor

product p

1


 p

2

is a f0; 1g-covariance on X

1

�X

2

.

Proof. (i) By assumption, there exist a measure space (


i

;A

i

; �

i

) and an isometric

embedding �

i

of (X

i

; d

i

) into L

1

(


i

;A

i

; �

i

), for i = 1; 2. Let (
 = 


1

[ 


2

;A; �) denote

the measure space obtained by extending A

i

and �

i

to 


1

[ 


2

. We obtain an isometric

embedding of (X

1

�X

2

; d

1

�d

2

) into (
;A; �) by setting �(x

1

; x

2

)(!) = �

i

(x

i

)(!) if ! 2 


i

,

for i = 1; 2. Indeed,

d

1

� d

2

((x

1

; x

2

); (y

1

; y

2

)) = d

1

(x

1

; y

1

) + d

2

(x

2

; y

2

)

=k �

1

(x

1

)� �

1

(y

1

) k + k �

2

(x

2

)� �

2

(y

2

) k

=k �(x

1

; x

2

)� �(y

1

; y

2

) k :

(ii) By assumption, there exist a measure space (


i

;A

i

; �

i

) and a mapping x 2 X

i

7!

A

(i)

x

2 (A

i

)

�

i

such that p

i

(x; y) = �

i

(A

(i)

x

\ A

(i)

y

) for all x; y 2 X

i

, for i = 1; 2. Set
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 = 


1

� 


2

, A = fA

1

� A

2

: A

1

2 A

1

; A

2

2 A

2

g, and take � = �

1


 �

2

. Then, we have

that p

1


 p

2

((x

1

; x

2

); (y

1

; y

2

)) = p

1

(x

1

; y

1

)p

2

(x

2

; y

2

) = �

1

(A

(1)

x

1

\ A

(1)

y

1

)�

2

(A

(2)

x

2

\A

(2)

y

2

)

= �

1


 �

2

((A

(1)

x

1

�A

(2)

x

2

) \ (A

(1)

y

1

�A

(2)

y

2

)): This shows that p

1


 p

2

is a f0; 1g-covariance on

X

1

�X

2

.

Corollary 4.25 (i) If (X; d

1

) and (X; d

2

) are L

1

-embeddable, then (X; d

1

+ d

2

) is L

1

-

embeddable.

(ii) If p

1

and p

2

are f0; 1g-covariances on X, then p

1

p

2

is a f0; 1g-covariance on X.

Proof. (i) follows from Theorems 1.4 and 2.11. In a more elementary way, (i) follows

from Proposition 4.24 (i), since (X; d

1

+d

2

) is a subspace from (X

1

�X

2

; d

1

�d

2

) (via the

embedding x 7! (x; x)). (ii) follows from Proposition 4.24 (ii), since p

1

p

2

identi�es with

the restriction of p

1


 p

2

to the diagonal subset f(x; x) : x 2 Xg of X �X .

5 Two cases of complete characterization of L

1

-embeddability

We present in this Section two classes of distance spaces for which L

1

-embeddability can

be fully characterized using only hypermetric or negative type inequalities. The �rst class

consists of metric spaces arising from normed spaces and the second one consists of metric

spaces arising from metric lattices equipped with a valuation.

5.1 L

1

-metrics from normed spaces

Let (E; k : k) be a normed space. We consider the associated metric space (E; d

k:k

), where

d

k:k

is the norm metric de�ned by

d

k:k

(x; y) =k x� y k

for all x; y 2 E.

In this Section, we give a characterization of the norms on E = R

m

for which the

metric space (R

m

; d

k:k

) is L

1

-embeddable.

We �rst recall some de�nitions.

Let K be a convex body in R

m

, i.e., K is a nonempty convex compact subset of

R

m

. We suppose that the origin 0 belongs to the interior of K. K is said to be centrally

symmetric if �x 2 K for all x 2 K. The polar K

�

of a convex body K is the convex

body de�ned by
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K

�

= fx 2 R

m

: x

T

y � 1 for all y 2 Kg:

The notions of convex bodies and of norms are, in fact, equivalent, in the following

sense. First, if k : k is a norm on R

m

then its unit ball

B = fx 2 R

m

:k x k� 1g

is clearly a centrally symmetric convex body. Conversely, let K be a centrally symmetric

convex body (containing the origin in its interior). The support function h(K; :) : R

m

! R

of K is de�ned by

h(K; x) = max(x

T

y : y 2 K)

for x 2 R

m

: One can easily check that h(K; :) de�nes a norm on R

m

, whose unit ball is

the polar K

�

of K. This norm can be alternatively de�ned by

h(K; x) = min(� > 0 :

x

�

2 K

�

)

for all x 2 R

m

.

A convex polytope is called a zonotope if it is the vector sum of some line segments.

A convex body which can be approximated by zonotopes with respect to the Blaschke-

Hausdor� metric is called a zonoid. Zonotopes and zonoids are central objects in convex

geometry and they are also relevant to many other �elds (see, e.g., [Bol69, SW83] for a

survey). They are, in particular, relevant to the topic of L

1

-metrics as we explain below.

We now present several equivalent characterizations for L

1

-embeddability of a normed

metric space (R

m

; d

k:k

).

Theorem 5.1 (see [Bol69, SW83]) Let k : k be a norm on R

m

and let B be its unit ball.

The following assertions are equivalent.

(i) d

k:k

is of negative type.

(ii) d

k:k

is hypermetric.

(iii) (R

m

; d

k:k

) is L

1

-embeddable.

(iv) The polar of B is a zonoid.

Precise reference for the equivalence (i)() (ii)() (iv) can be found in [SW83] and

(iii)() (iv) is proved in [Bol69]. L

1

-embeddability of norm metrics can be characterized

by much simpler inequalities when the unit ball of the normed space is a polytope.



Measure aspects of cut polyhedra 35

Theorem 5.2 ([Ass80a, Ass84, Wit78], see [SW83]). Let k : k be a norm on R

m

for which

the unit ball B is a polytope. The following assertions are equivalent.

(i) k : k satis�es Hlawka's inequality

k x k + k y k + k z k + k x + y + z k�k x+ y k + k x+ z k + k y + z k

for all x; y; z 2 R

m

.

(ii) k : k satis�es the 7-gonal inequality

X

1�i<j�4

k x

i

� x

j

k +

X

1�h<k�3

k y

h

� y

k

k�

X

1�i�4

1�k�3

k x

i

� y

k

k

for all x

1

; x

2

; x

3

; x

4

; y

1

; y

2

; y

3

2 R

m

.

(iii) The polar of B is a zonotope.

(iv) (R

m

; d

k:k

) is L

1

-embeddable.

Actually, the implication (ii) =) (i) of Theorem 5.2 remains valid for general norms.

Namely, if an arbitrary norm on R

m

satis�es the 7-gonal inequality, then it also satis�es

Hlawka's inequality ([Ass84]).

The above results can be partially extended to the more general concept of projective

metrics. A continuous metric d onR

m

is called a projective metric if it satis�es d(x; z) =

d(x; y)+d(y; z) for any collinear points x; y; z lying in that order on a common line. Clearly,

every norm metric is projective. The cone of projective metrics is the object considered

by the fourth Hilbert problem in R

m

(see [Ale88], [Amb82]).

We have the following characterization of L

1

-embeddability for projective metrics.

Theorem 5.3 [Ale88] Let d be a projective metric on R

m

. The following assertions are

equivalent.

(i) (R

m

; d) is L

1

-embeddable.

(ii) d is hypermetric.

(iii) There exists a positive Borel measure � on the hyperplanesets of R

m

satisfying

(

�([[x]]) = 0 for all x 2 R

m

0 < �([[x; y]])<1 for all x 6= y 2 R

m

and such that d is de�ned by the following formula (called Crofton formula):

d(x; y) = �([[x; y]]) for x; y 2 R

m

;

where [[x; y]] denotes the set of hyperplanes meeting the segment [x; y]:
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In dimension m = 2, Theorem 5.3 (ii) always holds (see [Ale88]), i.e., every projective

metric on R

2

is L

1

-embeddable. On the other hand, the norm metric d

`

1

arising from the

norm k x k

1

= max(jx

1

j; jx

2

j; jx

3

j) in R

3

is not L

1

-embeddable since it is not hypermetric.

Indeed, the points x

1

= (1; 1; 0), x

2

= (1;�1; 0), x

3

= (�1; 1; 0), y

1

= (0; 0; 0) and

y

2

= (0; 0; 1) violate the 5-gonal inequality (4.4) ([Kel70]).

5.2 L

1

-metrics from lattices

In this Section, we consider a class of metric spaces arising from lattices. A good reference

on lattices is [Bir67].

Let (L;�) be a lattice (possibly in�nite), i.e., a partially ordered set in which any two

elements x; y 2 L have a join x _ y and a meet x ^ y. A function v : L �! R

+

satisfying

(5.4) v(x _ y) + v(x ^ y) = v(x) + v(y) for all x; y 2 L:

is called a valuation on L. The valuation v is said to be isotone if v(x) � v(y) whenever

x � y and positive if v(x) < v(y) whenever x � y; x 6= y. Set

(5.5) d

v

(x; y) = v(x_ y)� v(x^ y) for all x; y 2 L:

One can easily check that (L; d

v

) is a semimetric space if v is an isotone valuation on L

and (L; d

v

) is a metric space if v is a positive valuation on L; in the latter case, L is called

a metric lattice (see [Bir67]). Clearly, every metric lattice is modular, i.e., satis�es

x ^ (y _ z) = (x ^ y) _ z for all x; y; z with z � x. A lattice is called distributive if

x ^ (y _ z) = (x ^ y) _ (x ^ z) for all x; y; z. The following result gives a characterization

of the L

1

-embeddable metric lattices.

Theorem 5.6 [Kel70] Let L be a metric lattice with positive valuation v. The following

assertions are equivalent.

(i) L is a distributive lattice.

(ii) (L; d

v

) is 5-gonal.

(iii) (L; d

v

) is hypermetric.

(iv) (L; d

v

) is L

1

-embeddable.

Proof. It su�ces to show the implications (ii)) (i) and (i)) (iv).

(ii) ) (i). Using the de�nition of the valuation v and applying the 5-gonal inequality

(4.4) to the points x

1

= x_y, x

2

= x^y, x

3

= z, y

1

= x, y

2

= y, we obtain the inequality:

2(v(x_ y_ z)� v(x^ y^ z)) � v(x_ y)+ v(x_ z)+ v(y_ z) �v(x^ y)� v(x^ z)� v(y^ z).

By applying again the 5-gonal inequality to the points x

1

= x, x

2

= y, x

3

= z, y

1

= x_ y,
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y

2

= x ^ y, we obtain the reverse inequality. Therefore, the equality holds in the above

inequality. In fact, this condition of equality is equivalent to L being distributive (see

[Bir67]).

(i)) (iv). Take a �nite subset L

0

of L. We show that (L

0

; d

v

) is L

1

-embeddable. Let K

be the sublattice of L generated by L

0

. Suppose K has length n. Then, K is isomorphic

to a ring N of subsets of a set X , jX j = n (\ring" means closed under [ and \)(see

[Bir67] p.58). Via this isomorphism, we have a valuation, again denoted by v, de�ned on

N . We can assume without loss of generality that v(;) = 0. Then, v can be extended to

a valuation v

�

on 2

X

satisfying v

�

(S) =

P

x2S

v

�

(fxg) for S � X . Now, if x 7�! S

x

is

the isomorphism from K to N , then we have the embedding x 7�! S

x

from (L

0

; d

v

) to

(2

X

; v

�

) which is isometric. Indeed, d

v

(x; y) = v(x_y)�v(x^y) = v(S

x

[S

y

)�v(S

x

\S

y

)

= v

�

(S

x

[ S

y

)� v

�

(S

x

\ S

y

) = v

�

(S

x

4S

y

). This shows that every �nite subset of (L; d

v

)

is L

1

-embeddable, and thus, from Theorem 1.4, (L; d

v

) is L

1

-embeddable.

Example 5.7 [Ass79] Let (N

�

;�) denote the lattice consisting of the set N

�

of positive

integers with order relation x � y if x divides y. Then, for x; y 2 N

�

, x^ y is the g.c.d. of

x and y and x _ y is their l.c.m.. One checks easily that (N

�

;�) is a distributive lattice.

Therefore, (N

�

; d

v

) is L

1

-embeddable for every positive valuation v on N

�

. For instance,

x 2 N

�

7�! v(x) := log x is a positive valuation on N

�

; hence, the metric d

v

, de�ned by

d

v

(x; y) = log(

l:c:m:(x;y)

g:c:d:(x;y)

) for all integers x; y � 1, is L

1

-embeddable.

We now present an analogue of Theorem 5.6 in the context of semigroups. We recall

that a commutative semigroup (S;+) consists of a set S equipped with a composition rule

+ which is commutative and associative. We assume the existence of a neutral element

denoted by 0.

Theorem 5.8 ([BC76], see [Ass79, Ass80b]) Let (S;+) be a commutative semigroup with

neutral element 0 and let v : S 7�! R

+

be a mapping such that v(0) = 0. Set

D

v

(x; y) = 2v(x+ y)� v(2x)� v(2y) for x; y 2 S:

Assume that one of the following assertions (i) or (ii) holds.

(i) (S;+) is a group.

(ii) For each x 2 S, there exists an integer n � 1 such that 2nx = x.

Then, (S;D

v

) is L

1

-embeddable if and only if (S;D

v

) is of negative type.

Proof. We only give a sketch of the proof of the implication: if (S;D

v

) is of negative

type, then (S;D

v

) is L

1

-embeddable.
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Let p

v

: S

2

�! R denote the symmetric function obtained by applying the covariance

transformation � to D

v

, i.e., p

v

(x; y) =

1

2

(D

v

(x; 0)+D

v

(y; 0)�D

v

(x; y)) = v(x) + v(y)�

v(x + y) for x; y 2 S. By Lemma 3.11, showing that (S;D

v

) is L

1

-embeddable amounts

to showing that p

v

is a f0; 1g-covariance on S. By assumption, (S;D

v

) is of negative type

or, equivalently, by Lemma 4.8, p

v

is of positive type on S. Berg and Christensen [BC76]

show that, under this assumption, the function v is of the form

v(x) = h(x) +

Z

^

S�f

^

1g

(1� �(x))�(d�) for all x 2 S;

where

- the function h : S �! R

+

satis�es h(x+ y) = h(x) + h(y) for all x; y 2 S,

-

^

S denotes the set of characters on S, i.e., of the functions � : S �! [�1; 1] satisfying

�(x+ y) = �(x)�(y) for all x; y 2 S and �(0) = 1, and

^

1 is the unit character de�ned by

^

1(x) = 1 for all x 2 S,

- � is a nonnegative Radon measure on

^

S � f

^

1g such that

R

^

S�f

^

1g

(1� �(x))�(d�)<1 for

all x 2 S.

Therefore, we have that p

v

(x; y) =

R

^

S�f

^

1g

(1 � �(x))(1� �(y))�(d�) for all x; y 2 S. In

case (i), every character on S takes only values �1. Setting A

x

= f� 2

^

S : �(x) = �1g for

x 2 S, we obtain that p

v

(x; y) = 4�(A

x

\A

y

) for all x; y 2 S. In case (ii), every character

on S takes only values 0; 1. Setting A

x

= f� 2

^

S : �(x) = 0g for x 2 S, we obtain that

p

v

(x; y) = �(A

x

\ A

y

) for all x; y 2 S. Therefore, p

v

is a f0; 1g-covariance, i.e., (S;D

v

) is

L

1

-embeddable.

Example 5.9 Let (L;�) be a lattice and let S be a subset of L which is stable under the

join operation _ of L and contains the least element 0 of L. Then, (S;_) is a commutative

semigroup satisfying Theorem 5.8 (ii). Therefore, given a mapping v : S �! R

+

such

that v(0) = 0, (S;D

v

) is L

1

-embeddable if and only if (S;D

v

) is of negative type, with

D

v

(x; y) = 2v(x _ y) � v(x) � v(y) for x; y 2 S. In particular, if v is a valuation on L,

i.e., satis�es (5.4), then D

v

coincides with d

v

(which is de�ned in (5.5)) and, therefore,

we have the following variation of Theorem 5.6: (L; d

v

) is L

1

-embeddable if and only if

(L; d

v

) is of negative type.

Example 5.10 Let A be a family of subsets of a set 
 and suppose that A is stable under

the symmetrical di�erence. Then, (A;4) is a commutative group. Let v : A 7! R

+

be a

mapping such that v(;) = 0 and set d(A;B) = v(A4B)(=

D

v

(A;B)

2

) for A;B 2 A. Then,

by Theorem 5.8, (A; d) is L

1

-embeddable if and only if (A; d) is of negative type.
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6 Metric transforms preserving L

1

-embeddability

Let (X; d) be a distance space and let F : R

+

�! R

+

be a function. We de�ne the

distance space (X;F (d)), called metric transform of (X; d), by setting F (d)

ij

= F (d

ij

)

for all i; j 2 X .

A general question is to �nd nontrivial functions F which preserve certain properties,

e.g., metricity, L

1

- or L

2

-embeddability, of the original distance space. We present in this

Section several results of this type about metric transforms. We refer to [WW75] for a

good exposition of some of these results.

Lemma 6.1 [Blu70] Suppose that F is nondecreasing, concave and F (0) = 0. If (X; d) is

a semimetric space, then (X;F (d)) is also a semimetric space.

Proof. Let i; j; k 2 X . We show that F (d

ij

) � F (d

ik

) + F (d

jk

) holds. But, F (d

ij

) �

F (d

ik

+ d

jk

) holds since F is nondecreasing and F (d

ik

+ d

jk

) � F (d

ik

) + F (d

jk

) holds

since F is concave (to see it, verify that the function t 7�! F (t + d

jk

)� F (t) � F (d

jk

) is

nondecreasing).

A function satisfying the conditions of Lemma 6.1 is called a scale. Examples of scales

include:

� F (t) =

t

1+t

, t � 0.

� F (t) = 1� exp(��t) for t � 0, where � is a positive scalar; it is called the Schoenberg

scale.

� F (t) = t

�

for t � 0, where 0 < � � 1; it is called the power scale.

6.1 Metric transforms of `

2

-spaces

We present two classical results about the functions F for which the metric transform

F (`

m

2

) of the m-dimensional Euclidian space `

m

2

= (R

m

; d

`

2

) is L

2

-embeddable or embed-

dable into some Euclidian space `

n

2

.

Theorem 6.2 (i) [Sch38a] Let 2 � m � n be integers. The functions t 2 R

+

7�! F (t)

that are nonnegative, continuous, satisfy F (0) = 0, and for which F (`

m

2

) is isometrically

embeddable in `

n

2

are of the form F (t) = ct (t � 0), where c � 0.

(ii) [vNS41] Letm � 1 be an integer. The functions t 2 R

+

7�! F (t) that are nonnegative,

continuous, satisfy F (0) = 0, and for which F (`

m

2

) is isometrically L

2

-embeddable are of

the form

F (t) =

�

Z

1

0

1� 


m

(tu)

u

2

�

0

(u)du

�

1=2

(t � 0)



40 M. Deza and M. Laurent

where u 2 R

+

7�! �(u) is nondecreasing, �(0) = 0, and

R

1

1

1

u

2

�

0

(u)du < 1 (with �

0

denoting the �rst derivative of �). The function 


m

is de�ned by




m

(t) = 1�

t

2

2 �m

+

t

4

2 � 4 �m � (m+ 2)

�

t

6

2 � 4 � 6 �m � (m+ 2) � (m+ 4)

+ : : : :

For m = 1, we have 


1

(t) = cos(t) and, thus, the functions F are of the form

F (t) =

 

Z

1

0

sin

2

(tu)

u

2

�

0

(u)du

!

1=2

(t 2 R

+

):

Proof. As an illustration, let us give the proof of the easy implication in (ii) for the case

m = 1. Let F be de�ned as in the case m = 1 of Theorem 6.2 (ii). By Theorem 4.16, in

order to show that F (`

1

2

) is L

2

-embeddable, it su�ces to check that F

2

(`

1

2

) is of negative

type. By Lemma 4.8, this is equivalent to checking that its image under the covariance

mapping is of positive type. Let b

1

; : : : ; b

k

2 R and x

1

; : : : ; x

k

2 R; we show that the

inequality

P

1�i;j�k

b

i

b

j

(F

2

(x

i

) + F

2

(x

j

) � F

2

(x

i

� x

j

)) � 0 holds. For this, we use the

identity

sin

2

(x

i

u) + sin

2

(x

j

u)� sin

2

((x

i

� x

j

)u) = 2 sin

2

(x

i

u) sin

2

(x

j

u) +

sin(2x

i

u) sin(2x

j

u)

2

:

Indeed, we deduce from it that

P

1�i;j�k

b

i

b

j

(F

2

(x

i

) + F

2

(x

j

)� F

2

(x

i

� x

j

))

=

R

1

0

0

@

2

 

k

X

i=1

b

i

sin

2

(x

i

u)

!

2

+

1

2

 

k

X

i=1

b

i

sin(2x

i

u)

!

2

1

A

d�(u)

u

2

� 0:

Example 6.3 [Sch37] Consider the function F (t) = t

�

(t � 0) where 0 < � < 1. Then,

F (`

1

2

) is L

2

-embeddable. Indeed, F satis�es the conditions of Theorem 6.2 (ii); this fact

relies on the following integral formula

t

2�

= c

�1

�

Z

1

0

u

�1�2�

sin

2

(tu)du (t � 0) where c

�

=

Z

1

0

u

�1�2�

sin

2

(u)du:

6.2 The Schoenberg scale

We now consider the Schoenberg scale, F (t) = 1 � exp(��t) (t 2 R

+

), where � is a

positive scalar. We show below that this scale preserves L

1

-embeddability and the negative

type property.

Theorem 6.4 [Sch38b] Let (X; d) be a distance space. The following assertions are equiv-

alent.
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(i) (X; d) is of negative type.

(ii) The symmetric function p : X � X �! R, de�ned by p(x; y) = exp(��d(x; y)) for

x; y 2 X, is of positive type for all � > 0.

(iii) (X; 1� exp(��d)) is of negative type for all � > 0.

Proof. Note that the properties involved in Theorem 6.4 are all of �nite type, i.e., they

hold if and only if they hold for any �nite subset of X . Hence, we can assume that X is

�nite, say X = f1; : : : ; ng.

(i) =) (ii) Since (X; d) is of negative type then, by Theorem 4.16, (X;

p

d) is `

2

-

embeddable, i.e., there exist x

(1)

; : : : ; x

(n)

2 R

m

(m � 1) such that d

jk

= (k x

(j)

�x

(k)

k

2

)

2

for all j; k 2 X . Let b

1

; : : : ; b

n

2 R. We show that

P

1�j;k�n

b

j

b

k

exp

�

��(k x

(j)

� x

(k)

k

2

)

2

�

�

0. For this, we use the following classical identity

exp(�x

2

) = 2

�1

�

�

1

2

Z

1

�1

exp(ixu) exp(�

u

2

4

)du:

(Here, i denotes the complex square root of unity.) Indeed, we have that

P

j;k2X

b

j

b

k

exp

�

��(k x

(j)

� x

(k)

k

2

)

2

�

=

P

j;k2X

b

j

b

k

Q

1�h�m

exp(��(x

(j)

h

� x

(k)

h

)

2

)

=

P

i;j2X

b

j

b

k

2

�m

�

�

m

2

Q

1�h�m

R

1

�1

exp(i

p

�(x

(j)

h

� x

(k)

h

)u

h

) exp(�

u

2

h

4

)du

h

=

P

j;k2X

b

j

b

k

2

�m

�

�

m

2

R

1

�1

: : :

R

1

�1

exp(i

p

�(x

(j)

�x

(k)

)

T

u) exp(�

1

4

P

1�h�m

u

2

h

)du

1

: : :du

m

= 2

�m

�

�

m

2

R

1

�1

: : :

R

1

�1

�

�

�

P

j2X

b

j

exp(i

p

�x

(j)

T

u)

�

�

�

2

exp(�

1

4

(

P

1�h�m

u

2

h

))du

1

: : : du

m

� 0:

(ii) =) (iii) Set d

0

ij

= exp(��d

ii

) + exp(��d

jj

) � 2 exp(��d

ij

)) = 2(1 � exp(��d

ij

))

for i; j 2 X , i.e., d

0

arises from p = exp(��d) by applying the inverse of the covariance

mapping (de�ned in (3.8)). Applying Lemma 4.8, we obtain that (X; d

0

) is of negative

type, i.e., (X; 1� exp(��d)) is of negative type.

(iii) =) (i) Let b

1

; : : : ; b

n

2 R with

P

1�i�n

b

i

= 0. We show that the inequality

P

1�i<j�n

b

i

b

j

d

ij

� 0 holds. By expanding in series the exponential function, we ob-

tain that

P

1�i<j�n

b

i

b

j

(1� exp(��d

ij

))

= �

�

P

1�i<j�n

b

i

b

j

d

ij

�

�

2

P

1�i<j�n

b

i

b

j

d

2

ij

+

�

2

3!

P

1�i<j�n

b

i

b

j

d

3

ij

� : : :

�

� 0

for all � > 0, since 1� exp(��d) is of negative type. By taking the limit when �! 0, we

obtain that

P

1�i<j�n

b

i

b

j

d

ij

� 0.

Remark that Theorem 6.4 remains valid if we assume only that (ii) and (iii) hold for

a set of positive �'s admitting 0 as accumulation point. The same remark also applies to

the next Theorem 6.5 (i).
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Theorem 6.5 [Ass79, Ass80b] Let (X; d) be a distance space. Then,

(i) (X; d) is L

1

-embeddable if and only if (X; 1�exp(��d)) is L

1

-embeddable for all � > 0.

(ii) Let � be a positive measure on R and set f(t) =

R

1

0

(1� exp(��t))�(d�) for t � 0. If

(X; d) is L

1

-embeddable, then (X; f(d)) is L

1

-embeddable.

Proof. (i) Assume that (X; d) is L

1

-embeddable. Hence, (X; d) is an isometric subspace

of a measure semimetric space (A

�

; d

�

) for some measure space (
;A; �). Set v(A) =

1� exp(���(A)) for A 2 A

�

. Then, the distance space (A

�

; 1� exp(�d

�

)) coincides with

the space (A

�

; d

v

), which is de�ned as in Example 5.10. Therefore, in order to show that

(A

�

; 1� exp(��d

�

)) is L

1

-embeddable, it su�ces to show that (A

�

; 1� exp(��d

�

)) is of

negative type. But, we know from Theorem 6.4 that (A

�

; 1� exp(��d

�

)) is of negative

type, since (A

�

; d

�

) is L

1

-embeddable and, thus, of negative type.

The proof of the converse implication is analogue to that of the implication (iii) =) (i)

of Theorem 6.4 (replacing the negative type inequality by an arbitrary inequality valid for

the cut cone CUT(Y ) where Y is a �nite subset of X).

(ii) Again we may suppose that (X; d) is an isometric subspace of (A

�

; d

�

) for some

measure space (
;A; �). Set v(A) = f(�(A)) for A 2 A

�

. Then, the space (A

�

; f(d

�

))

coincides with the space (A

�

; d

v

), which is constructed as in Example 5.10. We check that

(A

�

; d

v

) is of negative type, which will imply that (A

�

; f(d

�

)) is L

1

-embeddable. Indeed,

let A

i

2 A

�

, b

i

2 R for i 2 X such that

P

i2X

b

i

= 0. Then,

P

i;j2X

b

i

b

j

d

v

(A

i

4A

j

) =

R

1

0

P

i;j2X

b

i

b

j

(1� exp(���(A

i

4A

j

))�(d�)� 0

because 1� exp(��d) is of negative type and � is a positive measure.

Example 6.6 [Ass79, Ass80b] If (X; d) is L

1

-embeddable, then (X; d

�

) is L

1

-embeddable

for all 0 � � � 1.

This is a consequence of Theorem 6.5 (ii) and of the following integral formula

t

�

= e

�1

�

Z

1

0

(1� exp(��

2

t))�

�1�2�

d� (t � 0) where e

�

=

Z

1

0

(1� exp(��

2

))�

�1�2�

d�:

6.3 The biotope transform

We mention another transformation which preserves L

1

-embeddability. Let d be a distance

on a set X and let s be a point of X . We de�ne a new distance d

(s)

on X by setting

d

(s)

(i; j) =

d(i; j)

d(i; s) + d(j; s) + d(i; j)
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for all i; j 2 X: In particular, if (
;A; �) is a measure space and (X; d) is the measure

semimetric space (A

�

; d

�

), then its transform d

(;)

�

takes the form

d

(;)

�

(A;B) =

�(A4B)

�(A) + �(B) + �(A4B)

=

�(A4B)

2�(A [ B)

for A;B 2 A

�

. The distance (A;B) 2 A

�

� A

�

7!

�(A4B)

�(A[B)

is called the Steinhaus

distance. The distance (A;B) 7!

jA4Bj

jA[Bj

, which is obtained in the special case when �

is the cardinality measure, is also called the biotope distance. This terminology comes

from the fact that this distance is used in some biological problems for the study of biotopes

(see [MS58]). As a consequence of the next Proposition 6.7, the Steinhaus and biotope

distances are L

1

-embeddable.

Proposition 6.7 (i) [MS58] If d is a semimetric on X, then d

(s)

is a semimetric on X.

(ii) [Ass80b] If (X; d) is L

1

-embeddable, then (X; d

(s)

) is also L

1

-embeddable.

Proof. (i) follows from (ii) and the fact that a distance space on at most 4 points is

L

1

-embeddable if and only if it is a semimetric space (see Remark 4.22 (i)).

(ii) We can suppose that (X; d) is an isometric subspace of some measure semimetric space

(A

�

; d

�

), i.e., d(i; j) = �(A

i

4A

j

) where A

i

2 A

�

for all i; j 2 X , and we can suppose

without loss of generality that A

s

= ;. Hence, as was already observed, d

(s)

(i; j) =

�(A

i

4A

j

)

2�(A

i

[A

j

)

for all i; j 2 X . By Lemma 3.11, showing that (X; d

(s)

) is L

1

-embeddable

amounts to showing that p = �

s

(d

(s)

) is a f0; 1g-covariance. From (3.7), p is de�ned

by p(i; j) =

1

2

(d

(s)

(i; s) + d

(s)

(j; s) � d

(s)

(i; j)) for i; j 2 X n fsg. Hence, p(i; j) =

1

4

+

1

4

�(A

i

\A

j

)

�(A

i

[A

j

)

for i; j 2 X n fsg. Therefore, it su�ces to show that the symmetric function

(i; j) 2 (X n fsg)

2

7�!

�(A

i

\A

j

)

�(A

i

[A

j

)

is a f0; 1g-covariance. For this, we use the identity

�(A\B)

�(A[B)

=

�(A\B)

�(
)

�

P

i�0

�

�(

�

A\

�

B)

�(
)

�

i

�

(which follows from the identity

P

i�0

(1 � u)

i

=

1

u

for all 0 < u � 1) and the fact that f0; 1g-covariances are preserved under taking sum,

product and limit ([Ass80b], see Corollary 4.25 (ii)).

6.4 The power scale

We �nally consider the power scale, F (t) = t

�

for t � 0, where 0 < � < 1. The question

is to determine the largest exponent � for which the power scale preserves some metric

properties as hypermetricity, `

1

-, or `

2

-embeddability.
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We consider the parameters g(n), h(n), t(n), c

1

(n), c

2

(n) which are de�ned as follows:

g(n) (resp. h(n), t(n), c

1

(n), c

2

(n)) is the maximum exponent �, 0 � � � 1, such that

the distance space (V

n

; d

�

) is i-gonal for all i � 2b

n

2

c + 1 (resp. hypermetric, of negative

type, `

1

-embeddable, `

2

-embeddable).

From Theorem 4.20 and Theorem 4.16, we have the relations

c

2

(n) � c

1

(n) � h(n) � min(t(n); g(n)) and t(n) = 2c

2

(n), respectively.

Set (s) = log

2

(1 +

1

s

) for s > 0. The following results are given in [DM90].

� g(2n) = (n� 1) for n � 2 and g(2n+ 1) = (n) for n � 1.

Note that, if d(K

n;n

) denotes the path metric of the complete bipartite graph K

n;n

, then

(d(K

n;n

))

�

violates the 2n-gonal inequality if � > (n � 1). This shows that g(2n) �

(n� 1). Similarly, (d(K

n;n+1

))

�

violates the 2n+1-gonal inequality if � > (n), showing

that g(2n+ 1) � (n).

� h(n) � (n� 1) for all n � 2. This implies that c

2

(n) �

(n�1)

2

for all n � 2.

� Let d(K

m;n

) denote the path metric of the complete bipartite graph K

m;n

. Then,

d(K

m;n

)

�

is `

2

-embeddable if and only if c �

1

2

(

2mn

m+n

� 1). This implies that

(

c

2

(2n) �

1

2

(n� 1) for all n � 2;

c

2

(2n+ 1) �

1

2

(

2n(n+1)

2n+1

� 1) for all n � 1:

Deza and Maehara [DM90] conjecture that the above inequalities for c

2

(2n) and

c

2

(2n+ 1) hold at equality. It is known that c

2

(3) = 1 =

1

2

(

1

3

) (easy), c

2

(4) =

1

2

=

1

2

(1)

([Blu70]) and c

2

(6) =

1

2

(2) ([DM90]), i.e., the conjecture holds for n = 3; 4; 6.

We summarize the known information for n = 3; 4; 5; 6:

� g(3) = h(3) = c

1

(3) = c

2

(3) = 1; and t(3) = 2;

� t(4) = g(4) = h(4) = c

1

(4) = 1 and c

2

(4) =

1

2

,

� g(5) = h(5) = c

1

(5) = (2) = log

2

(

3

2

) and

1

2

(2) � c

2

(5) �

1

2

(

7

5

) =

1

2

log

2

(

12

7

).

� t(6) = g(6) = h(6) = c

1

(6) = (2) = log

2

(

3

2

) and c

2

(6) =

1

2

(2) =

1

2

log

2

(

3

2

).

7 Additional questions on `

1

-embeddings

In this Section, we address the following two questions.

- Evaluate the minimum `

p

-dimension m

p

(n) of an `

p

-embeddable distance space on n

points.

- Determine the smallest integer c(m) such that, for every distance space (X; d), (X; d) is

`

m

1

-embeddable if and only if every subspace of (X; d) on c(m) points embeds in `

m

1

.
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7.1 On the minimum `

p

-dimension

We consider here the problem of evaluating the minimum `

p

-dimension m

p

(n) of an `

p

-

embeddable space on n points. We recall the de�nition of m

p

(n) from relation (1.2),

i.e., m

p

(n) is the smallest integer m such that any `

p

-embeddable space on n points can

embedded in `

m

p

. The results we present come essentially from [Bal90] and can be stated

as follows.

As was already observed in relations (1.3) and (4.18),m

1

(n) � n�1 and m

2

(n) = n�1

but, for general p, it is not immediate that m

p

(n) is �nite. Wolfe [Wol67] showed that

m

1

(n) � n� 2. Witsenhausen proved that m

1

(n) �

�

n

2

�

and Ball extended the result for

any p � 1. In other words, every `

p

-embeddable distance on n points can embedded in

`

m

p

, where m =

�

n

2

�

. Moreover, for 1 � p < 2, this result is essentially best possible, since

m

p

(n) �

�

n�1

2

�

for 1 < p < 2, n � 3, and m

1

(n) �

�

n�2

2

�

for n � 4. One can also show

that m

1

(4) = m

1

(4) = 2, m

1

(5) = 3 and m

1

(6) = 6. It is conjectured in [Bal90] that

m

1

(n) =

�

n�2

2

�

for all n � 5.

Ball's proof for the upper boundm

p

(n) �

�

n

2

�

is based on an application of Caratheodory's

Theorem to the cut cone (if p = 1) or the cone NOR

n

(p) (for p � 1; see the de�nition

below). We �rst present the result in the case p = 1.

Proposition 7.1 m

1

(n) �

�

n

2

�

.

Proof. Let d be a distance on n points that is `

1

-embeddable, i.e., d belongs to the cut

cone CUT

n

. We show that d can be embedded in `

m

1

, where m =

�

n

2

�

. For this, it su�ces

to show that d can be decomposed as a nonnegative linear combination of at most

�

n

2

�

distinct cut semimetrics (recall Remark 2.6). Let H denote the hyperplane in R

E

n

de�ned

by the equation

P

1�i<j�n

x

ij

= 1. Then, the section CUT

n

\H of the cut cone CUT

n

by

H is a polytope of dimension

�

n

2

�

�1 whose vertices are the vectors

�(S)

j�(S)j

for all subsets S of

V

n

. Set a =

P

1�i<j�n

d

ij

. Then,

d

a

2 CUT

n

\H and, thus, by Caratheodory's Theorem,

d

a

can be written as the convex hull of at most

�

n

2

�

members of f

�(S)

j�(S)j

: S � V

n

g. This

shows that d can written as the conic hull of at most

�

n

2

�

cut semimetrics.

The result from Proposition 7.1 can extended for any p � 1, using the following cone

NOR

n

(p) instead of the cut cone CUT

n

.

Given an integer p � 1, let NOR

n

(p) denote the set of all distances d on V

n

for

which d

1

p

is `

p

-embeddable, i.e., there exist n vectors v

1

; : : : ; v

n

2 R

m

(m � 1) such that

d

ij

=k v

i

� v

j

k

p

p

for all 1 � i < j � n.

Note that, if p = 1, then NOR

n

(1) coincides with the cut cone CUT

n

(by Proposi-

tion 2.5). An element d 2 NOR

n

(p) is said to be linear if d

1

p

is `

1

p

-embeddable, i.e., if
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there exist x

1

; : : : ; x

n

2 R such that d

ij

= jx

i

� x

j

j

p

for all 1 � i < j � n. For example,

each cut semimetric belongs to NOR

n

(p) and is linear, i.e.,

CUT

n

� NOR

n

(p) for all 1 � i < j � n:

We collect in the next result some properties of the set NOR

n

(p).

Lemma 7.2 (i) NOR

n

(p) is a cone.

(ii) Let d 2 NOR

n

(p). Then, d

1

p

is `

m

p

-embeddable if and only if d is the sum of m linear

members of NOR

n

(p). In particular, if d lies on an extreme ray of NOR

n

(p), then d is

linear.

Proof. (i) Let d; d

0

2 NOR

n

(p). We show that d+ d

0

2 NOR

n

(p). By assumption, there

exist some vectors u

1

; : : : ; u

n

; v

1

; : : : ; v

n

2 R

m

(m � 1) such that d

ij

=k u

i

� u

j

k

p

p

and

d

0

ij

=k v

i

� v

j

k

p

p

for all 1 � i < j � n. Set w

i

= (u

i

; v

i

) 2 R

2m

for all 1 � i � n. Then,

d

ij

+ d

0

ij

=k w

i

� w

j

k

p

p

for all 1 � i < j � n. This shows that d+ d

0

2 NOR

n

(p). Hence,

NOR

n

(p) is a cone.

(ii) Let d 2 NOR

n

(p). If d

1

p

is `

m

p

-embeddable, then there exist u

1

; : : : ; u

n

2 R

m

such that

d

ij

=k u

i

� u

j

k

p

p

=

P

1�h�m

j(u

i

)

h

� (u

j

)

h

j

p

for 1 � i < j � n. Hence, d = d

1

+ : : :+ d

m

,

where d

h

denotes the distance on V

n

de�ned by (d

h

)

ij

= j(u

i

)

h

� (u

j

)

h

j for 1 � i < j � n.

This shows that d is the sum of m linear members of NOR

n

(p), since d

1

; : : : ; d

m

belong to

NOR

n

(p) and are linear, by construction. The converse implication holds similarly.

Proposition 7.3 m

p

(n) �

�

n

2

�

.

Proof. We sketch the proof. Let H denote again the hyperplane in R

E

n

de�ned by

the equation

P

1�i<j�n

x

ij

= 1. Set L = fd 2 NOR

n

(p) : d 2 H and d is linearg. One

can show that L is a compact set and that NOR

n

(p) \ H is a

�

n

2

�

� 1-dimensional con-

vex set which coincides with the convex hull of L. As in the proof of Proposition 7.1,

Caratheodory's Theorem implies that every member of NOR

n

(p) can be written as the

sum of

�

n

2

�

linear members of NOR

n

(p). Now, suppose d is an `

p

-embeddable distance on

n points. Then, d

p

2 NOR

n

(p) and, thus, d

p

is the sum of

�

n

2

�

members of NOR

n

(p), i.e.,

d embeds in `

m

p

, where m =

�

n

2

�

.

Proposition 7.4 (i) m

1

(n) �

�

n�2

2

�

for n � 4.

(ii) m

p

(n) �

�

n�1

2

�

for 1 < p < 2 and n � 3.
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Proof. (i) Set m =

�

n�2

2

�

. We exhibit a semimetric d on V

n

which embeds in `

m

1

but not

in `

k

1

if k < m. Set d =

P

2�r<s�n�1

�(fr; s; ng), i.e.,

8

>

>

>

<

>

>

>

:

d

1n

=

�

n�2

2

�

d

1i

= n � 3 for 2 � i � n� 1

d

ij

= 2(n� 4) for 2 � i < j � n� 1

d

in

=

�

n�3

2

�

for 2 � i � n� 1:

By construction, d embeds isometrically in `

m

1

. We show that d cannot be embedded in

`

k

1

if k < m. For this, we consider the following inequality of negative type

Neg

n

(�(n� 4); 1; : : : ; 1;�2), i.e., the inequality

(7.5) 2(n� 4)x

1n

� (n� 4)

X

2�i�n�1

x

1i

� 2

X

2�i�n�1

x

in

+

X

2�i<j�n�1

x

ij

� 0:

Let F denote the face of the cone NOR

n

(1) (=CUT

n

) de�ned by the inequality (7.5).

One can easily check that d satis�es the inequality (7.5) at equality, i.e., d lies on the face

F , and that the only cut semimetrics lying on F are the cut semimetrics �(fr; s; ng) for

2 � r < s � n � 1. Moreover, these cut semimetrics are linearly independent, i.e., F is a

simplicial face of NOR

n

(1). One can also show (Lemma 4, [Bal90]) that

(�) the only linear members of NOR

n

(1) lying on F are of the form ��(fr; s; ng) for

2 � r < s � n� 1 and � > 0.

Let us suppose that d embeds in `

k

1

. Then, d is the sum of k linear members of

NOR

n

(1). From (�) above, we deduce that d can be written as a nonnegative linear

combination of k of the cuts �(fr; s; ng) for 2 � r < s � n � 1. Since d lies on a

simplicial face, the latter decomposition of d must coincide with the initial decomposition

d =

P

2�r<s�n�1

�(fr; s; ng). Therefore, k =

�

n�2

2

�

.

(ii) We only sketch the proof, which is along the same lines as for (i). Set m =

�

n�1

2

�

.

Consider the vectors v

1

; : : : ; v

n

2 R

m

de�ned by

(v

i

)

rs

=

8

>

<

>

:

1 if r = i

�1 if s = i

0 otherwise

for 1 � r < s � n. De�ne the distance d on V

n

by setting d

ij

=k v

i

�v

j

k

p

for 1 � i < j � n.

So d embeds in `

m

p

by construction. One can show that d does not embed in `

k

p

if k < m

by using, as in case (i), a special inequality which is valid for the cone NOR

n

(p) and is

satis�ed at equality by d

p

. Namely, one uses the inequality

X

1�i<j�n

k u

i

� u

j

k

p

p

�(n+ 2

p�1

� 2) k u

i

k

p

p

� 0

which holds for any set of n vectors u

1

; : : : ; u

n

2 R

h

(h � 1) if 1 � p � 2 ([Bal87]).
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Remark 7.6 The proof of the lower bound

�

n�2

2

�

from Proposition 7.4 (i) uses essentially

the fact that the inequality (7.5) de�nes a simplicial face F of NOR

n

(1) that contains only

�

n�2

2

�

linear members (up to multiple). Observe that the hypermetric inequality

Hyp

n

(�(n� 4); 1; : : : ; 1;�1), i.e.,

(n� 4)x

1n

� (n� 4)

X

2�i�n�1

x

1i

�

X

2�i�n�1

x

in

+

X

2�i<j�n�1

x

ij

� 0

de�nes a simplicial facet G of NOR

n

(1) that contains the face F . Hence, G contains

�

n

2

�

�1

cut semimetrics but G may contain additional linear points. For this reason, the lower

bound from Proposition 7.4 (i) cannot be improved using the facet G instead of the face

F .

Linial, London and Rabinovitch [LLR93] de�ne the metric dimension of a graph G as

the smallest integer m for which there exists a norm k : k on R

m

such that the graphic

space (V; d

G

) of the graph G can be isometrically embedded into the space (R

m

; d

k:k

). The

de�nition extends clearly to an arbitrary semimetric space. Hence, rather than looking only

at embeddings in a �xed Banach `

p

-space, [LLR93] considers embeddings in an arbitrary

normed space.

Actually, the notion of metric dimension is linked with `

1

-embeddings in the following way.

Let (V

n

; d) be a semimetric space. Then, its metric dimension is equal to the minimum rank

of a sytem of vectors v

1

; : : : ; v

n

2 R

k

(k � 1) providing an `

1

-embedding of (V

n

; d), i.e.,

such that d

ij

=k v

i

� v

j

k

1

for all 1 � i < j � n.

The metric dimension of several graphs is computed in [LLR93]. In particular, dim(K

n

) =

dlog

2

(n)e, dim(T ) = O(log

2

(n)) for a treee on n nodes (both being realized by an `

1

-

embedding), dim(C

2n

) = n for a cycle on 2n nodes (realized by an `

1

-embedding),

dim(K

n�2

) � n � 1 for the cocktail party graph (i.e., K

2n

minus a perfect matching).

It is also shown in [LLR93] that, if G is a graph on n nodes with metric dimension d, then

each vertex has degree � 3

d

� 1, G has diameter �

1

2

(n

1

d

� 1), and there exists a subset S

of O(dn

1�

1

d

) nodes whose deletion disconnects G and so that each connected component of

GnS has no more than (1�

1

d

+ o(1))n nodes.

7.2 Compactness results for `

1

-embeddability in the plane

Let m � 1 be an integer and let p � 1. De�ne c

p

(m) as the smallest integer such that an

arbitrary distance space (X; d) is `

m

p

-embeddable if and only if every subspace of (X; d)

on c

p

(m) points is `

m

p

-embeddable. By convention, we set c

p

(m) = 1 if c

p

(m) does not

exist.

The study of the parameter c

p

(m) is motivated by the following result of Menger for

the case p = 2. Menger [Men28] showed that a distance space (X; d) embeds isometrically
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in the Euclidian space (R

m

; d

`

2

) if and only if each subspace of (X; d) on m + 3 points

embeds isometrically in (R

m

; d

`

2

). In other words, c

2

(m) = m+ 3 for each m � 1.

Thus arises naturally the question of looking for analogues of Menger's Theorem for

the case of arbitrary `

p

-metrics and, in particular, in the case p = 1.

Since the spaces (R; d

`

1

) and (R; d

`

2

) are identical, we deduce from Menger's Theorem

that c

1

(1) = 4. Malitz and Malitz [MM92] show that 6 � c

1

(2) � 11 and c

1

(m) � 2m+ 1

for all m � 1. The latter result is improved by J. Schmerl who proves that c

1

(m) � 2m+2

for all m � 1.

It is conjectured in [MM92] that c

1

(m) exists for all m and that c

1

(m) = 2m+ 2 for

all m.

Note that if we know that c

1

(m) exists, then this implies the existence of a polynomial

time algorithm for checking embeddability of a �nite distance space in the space (R

m

; d

`

1

),

for any given m. We recall that, on the other hand, checking `

1

-embeddability of a �nite

distance space (i.e., embeddability into some (R

m

; d

`

1

) for unrestricted m) is NP-complete

([Kar85]).

8 Examples of the use of the L

1

-metric

8.1 The L

1

-metric in probability theory

Let (
;A; �) be a probability space and let X : 
 �! R be a random variable with �nite

expected value E(X) =

R




jX(!)j�(d!) < 1, i.e., X 2 L

1

(
;A; �). Let F

X

denote the

distribution function of X , i.e., F

X

(x) = �(f! 2 
 : X(!) = xg) for x 2 R; when it

exists, its derivative F

0

X

is called the density of X . A great variety of metrics on random

variables are studied in the monography [Rac91]; among them, the following are based on

the L

1

-metric.

� The usual L

1

-metric between the random variables:

L

1

(X; Y ) = E(jX � Y j) =

R




jX(!)� Y (!)j�(d!).

� The Monge-Kantorovich-Wasserstein metric (i.e., the L

1

-metric between the distribution

functions): k(X; Y ) =

R

R

jF

X

(x)� F

Y

(x)jdx.

� The total valuation metric (i.e., the L

1

-metric between the densities when they exist):

�(X; Y ) =

1

2

R

R

jF

0

X

(x)� F

0

Y

(x)jdx.

� The engineer metric (i.e., the L

1

-metric between the expected values): EN(X; Y ) =

jE(X)� E(Y )j.

� The indicator metric: i(X; Y ) = E(1

X 6=Y

) = �(f! 2 
 : X(!) 6= Y (!)g).

In fact, the L

p

-analogues (1 � p � 1) of the above metrics, especially of the �rst two,

are also used in probability theory.

Several results are known, establishing links among the above metrics. One of the
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main such results is the Monge-Kantorovich mass-transportation theorem which shows

that the second metric k(X; Y ) can be viewed as a minimum of the �rst metric L

1

(X; Y )

over all joint distributions of X and Y with �xed marginal. A relationship between the

L

1

(X; Y ) and the engineer metric EN(X; Y ) is given by [Rac91] as solution of a moment

problem. Similarly, a connection between the total valuation metric �(X; Y ) and the

indicator metric i(X; Y ) is given in Dobrushin's theorem on the existence and uniqueness

of Gibbs �elds in statistical physics. See [Rac91] for a detailed account of the above topics.

We mention another example of use of the L

1

-metric in probability theory, namely

for Gaussian random �elds. We refer to [Nod87, Nod89] for a detailed account. Let

B = (B(x); x 2M) be a centered Gaussian system with parameter space M , 0 2M . The

variance of the increment is denoted by

d(x; y) := E((B(x)�B(y))

2

) for x; y 2M:

When (M; d) is a metric space which is L

1

-embeddable, the Gaussian system is called a

L�evy's Brownian motion with parameter space (M; d). The case M = R

n

and d(x; y) =

k x � y k

2

gives the usual Brownian motion with n-dimensional parameter. By Lemma

2.10, (M; d) is L

1

-embeddable if and only if there exist a non negative measure space (H; �)

and a map x 7! A

x

� H with �(A

x

) < 1 for x 2 M , such that d(x; y) = �(A

x

4A

y

) for

x; y 2M . Hence, a Gaussian system admits a representation called of Chentsov type

B(x) =

Z

A

x

W (dh) for x 2M

in terms of a Gaussian random measure based on the measure space (H; �) with d(x; y) =

�(A

x

4A

y

) if and only if d is L

1

-embeddable.

This Chentsov type representation can be compared with the Crofton formula for

projective metrics from Theorem 5.3. Actually both come naturally together in [Amb82]

(see parts A.8-A.9 of Appendix A there).

8.2 The `

1

-metric in statistical data analysis

A data structure is a pair (I; d), where I is a �nite set, called bf population, and

d : I � I �! R

+

is a symmetric map with d

ii

= 0 for i 2 I , called dissimilarity index.

The typical problem in statistical data analysis is to choose a "good representation" of

a data structure; usually, \good" means a representation allowing to represent the data

structure visually by a graphic display. Each sort of visual display corresponds, in fact, to

a special choice of the dissimilarity index as a distance and the problem turns out to be

the classical isometric embedding problem in special classes of metrics.
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For instance, in hierarchical classi�cation, the case when d is ultrametric corresponds

to the possibility of a so-called indexed hierarchy (see [Joh67]). A natural extension is the

case when d is the path metric of a weighted tree, i.e., d satis�es the four point condition

(see Chapter ??? (on graphs)); then the data structure is called an additive tree. Also,

data structures (I; d) for which d is `

2

-embeddable are considered in factor analysis and

multidimensional scaling. These two cases together with cluster analysis are the main

three techniques for studying data structures. The case when d is `

1

-embeddable is a

natural extension of the ultrametric and `

2

cases.

An `

p

-approximation consists of minimizing the estimator k e k

p

, where e is a vector

or a random variable (representing an error, deviation, etc. ). The following criteria are

used in statistical data analysis:

� the `

2

-norm, in the least square method; or its square,

� the `

1

-norm, in the minimax or Chebychev method,

� the `

1

-norm, in the least absolute values (LAV) method.

In fact, the `

1

criterion has been increasingly used. Its importance can be seen, for

instance, from the volume [Dod87b] of proceedings of a conference entitled \Statistical

data analysis based on the L

1

norm and related methods"; we refer, in particular, to

[Dod87a], [Fic87], [Cal87], [Vaj87].

8.3 The `

1

-metric in computer vision and pattern recognition

The `

p

-metrics are also used in the new area called pattern recognition, or robot vision,

or digital topology; see, e.g., [RK86], [Hor86].

A computer picture is a subset of Z

n

(or of a scaling

1

m

Z

n

of Z

n

) which is called a

digital n-D-space (or an n-D m-quantized space). Usually, pictures are represented

in the digital plane Z

2

or in the digital 3-D-space Z

3

. The points of Z

n

are called the

pixels.

Given a picture in Z

n

, i.e., a subset A of Z

n

, one way to de�ne its volume vol(A) is

by vol(A) := jAj, i.e., as the number of pixels contained in A. Then, the distance

d(A;B) = vol(A4B)

is used in digital topology for evaluating the distance between pictures. It is a digital

analogue of the symmetric di�erence metric used in convex geometry, where the distance

between two convex bodies A and B in R

n

is de�ned as the n-dimensional volume of their

symmetric di�erence.

The above metric and other metrics on Z

n

are used for studying analogues of clasical

geometric notions as volume, perimeter, shape complexity, etc., for computer pictures.
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The metrics on Z

n

that are mainly used are the `

1

-, `

1

-metrics, as well as the `

2

-metric

after rounding to the nearest upper (or lower) integer.

When considered onZ

n

, the `

1

-metric is also called the grid metric and the `

1

-metric

is called the lattice metric (or Chebyshev metric, or uniform metric). More speci�c

names are used in the case n = 2. Then, the `

1

-metric is also called the city-block metric

(or Manhattan metric, or taxi-cab metric, or rectilinear metric), or the 4-metric

since each point of Z

2

has exactly 4 closest neighbours in Z

2

for the `

1

-metric. Similarly,

the `

1

-metric on Z

2

is called the chessboard metric, or the 8-metric since each pixel

has exactly 8 closest neighbours in Z

2

. Note indeed that the unit sphere S

1

`

1

(centered at

the origin) for the `

1

-norm in R

2

contains exactly 4 integral points while the unit sphere

S

1

`

1

for the `

1

-norm contains 8 integral points.

Observe that the `

1

-metric, when considered on Z

n

, can be seen as the path metric of

an (in�nite) graph on Z

n

. Namely, consider the graph on Z

n

where two lattice points are

adjacent if their `

1

-distance is equal to 1; this graph is nothing but the usual grid. Then,

the shortest path distance of two lattice points in the grid is equal to their `

1

-distance.

Similarly, the `

1

-metric on Z

n

is the path metric of the graph on Z

n

where adjacency is

de�ned by the pairs at `

1

-distance one; actually, adjacency corresponds to the king move

in chessboard terms.

There are some other useful metrics on Z

2

which are obtained by combining the `

1

-

and `

1

-metrics. The following two examples, the octogonal and the hexagonal distances,

are path metrics; hence, in order to de�ne them, it su�ces to describe the pairs of lattice

points at distance 1, i.e., to describe their unit balls.

The octogonal distance d

oct

.

For each (x; y) 2Z

2

, its unit sphere S

1

oct

(x; y), centered at (x; y), is de�ned by

S

1

oct

(x; y) = S

3

`

1

(x; y)\ S

2

`

1

(x; y);

where S

3

`

1

(x; y) denotes the `

1

-sphere of radius 3 and S

2

`

1

(x; y) the `

1

-sphere of radius

2, centered at (x; y). Hence, S

1

oct

(x; y) contains exactly 8 integral points; note that mov-

ing from (x; y) to its eight neighbours at distance 1 corresponds to the knight move in

chessboard terms. Figure 2 shows the spheres S

3

`

1

, S

2

`

1

, and S

1

oct

.

The hexagonal distance or 6-metric d

hex

.

Its unit sphere S

1

hex

(x; y), centered at (x; y) 2Z

2

, is de�ned by

S

1

hex

(x; y) = S

1

`

1

(x; y)[ f(x� 1; y � 1); (x� 1; y + 1)g for x even;

S

1

hex

(x; y) = S

1

`

1

(x; y)[ f(x+ 1; y � 1); (x+ 1; y + 1)g for x odd:

The unit sphere S

1

hex

(x; y) contains exactly 6 integral points. Figure 3 shows the unit

spheres S

1

hex

(0; 0) and S

1

hex

(1;�3).
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Several other modi�cations of the `

1

-metric on the plane have been considered; see,

e.g., [Ber91] and references there.

Figure 2

Figure 3

In practice, the subset (Z

k

)

n

:= f0; 1; : : : ; k � 1g

n

is considered instead of the full

space Z

n

. Note that (Z

2

)

n

is nothing but the vertex set of the n-dimensional hypercube

and ((Z

2

)

n

; d

`

1

) is the n-dimensional hypercube metric space. Note also that (Z

3

)

2

is the

unit ball (centered at (1; 1)) of the space (Z

n

; d

`

1

). (Z

4

)

n

is known as the tic-tac-toe

board (or Rubik's n-cube) and (Z

k

)

2

, (Z

k

)

3

are called, respectively, the k-grill and the

k-framework.

Other distances are used on (Z

k

)

n

, in particular in coding theory, namely, the Ham-

ming distance d

H

de�ned by

d

H

(x; y) = jf1 � i � n : x

i

6= y

i

gj for all x; y 2 (Z

k

)

n

;
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and the Lee distance d

Lee

de�ned by

d

Lee

(x; y) =

X

1�i�n

min(jx

i

� y

i

j; k� jx

i

� y

i

j) for all x; y 2 (Z

k

)

n

:

The metric space (Z

k

; d

Lee

) can be seen as a discrete analogue of the elliptic metric

space (which consists of the set of all the lines in R

2

going through the origin and where

the distance between two such lines is their angle).

The `

1

-distance and the Hamming distance coincide when restricted to (Z

2

)

n

, i.e., the

spaces ((Z

2

)

n

; d

`

1

) and ((Z

2

)

n

; d

H

) are identical. Also, (Z

k

; d

`

1

) coincides with the graphic

metric space of the path P

k

on k nodes, (Z

k

; d

H

) coincides with the graphic space of the

complete graph K

k

on k nodes, and (Z

k

; d

Lee

) coincides with the graphic space of the

cycle C

k

on k nodes. Therefore, the spaces ((Z

k

)

n

; d

`

1

), ((Z

k

)

n

; d

H

) and ((Z

k

)

n

; d

Lee

)

coincide with the graphic space of the cartesian product G

n

, where G is P

k

, K

k

and C

k

,

respectively.

One can easily check that

(i) P

k

embeds isometrically in the (k�1)-dimensional hypercube, i.e., (Z

k

; d

`

1

) is an isomet-

ric subspace of ((Z

2

)

k�1

; d

`

1

) (simply, label each x 2 Z

k

by the binary string 1 : : :10 : : :0

of lenght k � 1 whose �rst x letters are equal to 1). Hence, ((Z

k

)

n

;�d

`

1

) is an isometric

subspace of ((Z

2

)

n(k�1)

; d

`

1

).

(ii) ((Z

k

)

n

; d

H

) is an isometric subspace of ((Z

2

)

kn

;

1

2

d

`

1

) (label each x 2Z

k

by the binary

string of lenght k whose letters are all equal to 0 except the (x+ 1)th one equal to 1).

(iii) The even cycle C

2k

embeds isometrically into the k-dimensional hypercube. There-

fore, ((Z

2k

)

n

; d

Lee

) is an isometric subspace of ((Z

2

)

nk

; d

`

1

). Also, (((Z

2k+1

)

n

; d

Lee

) is an

isometric subspace of ((Z

2

)

(2k+1)n

;

1

2

d

`

1

) (since the odd cycle C

2k+1

embeds isometrically

into the (2k+ 1)-dimensional halfcube).

More details about the `

1

-embeddings of the graphs P

k

, C

k

and K

k

can be found in

Chapter 3.
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